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Bound-state problem of theNND, NNN, and NN systems
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We used the localND, NN, andNN↔ND potentials derived from the chiral quark cluster model to analyze
the bound-state problems of theNND, NNN, andNN systems. The last two systems are included for com-
pleteness and in order to check the reliability of our model. We found that theNND system has no bound states
although there is evidence of a resonance near theNND threshold in the (J,I )5(3/2,1/2) channel. We
calculated the triton binding energy and the deuteron wave function produced by our model. We also calculated
the NN 1D2 amplitude in order to study the effect upon theNN system of the (j ,i )5(2,1) ND bound state
predicted by the chiral quark cluster model.@S0556-2813~99!05909-9#

PACS number~s!: 21.45.1v, 14.20.Gk, 14.20.Pt, 12.40.Yx
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I. INTRODUCTION

This is the third paper of a series whose aim is to inv
tigate the possible existence of two- and three-body bo
states of the various systems consisting of nucleons and
tas@1,2#. These are the systemsDD, ND, NN, DDD, NDD,
NND, and NNN. The bound states involving one or mo
unstable particles will show up in nature as dibaryon a
tribaryon resonances. In the case of the two-body syst
~dibaryons! they will decay into two nucleons and either on
or two pions, while for the three-body case~tribaryons! they
will decay into three nucleons and either one, two, or th
pions. The systems withoutD ’s (NN andNNN) are included
for completeness as well as to check the reliability of o
method since in these cases there is the possibility to c
pare with other theoretical results and with the known f
tures of the deuteron and triton. In Ref.@1# we discussed the
bound-state problems of theDD and DDD systems and in
Ref. @2# theND andNDD systems. Thus, we will now clos
our study by discussing the bound-state problems of
NND, NNN, andNN systems.

The three-body systemsNND and NNN will be investi-
gated with regard to bound-state solutions. The interes
possibleNND bound states lies in the fact that these sta
will correspond to the tribaryon resonances with the low
possible mass since they are resonances that decay into
nucleons and one pion and, therefore, they would be
easiest to detect experimentally. As mentioned before,
NNN bound-state calculation is performed in order to ha
within the same model, a complete set of results for
bound-state problem of the two- and three-body syste
composed of nucleons and deltas.

We will also study several important consequences of
bound states of theNN andND systems that are predicted b
our model. In the case of theNN state with quantum num
bers (j ,i )5(1,0) ~the deuteron! we will calculate its wave
function to see how it compares with those of other mod
The ND system possesses a bound state with quantum n
bers of angular momentum and isospin (j ,i )5(2,1) at zero
energy@2#. These quantum numbers and energy corresp
precisely to the ones of the nucleon-nucleon1D2 resonance
0556-2813/99/60~4!/044002~7!/$15.00 60 0440
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which led us in Ref.@2# to the identification of thisNN
resonance as being the consequence of theND bound state.
We will now make this identification more explicit by study
ing the influence of theND bound state upon theNN 1D2
channel by including the coupling of theNN system to the
ND system.

We use as basic framework for the baryon-baryon int
actions the local potentials obtained from the chiral qu
cluster model@3,4# as it has been described in Refs.@1,2#. In
this model, the basic interaction is at the level of qua
involving only a quark-quark-field~pion or gluon! vertex.
Therefore, its parameters~coupling constant, cutoff mass
etc.! are independent of the baryon to which the quarks
coupled, the difference among them being generated
SU~2! scaling, as explained in Ref.@5#. Moreover, quark
models provide a definite framework to treat the short-ran
part of the interaction. The Pauli principle between qua
determines the short-range behavior of the different chan
without additional phenomenological assumptions. In t
way, even in absence of experimental data, one has a c
plete scheme which starting from theNN sector allows us to
make predictions in theND and DD sectors. This fact is
even more important if one takes into account that the sh
range dynamics of theND and DD systems is to a large
extent driven by quark Pauli blocking effects, that do n
appear in theNN sector. Pauli blocking acts in a selectiv
way in those channels where the spin-isospin-color deg
of freedom are not enough to accommodate all the quark
the system@6,7#.

In order to perform theNNN and NND calculations we
follow the same procedure that we used with theDDD and
NDD cases@1,2# which was taken from the experienc
gained in the three-nucleon bound-state problem@8,9#. The
three-body calculations are performed using a trunca
T-matrix approximation where the inputs of the three-bo
equations are the two-bodyT matrices truncated such that th
orbital angular momentum in the initial and final states
equal to zero. These two-bodyT matrices, however, have
been constructed taking into account the coupling to thl
52 states due to the tensor force. This approximation in
case of the three-nucleon system with theNN interaction
taken as the Reid soft-core potential leads to a triton bind
©1999 The American Physical Society02-1
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energy which differs less than 1 MeV from the exact va
@8#.

We describe in Sec. II our formalism. In Sec. III we giv
our results and we present the conclusions in Sec. IV.

II. FORMALISM

A. The two-body interactions

The basic two-body interactions between baryons that
going to be needed in this work are the nucleon-nucle
interactionVNN˜NN , the nucleon-delta interactionVND˜ND ,
and the transition interactionsVNN˜ND andVND˜NN . These
baryon-baryon interactions were obtained from the ch
quark cluster model developed elsewhere@4#. In this model
baryons are described as clusters of three interacting ma
~constituent! quarks, the mass coming from the breaking
chiral symmetry. The ingredients of the quark-quark inter
tion are confinement, one-gluon~OGE!, one-pion~OPE!, and
one-sigma~OSE! exchange terms, and whose parameters
fixed from theNN data. Explicitly, the quark-quark (qq)
interaction is

Vqq~rW i j !5Vcon~rW i j !1VOGE~rW i j !1VOPE~rW i j !1VOSE~rW i j !,
~1!

whererW i j is the i j interquark distance and

Vcon~rW i j !52aclW i•lW j r i j
2 , ~2!

VOGE~rW i j !5
1

4
aslW i•lW j H 1

r i j
2

p

mq
2 F11

2

3
sW i•sW j Gd~rW i j !

2
3

4mq
2r i j

3 Si j J , ~3!

VOPE~rW i j !5
1

3
ach

L2

L22mp
2 mpH FY~mpr i j !

2
L3

mp
3

Y~Lr i j !GsW i•sW j1FH~mpr i j !

2
L3

mp
3 H~Lr i j !GSi j J tW i•tW j , ~4!

VOSE~rW i j !52ach

4mq
2

mp
2

L2

L22ms
2

msFY~msr i j !

2
L

ms
Y~Lr i j !G , ~5!

where

Y~x!5
e2x

x
; H~x!5S 11

3

x
1

3

x2DY~x!. ~6!

ac is the confinement strength, thelW ’s are the SU~3! color
matrices, thesW ’s (tW ’s! are the spin~isospin! Pauli matrices,
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Si j is the usual tensor operator,mq (mp , ms) is the quark
~pion, sigma! mass,as is the qq-gluon coupling constant
ach is the qq-meson coupling constant andL is a cutoff
parameter.

In order to derive the localNB˜NB interactions (B
5N,D) from the basicqq interaction defined above we us
a Born-Oppenheimer approximation@6#. Explicitly, the po-
tential is calculated as follows:

VNB(LST)˜NB(L8S8T)~R!5jLST
L8S8T~R!2jLST

L8S8T~`!, ~7!

where

jLST
L8S8T~R!

5

K CNB
L8S8T~RW !U (

i , j 51

6

Vqq~rW i j !UCNB
LST~RW !L

A^CNB
L8S8T~RW !uCNB

L8S8T~RW !&A^CNB
LST~RW !uCNB

LST~RW !&
.

~8!

In the last expression the quark coordinates are integr
out keepingR fixed, the resulting interaction being a functio
of the N-B distance. The wave functionCNB

LST(RW ) for the
two-baryon system is discussed in detail in Refs.@6,7#. The
parameters of the model are summarized in Table I.

B. The ND and NN systems

If we consider two baryonsN andB (B5N,D) in a rela-
tive S-state interacting through a potential that contains
tensor force, then there is a coupling to theNB D wave so
that the Lippmann-Schwinger equation of the system is
the form

t j i
lsl9s9~p,p9;E!5Vji

lsl9s9~p,p9!

1(
l 8s8

E
0

`

p82dp8Vji
lsl8s8~p,p8!

3
1

E2p82/2h1 i e
t j i
l 8s8 l 9s9~p8,p9;E!,

~9!

where j and i are the angular momentum and isospin of t
system, whilels, l 8s8, and l 9s9 are the initial, intermediate

TABLE I. Quark model parameters.

mq(MeV) 313
b(fm) 0.518

as 0.485
ac(MeV fm22) 46.938

ach 0.027
ms(fm21) 3.421
mp(fm21) 0.70
L(fm21) 4.2
2-2
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and final orbital angular momentum and spin of the syste
respectively.p andh are, respectively, the relative mome
tum and reduced mass of the two-body system. The cou
channels of orbital angular momentum and spin that cont
ute in the case of theND system have been given in Table
of Ref. @2#.

Equation ~9! will be used also for the case of theNN
system with isospin 0. In the case of theNN system with
isospin 1 we will take into account the coupling between
NN andND systems. This will also allow us to study theNN
scattering amplitude in the (j ,i )5(2,1) channel which is the
channel of the1D2 resonance.

If we call theNN system as channelN and theND system
as channelD, then instead of Eq.~9! we will have in this
case the set of coupled equations

tkn; j i
lsl9s9~pk ,pn ;W!5Vkn; j i

lsl9s9~pk ,pn!1 (
m5N,D

(
l 8s8

E
0

`

pm
2 dpm

3Vkm; j i
lsl8s8~pk ,pm!Gm~W;pm!

3tmn; j i
l 8s8 l 9s9~pm ,pn ;W!; k,n5N,D,

~10!

where W is the invariant mass of the system,tNN; j i is the
NN˜NN scattering amplitude,tDD; j i is theND˜ND scat-
tering amplitude, andtND; j i is the NN˜ND scattering am-
plitude. The propagatorsGN(W;pN) and GD(W;pD) in Eq.
~10! are given by

GN~W;pN!5
2hNN

kN
2 2pN

2 1 i e
, ~11!

GD~W;pD!5
2hND

kD
2 2pD

2 1 i e
, ~12!

where the on-shell momentakN andkD are defined by

W52AmN
2 1kN

2 5AmN
2 1kD

2 1AmD
2 1kD

2 . ~13!

If W.2mN1mp , i.e., if one is above the pion-productio
threshold then one has to include the width of theD in the
propagatorGD(W;pD) so that in that case one must have

GD~W;pD!5
2hND

kD
2 2pD

2 1 ihNDG~W;pD!
, ~14!

TABLE II. NN channels (l N ,sN) andND channels (l D ,sD) that
are coupled together in the3S1-3D1 , 1S0, and 1D2 NN states.

NN state j i ( l N ,sN) ( l D ,sD)

3S1-3D1 1 0 ~0,1!,~2,1!
1S0 0 1 ~0,0! ~2,2!
1D2 2 1 ~2,0! ~0,1!,~2,1!,~2,2!
04400
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where the widthG(W;pD) is due to the decay processD
˜pN. We will use for this quantity the parametrizatio
@10,11#

G~W;pD!5
2

3
0.35qpN

3
AmN

2 1pD
2

mp
2AspN

, ~15!

where spN and qpN are, respectively, the invariant mas
squared and relative momentum of thepN subsystem which
are given by

spN5W21mN
2 22WAmN

2 1pD
2 , ~16!

qpN5A@spN2~mp1mN!2#@spN2~mp2mN!2#

4spN
.

~17!

We give in Table II the channels (l N ,sN) and (l D ,sD) cor-
responding to theNN andND systems that are coupled to
gether in the case of three (j ,i ) states corresponding to th
NN channels3S1-3D1 , 1S0, and 1D2.

As mentioned before, for the solution of the three-bo
system we will use only the component of theT matrix ob-
tained from the solution of Eqs.~9! and ~10! with l 5 l 950.
For that purpose we define theS-wave truncated amplitude
which in the case of theND system and theNN system with
isospin 0 is defined from the solutions of Eq.~9! by

tsi~p,p9;E![tsi
0s0s~p,p9;E!, ~18!

and in the case of theNN system with isospin 1 is define
from the solutions of Eq.~10! by

tsi~p,p9;E![tNN;si
0s0s ~p,p9;W!, ~19!

where

E5
kN

2

2hNN
, ~20!

andW andkN related through Eq.~13!.

C. The NND and NNN systems

The numerical solution of the bound-state problem in
case of theNND system will be obtained using the sam
formalism that was used in Ref.@2# for the case of theNDD
system since in both cases one is dealing with a system
two identical particles and a third one which is different. T
two-body channels that contribute to the three-body eq
tions in the case of theNND system are given in Table II
for all the possible states in which the three baryons areS
waves.

The numerical solution of the bound-state problem in
case of theNNN system will be obtained using the sam
formalism that was used in Ref.@1# for the case of theDDD
system since in both cases one is dealing with a system
three identical particles. The two-body channels that cont
ute to the three-body equations in the case of theNNN sys-
2-3
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tem are given in Table IV for all the possible states in wh
the three nucleons are inS waves.

III. RESULTS

We will start by discussing the predictions of our mod
for the stable systemsNN andNNN and afterwards we dis
cuss the unstable systemNND.

A. The NN system

As we already reported in Ref.@2#, theNN system in this
model has only one bound state which corresponds to
deuteron, and with a binding energy of 3.13 MeV. That e
ergy disagrees with the experimental value 2.225 M
which is also the value obtained using the quark-quark in
action Eqs. ~1!–~6! together with the resonating grou
method~RGM!. This discrepancy in the binding energy
due to the use of the Born-Oppenheimer approximat
~7!,~8!, which is needed in order to solve the bound-st
problem of the three-body systems since in the RGM t
would be extremely complicated technically. The differen
between the RGM value and the Born-Oppenheimer appr
mation value is less than 1 MeV, which gives us confiden
on the reliability of our method for the two-baryon syste
Since we want to apply theNN interaction to study some
standard features of few-nucleon systems such as the
teron wave function and the triton binding energy we ha
readjusted our model of the3S1-3D1 interaction such that it
gives the correct binding energy for the deuteron. This w
achieved by slightly increasing the cutoff parameterL ~see
Table I! from 4.20 to 4.28 fm21.

We compare in Fig. 1 theS- andD-wave components o
the deuteron wave function~in momentum space! predicted

TABLE III. Two-body ND channels (s2 ,i 2) and two-bodyNN
channels (s1 ,i 1) that contribute to a givenNND state with total
spin S and isospinI.

S I (s2 ,i 2) (s1 ,i 1)

1/2 1/2 ~1,1!
1/2 3/2 ~1,1!,~1,2! ~1,0!
1/2 5/2 ~1,2!
3/2 1/2 ~1,1!,~2,1! ~0,1!
3/2 3/2 ~1,1!,~1,2!,~2,1!,~2,2! ~1,0!,~0,1!
3/2 5/2 ~1,2!,~2,2! ~0,1!
5/2 1/2 ~2,1!
5/2 3/2 ~2,1!,~2,2! ~1,0!
5/2 5/2 ~2,2!

TABLE IV. Two-body NN channels (s,i ) that contribute to a
given NNN state with total spinS and isospinI.

S I (s,i )

1/2 1/2 ~1,0!,~0,1!
1/2 3/2 ~0,1!
3/2 1/2 ~1,0!
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by the readjusted model with the ones of the Paris@12# and
Bonn @13# potentials. Our wave function has aD-state prob-
ability of 5.2%. In Figs. 2 and 3 we show theNN 3S1 and
3D1 phase shifts with the original cutoff parameterL
54.20 fm21 ~dashed line! and the ones produced by th
readjusted model withL54.28 fm21 ~solid line!.1

We now move to theNN isospin 1 channels. In this cas
one has the possibility of coupling to theND system. As it
has been shown in Refs.@14,15# this approach leads to
satisfactory description of theNN 1S0 channel when the
chiral quark cluster model defined by Eqs.~1!–~6! is used
within the framework of the resonating group method. In o
model, which uses the Born-Oppenheimer approximat
~7!,~8!, we expect to get somewhat more attraction as was
case with the3S1-3D1 channel previously discussed. Indee
we find that the virtual bound state becomes a real bo
state with a very small binding energy of 0.046 MeV. W
show in Fig. 4 as a dashed line theNN 1S0 phase shift

1The 3S1 and 3D1 phase shifts shown in Ref.@2# corresponding to
the model withL54.20 fm21 had a minor numerical error. The
correct results are the ones given here by the dashed line in Fi
and 3.

FIG. 1. The deuteron wave function of our model~solid line!
compared with the ones of Paris~dashed line! and Bonn~dotted
line! potentials.~a! S wave,~b! D wave.
2-4
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which shows the presence of the bound state in the fact
dE505180°. Thus, in order to improve the description of t
phase shift and to be able to study other systems we r
justed our model of the1S0 channel by increasing the cuto
parameterL from 4.20 to 4.38 fm21. We show in Fig. 4 as
solid line theNN 1S0 phase shift produced by the readjust
model which leads to a good description of the low-ene
data. The slightly different tuning of the cutoff for the1S0
and 3S1 partial waves resembles the different value of t
sigma-meson parameters used by the Bonn potential for
same channels, in order to achieve a correct descriptio
the low-energy data for both partial waves@13#.

Since the purpose of our entire study@1,2# is the investi-
gation of bound states between nucleons and deltas w
two baryons can be in aS state we must consider also th
NN 1D2 channel for which as seen in Table II there is aS
state in theND system. As was shown in Ref.@2#, the chiral
quark cluster model defined by Eqs.~1!–~8! predicts aND
bound state right at theND threshold which corresponds t
an invariant energy of 2.17 GeV. That energy coincides w
the mass of the1D2 resonance@16,17#. We show in Fig. 5
the real and imaginary parts of theNN 1D2 amplitude ob-
tained from our model~solid line! as compared with the
experimental ones given by the most recent amplitude an
sis @18# ~dashed line!. As one sees from this figure there
only qualitative agreement between the theoretical and
perimental amplitudes. An important question is the posit
of the resonance~corresponding to the energy where Im F
maximum! which is given in the experimental amplitude b
2.17 GeV and in our model by 2.16 GeV. Since the bou
state of theND system lies at 2.17 GeV it is interesting th
at least within our model the position of the resonance in
NN system corresponds closely with that of the bound s
in the ND system.

B. The NNN system

As a test of the reliability of our model in the case of t
three-baryon system we solved theNNN bound-state prob-

FIG. 2. TheNN 3S1 phase shift as a function of laborator
kinetic energy. The dashed line is the result of the standard m
with L54.20 fm21 and the solid line is the result of the readjust
model withL54.28 fm21. The data are from Ref.@18#.
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lem. We found that of the states of Table IV only the sta

with (S,I )5( 1
2 , 1

2 ), that is the triton, has a bound state. Sin
the triton binding energy is very sensitive to the descript
of the two-body channels, we considered both our stand
value L54.20 fm21 as well as the readjustedL
54.28 fm21 for the 3S1-3D1 channel andL54.38 fm21

for the 1S0 channel. Since our standard model has too mu
attraction in the case of theNN channels we expect that
will also have too much attraction in theNNN sector. We
are, therefore, not surprised when we find that it produce
triton binding energy of 10.89 MeV (Bexp58.49 MeV). Our
readjusted model, on the other hand, gives rise to a tr
binding energy of 6.90 MeV. This difference of about
MeV is a measure of the uncertainty in the case of the thr
baryon system due to the use of the Born-Oppenheimer
proximation. For comparison, we notice that the triton bin
ing energy for the Reid-soft-core potential in the trunca
T-matrix approximation is 6.58 MeV@2#.

el
FIG. 3. TheNN 3D1 phase shift as a function of laborator

kinetic energy. The dashed line is the result of the standard m
with L54.20 fm21 and the solid line is the result of the readjust
model withL54.28 fm21. The data are from Ref.@18#.

FIG. 4. TheNN 1S0 phase shift as a function of laborator
kinetic energy. The dashed line is the result of the standard m
with L54.20 fm21 and the solid line is the result of the readjust
model withL54.38 fm21. The data are from Ref.@18#.
2-5
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C. The NND system

One may have hoped to find several bound states in
system due to the facts that theND two-body subsystem ha
a bound state in the channel (s2 ,i 2)5(2,1) and theNN two-
body subsystem has a bound state in the channel (s1 ,i 1)
5(1,0) and an almost-bound state in the channel (s1 ,i 1)
5(0,1). This is not the case however, and as a matter of
none of the nine possible three-body states given in Table
is bound. The reason is the following: As we have alrea
pointed out in Ref.@2# the ND two-body channels (s2 ,i 2)
5(1,1) and (s2 ,i 2)5(2,2) present Pauli blocking@6# and,
therefore, they have a strong repulsive barrier at short
tances in theS-wave central interaction. Therefore, in all th
three-body states of Table III where theseND repulsive
channels contribute they wipe out any possibility of bindin
The only three-body states that do not have this problem

(S,I )5( 1
2 , 5

2 ) and (S,I )5( 5
2 , 1

2 ) but in these states there is n
contribution from the attractiveNN channels and, therefore
one does not have enough attraction to bind the system

The three-body state which is closer to being bound is

(S,I )5( 3
2 , 1

2 ) which has a repulsive contribution from th
ND channel (s2 ,i 2)5(1,1) and attractive contributions from

FIG. 5. TheNN 1D2 amplitude as a function of the invarian
energy. The solid line is the result obtained from our model and
dashed line is the result of the amplitude analysis of Ref.@18#. ~a!
Real part,~b! imaginary part.
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the ND channel (s2 ,i 2)5(2,1) and from theNN channel
(s1 ,i 1)5(0,1). We show in Fig. 6 the Fredholm determina
of this state as a function of energy near theNND threshold
~a bound state would exist if the Fredholm determinant h
passed through zero at an energy below threshold!. The solid
line is the result of our standard model and the dashed lin
the result obtained using the readjustedNN 1S0 interaction
described before. As seen from this figure the state is alm

bound. That means that the (S,I )5( 3
2 , 1

2 ) state is very near
theNND threshold and, therefore, it represents the tribary
resonance with the lowest possible mass.

IV. CONCLUSIONS

We have studied the bound-state solutions of the syst
NN and ND. In the case of the stableNN system we ob-
tained the bound-state wave function and showed that
quite similar to that predicted by other models@12,13#. In the
case of the unstableND system where there is a bound sta
with zero binding energy, we calculated its effect upon t
NN 1D2 amplitude and we found that it gives rise to aNN
resonance at an invariant energy close to that of theND
bound state.

We also studied the bound-state problems of the thr
body systemsNNN andNND. In the case of theNNN sys-
tem we found that~as it should be! there is a bound state in

the triton channel (S,I )5( 1
2 , 1

2 ). In the case of theNND
system we found that there are no bound-state solution
any of the allowed states although in the case of the s

(S,I )5( 3
2 , 1

2 ), we found evidence that a resonance lies n
the NND threshold. This would be the tribaryon resonan
with the lowest possible mass and, therefore, the one m
easy to detect experimentally.

With this paper we have now concluded our theoreti

e

FIG. 6. The Fredholm determinant of theNND system in the

state (S,I )5( 3
2 , 1

2 ) as a function of energy. The solid line is th
result of our standard model and the dashed line is the result u
for the NN 1S0 interaction the readjusted model described in t
text.
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investigation on the possible existence of bound states for
two- and three-body systems composed of nucleons and
tas. Putting together the results of Refs.@1,2# and the ones
obtained here we conclude that the two-body systemsNN,
ND, and DD have one, one, and six bound states, resp
tively. The bound states of the unstable systemsND andDD
correspond to dibaryon resonances that decay into two nu
ons and one pion and two nucleons and two pions, res
tively. The ND bound state with (j ,i )5(2,1) and M
'2.17 GeV is the dibaryon resonance with the lowest p
sible mass and the one which seems to be well confirme
experiment. The sixDD bound states correspond to dibary
resonances with masses between 2.33 and 2.46 GeV.
respect to the three-body systems theNNN has one and the
,

,

.

.

y

.

04400
he
el-

c-

le-
c-

-
by

ith

DDD has six bound states, while theNND has one reso-
nance near threshold and theNDD has two resonances nea

threshold. The predictedNND state with (S,I )5( 3
2 , 1

2 ) and
M'3.4 GeV is the tribaryon resonance with the lowe
mass and, therefore, the one that would be more eas
detect experimentally.

ACKNOWLEDGMENTS

This work has been partially funded by COFAA-IP
~México! and by Direccio´n General de Investigacio´n Cien-
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