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Bound-state problem of theNNA, NNN, and NN systems
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We used the locallA, NN, andN N« NA potentials derived from the chiral quark cluster model to analyze
the bound-state problems of tiNNA, NNN, andNN systems. The last two systems are included for com-
pleteness and in order to check the reliability of our model. We found thad ke system has no bound states
although there is evidence of a resonance nearNhA threshold in the {,1)=(3/2,1/2) channel. We
calculated the triton binding energy and the deuteron wave function produced by our model. We also calculated
the NN D, amplitude in order to study the effect upon tR& system of the {,i)=(2,1) NA bound state
predicted by the chiral quark cluster modg$0556-28189)05909-9

PACS numbgs): 21.45:+v, 14.20.Gk, 14.20.Pt, 12.40.Yx

[. INTRODUCTION which led us in Ref[2] to the identification of thiSNN
resonance as being the consequence of\thebound state.
This is the third paper of a series whose aim is to invesWe will now make this identification more explicit by study-

tigate the possible existence of two- and three-body bounihg the influence of thelA bound state upon theN D,
states of the various systems consisting of nucleons and dethannel by including the coupling of tHéN system to the
tas[1,2]. These are the systems\, NA, NN, AAA, NAA, NA system.
NNA, and NNN. The bound states involving one or more ~ We use as basic framework for the baryon-baryon inter-
unstable particles will show up in nature as dibaryon andctions the local potentials obtained from the chiral quark
tribaryon resonances. In the case of the two-body systenfduster mode[3,4] as it has been described in Rdf5,2]. In
(dibaryons they will decay into two nucleons and either one this model, the basic interaction is at the level of quarks

or two pions, while for the three-body ca@teibaryons they involving only a quark-quark-fieldpion or gluon vertex.
will decay into three nucleons and either one, two, or three

Therefore, its parametergoupling constant, cutoff mass,
pions. The systems withot's (NN andNNN) are included etc) are indepe_ndent of the baryon to Whiph the quarks are
- coupled, the difference among them being generated by
for completeness as well as to check the reliability of OurSU(Z) scaling, as explained in Ref5]. Moreover, quark
. . i Mhodels provide a definite framework to treat the short-range
pare with other theoretical results and with the known feay a1t of the interaction. The Pauli principle between quarks
tures of the deuteron and triton. In Rgt] we discussed the  yetermines the short-range behavior of the different channels
bound-state problems of theA and AAA systems and in  yithout additional phenomenological assumptions. In this
Ref.[2] theNA andNAA systems. Thus, we will now close way, even in absence of experimental data, one has a com-
our study by discussing the bound-state problems of thejete scheme which starting from theN sector allows us to
NNA, NNN, andNN systems. make predictions in th&lA and AA sectors. This fact is
The three-body systenf$NA and NNN will be investi-  even more important if one takes into account that the short-
gated with regard to bound-state solutions. The interest ofange dynamics of th&lA and AA systems is to a large
possibleNNA bound states lies in the fact that these stategxtent driven by quark Pauli blocking effects, that do not
will correspond to the tribaryon resonances with the lowesappear in theNN sector. Pauli blocking acts in a selective
possible mass since they are resonances that decay into thigey in those channels where the spin-isospin-color degrees
nucleons and one pion and, therefore, they would be thef freedom are not enough to accommodate all the quarks of
easiest to detect experimentally. As mentioned before, ththe systeni6,7].
NNN bound-state calculation is performed in order to have, In order to perform theNNN and NNA calculations we
within the same model, a complete set of results for thefollow the same procedure that we used with th&A and
bound-state problem of the two- and three-body systemslAA cases[1,2] which was taken from the experience
composed of nucleons and deltas. gained in the three-nucleon bound-state prob|&®8]. The
We will also study several important consequences of thehree-body calculations are performed using a truncated
bound states of thiN andNA systems that are predicted by T-matrix approximation where the inputs of the three-body
our model. In the case of theN state with quantum num- equations are the two-bodymatrices truncated such that the
bers (,i)=(1,0) (the deuteronwe will calculate its wave orbital angular momentum in the initial and final states is
function to see how it compares with those of other modelsequal to zero. These two-bodly matrices, however, have
The NA system possesses a bound state with quantum nunbeen constructed taking into account the coupling tolthe
bers of angular momentum and isospjni{=(2,1) at zero =2 states due to the tensor force. This approximation in the
energy[2]. These quantum numbers and energy correspondase of the three-nucleon system with tR&l interaction
precisely to the ones of the nucleon-nucleti, resonance taken as the Reid soft-core potential leads to a triton binding
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energy which differs less than 1 MeV from the exact value

[8].

We describe in Sec. Il our formalism. In Sec. Ill we give

our results and we present the conclusions in Sec. IV.

II. FORMALISM

A. The two-body interactions

The basic two-body interactions between baryons that are
going to be needed in this work are the nucleon-nucleon

interactionVyn_nn» the nucleon-delta interactiofiys_,na »
and the transition interactiongyy_na andVya_nn- These

baryon-baryon interactions were obtained from the chiral

quark cluster model developed elsewhgtg In this model

baryons are described as clusters of three interacting massi
(constituent quarks, the mass coming from the breaking o
chiral symmetry. The ingredients of the quark-quark interac

tion are confinement, one-glu¢®GE), one-pion(OPE), and

one-sigma OSE exchange terms, and whose parameters ar

fixed from the NN data. Explicitly, the quark-quarkq@)
interaction is

qu(Fij):Vcon(Fij)+VOGE(Fij)+VOPE(Fij)+VOSE(Fij)r

1)
Wherefij is theij interquark distance and
VeorFij) = —acki- Njrf 2)
1 . (1 T - - -
VOGE(r”):ZCES)\, )\J E_m_é 1+ §0’i'0'j 5(r|1)
: Si] 3
239 (>
4mgri;
) 2
VOPérij):gachmmw[ Y(m_ri;)
A3 I
__3Y(Ar|]) O'i'0'j+ H(mwrij)
m7T
A3 ..
_m_iH(Arij)}Sj TitTj, 4
R 4m§ A?
VOSE(rij):_achm_ET Az—mim(r Y(mgrij)
A
_m_UY(Arij) : 5
where
Yoo=5" Hoo=14+ 24 2y 6
(=" HOO=|1++2]Y00. (6

a. is the confinement strength, thés are the SUB) color
matrices, ther's (;’s) are the spin(isospin Pauli matrices,
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TABLE I. Quark model parameters.

my(MeV) 313
b(fm) 0.518
s 0.485
a,(MeVfm?) 46.938
en 0.027
m,(fm~1) 3.421
m_(fm~1) 0.70
A(fm™Y 4.2

5,— is the usual tensor operatan, (m,, m,) is the quark

\(})ion, sigma mass, as is the qg-gluon coupling constant,
e . . X
(Qcn IS the gg-meson coupling constant anfl is a cutoff

parameter.

In order to derive the locaNB—NB interactions B
=N,A) from the basiayq interaction defined above we use
& Born-Oppenheimer approximati¢f]. Explicitly, the po-
tential is calculated as follows:

Viesnoner sm(R) =&y (R) =&y (®), (7)
where
&7 (R)
6

> Voo(rij)

i<j=1

<wh’§’T<fz> wh?<ﬁ>>

VLS TR WS TR V(WSTR[ EST(R)
®

In the last expression the quark coordinates are integrated
out keepingR fixed, the resulting interaction being a function
of the N-B distance. The wave functiow{3'(R) for the
two-baryon system is discussed in detail in R§&7]. The
parameters of the model are summarized in Table I.

B. The NA and NN systems

If we consider two baryonsl andB (B=N,A) in arela-
tive Sstate interacting through a potential that contains a
tensor force, then there is a coupling to ti& D wave so
that the Lippmann-Schwinger equation of the system is of
the form

"' (p,p" E)= VIS (p,p")

+2 | PP Vi (o)

I's’
l ratf ot
1"s"1"s’ AN
‘gt (PP
©)

wherej andi are the angular momentum and isospin of the
system, whilds, I's’, andl”s” are the initial, intermediate,
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TABLE Il. NN channels iy ,sy) andNA channels |k, ,s,) that
are coupled together in thts;-°D,, 'S,, and'D, NN states.

NN state j [ (In»Sn) (Ia,Sa)
3s,-°D, 1 0 0,9),(2,2)

s, 0 1 0,0 2,2

p, 2 1 2,0 (0,2,(2,2,(2,2
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where the widthI'(W;p,) is due to the decay process
—aN. We will use for this quantity the parametrization
(10,19

2 Vmy+pa
F(Wipa)= 30385y 5 —

T 7N

(15

where sy and g,y are, respectively, the invariant mass
squared and relative momentum of thd&l subsystem which

and final orbital angular momentum and spin of the systemare given by

respectivelyp and » are, respectively, the relative momen-
tum and reduced mass of the two-body system. The coupled

channels of orbital angular momentum and spin that contrib-

ute in the case of thBA system have been given in Table Il
of Ref.[2].

Equation (9) will be used also for the case of tHéN
system with isospin 0. In the case of theN system with

Sn=W2+mZ—2W\m2+p2, (16)
_ \/[SWN_ (M+ M) “1[S oy — (M —my)?]
q7TN_ 4SWN :
17

isospin 1 we will take into account the coupling between thewe give in Table Il the channeld(,sy) and (,,S,) cor-

NN andNA systems. This will also allow us to study tNeN
scattering amplitude in the (i) =(2,1) channel which is the
channel of the'D, resonance.

If we call theNN system as channdl and theNA system
as channelA, then instead of Eq(9) we will have in this
case the set of coupled equations

T o W=VE ep+ 3 S oo
= ) !S!
X Vlksr:;;jsi,(pk ’ pm)Gm(W; pm)
Xts ' (P PasW); Kin=N,A,
(10

whereW is the invariant mass of the systemyy;;; is the

NN—NN scattering amplitudet, » ;i is theNA—NA scat-
tering amplitude, andyy,;;; is the NN—NA scattering am-
plitude. The propagator&y(W;py) and G, (W;p,) in Eq.

(10) are given by

27NN
Gn(W,; =, 11
27N
GA(W; =7, 12
sWipa) =5 5 (12

where the on-shell momeniq, andk, are defined by

W=2\mg+k&=m3+ki+Vmi+ki. (13

If W>2my+m,_, i.e., if one is above the pion-production
threshold then one has to include the width of theén the
propagatoiG,(W;p,) so that in that case one must have

27na

GA(W;py)= -
ki—pi+innal (W;p,)

: (14

responding to thé&NN and NA systems that are coupled to-
gether in the case of threg,{) states corresponding to the
NN channels®S,-®D,, S, and 1D,.

As mentioned before, for the solution of the three-body
system we will use only the component of thematrix ob-
tained from the solution of Eq$9) and (10) with I=1"=0.

For that purpose we define ttf®wave truncated amplitude
which in the case of thBIA system and th& N system with
isospin 0 is defined from the solutions of E§) by

tsi(p.p" E)=tE*(p.p"; E), (18)
and in the case of thBIN system with isospin 1 is defined
from the solutions of Eq(10) by

tei(p.p";E)=tRN%(P.p"; W), (19
where
KX
= , 20
27NN 20

andW andky related through Eq13).

C. The NNA and NNN systems

The numerical solution of the bound-state problem in the
case of theNNA system will be obtained using the same
formalism that was used in RdR] for the case of thé&NAA
system since in both cases one is dealing with a system with
two identical particles and a third one which is different. The
two-body channels that contribute to the three-body equa-
tions in the case of thBINA system are given in Table Il
for all the possible states in which the three baryons a® in
waves.

The numerical solution of the bound-state problem in the
case of theNNN system will be obtained using the same
formalism that was used in Rdfl] for the case of th AA
system since in both cases one is dealing with a system of
three identical particles. The two-body channels that contrib-
ute to the three-body equations in the case ofNiNN sys-
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TABLE lll. Two-body NA channels §,,i,) and two-bodyNN 10 3
channels §;,i;) that contribute to a giveWNNA state with total
spin Sand isospin. E
-1 ]
S I (S2.i2) (s1.i1) & 10 f
1/2 1/2 (1, &
1/2 3/2 (1,0,(1,2 (1,0 Z 107 4
1/2 5/2 12 2 b
3/2 1/2 (1,2),2, () 2
3/2 3/2 (1,9,(1,2,(2,9,(2,2 (1,0,00,9 10 ™
3/2 5/2 1,2,(2,2 0,1 ]
5/2 1/2 2,9 i
5/2 3/2 2,0,2,2 (1,0 0 1 2 3 4 5 8
5/2 5/2 2,2 k (fm™)
t
tem are given in Table IV for all the possible states in which
the three nucleons are Biwaves.
lIl. RESULTS o 107 3
We will start by discussing the predictions of our model &
for the stable systemNN andNNN and afterwards we dis-  _ E g
cuss the unstable systeldiNA. 2 10 4
E VY
A. The NN system - :l :
As we already reported in Rgf2], the NN system in this 10 - ] I

model has only one bound state which corresponds to the
deuteron, and with a binding energy of 3.13 MeV. That en-
ergy disagrees with the experimental value 2.225 MeV k (fm™)
which is also the value obtained using the quark-quark inter-
?nC:tcr)\rc]) dI(EF({q(SBI\(/I:;) 'Igﬁ)ls tgi%?:trr;i;nv(\:lghinﬂ;ﬁe rt?ii?jri]r?gt;megnegrgrg/uips Fompared \_Nith the ones of Paridashed ling and Bonn(dotted
. . .~ line) potentials.(a) Swave, (b) D wave.
due to the use of the Born-Oppenheimer approximation
(7),(8), which is needed in order to solve the bound-stateby the readjusted model with the ones of the PEIE and
problem of the three-body systems since in the RGM thaBonn[13] potentials. Our wave function hasDastate prob-
would be extremely complicated technically. The differenceability of 5.2%. In Figs. 2 and 3 we show tiéN 3S; and
between the RGM value and the Born-Oppenheimer approxi®D, phase shifts with the original cutoff parametér
mation value is less than 1 MeV, which gives us confidence=4.20 fmi ! (dashed ling and the ones produced by the
on the reliability of our method for the two-baryon system. readjusted model witth =4.28 fm ! (solid line).t
Since we want to apply thaIN interaction to study some  We now move to thélN isospin 1 channels. In this case
standard features of few-nucleon systems such as the degne has the possibility of coupling to tieA system. As it
teron wave function and the triton binding energy we havenas been shown in Ref§14,15 this approach leads to a
readjusted our model of th&s;-°D, interaction such that it satisfactory description of th&lN S, channel when the
gives the correct binding energy for the deuteron. This waghiral quark cluster model defined by Ed4)—(6) is used
achieved by slightly increasing the cutoff parametefsee  within the framework of the resonating group method. In our
Table ) from 4.20 to 4.28 fm*. model, which uses the Born-Oppenheimer approximation
We compare in Fig. 1 th& andD-wave components of (7),(8), we expect to get somewhat more attraction as was the
the deuteron wave functiofin momentum spagepredicted  case with the’S,->D; channel previously discussed. Indeed,
we find that the virtual bound state becomes a real bound
TABLE IV. Two-body NN channels ¢,i) that contribute to a  state with a very small binding energy of 0.046 MeV. We

FIG. 1. The deuteron wave function of our modsblid line)

given NNN state with total spirS and isospin. show in Fig. 4 as a dashed line theN 'S, phase shift

S I (s.i)

1/2 12 (1,0,(0,1 1The s, and 3D, phase shifts shown in R4R2] corresponding to

1/2 3/2 0, the model withA=4.20 fm ! had a minor numerical error. The

3/2 1/2 1,0 correct results are the ones given here by the dashed line in Figs. 2
and 3.
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~FIG. 2. TheNN °S; phase shift as a function of laboratory  F|G. 3. TheNN 3D, phase shift as a function of laboratory
kinetic energy. The dashed line is the result of the standard modg{inetic energy. The dashed line is the result of the standard model
with A=4.20 fm * and the solid line is the result of the readjusted yjth A=4.20 fm* and the solid line is the result of the readjusted
model withA=4.28 fm 1. The data are from Ref18]. model with A =4.28 fmi L. The data are from Ref18].

which shows the presence of the bound state in the fact théém. We found that of the states of Table IV only the state

Sg—o= 189°. Thus, in order to improve the description of the ith (S,1)=(%,%), that is the triton, has a bound state. Since
phase shift and to be able to study other systems we reagsg triton binding energy is very sensitive to the description

justed our model of théS, channel by increasing the cutoff ¢ e two-body channels, we considered both our standard
parameterA from 4.20 to 4.38 fm®. We show in Fig. 4 as value A=4.20 fm! as well as the readjusted\

solid line theNN 1S, phase shift produced by the readjusted _ 4 og i 1 for the 35,-3D, channel andA =4.38 fm *

model which leads to a good description of the low-energy;, the 1, channel. Since our standard model has too much
data. The slightly different tuning of the cutoff for théSy  agtraction in the case of thN channels we expect that it

and 381 partial waves resembles the different value of thewi” also have too much attraction in tHeéNN sector. We

sigma-meson parameters used by the Bonn potential for thee therefore, not surprised when we find that it produces a
same channels, in order to achieve a correct description Qfjion binding energy of 10.89 MeVE,,=8.49 MeV). Our
; : = 8. .
the low-energy data for both partial waves3]. _ readjusted model, on the other hand, gives rise to a triton
Since the purpose of our entire study?] is the investi- iy qing energy of 6.90 MeV. This difference of about 4
gation of bound states between nucleons and deltas Whefjey js 4 measure of the uncertainty in the case of the three-
two baryons can be in & state we must consider also the baryon system due to the use of the Born-Oppenheimer ap-

) ; ) .
NN "D, channel for which as seen in Table Il there iSa ,5yimation. For comparison, we notice that the triton bind-
state in theNA system. As was shown in Re®], the chiral  jng energy for the Reid-soft-core potential in the truncated

quark cluster model defined by Eq4)—(8) predicts aNA T-matrix approximation is 6.58 Mey2].
bound state right at thBIA threshold which corresponds to

an invariant energy of 2.17 GeV. That energy coincides with
the mass of th¢'D, resonancg16,17. We show in Fig. 5 80 7! 's,
the real and imaginary parts of théN D, amplitude ob-
tained from our modelsolid line) as compared with the
experimental ones given by the most recent amplitude analy-
sis[18] (dashed ling As one sees from this figure there is Z
only qualitative agreement between the theoretical and ex- =
perimental amplitudes. An important question is the position <
of the resonancécorresponding to the energy where Im Fis
maximum which is given in the experimental amplitude by 3
2.17 GeV and in our model by 2.16 GeV. Since the bound =
state of theNA system lies at 2.17 GeV it is interesting that

at least within our model the position of the resonance in the —40 ' ' ' '
NN system corresponds closely with that of the bound state 0 100 =00 300
in the NA system. En (MeV)

degrees)

1

FIG. 4. TheNN S, phase shift as a function of laboratory
B. The NNN system
o 4 ) kinetic energy. The dashed line is the result of the standard model
As a test of the reliability of our model in the case of the with A=4.20 fm™! and the solid line is the result of the readjusted

three-baryon system we solved tNeNN bound-state prob- model withA=4.38 fm L. The data are from Ref18].
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1850 2050 2250
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-10 -8 -6 -4 -2 0
0.3 E (MeV)
e
'Dy(NN) (b)
FIG. 6. The Fredholm determinant of ti&NA system in the
02 - state §,1)=(2,%) as a function of energy. The solid line is the
’ result of our standard model and the dashed line is the result using
= LT T - for the NN 'S, interaction the readjusted model described in the
E J text.
0.1 - .
o the NA channel 6,,i,)=(2,1) and from theNN channel
d (s1,i1)=(0,1). We show in Fig. 6 the Fredholm determinant
- - of this state as a function of energy near MBA threshold
0.0 = T . (a bound state would exist if the Fredholm determinant had
1850 2050 2250 passed through zero at an energy below threshdhk solid
W (MeV) line is the result of our standard model and the dashed line is

the result obtained using the readjustéd 'S, interaction
FIG. 5. TheNN *D, amplitude as a function of the invariant described before. As seen from this figure the state is almost

energy. The solid line is the result obtained from our model and th¢)ound. That means that th&,()=(3,3) state is very near

dashed line is the result of the amplitude analysis of RE]. (&) the NNA threshold and, therefore, it represents the tribaryon
Real part,(b) imaginary part. resonance with the lowest possible mass.

C. The NNA system

One may have hoped to find several bound states in this
system due to the facts that the&\ two-body subsystem has We have studied the bound-state solutions of the systems
a bound state in the channel,(i,) =(2,1) and theNN two- NN and NA. In the case of the stablEN system we ob-
body subsystem has a bound state in the chansigi4( tained the bound-state wave function and showed that it is
=(1,0) and an almost-bound state in the chanrsglig) quite similar to that predicted by other modEl®,13. In the
=(0,1). This is not the case however, and as a matter of fagtase of the unstablA system where there is a bound state
none of the nine possible three-body states given in Table Ilwith zero binding energy, we calculated its effect upon the
is bound. The reason is the following: As we have alreadyNN D, amplitude and we found that it gives rise ta\NaN
pointed out in Ref[2] the NA two-body channelss,i,) resonance at an invariant energy close to that of Nide
=(1,1) and 6,,i,)=(2,2) present Pauli blockinfg] and, bound state.
therefore, they have a strong repulsive barrier at short dis- We also studied the bound-state problems of the three-
tances in the&s-wave central interaction. Therefore, in all the body system&NNN andNNA. In the case of th&iNN sys-
three-body states of Table Il where thebE\ repulsive tem we found thatas it should bgethere is a bound state in
channels contribute they wipe out any possibility of binding.the triton channel $,1)=(3,%). In the case of theNNA
The only three-body states that do not have this problem argystem we found that there are no bound-state solutions in
(S,1)=(3,3) and (S,1)=(3,3) but in these states there is no any of the allowed states although in the case of the state
contribution from the attractivélN qhannelg and, therefore, (s 1)=(2,1), we found evidence that a resonance lies near
one does not have enough attraction to bind the system. he NNA threshold. This would be the tribaryon resonance

The three-body state which is closer to being bound is thith the lowest possible mass and, therefore, the one more
(S,1)=(3,%) which has a repulsive contribution from the easy to detect experimentally.
NA channel §,,i,)=(1,1) and attractive contributions from  With this paper we have now concluded our theoretical

IV. CONCLUSIONS
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investigation on the possible existence of bound states for th& AA has six bound states, while tiéNA has one reso-
two- and three-body systems composed of nucleons and datance near threshold and tNe\A has two resonances near

tas. Putting together the results of Refs,2] and the ones  hreshold. The predicteNNA state with 6,1)=(2,%) and

. 213
obtained here we conclude that the two-body systeiNs 1.3 4 Gev is the tribaryon resonance with the lowest

NA, andAA have one, one, and six bound states, respenass and, therefore, the one that would be more easy to
tively. The bound states of the unstable syst&sandA A detect experimentally.

correspond to dibaryon resonances that decay into two nucle-
ons and one pion and two nucleons and two pions, respec-
tively. The NA bound state with j(i)=(2,1) and M
~2.17 GeV is the dibaryon resonance with the lowest pos-
sible mass and the one which seems to be well confirmed by This work has been partially funded by COFAA-IPN
experiment. The sidA bound states correspond to dibaryon (México) and by Direccia General de InvestigaaioCien-
resonances with masses between 2.33 and 2.46 GeV. Witffica y Tecnica (Spain under Contract No. PB97-1401-
respect to the three-body systems MW N has one and the C02-02 and by the University of Salamanca.
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