PHYSICAL REVIEW C, VOLUME 60, 044001

Poincare invariant exchange model of pion-nucleon scattering
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Pion-nucleon scattering up to a pion laboratory kinetic energy of 700 MeV is described by a Poincare
invariant, instant form model. The model is constructed in a space spanned by single-barydiB statbere
B is the nucleon, or any resonance that contributes in the energy range considered; and by meson-baryon states
|uB), where|uB)=|=N), |7A), or |»N). The model specifies a mass operator in the fois Mg+ U,
whereMj is a noninteracting mass operator ddctontains the interactions. THerN|U|=N) potentials are
derived fromN, A, o, andp exchange processes. The vertex interactignB|U|B’) are derived from field
theory interaction Hamiltonians. Coupling to the inelastic channetsy) and |5N), is provided by a
(mN|U|7A) transition potential due to nucleon exchange; and by interactions of the&@mB"< u'B’.
[S0556-28189)02809-3

PACS numbds): 13.75.Gx, 11.80-m, 24.10.Jv

[. INTRODUCTION that is relevant to the few-particle system of interest. A num-
ber of workers have contributed to the development of this
Particle exchange models have been successful in describpproach[19—-21]. Here we will use Okubo’s formulation
ing the nucleon-nucleon interactiph], electroweak interac- [20]. The unitary transformation approach has proved to be
tion currentg2,3], meson-meson scatterifig], and meson- very useful in investigating nuclear electromagnetic currents
nucleon scatterinfs—15]. Here we are concerned only with [22—25, and in the construction of nuclear interacti¢@é—
pion-nucleon scattering. In the historically important Chew-30]. Sato and Le¢8] have used this method to construct a
Low model for pion-nucleon scatterin§], the only interac- model for 7N scattering, and the reactioyN— 7N.
tion included was therN< N vertex. In spite of the simplic- Fuda and Zhang have developed a variation of this ap-
ity of this model, it was able to reproduce th§(1232) proach, in which an effective mass operator, rather than an
resonance. The discovery of other mesons, in particular, theffective Hamiltonian, is derivef81-35. The mass operator
rho meson p) [16], led to the inclusion of other vertices so determined serves as the essential ingredient in a
such aspe 7 andpN<N. The development of the quark Bakamjian-Thomas constructidi36,37] of a Poincarein-
model and QCD have also had an important impact on exvariant model. Such a model specifies a complete set of
change models of the pion-nucleon system. In particular, it i€oincaregenerators which satisfy exactly the algebra of the
now widely believed that baryons such as th@232) reso- Poincaregroup, the so-called Poincaadgebra. Moreover,
nance are just as elementary as the nucleon. This change With such a model, there exists a set of unitary operators
viewpoint quickly led to the development of effective field which provide a representation of the Poincareup, and
theories in which, for example, the, N, and A are the can be used to map the quantum mechanical state vectors
quanta of the field§17]. from one inertial frame to another. This approach is three
An effective Lagrangian for the pion-nucleon system doeglimensional in character, and is not manifestly covariant;
not lead to unique predictions for pion-nucleon scattering, afowever, it can be shown that tfgmatrix elements ob-
there is no exact procedure for deriving few-particle equatained transform properly from one inertial frame to another,
tions from a quantum field theory. A common approach fori.€., probabilities are invariant. A general proof of this claim
deriving integral equations for the pion-nucleon system is tdas been given by Coester and Poly£88]. A less general,
use a three-dimensional reduction of the ladder, Bethebut more transparent, proof has been giy88] by Fuda.
Salpeter equatiof,7,13—15. Even within this framework, The mass operator—Okubo approach was first developed in
there is a lack of uniqueness due to the freedom in choosintjie context of the front form of relativistic quantum mechan-
the reduction scheme. Another approach is to use a straighies, and used to develop simple models of #id and NN
forward relativistic generalization of the Lippmann- systemg31,32. The method was subsequently used to de-
Schwinger equation, in which the role of the potentials isvelop a realistic, front form, one-boson exchange model of
played by amplitudes derived using time-ordered perturbathe NN system[33]. The methodology was extended to the
tion theory[9-12). instant form in the context of a simple model of thaeN
Alternatively, it is possible to derive an effective Hamil- system[34], and then used to obtain an instant form, one-
tonian from the model Lagrangian. The Tamm-Dancoffboson exchange model of ttheN system[35].
method[18] can be used to accomplish this, however, it has These earliest applications of the mass operator—Okubo
the disadvantage of leading to an energy dependent Hamithethod only dealt with elastic scattering. The extension to
tonian. An energy independent Hamiltonian can be obtainedoupled channels and inelastic scattering was made in the
by developing a unitary transformation that block diagonal-context of a front form model forrN scatterind 40,41. This
izes the quantum field theory Hamiltonian in its Fock spacemodel was constructed in a space spanned by single-baryon
The effective Hamiltonian acts in the subspace of Fock spacstates|B), where B is the nucleon, or any resonance that
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contributes in the energy range considered; and by theonstructing Poincaravariant models is given, and the re-
meson-baryon stategrN), |7A), and |»N). The model strictions on a mass operator necessary to ensure Poincare
specifies a mass-square operator in the foirf= |\/|(2)+ Vv, invariance are stated. The essential relation for constructing
where My, is the noninteracting mass operator, aaton-  effective interactions with the Okubo meth¢@0] is pre-

tains the interactions. The purely phenomenological interacsented at the beginning of Sec. Ill. The application of the
tions consist of vertex interactionéuB|V|B’), and two- method to the p|0_n-nu_cleon system is |IIu§trated by a deriva-
particle potentials{xB|V|x'B’), where the potentials are tion of the effective mteractlons that arise from the well
assumed to be separable. This model gives a remarkabKPown NN v_ertex. In partlcular_, tdeN|L.J|N> and
good fit to thewN elastic scattering amplitudes up to a pion (mN|U|7N) matrix elements th"?‘t arise from this vertex are
laboratory kinetic energy of 1.0 Gef#d). CoNIU|aN) contibetions 1L asing from themNoh.

The original coupled channel formalis0] has recently vertex is also given, as well as the basic formula for obtain-
been extended to include a photon-nucleon chaiel. ing the(aN|U|7A) transition potential due tdl exchange.
This extension satisfies not only Poincarsariance, but g method for constructing therN|U| 7N) potentials due
als_o gauge invariance, anq provides a framework for calcug, andp exchange is not given here as it has been given
lating meson photoproduction from the nucleqn. previously in Ref[34].

The success of our purely phenomenological model for - pe gerivation of the Lippmann-Schwinger equations that
N scattering has naturally led us to develop a physicallyyrise from the type of mass operator developed here has also
more satisfying model, in which the interactions are derive%een given previousmAO], so the basic equations are S|mp|y
from an effective Lagrangian. Here we report the results oktated in Sec. IV. Here some useful identities for carrying out
such a model. The model specifies a mass operator in the partial wave analysis of the Lippmann-Schwinger equa-
form M=My+U, where M, is the mass operator for the tions are also given. The results obtained for the parameters
system without interactions, andi contains the interactions. in our model, by fitting to an experimental phase shift analy-
The model space consists of single-baryon stiées and  sis, are given in Sec. V. A discussion of the results and future
meson-baryon stat¢gB). The single-baryon states include prospects for the model is presented in Sec. VI. The interac-
the nucleon N, and the following resonancesA  tion Lagrangian densities and interaction matrix elements not
=P35(1232), R=P44(1440), D15(1520), S;;(1535), and given in Sec. lll are presented in the Appendix.
$31(1620); while for the meson-baryon states, we have Throughout we work in units in which=c=1.
|uB)=|mN),|wA),|7N). The model accounts forrN-
elastic scattering up to a pion laboratory kinetic energy of Il. GENERAL BACKGROUND
700 MeV, which corresponds to a total c.m. energyVéf S, o ) )

—1574 MeV. Our single-baryon states include all of the A Poincare transformation is a linear, inhomogeneous
resonances in this range, as well as $3¢1620) resonance, (ransformation that maps the components of a space-time
which lies somewhat above this range, but turns out to hav¥€ctorx associated with one inertial frame to the components
a non-negligible effect. Its width is 150 MeV. The two- _of a vectorx’ a_ssomated with another inertial frame accord-
particle, inelastic channels which have thresholds balgw N to the relation
=1574 MeV are therA and »N channels, with thresholds

at W=1372 MeV andW=1486 MeV, respectively. The

mwN channel, which we assume to be approximated by thgyhereb is a vector andh is a Lorentz transformation, which

x'=ax+b, (2.1

wA channel, has its threshold =1218 MeV. for proper transformations can be parametrized in the form
We have chosen to develop our mass operator in the
framework of the instant form of relativistic quantum me- a=exgi(w-k+6-j)]. (2.2

chanics, since with this form it is straightforward to construct o ) )

mass operator matrix elements from the effective, few-Herej is the generator of three-rotatioris,is the generator
particle Hamiltonian obtained with the Okubo meth@®]. of rotationless boosts, ang and @ are three-vectors whose
This is a simple consequence of the fact that in a c.m. frametomponents provide the necessary parameters. In a satisfac-
the action of the mass operator and the Hamiltonian is thé&lry relativistic model, there exists a unitary operator
same. In modeling thé=N|U|=N) matrix elements, we U(a,b), corresponding to the P_omcalransformatlon a,_b),

have made the rather common assumption that this interagbat maps a quantum mechamc?l state yeh}@ra;somatt;d

tion is due toN, A, p, and o exchange. We have also in- with the x frame to the vectoty') associated with the
cluded aN|U|7A) transition potential due tbl exchange. frame according to
The other interactions that are included in the model are the N
vertex interactions(uB|U|B’), where we allowB’=N, [¥)=U(@.b)l¥), 23
P1,(1440), D,5(1520), andS;,(1620) to couple to theB  yhere for proper transformations the unitary operator can be
=aN and 7A channelsB’'=A to couple to theuB= =N parametrized in the form

channel, ands;1(1535) to couple to theeB= 7N and N

channels. U(a,b)=exp(ib-P)exgdi(w-K+ w-J)], (2.9
The outline of the paper is as follows. In Sec. Il a brief
description of the Bakamijian-Thomas meth{@b,37 for P=(H,P). (2.5
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HereK is a boost operatod is the angular momentum op- The quantum field theory Hamiltonian is divided into the
erator, H is the Hamiltonian of the system, arfdlis the  noninteracting pant, and the interacting paH ;, according
three-momentum operator. Since the law of combination foto

the Poincaretransformations is g’,b’)e(a,b)=(a’a,a’b

+b"), the unitary operators must combine according to Horr=Ho+Hy, 3.2

U(a’,b")U(a,b)=U(a'a,a’b+b’) (2.6) \;v:Serqézek:cL%\?nns;itgséaﬁgfydeS|gnated here by;), are

So as to provide a representa_tlon of the Poingaoeip. This HolO)=E(2)]2). 3.3
implies a set of commutation rules for the generators
{H,P,K,J}, which is commonly referred to as the PoincareThe effective Hamiltonian in thél subspace, denoted by

algebra[37]. H™, is given to second order Hy0]
In constructing the ten generatdtd,P,K,J}, it is conve-

nient to work with another set of ten Hermitian operators, 1 A
i.e., {M,P,7,X}, whereM is the mass operatof] is a spin <§|HH|§'>=<§ Horrt 5Hy EO—Hq
operator, an is the so-called Newton-Wigner position op- 0
erator. This second set of operators satisfies a much simpler
set of commutation rules than the Poincaigebra; in fact + H, §’> +---. (3.9
the only nonzero commutators are E({")—Ho
[P™X,]=—i8mn, [jlljm]:ialmnjn_ 2.7 We now illustrate the method for constructing the matrix

elements of the mass operator by considering a well known

The three-momentum operatér is common to both sets, 7NN interaction. The nucleon and pion fields are given by
while the other generators can be expressed in terms of the

operators of the second set by the relatif3,37] N-(x)=f d°p Z [b.(p,h)u(p,h)e 1P
| (2m®2enp) T
H:(P2+M2)l/2, (ZSa -
+df(p,h)v(p,h)eP ], (359
J=XXP+J, (2.8b
(x)—fd—gku—l)ta (ke ™+ af (ke ]
K——E XH-I—HX)—E (2.80 e (277)320’71—('() a t ,
=5 M+H" ' (3.5
It can be shown that if the commutators of the set en(p)=(p?+m2Y? w. (k)=(k*+m2)¥2 (3.6
{M,P,7,X} are zero, except for those given by HZ.7),
then the generators given by E@.8), in combination with u(p,hu(p,h’)=—v(p,h)v(p,h’)=2mySpy. (3.7
P, satisfy the Poincarealgebra.
In the Bakamjian-Thomas constructi¢®6,37] of the set Here b/(p,h) creates a nucleon of three-momentym

{M,P,J,X}, the operator$, 7, andX are chosen to be the energyey(p), zcomponent of isospii andz component of
same as those for the system of particles without interacspin h; atT(k) creates a pion of three-momentum energy
tions, while the mass operatdt contains interactions. The , (k), and z component of isospin. The Dirac spinors
commutation rules foP, J, and X are then automatically u(p,h) andv(p,h) are the same as those of Bjorken and
satisfied, and it is only necessary to ensure that Drell [43] except for the normalizatiof3.7). The nonzero
commutators and anticommutators are given by

[M,P]=[M,J]=[M,X]=0. (2.9
{bi(p,h),bf,(p",h")}={di(p,h),d](p",n")}
I1l. CONSTRUCTING A MASS OPERATOR :(277)328N(p) ée(p_p,)ﬁiiléhh/ ,
Here we deduce a mass operator for the pion-nucleon sys- (3.8

tem by using the Okubo methd&0] for constructing effec-
tive interactions, starting from a quantum field theory Hamil-

tonian. The Fock space of the field theory is divided into al'h NN-int tion L an densit d int .
subspace consisting of various single-baryon states, i.e € miNIN-interaction Lagrangian density and interaction

IN),]A),|R), ...; and various meson-baryon states, i.e., Ramiltonian are given by

[7N),|7A),|»N), ... . We denote the projection operator
onto this subspace bl and onto the complementary, or-
thogonal subspace by, so that

[ai(k),a/,(k")]=(2m)*2w ,(K) *(k—K') &y .

LX) ==ignuNX)[T(i9) 7 w(x)IN(X), (3.9

I'(g)=

1-\ )
AN =— 4] ye, (3.10
M+A=1. (3.) 2my ) ®
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5 In the single-particle basis defined by E§.13), the rep-
Hann= —f A% Lonn(X)]t=ot - - -, (3.1)  resentatives oP, 7, andX are given by
where the ellipsis indicates a term due to derivative coupling. (pih|P=p(pih|, (3.208
Such terms do not contribute here. This interaction involves
a mixture of pseudoscalar and pseudovector coupling, with ih| 7= /2). . (pih’ 3.20
the mix determined by [13,14]. (pih| 7 hz (o72)nn(pin’], (3.209

In our model, thdl subspace includes the single-nucleon

and pion-nucleon states defined by . . o '
lpih)=b/(p,h)|0), (3.12 o 28ﬁ(p)]<plh|’ 19200
|kt,pih)=a/ (k)b (p,h)|0). (3.13 \évlcg(ra] itr;ythe two-particle basis defined by H§.18 they are
Obviously the inner product for the single-nucleon states is ) )
given by (qQtih|P=Q(qQtih|, (3.21a

ihlo’i'h’y=(2 32 53 —0')S: S . . . .
<p| |p | > ( 77) SN(p) (p p ) i’ hh (314) <th|h|j=2 [J(q)]hh’<QQt|h,|; j(q)=IVq>< q+ 0-/2,
h/

In carrying out the Bakamjian-Thomas construction, it is im- (3210
portant to work with a basis in whick, 7, and X have

simple representatives. The single-particle sta8%2 are (qQtih|X = Q l

perfectly satisfactory in this regard, however, the two- ZEiN(Q,q)

particle state€3.13 are not. In order to improve on them,

we begin by replacing the labeksandp by the total three- The second terms in the representativesXcdre needed to

iVo—i (qQtih|. (3.210

momentumQ and relative three-momentumdefined by ensure that it is Hermitian with respect to the inner products
implied by Egs.(3.14 and(3.19.
Q=(En,Q)=k+p=(w.(k)+en(p),k+p), In our model, the mass operator is assumed to be of the
form
g=Kem=—Pcm.» (3.19
M=Mg+U, (3.22

where we see that is the three-momentum of the pion in the
pion-nucleon, c.m. frame. The invariant mass of the pionwhereM is the mass operator for the noninteracting system,
nucleon statekt,pih) is given by andU contains the interactions. The noninteracting mass op-
erator is defined in theN)—|7N) sector by the eigenvalue
Won(@)=+(Q- Q)= w (q)+en(q), (3.16  equations

while its energy is given by My|pih)=my|pih), (3.233
Ean(Q.0)=[Q%+W:(a)]*2 (3.17 Mo|qQtih) =W, (q)|qQtih). (3.23b
A satisfactory two-particle basis state is obtained by boostingve recall that in the Bakamjian-Thomas construction
a rest frame state according [t84,35,317 [36,37), the operator®, 7, andX are the same for the in-
R teracting system as for the noninteracting system, therefore
|[gQtih)=exp(—iyQ -K)|qt,(—q)ih) M, and U must commute separately with them in order to

A + . satisfy Eq.(2.9), the necessary condition for Poincameari-
=exp—iyQ -K)a/(@bj(—a,h[0), (3.183  ance. The commutativity ol follows trivially from Egs.
(3.20, (3.21), and(3.23. In order forU to commute withP,

y=tanh [|Q|/E n(Q,q)]. (3.189 7 andX its matrix elements must have the forms
It can be shown that the inner product for the basis states (pih|U|p'i"h")y=(27)%2en(p) 8%(P—P") Sii+ S Unin»
(3.18 that follows from Eq.(3.8) is given by (3.24a3
(aQtih|g'Q"t'i"h") (qQtih|U|p’i’h")
=(2m)°2E ;n(Q,0) 8*(Q— Q") A 1n(q) =(2m)32[E . (Q.qen(p')]H25%(Q—p')
X O%a=a) A (3193 < U@ i,h,> (3240
Aan(@)=(2m)%20 (@) en(Q)/Won(Q). (319D 2AWon(@my] 2 [
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(qQtih|U|g'Q"t’i"h") We note that) .\ n(0) is a rotationally invariant function of
3 o ) o andq, which is necessary for the commutativity dfand
=(2m)%2[En(Q.NEn(Q',9)]26%( Q- Q") the spin operatoy/.
, We now develop a model foU .y .n(0,9") based on
«{ tih U, an(9.9") ti'h' ) (3.249  Nucleon exchange. This comes from the second term on the
2l W N ()W, n(q")]Y2 right hand side of Eq(3.4), where we note that the projec-

) ) . tion operatorA excludes the single-nucleon intermediate
The Dirac 6 functions result from the commutativity @  giates. We find

and U, while the fact that Uyy, U,\n(9), and

U.n,»n(0,9") do not depend on the total three-momentum is
a consequence of the commutativityXfandU. In order to <ktapih‘HwNNﬁHﬂTNN K't',p'i ’h’>
ensure thal commutes with the spin operatgt U,y n(0), 0
and U, »n(d,9") must be rotationally invariant functions ) .
of the g’s and . The denominators on the right hand sides 22 (pih[H nnlk't",p"i"h")
of Egs. (3.24h and (3.249 are put in simply for conve- h
nience. d3p”
In order to construct a model for the vertex function X 3 - - -
U .n(Q), we evaluateH ,y between a pion-nucleon state (2m)*2en(p")[E—en(p”) — 0 (K) — 0(K")]
and a nucleon state and obtain X (Kt p"i"h"|[H ol p'1 A )+ - - (3.30

(kt,pih[H xnlp'i"h") o .
where the ellipsis indicates terms that do not contribute to

=(2m)38%(Q—p")ig.nn(€r - 7)ii-u(p,h) nucleon exchange. Upon inserting £8.25 and comparing
D the result to Eq(3.249 with Q=0, we find that the single-
XT'(=Kku(p',h"), (3.29  nucleon exchange contribution to theN, 7N potential is
where we have introduced the complex unit vectors defined"Ven by

b ! ul aw
Y UEN,wN(q,q )=02nn(— PIR+2P35) (en+my) ™2

= + =

£.=%(112)(1,%i,0), £&=(0,0,1). (3.2 X (64 + M) V(51— my) BB
According to Eq.(2.83 the Hamiltonian and the mass opera- , ,
tor yield the same result when acting on a state whose total —(en—My)AB'—(ey—my)BA
three-momentum is zero. Also, it follows from E(B.18 / " /
that|qQtih)=|qt,(—q)ih) whenQ=0. As a result of these o) (o xylen+ myAA
observations, we find upon choosipg=0 in Egs.(3.24b —(en+Mmy)BA"—(g{+my)AB']}
and (3.25 that therNN vertex function is given by

. e, 1 1 1
<t|h|UwN,N(q)|| h > X_/; ” ’ + ’ " ’
_ dey\en—eN— @, ENTENT O
=ig (el - Diiu(p,MT(=kju(p’,h"), (3.31
k+p=p’'=0. (3.27 ) ,
) o en=en(Q), ey=en(d'), ex=en(q+q’),
In the c.m. frame, the nucleon’s Dirac spinor is given by
Xh 0r=0.(0), 0r=w.Ld),
u(p,h)=[en(a)+my]*3 _ , p=(en(a),—q),
O XN Xh -
(3.283 A=A(0,0"iMy) =1+ 5 (en—sh— @},
N
q
XN=— 3.28 , , .
N on(@ T my (3.280 B=AQ.Q i ~my), A'=AQqGmy),
which when used in Eq3.27), along with Eq.(3.10, leads , ;.
to [13.27, along 1319 B'=A(q",q;—my).
(tih|U yn(a)i’h") Here P™ is a projection operator onto a state of the pion-
. N 12 12 nucleon system with total isospin andxy and xy are de-
=1gann(er - Dii[en(q)+my] (2my) fined by Eq.(3.28h. We note that this potential is a rotation-
W () + My ally invariant func'tion 91‘0-, a, 'andq.’. '
X )\+(1—)\)T (o XN)nh - We now consider interactions involving th&(1232),
N

which we treat as an elementary particle. Thl,A vertex
(3.29  function can be calculated from the matrix element
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(kt,(pih)n|H nal(P/i707) ) The #N, 7N potential due toA exchange can be calcu-
3 . lated from the matrix element
=(2m)*6*(Q—p")i(grna/my)

X (&F - Ta)ii-u(p,h)k,uk(p’,h") (kt,(pih) s[H znal (P"i"N "))
& - i ’u(p, .h"),
t NA p mEA p :(zw)sg’,(Q_p/)i(gWNA/mw)

X (&F - Tla)iuk(p.hk,u(p’,h"),

(3.32

which is obtained from the Lagrangian densi#4). The
result is given by Eq(A16). Here Ty, is an isospin transi- (3.36
tion operator. In general our spin and isospin transition op-
erators,Sggr and Ty, are defined by and the formula

Tew= 2 €n/BN)(1BmnB'n')(B'n’|, 7=ST, <kt‘(pih)N Hana gy Hana KPR )N>
mnn’
(3.33 ) .
=2 | ((pih)n[H znal k't (p"i"h") o)
where B stands for a baryon and its spin or isospin, and i”h”
(1BmnB’n’) is a Clebsch-Gordan coefficient. The Rarita- d3n"
; ; ‘o i p
Schwinger spinor for thé is given by X
(27)%2e 5 (P")[E—5(P") — @(K)—w(K")]
uk(p,h) =2 1%,(p)(0&m) "us(p,h")(1,1/2m,h"[3/2 ) X(kt,(p"i"N")a[Hanal (PR )N+, (3.378
mh’
(21 212
_S o) P-Sua St (p-Sw)p |* ea(p)=(p+mj)™~= (3.37b
o A my TN my(eatmy) L, The final result is given by EqA19).
(3.34 As mentioned in Sec. |, other interactions that we include

are those associated with various single-baryon intermediate

wherel (p) is a rotationless boost from the rest frame four-States, where the baryons are, in order of increasing energy,

momentum (n,,0) to p=(e,.p), andu,(p,h) is a Dirac the following resonance®R= P,(1440), D=D13_(1520),S

spinor defined as in Eq3.28, but with my—m, . =85,1(1535), andS’ = S;(1620). We have not included the
The matrix element3.32 can also be used to calculate (mN|U|7N) interactions due to the exchange of these reso-

the =N, wA transition potential due to nucleon exchange,f@nces. They only contribute through the processes
using the formula uB&B' e u"B". The uB,B’ vertex functions associated

with these resonances are given in the Appendix.

In order to take account of the composite nature of our
<kt.(pih)N Honng =g Hana k't',(p’i’h’)A> particles, matrix elements such as E¢3.26 and (3.29
0 must be modified by the introduction of form factors. For
) ) vertices of the formu+B<B’, we follow the procedure
:E ((pih)nIH ounlK't", (""" ) used in Aaron, Amado, and Youngzs=N model[44], and
i multiply ((kp)g|Hinl(p’)g’) matrix elements by the form
d3p” factor given by
X
(2m)%2en(P")[E—en(P") — @ (k) — @ (K')] A2+ Qe |
AN 1t ’(k1p): B P (3383
X (kt,(p"i"h")[Hanal (p'I7h) )+ -, JuBs A2 g +Q(K.D)
(3.35
2 2 2
E=w,(k)+en(p). Q(k,p)=w, (3.38h
(k+p)?
Note that here in applying E¢3.4) we only useE= w (k)
+en(p) without the factor of 1/2. The term wittE’ Qp0|e=[(mi+mé—mg,)2—4mim§]/(2m3,)2,
=w,(k')+e,(p") causes a problem, since the denominator (3.380

E'—en(p”)— w,(k)—w,(k") can vanish. This is related to

the fact thatA—m+N is not just a virtual process; it can Where A gg: is a cutoff mass, and Qpge is
actually occur. This difficulty can be circumvented by ex-the value of Q(k,p) when K+ p)2=m§,. In the
panding the few-particle subspace to inclyaerN) states. B c.m. frame Q(k,p)=qg? where q is the c.m. three-
This, however, would lead to a three-particle model, which ismomentum of mesonu. With the introduction of these
beyond the scope of the present work. The final result for théorm factors, a matrix element such as E¢3.32
transition potential is given by Eq§A17) and (A18). is replaced according to(kt,(pih)y/H nal(p’i"h")s)
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—(kt,(pih)n[H znal(P'i"h") )G 7na(k,p). This type of re- .
placement is also made for matrix elements such as V22(Z):U22+BiZBhBfU21|p'BhB>

(kt,(p"i"h")n|H -nal(P'i7h") ), which appears in Eqg.

(3.35. When expressing Eq3.380 in terms of theq’s it d®p

should be kept in mind that all of our four-momenta are on X 3

the mass shell. (27)°2ep(P)(Z2—Mpgp)
The 7N, 7N potentials due tar and p exchange can be 4.3

calculated using the method described in R&#], which

extracts the potentials from Feynman-like amplitudes. Fogyhere the subscript 2 refers to the subspace of meson-baryon
example, ther-exchange potential is obtained from the for- states, and the 1 refers to the subspace of single-baryon

(pighg|U12,

mula states. The second term on the right hand side of£8) is
ihlu” Ntihe the effective potential that arises from the elimination of the

(tih|U7y on(a,q")[t"i"h") single-baryon channels, and contains the bare masses of the
o Jonn various baryons. These arise as a result of expressing the

= Sy & u(p,h)yu(p’,h’) #[gom m?2. constants that appear in matrix elements such as¥Ee4a

G in the form
+Gomn(k-k')] ! + ! (0)
JommlK: , , ’ U /:[m —m ]5 . (44)
(k—k )Z_mi (p_p )Z_m(Zr BB B B1¢BB

(3.39 Following Eq.(3.240, we write ourT-matrix elements in the

form
p+k=p'+k’'=0,
with the final result given by Eq(A34). For theo andp (aQt,ighg|T(2)|a'Q"t, ig hg,)
exchange potentials we introduce the same type of form fac- , ,
tor as ugsegin Ref34], i.e., g =(2m)°2[E5(Q0)E,/s(Q",9")]*26%Q-Q")
. Tus,ue(d,9:2) .
(A2—m?)2+ A" ><<t ighg s t/ighg ),
f(tz;m,A,n)= (Az—t2)2—+A4 , (3.40 H Z[W#B(Q)W#/B/(q’)]llz w''B'B

(4.9

wheret is a momentum transfem is the mass of the ex-

changed particled or p), andA is a cutoff mass. With the a5 well as a similar equation witi—U. Following Eq.
introduction of this form factor, a potential such as E138  (3.24h, we write the matrix element for an arbitranB,B’
is mutiplied by vertex in the form

f[(k_k,)z;m(f'A(7'17771n(r7771']f[(p_p’)z;m(riA(rNN!n(rNN]' . TN ’
(34:D <th,u.| BhB|U|p IB’hB’>

=(2m)%2[E,5(Q.0)eg (p")]M25%(Q—p’)
IV. LIPPMANN-SCHWINGER EQUATIONS
U,ge(d)

Z[W;LB(Q)mB’]l/Z

The scattering amplitudes that our mass operatbr ><<t,LiBhs
=My+U gives rise to are obtained by solving the
Lippmann-Schwinger equation

%mg> (4.6)

Using these expressions, as well as the completeness relation
implied by inner products such as E@.19, we find the
T(2), (4.1 . .
z—Mg coupled integral equations

T(z)=U+U

where z is a complex parameter, which for pion-nucleon

. . . . . T gr(d, ’;Z
scattering is given bg=W_y+ie. In writing out the repre- weue(4,0°2)

sentation of this equation in our few-particle subspace, we , .
encounter both single-baryon and meson-baryon states. In =Vueue(4,952)+ 2 fVMB,,,/B”(q,q 2)
Ref.[40], it is shown that it is possible to eliminate explicit B
reference to the single-baryon states, and thereby obtain an d3q” T e (q,92)
effective potentialV,,(z) that acts only in the subspace of - " —,
meson-baryon states. The resulting equations are Arer(Q") 2W,en(Q7)[2—W,rer(Q") ]
1 4.7
Tol(2) =V (2) + Voo 2) ———T,42), (4.2 _ ) )
# # e T where the effectiveuB-u'B’ potentials are given by
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TABLE I. Partial waves and contributing states.

Partial wave Baryon and meson-baryon states mihreshold (\je\/)
S S14(1535) 1N, A (1 ;5 =2),7N(l ,y=0) 1181.1
S $31(1620) N, A (1 .0 =2) 1336.9
Pll N,P11(1440) ,7TN,7TA(I7TA: 1) 12092
Pa 7N, mA(l 2 =1) 1500.0
Pis 7N, 7A(l,,=1,3) 1372.6
Pas P2y(1232) N, A (1 ,,=1,3) 1172.7
Dis D14(1520) N, 7A (I ,,=0,2) 1205.7
V,g,.8(0.032)=U,pg ,e(d.q") where () and} are a 3j and 6§ symbol, respectively. The
3-j symbol restricts the sum ohto L=1 for =0 andL
U,ee(DUgr ,5(q") =11 for |=1. This identity can be derived by combining
< 2mgi[2— m((f,)] . Egs.(3.33 and(4.9), and using standard angular momentum
B recoupling techniques. An important special cas&;ig 1,
(4.8 =S=—0/3, where Eq.(4.10 leads to the well known

Since the pi and eta mesons are spinless and our tw@esult
particle channels arémN), |7A), and|»N), the angular
momentum eigenstates we need to carry out a partial wave CRLNATC BN Q). (4.11)
analysis of Eq(4.7) are the ones defined by 112114 2l

The spin factors in the potentials can be rearranged by using

- . ,
y{‘;j(q)=m§:n2 Y, HQ)[smp)(Ismymy|jm),  s=1/2,3/2, the identity

(4.9

wheres is the spin of the baryon. The partial wave analysis (q'-Ss,)(q-S,,) = Z (—pvrwriTaj2v+1)(2w+1)
of the potentials is greatly facilitated by the identity

S

R R 1 u w| . R
(a-SuVisj(Q) X[l V](q~st)(q"SNu). (4.12

—(_1\i—u—2s m A
=D ; Yig(@ @+ D2s+ 1L+ 1) which when used in conjunction with E¢4.10 makes it
. possible to work out the partial wave matrix elements in a
x( 1 L) { u L 1} (410 relatively straightforward manner. The partial wawdy-7N
0O 0 oI s 1}’ ' elastic scattering amplitudes are given by
TABLE Il. Vertex parameters. The particles are designated accordify {®38)— N, P33(1232)—A
P11(1440)- R, D15(1520)- D, S;4(1535)— S, andS;,(1620)-S'.

Vertices Parameters. Particle masseand cutoff massed are in MeV.
m,=139.57,m,=547.45.

aNeN, g Qn/ Va7=6.5069, m{?)=777.78, my=938.92, \\y=0.0, AQ\=1529.5,
mA=N 9'Q/4m=0.39835, A% =2349.8

7NeA 99,/ V47=0.39835m”=1367.3, m,=1232.0, A}, =2304.6
TNeR, 09/ Va7=1.3501, m®)=1304.4, mg=1440.0, \\g=0.0, A (%) ,=4003.2,
TASR giﬂ%A/\/ — —1.3219,A(9,=918.44

7NeD, 9'Qp/ V47=0.26510,m)=1451.2, mp=1520.0, A}, =5029.3,
TASD 9o/ Vam=—0.72369, A%, =600.0

7NeS, 99 V47=0.16071,mY=1874.3, mg=1535.0, A ,ns=0.0, A‘Q)=4886.3,
7NeS o'Nd VAT=0.77541,\ ;5= 0.0, AR s=2583.4

7Ne S 9%/ Va7=3.6812,mY’=1302.0,mg =1620.0,\ ,yg =0.0, A%, =2581.4
TAeS 539/\/ =18.277, A%, =800.0
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TABLE lll. Exchange potential parameters.

Exchange potentials Parameters. Particle massasd cutoff massed are in MeV.
N exchangemN< 7N O.nn/VAT=3.7815 A\yn=0.0, A .nn=2483.4
N exchangemNe A 9w/ VAT=3.7815,9 na [ VAT=0.40707, A\ yy=0.0,
A NN=2483.4,A y=4167.3
A exchangesNe 7N O.na /VAT=0.40707,A ,\n=2361.8
o exchangegN& 7N Ui rnOonn/AT=256.63,0, 0, nn/AT= — 168.44,

m,=1011.2,A = 26415 A \n=2013.6

p exchangesNe 7N Opnnd,onnl4T=6.7264, k,,= 7.8540,
m,=769.0,A,,,=4975.4,A ,\n=2447.0

7N channel. The\ threshold masses are given in Table I.

T:_J(W):f dQqdQq Y Mo (D((IM7) oy The model parameters that result from the fit are given in
Tables II and Ill, while comparisons of the theoretical and
XT on, (8,0 s Wi )| (IM7) )V M1 5(a7) experimental phase shifts and inelasticities are shown in
Figs. 1-14.
= — (32w WI2iq){ 7 ;,(W)exe 2i 5 5(W)]— 1}, gThe parameters associated with theB|U|B’) or vertex
interactions are given in Table Il. For each of the baryons
W=W_n(q)=Wn(q'), (4.13  there is a bare mass’, which appears in the effectiyeB-

u'B’ potentials given by Eq(4.8), as well as a bare cou-
wherel is the total isospin of therN system, ands_; and  pling constant for each meson-baryon channel that the
7;:_J are the phase shift and inelasticity, respectively, for thebaryon couples to. For some of the interactions
(L,1,J) partial wave. (mNeN,R,S,S'; 7N<S) there is also a parameter, called
\, that determines the mix of nonderivative and derivative
coupling; wherex=1 and A=0 correspond to pure non-
derivative and pure derivative coupling, respectively. Re-

The parameters in our model were determined by a leagharkably, we found that in every case the derivative cou-
squares fit to the phase shifﬁ.‘m, and inelasticitiesn'u, of  pling is preferred. With each vertex there is also associated a
the sAID-sP95 analysis of the pion-nucleon scattering databare cutoff mass that appears in the form factor given by Eq.
[45]. The partial waves included in the fit are given in Table(3.38. As is shown clearly by the analysis given in Sec. IV
I, along with the single-baryon and meson-baryon states thaif Ref.[40], the bare coupling constants, masses, and vertex
contribute in each partial wave. The parameters in parenthdunctions are dressed by the interactions, just as in a full-
ses, i.e.,l,y andl_,, are the orbital angular momentum blown field theory. TheN-exchange and\-exchange cou-
guantum numbers for the inelastic channels. In carrying oupling constants and cutoff masses given in Table Il are in-
the fits we have allowed therA threshold energy to vary terpreted as dressed parameters. The parameters for-the
with the partial wave. This is partly justified by the fact that and p-exchange potentials include products of coupling con-
the A=P35(1232) has a width of 120 MeV, and by the re- stants, the masses of the exchanged particles, and different
lated fact that therA channel mocks up the effect of the cutoff masses for each vertex. Theexchange potential also

V. RESULTS
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FIG. 1. Fit of theS;; phase shifts to thealb-sPosanalysis. FIG. 2. Fit of theS;; inelasticities to thesaiD-sp9sanalysis.
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FIG. 3. Fit of theS;; phase shifts to theaib-sposanalysis. FIG. 5. Fit of theP,; phase shifts to theaib-spgsanalysis.
includesx,, which determines the relative strength of the ¢ this point it is appropriate to compare our exchange

tensor and vectopNN coupling. The exponem that ap-  odel with the models created by other workers. To set the
pears in the form factors, Eq$8.384 and(3.40, isn=101in  gtaqe for the comparison, we restate the ingredients of our
all cases. This gave us excellent numerical stability in thgnodel in terms of the various contributions to the effective
numerical solution of the partial wave integral equations Ob',uB—,u’B’ potentials that appear in the coupled Lippmann-
tained from Eq(4.7). _ _ Schwinger equation$4.7), and which are defined by Eg.
The parameters that play a role in the, partial wave are (4 g) The first term on the right hand side of H¢.8) is one
constrained not only by the fit to the,, elastic amplitude, ¢ the interactionsU_y .y, Uy s, OF U.x -n. Where
but also by the requirement that this amplitude should have & . is due toN, Af (’;T, andp exchange, whildJ _y .,

pole atw=my with a residue determined by the dressed oranq(y _, . are due td\ exchange. These potentials contrib-
physical coupling constang,yy. It follows from EGS.  yte in all partial waves. The second term on the right hand

(3.29, (4.8), and(4.13 that at the nucleon pole side of Eq.(4.8) consists of energy dependent potentials, the
1271_ng2 so-called pole contributions, which arise from the processes

T (W)—— o7 mImaN (5.) wmBeB"eu'B’.In our modelB"={N, A=P33(1232), R

' 2my(W—my) =P,,(1440), D=D;1520), S=S,4(1535), §

We have ensured that the residue that appears here is sug{fg%;%s %%)Jblﬁzntjse;lhgfi:;zgig Sﬁgnwr? eIhSOW these baryons

thatg,, ,n/47= 14.3, which is consistent with the value given general the models constructed by other workers con-

in Table 1l for theN-exchange potentials. tain interactions which play a role similar to ol y n .
and are due td\, A, o, andp exchange. They also have
V1. DISCUSSION interactions which correspond to the pole terms in @),

Itis clear that the model presented here gives a reasonabjdere the intermediate baryons areNwor aA. This is true
description of the pion-nucleon elastic scattering amplitudd®" the models reported in Refg5—8] and[10-13, except

up to a pion laboratory kinetic energy of 700.0 MeV. Thethat the Sato-Lee mod¢B] has noo exchange; and the
model accounts for the rapid variation of the amplitudes du€3"0Ss-Surya mod3,14 has noA exchange as the result

to the presence of the various resonances, as well as ti@ an approximation that is made. Also, the Sehat al
opening of the inelastic channels. models[10—-12 have a more sophisticated treatmentoof
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FIG. 4. Fit of theS;; inelasticities to thesaib-sposanalysis. FIG. 6. Fit of theP,; inelasticities to thesalb-sPosanalysis.
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and p exchange in that the scalar-isoscalaf) (and vector-  p,,(1440) resonances are genuine three-quark states, or if
isovector p) terms are viewed as arising from a correlatedthey are generated dynamically by the interactions inthe
pair of two pions in the)=0 (o) andJ=1 (p) tchannels. model. This is an issue which other workers, including one
Some models also include the effects of baryons other thagf us, have also consider¢d0,46], but in the present work
the N andA. In particular, the model of Refl12] also in-  we have been more concerned with obtaining a good ac-
cludes a pole contribution due to ti8,(1535) resonance. counting of the data with as simple a model as possible.
The Gross-Surya mod¢l3,14 includesR and D poles, as The Gross-Surya modgl4], the Schte et al. model[12],
well as R exchange. The Pascalutsa-Tjon mofis] takes and the present model account for thé\, elastic partial
into account theR pole andR exchange. wave amplitudes up to pion laboratory kinetic energies of
The models reported in Reff5—8,19 do not allow for 600, 744, and 700 MeV, respectively. In their common en-
inelastic channels. The original Gross-Surya mddé] in-  ergy range, the Gross-Surya fjts4] and ours are of similar
cludes inelasticity through the process&=wA’ and quality. TheS;;, P,;, andPg;elastic amplitudes obtained in
DewA’, whereA’ is an effective baryon with the spin and the Schiz et al. model[12] and the present model are simi-
isospin of the actuah, while in their second mod¢ll4] the  |ar. TheirP5; phase shifts rise above the experimental phases
inelasticity arises through the process&s=oc*N and at the high energy end, while ours fall below. CRy; phase
D<o*N where o* is an isoscalar-scalar particle with a shifts are in noticeably better agreement with the experimen-
mass equal to that of two pions. The Sthet al. model tal phases than theirs. Since Sthet al. [12] do not include
reported in Ref[12] allows for 7A, 7N, andoN inelastic  S;,(1620) andD,5(1520) poles in their model, they do not
channels with various mechanisms for coupling to thes@btain a good accounting of ti®, andD 5 phase shifts and
channels. TheirrN-7N interaction is due tdN andag ex-  inelasticities in the neighborhood of these resonances.
change, and the direct procesdl< S;;(1535)= 5»N; while Trying to establish the nature of theN resonances is a
their »N-zN interaction is due td\ and f, exchange, and difficult and rather old problem. As pointed out in Sé¢the
N&S11(1535)= 7N. Their 7N-7A and wA-wA interac-  original Chew-Low model[5] was able to produce the
tions are due tdN, A, andp exchange. TheitrN-oN inter-  P55(1232) resonance without introducing a single-baryon
action arises fronN exchange, while theioN-oN interac-  state corresponding to th®. Nowadays, most people agree
tion arises fromN and o exchange. The emphasis in their that the A is a three-quark state, and would not question
work [12] is on trying to decide whether th®,(1535) and including it in our model on a footing equivalent to the
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FIG. 8. Fit of theP3, inelasticities to thesaip-sPosanalysis. FIG. 10. Fit of theP,; inelasticities to thesaD-sposanalysis.

044001-11



YASSER ELMESSIRI AND MICHAEL G. FUDA PHYSICAL REVIEW 60 044001

175 150
;w: 150 %\ 125
£ 125 5
3 g 100}
o 100 0
= k=
5 5 75t
o OF P
@ 3
o
£ 50} g ®
2 2
& 251 A& 251 y
0 . . . 1 0t ]
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Pion Lab Kinetic Energy (MeV) Pion Lab Kinetic Energy (MeV)
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nucleon. At higher energies the importance of the inelasti®ecessary to treat the inelasticity as arising from a coherent
channels makes it even more difficult to pin down the naturesuperposition of the two-body channetsp, pN, oN, and

of the resonances, as it is clear that in certain cases the cowR. In a more recent multichannel resonance parametriza-
pling to the inelastic channels is sufficient to produce a resotion of 7N scattering, Manley and Salegkig] extended this
nance[40,46,14. Unless an unambiguous procedure is de-set to includesN, KA, wN, andpA channels. Even though
veloped for deriving effective few-particle equations from at higher energies an exchange model of the type developed
QCD that are valid over a wide energy range, the nature ohere becomes quite complex, it is clear that with present day
the 7N resonances will probably remain ambiguous. Ancomputing capabilities it is tractable.

analysis of the inelastic cross sections, as well as calculations Our present model can be used as an ingredient in models
of pion photoproduction and electroproduction, should makef the NN7 and N7 systems. In three-particle systems

it possible to reduce the ambiguities. such as these, besides Poincameariance, it is also neces-

In its present form, our model will make it possible to sary to considecluster separability This is the requirement
calculaten production up to pion laboratory energies of 700 that when subsystems are separated by large spacelike inter-
MeV, and pion photoproduction up to photon laboratory en-vals, the subsystems should become dynamically indepen-
ergies of 850 MeV. As pointed out in Sec. |, one of us hasdent. In particular, the Hamiltonian, as well as the other
extended the mass operator—Okubo method used in theoincaregenerators, should reduce to the sum of the sub-
present work to allow for a photon-nucleon chanpé?]. system generators. For a nonrelativistic system it is rather
This extension is both Poinca@nd gauge invariant, so a trivial to satisfy cluster separability, but for relativistic mod-
satisfactory formalism exists for applying our present modekls based on the Bakamjian-Thomas construcf@s] this
to photoproduction calculations. An effort is underway torequirement can be problematic. It is possible to construct
extend the formalism so as to make possible electroproduasnitary transformations which when applied to the generators
tion calculations. This involves replacing real photons withobtained with the Bakamjian-Thomas construction, lead to
virtual photons. generators that satisfy cluster separabili§7,38,49,50

Extending our model to higher energies will obviously These unitary operators are called Sokolov transformations
entail including more resonances and inelastic channels. lor packing operators. Unfortunately the construction of these
an isobar model analysis efN— 77N for total c.m. ener- operators is rather complicated. For a true three-particle sys-
gies in the range 1.32—-1.93 GeV, Manlelyal. [47] found it tem, i.e., one in which no particle creation or annihilation
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takes place, it has been shown that the Sokolov transforma- _ Y .
tion haz no effect on the bound state spectrum oStmatrix £rap(0=(Gran /M) DL Tos - m(X)]A, () + (1),
[37], thus calculations of three-particle observables can be
carried out without ever actually constructing the packing
operators. Fadeev-like integral equations for three-particle
systems described by Bakamjian-Thomas models have been
derived by several workef87,51,53. The kernels of these — .
equations are related to the two-partiti@atrices, however, Lng(X)=gnsS)T ns(i9) 7()IN(X) +(T), (AB)
the connection is not as direct as it is in the nonrelativistic
Fadeev equations.

It is possible to construct Bakamjian-Thomas, three-
particle models in which particle creation and annihilation

takes place, and cluster separability is satisfied. These arg sz'(X)=9sz'§'(X)[T7TNSf(iﬁ)TLSr~ﬂ(X)]N(X)+(T).

LX) =S T ons(id) 7 m(x) IN(X) + (1),
(A7)

1-N,nB
FMNB(Q):KMNB‘F??“N@ (A9)

essentially relativistic Lee mod€]S3], whose superselection (A10)
rules lead to the satisfaction of the cluster separability re-

guiremen{37,38. The Betz-Coester model of ti&N7 sys- (X) =i ) AL T /
tem[54] is a model of this type. This model allows for the Lras (0 =1(Gras /M) A0, Te s 7(X) 1755 (X)
inclusion of amN&A vertex, so it can accommodate the +(1), (A11)
type of model for thewN system that has been presented

here. The calculations of Betz and Lig&] demonstrate that Lonn(X) =gUNNﬁ(x)o(x)N(x), (A12)

a Betz-Coester type of model provides a practical framework

for analyzing theNN# system. Thev#-N66 sector of the m

Lee mode[53] has many of the features of ther 7 system Lonm(X)= gmm{w(x) - 77(X)

[56], so it should also be possible to construct a Bakamijian-

Thomas model of th&l 77 system that satisfies cluster sepa- _ 1

rability. We are presently exploring the application of our +9orrm—[d*a(X)]-[d,m(X)]]|0(X),

7N model to theN7 7 system. 2M
(A13)
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Foundation Grant No. PHY-9605215. + (K, 12my) 0#7d,p,(X) IN(X),  (Al4)
APPENDIX Ly rn(X)=0prap(X) - [mw(X) X, m(X)].  (AL5)

In this appendix, we give the interaction Lagrangian den- In writing the results for the vertex functions, s g/(q),
sities £,(x), as well as the various vertex functions, and potentialsU g ,/5/(0,9") we use the shorthand nota-
U,g.e(0), and potentialsU g ,/:(9,9"). The fields for  tion eg=eg(q), w,=w,(q'), eg=eg(q+q’), etc.
the various baryons are notated accordingPtg(938)-N, The 7N, A vertex function is derived from E@3.32), and
P33(1232)A, P14(1440)R, Dq3(1520)D, S;4(1535)S, s found to be
and S;;(1620)S'. The meson fields are notated in the obvi-
ous way; i.e.,r, n, o, andp. (t(ih)N|U zna(@)] (D7) 4)

The interaction Lagrangians are .
grang = (g s /M,) (e +my) Y2(2my) 12

EWNN(X):_igWNNﬁ(X)[FNN(ia)T' ﬂ'(X)]N(X), (Al) X(sf-TNA)”/(qS\,A)hh,, (A16)
L.nr(X)= =19 nrROO[Tnr(id) 7 () IN(X) + (1), where g, is defined by Eq.(3.26, and Ty, and Sy, are

(A2) defined by Eq(3.33.
The 7N, A transition potential due to nucleon exchange

1—\yp is derived from Eq(3.35, and is given by
FNB(Q):<7\NB+ m'fl) s, (A3)
UEN,,TA(Q,Q'):ngN(ngA/mw)(— \/ﬁﬂ:’w’wA
LX) == (Grea /M) AX(X)[ 3, TEy - @(X)IB(X) + (1), +BBPIN A (g + my) YA +my ) 2
B=N,R (A4) X[F(a,q";my,my) o Xy

£0(0 = (G anp/M)D#0[ 3,7 7)1 ysN(x) + (1) TRQ.A" My, ~my) e x}]
k X)= T m,n. DA(x)[a . X N(x)+ ,
ND gmnD w7 7(X) ] Y5 (A5) X[ Q- Sya+ (1my)(w,+G-x4)q" - Syal,

044001-13



YASSER ELMESSIRI AND MICHAEL G. FUDA PHYSICAL REVIEW 60 044001

» S P S o O (t(ih) U 7a,8(@)](i"h")g)
a9 my,My) = —- T, T1- _
2en| en— w0~ &Y 2my :_I(gﬂ'BA/mﬂ-)(E?'TEA)H'(8A+mA)1/2(2mB)1/2
X (W /M) (G- SE )i (A21)
X(SN_SA"FSK“FmAJ"ZmN) ,
B=N,R.

(A17)

The #N,D and 7wA,D vertex functions, wher® is the
xn=0/(ent+my),  Xa=q'/(e4+my). (A18) D15(1520) resonance, are calculated from the matrix ele-

ments
Here P™'™ is an operator that connects states of tg (kt(pih)n|H »nol(P'17h")p)
system of total isospih to states of therA system of total 343 N
isospinl, and its matrix elements between normalized states =(2m)76°(Q=p")i(gmnp/My)
is simply 1. x T Ein’ R
The 7N, 7N potential due taA exchange is derived from X (& - )i Un(p,h) sk, up(p”,h"),
Egs.(3.36 and(3.37), and is found to be (A22)
A L 2 4P’TN+1PWN (kt(pih)s|H ap|(p"i"h")p)
qTN,qu(qlq )_(g‘n'NA mﬂ') § 1/2 § 3/2 :(277)36\'3(Q_pr)(_l)(gﬂ-AD/mﬂ.)
X (entmy) YA e+ my) X (&F - Tha)iirun(p,h)kug(p’,h"),
X[G(a,q";my,my) + (o Xy) (A23)
X(o-x0)G(a,q"; —my, —my)] and are found to be
xi( Lo, ) (RN U (@] 70 )p)
ealenTEaTen enTEAT O = —i(Ganp /M) (&F - D (e myy) V2
1/2
G(q,a';my,my) =[ (e} +My) — (e —My) — (a1~ My)] *(2mp) X Svo Qe (A24)

X[(1—a—a')q-q' +(2/3) (t(ih) U s p(@)[(1"h") )
X(aa'[q+0'|*~ ag®~a'q’?)]
+H(UY(1l—a—a')(ey—my)

=i(gran /M) (&f - Thy)iir(ex+my) YA 2mp)H2

(9-Ska)(a" Swp)

X(Wa—my)| 1+ .
X (e{—my)[(ek—my) A e my(es+my) |,
—(entmy)—(eg+my)l,  (AL9) (A25)
The #N,S and #N,S vertex functions, where is the
, 1 g-(g+q’) S;1(1535) resonance, are calculated from the matrix ele-
a=a(0,0')= | oyt my+ ————1, ments
8A+mA

(kt(pih)nHnd(P'i7h")s)
=(2m)38%(Q—p')(— g9
X (&f - Diirun(p,MT ns(Kug(p’,h'),

a'=a(q',q).

The #N,B and wA,B vertex functions, wherd is the
nucleon or the Roper resonance, are calculated from matrix

elements such as Eq8.25 and(3.36), and are found to be (A26)
(NIU e s(@](70)e) (KPIIH ns (PR -
—ig e(&" - Doy My) Y2(2mg) 2 =(2m)%8%(Q—p’)(—g,n9) Sii Un(p,h)
Wyt XT ng(k)us(p’,h"), (A27)
X )\NB+(1_)\NB)m (o XN)hh s (A20)

and are given by

044001-14
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(t(ih)n[U o s(@)[(i7h")g) 1
X
:_ga-rNS(Sr’T)ii’(8N+mN)1/2(2mS)1/2 (ww_w;)z_(q_q/)z_mi
W, ny—M
X Ksz+(1—Ksz)ﬁ}5hhu — ! —— |- (A34)
s N (en—en)"—(g—q")"—mj
(A28)
(MU N @70 ) The 7N, 7N potential due tg exchange is derived from
K the Feynman-like amplitude
= —g,nsdiir(en+my)Y4(2mg) Y
W,,n—Mmy t(ih)y|U? Q) G'h’
X )\”NS+(1_)\’7NS)—m”S—mN o - (t(ih)y| wN,wN(qu )t (i"h")n)
(A29) ~GpmaBn €0 e 7| ZUn(p.h)

The 7N,S" and7A,S’ vertex functions, wher&’ is the , . L viur
S$31(1620) resonance, are calculated from the matrix ele- % Lu(p=p)A™(p—p )+ Tk — A" (K —k)

ments (p—p")2-m’ (K" —k)2—m?
(kt(pih)n[H s | (P'I"h ")) Xkt un(prh", (A35)
=(2m)38%(Q—p')(—Yguns)
_ mAV
X(&F T i Un(P. T s (K)Us (p',0), L@ =7t o0 AR(Q) =g+ %
(A30) b
(kt(pih)s[Hzas|(p'i"h ")) k+p=k'+p'=0,
:(ZW)Sﬁ(Q_p,)(gWAS'/mW)
X (& 'TAS’)ii’Ug(p!h)k,u')/SUS’(p,ih,)y and is found to be
(A31)
1
and are given by U2, n(D:8) =Gpmalonn| PTR ™ = QPQ’T/';'WN
(t(ih)n|Un s (a)|(i'h")s) X (en+my) Y e+ my) 2

=—g.ng (8- Tas)ii (en+my)Y42mg)? L | |
t i xE[R(q,q ;M) + (0 Xy) (0 X))
W n— My
” MNS/Hl_MNS/)m Shn XR(a,9";—my) ],

(A32)

] ) R(qvq,ymN)
(t(ih)a|Ua.s(a)|(i"h")s)

= —(Gras /M) (& - Tag )i (ea+my) Y4 2mg )2

X (W, IMy)[(q- S ) (0 X3) T - (A33)

~S(a,9";5my) + (e, 2mp) (Won = Won) (en— &)

(0,~w,)?~(q—q")2—m>

S(9,9";my)
The wN, 7N potential due tar exchange is derived from (sN—sﬁ,)z—(q—q’)z— mi’
Eq. (3.38, and is found to be

(A36)

UiN,ﬂ-N(q!q,):(gaNlemﬂ)[g(rﬁﬂmi—i_aO"ﬂ'ﬂ Kp
S(q,9";my) =W n+Woy—2my— 5—[ (W, T+ W,
X (07040 0)(e+my) 2 ()= W W ™ 2 i L o

X (et My 1— (o xy) (o x)] X(SN“”S{\I_ZmN)_Z(SNSf\J_Q'ql_mﬁ)]-
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