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Poincaré invariant exchange model of pion-nucleon scattering
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Pion-nucleon scattering up to a pion laboratory kinetic energy of 700 MeV is described by a Poincare´
invariant, instant form model. The model is constructed in a space spanned by single-baryon statesuB&, where
B is the nucleon, or any resonance that contributes in the energy range considered; and by meson-baryon states
umB&, where umB&5upN&, upD&, or uhN&. The model specifies a mass operator in the formM5M01U,
whereM0 is a noninteracting mass operator andU contains the interactions. The^pNuUupN& potentials are
derived fromN, D, s, andr exchange processes. The vertex interactions^mBuUuB8& are derived from field
theory interaction Hamiltonians. Coupling to the inelastic channels,upD& and uhN&, is provided by a
^pNuUupD& transition potential due to nucleon exchange; and by interactions of the formmB⇔B9⇔m8B8.
@S0556-2813~99!02809-5#

PACS number~s!: 13.75.Gx, 11.80.2m, 24.10.Jv
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I. INTRODUCTION

Particle exchange models have been successful in des
ing the nucleon-nucleon interaction@1#, electroweak interac-
tion currents@2,3#, meson-meson scattering@4#, and meson-
nucleon scattering@5–15#. Here we are concerned only wit
pion-nucleon scattering. In the historically important Che
Low model for pion-nucleon scattering@5#, the only interac-
tion included was thepN⇔N vertex. In spite of the simplic-
ity of this model, it was able to reproduce theD(1232)
resonance. The discovery of other mesons, in particular,
rho meson (r) @16#, led to the inclusion of other vertice
such asrp⇔p andrN⇔N. The development of the quar
model and QCD have also had an important impact on
change models of the pion-nucleon system. In particular,
now widely believed that baryons such as theD(1232) reso-
nance are just as elementary as the nucleon. This chan
viewpoint quickly led to the development of effective fie
theories in which, for example, thep, N, and D are the
quanta of the fields@17#.

An effective Lagrangian for the pion-nucleon system do
not lead to unique predictions for pion-nucleon scattering
there is no exact procedure for deriving few-particle eq
tions from a quantum field theory. A common approach
deriving integral equations for the pion-nucleon system is
use a three-dimensional reduction of the ladder, Bet
Salpeter equation@6,7,13–15#. Even within this framework,
there is a lack of uniqueness due to the freedom in choo
the reduction scheme. Another approach is to use a stra
forward relativistic generalization of the Lippmann
Schwinger equation, in which the role of the potentials
played by amplitudes derived using time-ordered pertur
tion theory@9–12#.

Alternatively, it is possible to derive an effective Ham
tonian from the model Lagrangian. The Tamm-Danc
method@18# can be used to accomplish this, however, it h
the disadvantage of leading to an energy dependent Ha
tonian. An energy independent Hamiltonian can be obtai
by developing a unitary transformation that block diagon
izes the quantum field theory Hamiltonian in its Fock spa
The effective Hamiltonian acts in the subspace of Fock sp
0556-2813/99/60~4!/044001~16!/$15.00 60 0440
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that is relevant to the few-particle system of interest. A nu
ber of workers have contributed to the development of t
approach@19–21#. Here we will use Okubo’s formulation
@20#. The unitary transformation approach has proved to
very useful in investigating nuclear electromagnetic curre
@22–25#, and in the construction of nuclear interactions@26–
30#. Sato and Lee@8# have used this method to construct
model forpN scattering, and the reactiongN˜pN.

Fuda and Zhang have developed a variation of this
proach, in which an effective mass operator, rather than
effective Hamiltonian, is derived@31–35#. The mass operato
so determined serves as the essential ingredient i
Bakamjian-Thomas construction@36,37# of a Poincare´ in-
variant model. Such a model specifies a complete se
Poincare´ generators which satisfy exactly the algebra of t
Poincare´ group, the so-called Poincare´ algebra. Moreover,
with such a model, there exists a set of unitary operat
which provide a representation of the Poincare´ group, and
can be used to map the quantum mechanical state ve
from one inertial frame to another. This approach is th
dimensional in character, and is not manifestly covaria
however, it can be shown that theS-matrix elements ob-
tained transform properly from one inertial frame to anoth
i.e., probabilities are invariant. A general proof of this cla
has been given by Coester and Polyzou@38#. A less general,
but more transparent, proof has been given@39# by Fuda.
The mass operator–Okubo approach was first develope
the context of the front form of relativistic quantum mecha
ics, and used to develop simple models of thepN andNN
systems@31,32#. The method was subsequently used to d
velop a realistic, front form, one-boson exchange mode
the NN system@33#. The methodology was extended to th
instant form in the context of a simple model of thepN
system@34#, and then used to obtain an instant form, on
boson exchange model of theNN system@35#.

These earliest applications of the mass operator–Ok
method only dealt with elastic scattering. The extension
coupled channels and inelastic scattering was made in
context of a front form model forpN scattering@40,41#. This
model was constructed in a space spanned by single-ba
statesuB&, where B is the nucleon, or any resonance th
©1999 The American Physical Society01-1
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YASSER ELMESSIRI AND MICHAEL G. FUDA PHYSICAL REVIEW C60 044001
contributes in the energy range considered; and by
meson-baryon statesupN&, upD&, and uhN&. The model
specifies a mass-square operator in the formM25M0

21V,
where M0 is the noninteracting mass operator, andV con-
tains the interactions. The purely phenomenological inter
tions consist of vertex interactions,^mBuVuB8&, and two-
particle potentials,̂ mBuVum8B8&, where the potentials ar
assumed to be separable. This model gives a remark
good fit to thepN elastic scattering amplitudes up to a pio
laboratory kinetic energy of 1.0 GeV@41#.

The original coupled channel formalism@40# has recently
been extended to include a photon-nucleon channel@42#.
This extension satisfies not only Poincare´ invariance, but
also gauge invariance, and provides a framework for ca
lating meson photoproduction from the nucleon.

The success of our purely phenomenological model
pN scattering has naturally led us to develop a physica
more satisfying model, in which the interactions are deriv
from an effective Lagrangian. Here we report the results
such a model. The model specifies a mass operator in
form M5M01U, where M0 is the mass operator for th
system without interactions, andU contains the interactions
The model space consists of single-baryon statesuB&, and
meson-baryon statesumB&. The single-baryon states includ
the nucleon N, and the following resonances:D
5P33(1232), R5P11(1440), D13(1520), S11(1535), and
S31(1620); while for the meson-baryon states, we ha
umB&5upN&,upD&,uhN&. The model accounts forpN-
elastic scattering up to a pion laboratory kinetic energy
700 MeV, which corresponds to a total c.m. energy ofW
51574 MeV. Our single-baryon states include all of t
resonances in this range, as well as theS31(1620) resonance
which lies somewhat above this range, but turns out to h
a non-negligible effect. Its width is 150 MeV. The two
particle, inelastic channels which have thresholds belowW
51574 MeV are thepD andhN channels, with threshold
at W51372 MeV andW51486 MeV, respectively. The
ppN channel, which we assume to be approximated by
pD channel, has its threshold atW51218 MeV.

We have chosen to develop our mass operator in
framework of the instant form of relativistic quantum m
chanics, since with this form it is straightforward to constru
mass operator matrix elements from the effective, fe
particle Hamiltonian obtained with the Okubo method@20#.
This is a simple consequence of the fact that in a c.m. fra
the action of the mass operator and the Hamiltonian is
same. In modeling thêpNuUupN& matrix elements, we
have made the rather common assumption that this inte
tion is due toN, D, r, and s exchange. We have also in
cluded â pNuUupD& transition potential due toN exchange.
The other interactions that are included in the model are
vertex interactionŝ mBuUuB8&, where we allowB85N,
P11(1440), D13(1520), andS31(1620) to couple to themB
5pN and pD channels,B85D to couple to themB5pN
channel, andS11(1535) to couple to themB5pN and hN
channels.

The outline of the paper is as follows. In Sec. II a br
description of the Bakamjian-Thomas method@36,37# for
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constructing Poincare´ invariant models is given, and the re
strictions on a mass operator necessary to ensure Poin´
invariance are stated. The essential relation for construc
effective interactions with the Okubo method@20# is pre-
sented at the beginning of Sec. III. The application of t
method to the pion-nucleon system is illustrated by a deri
tion of the effective interactions that arise from the w
known pN⇔N vertex. In particular, thê pNuUuN& and
^pNuUupN& matrix elements that arise from this vertex a
constructed. A brief presentation of thêpNuUuD& and
^pNuUupN& contributions toU arising from thepN⇔D
vertex is also given, as well as the basic formula for obta
ing the ^pNuUupD& transition potential due toN exchange.
The method for constructing thêpNuUupN& potentials due
to s andr exchange is not given here as it has been giv
previously in Ref.@34#.

The derivation of the Lippmann-Schwinger equations t
arise from the type of mass operator developed here has
been given previously@40#, so the basic equations are simp
stated in Sec. IV. Here some useful identities for carrying
a partial wave analysis of the Lippmann-Schwinger eq
tions are also given. The results obtained for the parame
in our model, by fitting to an experimental phase shift ana
sis, are given in Sec. V. A discussion of the results and fut
prospects for the model is presented in Sec. VI. The inte
tion Lagrangian densities and interaction matrix elements
given in Sec. III are presented in the Appendix.

Throughout we work in units in which\5c51.

II. GENERAL BACKGROUND

A Poincaré transformation is a linear, inhomogeneo
transformation that maps the components of a space-
vectorx associated with one inertial frame to the compone
of a vectorx8 associated with another inertial frame accor
ing to the relation

x85ax1b, ~2.1!

whereb is a vector anda is a Lorentz transformation, which
for proper transformations can be parametrized in the fo

a5exp@ i ~v•k1u• j !#. ~2.2!

Here j is the generator of three-rotations,k is the generator
of rotationless boosts, andv andu are three-vectors whos
components provide the necessary parameters. In a sati
tory relativistic model, there exists a unitary operat
U(a,b), corresponding to the Poincare´ transformation (a,b),
that maps a quantum mechanical state vectoruc& associated
with the x frame to the vectoruc8& associated with thex8
frame according to

uc8&5U~a,b!uc&, ~2.3!

where for proper transformations the unitary operator can
parametrized in the form

U~a,b!5exp~ ib•P!exp@ i ~v•K1v•J!#, ~2.4!

P5~H,P!. ~2.5!
1-2
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POINCARÉINVARIANT EXCHANGE MODEL OF PION- . . . PHYSICAL REVIEW C 60 044001
HereK is a boost operator,J is the angular momentum op
erator, H is the Hamiltonian of the system, andP is the
three-momentum operator. Since the law of combination
the Poincare´ transformations is (a8,b8)+(a,b)5(a8a,a8b
1b8), the unitary operators must combine according to

U~a8,b8!U~a,b!5U~a8a,a8b1b8! ~2.6!

so as to provide a representation of the Poincare´ group. This
implies a set of commutation rules for the generat
$H,P,K ,J%, which is commonly referred to as the Poinca´
algebra@37#.

In constructing the ten generators$H,P,K ,J%, it is conve-
nient to work with another set of ten Hermitian operato
i.e., $M ,P,J,X%, whereM is the mass operator,J is a spin
operator, andX is the so-called Newton-Wigner position op
erator. This second set of operators satisfies a much sim
set of commutation rules than the Poincare´ algebra; in fact
the only nonzero commutators are

@Pm,Xn#52 idmn , @J l ,Jm#5 i« lmnJ n. ~2.7!

The three-momentum operatorP is common to both sets
while the other generators can be expressed in terms o
operators of the second set by the relations@36,37#

H5~P21M2!1/2, ~2.8a!

J5X3P1J, ~2.8b!

K52
1

2
~XH1HX!2

P3J
M1H

. ~2.8c!

It can be shown that if the commutators of the s
$M ,P,J,X% are zero, except for those given by Eq.~2.7!,
then the generators given by Eq.~2.8!, in combination with
P, satisfy the Poincare´ algebra.

In the Bakamjian-Thomas construction@36,37# of the set
$M ,P,J,X%, the operatorsP, J, andX are chosen to be th
same as those for the system of particles without inte
tions, while the mass operatorM contains interactions. The
commutation rules forP, J, and X are then automatically
satisfied, and it is only necessary to ensure that

@M ,P#5@M ,J#5@M ,X#50. ~2.9!

III. CONSTRUCTING A MASS OPERATOR

Here we deduce a mass operator for the pion-nucleon
tem by using the Okubo method@20# for constructing effec-
tive interactions, starting from a quantum field theory Ham
tonian. The Fock space of the field theory is divided into
subspace consisting of various single-baryon states,
uN&,uD&,uR&, . . . ; and various meson-baryon states, i.e
upN&,upD&,uhN&, . . . . We denote the projection operat
onto this subspace byP and onto the complementary, o
thogonal subspace byL, so that

P1L51. ~3.1!
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The quantum field theory Hamiltonian is divided into th
noninteracting partH0 and the interacting partH1, according
to

HQFT5H01H1 , ~3.2!

where the eigenstates ofH0, designated here byuz&, are
assumed known, and satisfy

H0uz&5E~z!uz&. ~3.3!

The effective Hamiltonian in theP subspace, denoted b
HP, is given to second order by@20#

^zuHPuz8&5K zUHQFT1
1

2
H1F L

E~z!2H0

1
L

E~z8!2H0
GH1U z8L 1•••. ~3.4!

We now illustrate the method for constructing the mat
elements of the mass operator by considering a well kno
pNN interaction. The nucleon and pion fields are given b

Ni~x!5E d3p

~2p!32«N~p!
(

h
@bi~p,h!u~p,h!e2 ip•x

1di
†~p,h!v~p,h!eip•x#, ~3.5a!

p t~x!5E d3k

~2p!32vp~k!
@~21! ta2t~k!e2 ik•x1at

†~k!eik•x#,

~3.5b!

«N~p!5~p21mN
2 !1/2, vp~k!5~k21mp

2 !1/2, ~3.6!

ū~p,h!u~p,h8!52 v̄~p,h!v~p,h8!52mNdhh8. ~3.7!

Here bi
†(p,h) creates a nucleon of three-momentump,

energy«N(p), z component of isospini, andz component of
spin h; at

†(k) creates a pion of three-momentumk, energy
vp(k), and z component of isospint. The Dirac spinors
u(p,h) and v(p,h) are the same as those of Bjorken a
Drell @43# except for the normalization~3.7!. The nonzero
commutators and anticommutators are given by

$bi~p,h!,bi 8
†

~p8,h8!%5$di~p,h!,di 8
†

~p8,h8!%

5~2p!32«N~p!d3~p2p8!d i i 8dhh8 ,
~3.8!

@at~k!,at8
†

~k8!#5~2p!32vp~k!d3~k2k8!d tt8 .

The pNN-interaction Lagrangian density and interactio
Hamiltonian are given by

LpNN~x!52 igpNNN̄~x!@G~ i ]!t•p~x!#N~x!, ~3.9!

G~q!5S l1
12l

2mN
q” Dg5 , ~3.10!
1-3
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YASSER ELMESSIRI AND MICHAEL G. FUDA PHYSICAL REVIEW C60 044001
HpNN52E d3xLpNN~x!u t501•••, ~3.11!

where the ellipsis indicates a term due to derivative coupli
Such terms do not contribute here. This interaction invol
a mixture of pseudoscalar and pseudovector coupling, w
the mix determined byl @13,14#.

In our model, theP subspace includes the single-nucle
and pion-nucleon states defined by

upih&5bi
†~p,h!u0&, ~3.12!

ukt,pih&5at
†~k!bi

†~p,h!u0&. ~3.13!

Obviously the inner product for the single-nucleon states
given by

^pihup8i 8h8&5~2p!32«N~p!d3~p2p8!d i i 8dhh8 .
~3.14!

In carrying out the Bakamjian-Thomas construction, it is i
portant to work with a basis in whichP, J, and X have
simple representatives. The single-particle states~3.12! are
perfectly satisfactory in this regard, however, the tw
particle states~3.13! are not. In order to improve on them
we begin by replacing the labelsk andp by the total three-
momentumQ and relative three-momentumq defined by

Q5~EpN ,Q!5k1p5„vp~k!1«N~p!,k1p…,

q5kc.m.52pc.m., ~3.15!

where we see thatq is the three-momentum of the pion in th
pion-nucleon, c.m. frame. The invariant mass of the pi
nucleon stateukt,pih& is given by

WpN~q![1~Q•Q!1/25vp~q!1«N~q!, ~3.16!

while its energy is given by

EpN~Q,q!5@Q21WpN
2 ~q!#1/2. ~3.17!

A satisfactory two-particle basis state is obtained by boos
a rest frame state according to@34,35,37#

uqQt ih&[exp~2 ig Q̂ •K !uqt,~2q!ih&

5exp~2 ig Q̂ •K !at
†~q!bi

†~2q,h!u0&, ~3.18a!

g5tanh21@ uQu/EpN~Q,q!#. ~3.18b!

It can be shown that the inner product for the basis sta
~3.18! that follows from Eq.~3.8! is given by

^qQt ihuq8Q8t8i 8h8&

5~2p!32EpN~Q,q!d3~Q2Q8!DpN~q!

3d3~q2q8!d tt8d i i 8dhh8 , ~3.19a!

DpN~q!5~2p!32vp~q!«N~q!/WpN~q!. ~3.19b!
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In the single-particle basis defined by Eq.~3.13!, the rep-
resentatives ofP, J, andX are given by

^pihuP5p^pihu, ~3.20a!

^pihuJ5(
h8

~s/2!hh8^pih8u, ~3.20b!

^pihuX5F i“p2 i
p

2«N
2 ~p!

G ^pihu, ~3.20c!

while in the two-particle basis defined by Eq.~3.18! they are
given by

^qQt ihuP5Q^qQt ihu, ~3.21a!

^qQt ihuJ5(
h8

@J~q!#hh8^qQt ih8u, J~q!5 i“q3q1s/2,

~3.21b!

^qQt ihuX5F i“Q2 i
Q

2EpN
2 ~Q,q!

G ^qQt ihu. ~3.21c!

The second terms in the representatives ofX are needed to
ensure that it is Hermitian with respect to the inner produ
implied by Eqs.~3.14! and ~3.19!.

In our model, the mass operator is assumed to be of
form

M5M01U, ~3.22!

whereM0 is the mass operator for the noninteracting syste
andU contains the interactions. The noninteracting mass
erator is defined in theuN&2upN& sector by the eigenvalue
equations

M0upih&5mNupih&, ~3.23a!

M0uqQt ih&5WpN~q!uqQt ih&. ~3.23b!

We recall that in the Bakamjian-Thomas constructi
@36,37#, the operatorsP, J, andX are the same for the in
teracting system as for the noninteracting system, there
M0 and U must commute separately with them in order
satisfy Eq.~2.9!, the necessary condition for Poincare´ invari-
ance. The commutativity ofM0 follows trivially from Eqs.
~3.20!, ~3.21!, and~3.23!. In order forU to commute withP,
J, andX its matrix elements must have the forms

^pihuUup8i 8h8&5~2p!32«N~p!d3~p2p8!d i i 8dhh8UNN ,
~3.24a!

^qQt ihuUup8i 8h8&

5~2p!32@EpN~Q,q!«N~p8!#1/2d3~Q2p8!

3K t ihU UpN,N~q!

2@WpN~q!mN#1/2U i 8h8L , ~3.24b!
1-4
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^qQt ihuUuq8Q8t8i 8h8&

5~2p!32@EpN~Q,q!EpN~Q8,q8!#1/2d3~Q2Q8!

3K t ihU UpN,pN~q,q8!

2@WpN~q!WpN~q8!#1/2U t8i 8h8L . ~3.24c!

The Dirac d functions result from the commutativity ofP
and U, while the fact that UNN , UpN,N(q), and
UpN,pN(q,q8) do not depend on the total three-momentum
a consequence of the commutativity ofX andU. In order to
ensure thatU commutes with the spin operatorJ, UpN,N(q),
and UpN,pN(q,q8) must be rotationally invariant function
of the q’s ands. The denominators on the right hand sid
of Eqs. ~3.24b! and ~3.24c! are put in simply for conve-
nience.

In order to construct a model for the vertex functio
UpN,N(q), we evaluateHpNN between a pion-nucleon sta
and a nucleon state and obtain

^kt,pihuHpNNup8i 8h8&

5~2p!3d3~Q2p8!igpNN~«t* •t! i i 8ū~p,h!

3G~2k!u~p8,h8!, ~3.25!

where we have introduced the complex unit vectors defi
by

«657~1/A2!~1,6 i ,0!, «05~0,0,1!. ~3.26!

According to Eq.~2.8a! the Hamiltonian and the mass oper
tor yield the same result when acting on a state whose t
three-momentum is zero. Also, it follows from Eq.~3.18!
that uqQt ih&5uqt,(2q) ih& whenQ50. As a result of these
observations, we find upon choosingp850 in Eqs.~3.24b!
and ~3.25! that thepNN vertex function is given by

^t ihuUpN,N~q!u i 8h8&

5 igpNN~«t* •t! i i 8ū~p,h!G~2k!u~p8,h8!,

k1p5p850. ~3.27!

In the c.m. frame, the nucleon’s Dirac spinor is given by

u~p,h!5@«N~q!1mN#1/2F xh

2s•xN xh
G , p5„«N~q!,2q…,

~3.28a!

xN5
q

«N~q!1mN
, ~3.28b!

which when used in Eq.~3.27!, along with Eq.~3.10!, leads
to

^t ihuUpN,N~q!u i 8h8&

5 igpNN~«t* •t! i i 8@«N~q!1mN#1/2~2mN!1/2

3Fl1~12l!
WpN~q!1mN

2mN
G~s•xN!hh8 .

~3.29!
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We note thatUpN,N(q) is a rotationally invariant function of
s andq, which is necessary for the commutativity ofU and
the spin operatorJ.

We now develop a model forUpN,pN(q,q8) based on
nucleon exchange. This comes from the second term on
right hand side of Eq.~3.4!, where we note that the projec
tion operatorL excludes the single-nucleon intermedia
states. We find

K kt,pihUHpNN

L

E2H0
HpNNUk8t8,p8i 8h8L

5(
i 9h9

E ^pihuHpNNuk8t8,p9i 9h9&

3
d3p9

~2p!32«N~p9!@E2«N~p9!2vp~k!2vp~k8!#

3^kt,p9i 9h9uHpNNup8i 8h8&1•••, ~3.30!

where the ellipsis indicates terms that do not contribute
nucleon exchange. Upon inserting Eq.~3.25! and comparing
the result to Eq.~3.24c! with Q50, we find that the single-
nucleon exchange contribution to thepN,pN potential is
given by

UpN,pN
N ~q,q8!5gpNN

2 ~2P1/2
pN12P3/2

pN!~«N1mN!1/2

3~«N8 1mN!1/2$~«N9 2mN!BB8

2~«N2mN!AB82~«N8 2mN!BA8

1~s•xN!~s•xN8 !@~«N9 1mN!AA8

2~«N1mN!BA82~«N8 1mN!AB8#%

3
1

4«N9
S 1

«N2«N9 2vp8
1

1

«N8 2«N9 2vp
D ,

~3.31!

«N5«N~q!, «N8 5«N~q8!, «N9 5«N~q1q8!,

vp5vp~q!, vp8 5vp~q8!,

A5A~q,q8;mN!511
12l

2mN
~«N2«N9 2vp8 !,

B5A~q,q8;2mN!, A85A~q8,q;mN!,

B85A~q8,q;2mN!.

Here PI
pN is a projection operator onto a state of the pio

nucleon system with total isospinI, andxN and xN8 are de-
fined by Eq.~3.28b!. We note that this potential is a rotation
ally invariant function ofs, q, andq8.

We now consider interactions involving theD(1232),
which we treat as an elementary particle. ThepN,D vertex
function can be calculated from the matrix element
1-5
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^kt,~pih !NuHpNDu~p8i 8h8!D&

5~2p!3d3~Q2p8!i ~gpND /mp!

3~«t* •TND! i i 8ū~p,h!kmuD
m~p8,h8!,

~3.32!

which is obtained from the Lagrangian density~A4!. The
result is given by Eq.~A16!. HereTND is an isospin transi-
tion operator. In general our spin and isospin transition
erators,SBB8 andTBB8 , are defined by

T BB85 (
mnn8

«muBn&^1BmnuB8n8&^B8n8u, T5S,T,

~3.33!

where B stands for a baryon and its spin or isospin, a
^1BmnuB8n8& is a Clebsch-Gordan coefficient. The Rarit
Schwinger spinor for theD is given by

uD
m~p,h!5(

mh8
l n
m ~p!~0,«m!nuD~p,h8!^1,1/2,m,h8u3/2,h&

5(
h8

uD~p,h8!Fp•SND

mD
,SND1

~p•SND!p

mD~«D1mD!G
h8h

m

,

~3.34!

where l (p) is a rotationless boost from the rest frame fou
momentum (mD ,0) to p5(«D ,p), and uD(p,h) is a Dirac
spinor defined as in Eq.~3.28!, but with mN˜mD .

The matrix element~3.32! can also be used to calcula
the pN,pD transition potential due to nucleon exchang
using the formula

K kt,~pih !NUHpNN

L

E2H0
HpNDUk8t8,~p8i 8h8!DL

5(
i 9h9

E ^~pih !NuHpNNuk8t8,~p9i 9h9!N&

3
d3p9

~2p!32«N~p9!@E2«N~p9!2vp~k!2vp~k8!#

3^kt,~p9i 9h9!NuHpNDu~p8i 8h8!D&1•••,

~3.35!

E5vp~k!1«N~p!.

Note that here in applying Eq.~3.4! we only useE5vp(k)
1«N(p) without the factor of 1/2. The term withE8
5vp(k8)1«D(p8) causes a problem, since the denomina
E82«N(p9)2vp(k)2vp(k8) can vanish. This is related t
the fact thatD˜p1N is not just a virtual process; it ca
actually occur. This difficulty can be circumvented by e
panding the few-particle subspace to includeuppN& states.
This, however, would lead to a three-particle model, which
beyond the scope of the present work. The final result for
transition potential is given by Eqs.~A17! and ~A18!.
04400
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The pN,pN potential due toD exchange can be calcu
lated from the matrix element

^kt,~pih !DuHpNDu~p8i 8h8!N&

5~2p!3d3~Q2p8!i ~gpND /mp!

3~«t* •TND
† ! i i 8ūD

m~p,h!kmu~p8,h8!,

~3.36!

and the formula

K kt,~pih !NUHpND

L

E2H0
HpNDUk8t8,~p8i 8h8!NL

5(
i 9h9

E ^~pih !NuHpNDuk8t8,~p9i 9h9!D&

3
d3p9

~2p!32«D~p9!@E2«D~p9!2vp~k!2vp~k8!#

3^kt,~p9i 9h9!DuHpNDu~p8i 8h8!N&1•••, ~3.37a!

«D~p!5~p21mD
2 !1/2. ~3.37b!

The final result is given by Eq.~A19!.
As mentioned in Sec. I, other interactions that we inclu

are those associated with various single-baryon intermed
states, where the baryons are, in order of increasing ene
the following resonances:R5P11(1440), D5D13(1520), S
5S11(1535), andS85S31(1620). We have not included th
^pNuUupN& interactions due to the exchange of these re
nances. They only contribute through the proces
mB⇔B8⇔m9B9. The mB,B8 vertex functions associate
with these resonances are given in the Appendix.

In order to take account of the composite nature of o
particles, matrix elements such as Eqs.~3.26! and ~3.29!
must be modified by the introduction of form factors. F
vertices of the formm1B⇔B8, we follow the procedure
used in Aaron, Amado, and Young’sppN model @44#, and
multiply ^(kp)BuH intu(p8)B8& matrix elements by the form
factor given by

gmBB8~k,p!5F LmBB8
2

1Vpole

LmBB8
2

1V~k,p!
G n

, ~3.38a!

V~k,p!5
~k•p!22mm

2 mB
2

~k1p!2
, ~3.38b!

Vpole5@~mm
2 1mB

22mB8
2

!224mm
2 mB

2 #/~2mB8!
2,
~3.38c!

where LmBB8 is a cutoff mass, and Vpole is
the value of V(k,p) when (k1p)25mB8

2 . In the
mB c.m. frame V(k,p)5q2, where q is the c.m. three-
momentum of mesonm. With the introduction of these
form factors, a matrix element such as Eq.~3.32!
is replaced according to^kt,(pih)NuHpNDu(p8i 8h8)D&
1-6
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˜^kt,(pih)NuHpNDu(p8i 8h8)D&gpND(k,p). This type of re-
placement is also made for matrix elements such
^kt,(p9i 9h9)NuHpNDu(p8i 8h8)D&, which appears in Eq
~3.35!. When expressing Eq.~3.38b! in terms of theq’s it
should be kept in mind that all of our four-momenta are
the mass shell.

The pN,pN potentials due tos andr exchange can be
calculated using the method described in Ref.@34#, which
extracts the potentials from Feynman-like amplitudes.
example, thes-exchange potential is obtained from the fo
mula

^t ihuUpN,pN
s ~q,q8!ut8i 8h8&

5d tt8d i i 8ū~p,h!u~p8,h8!
gsNN

2mp
@gspp mp

2

1g̃spp~k•k8!#F 1

~k2k8!22ms
2

1
1

~p2p8!22ms
2G ,

~3.39!

p1k5p81k850,

with the final result given by Eq.~A34!. For thes and r
exchange potentials we introduce the same type of form
tor as used in Ref.@34#, i.e.,

f ~ t2;m,L,n!5F ~L22m2!21L4

~L22t2!21L4 G n

, ~3.40!

where t is a momentum transfer,m is the mass of the ex
changed particle (s or r), andL is a cutoff mass. With the
introduction of this form factor, a potential such as Eq.~3.38!
is mutiplied by

f @~k2k8!2;ms ,Lspp ,nspp# f @~p2p8!2;ms ,LsNN ,nsNN#.
~3.41!

IV. LIPPMANN-SCHWINGER EQUATIONS

The scattering amplitudes that our mass operatorM
5M01U gives rise to are obtained by solving th
Lippmann-Schwinger equation

T~z!5U1U
1

z2M0
T~z!, ~4.1!

where z is a complex parameter, which for pion-nucleo
scattering is given byz5WpN1 i«. In writing out the repre-
sentation of this equation in our few-particle subspace,
encounter both single-baryon and meson-baryon states
Ref. @40#, it is shown that it is possible to eliminate explic
reference to the single-baryon states, and thereby obtai
effective potentialV22(z) that acts only in the subspace
meson-baryon states. The resulting equations are

T22~z!5V22~z!1V22~z!
1

z2M0
T22~z!, ~4.2!
04400
s

r

c-

e
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V22~z!5U221 (
BiBhB

E U21upi BhB&

3
d3p

~2p!32«B~p!~z2m0B!
^pi BhBuU12,

~4.3!

where the subscript 2 refers to the subspace of meson-ba
states, and the 1 refers to the subspace of single-ba
states. The second term on the right hand side of Eq.~4.3! is
the effective potential that arises from the elimination of t
single-baryon channels, and contains the bare masses o
various baryons. These arise as a result of expressing
constants that appear in matrix elements such as Eq.~3.24a!
in the form

UBB85@mB
(0)2mB#dBB8 . ~4.4!

Following Eq.~3.24c!, we write ourT-matrix elements in the
form

^qQtmi BhBuT~z!uq8Q8tm8
8 i B8

8 hB8
8 &

5~2p!32@EmB~Q,q!Em8B8~Q8,q8!#1/2d3~Q2Q8!

3K tmi BhBU TmB,m8B8~q,q8;z!

2@WmB~q!Wm8B8~q8!#1/2U tm8
8 i B8

8 hB8
8 L ,

~4.5!

as well as a similar equation withT˜U. Following Eq.
~3.24b!, we write the matrix element for an arbitrarymB,B8
vertex in the form

^qQtmi BhBuUup8i B8
8 hB8

8 &

5~2p!32@EmB~Q,q!«B8~p8!#1/2d3~Q2p8!

3K tmi BhBU UmB,B8~q!

2@WmB~q!mB8#
1/2U i B8

8 hB8
8 L . ~4.6!

Using these expressions, as well as the completeness rel
implied by inner products such as Eq.~3.19!, we find the
coupled integral equations

TmB,m8B8~q,q8;z!

5VmB,m8B8~q,q8;z!1 (
m9B9

E VmB,m9B9~q,q9;z!

3
d3q9

Dm9B9~q9!

Tm9B9,m8B8~q9,q8;z!

2Wm9B9~q9!@z2Wm9B9~q9!#
,

~4.7!

where the effectivemB-m8B8 potentials are given by
1-7
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TABLE I. Partial waves and contributing states.

Partial wave Baryon and meson-baryon states mD
threshold~MeV!

S11 S11(1535),pN,pD( l pD52),hN( l hN50) 1181.1
S31 S31(1620),pN,pD( l pD52) 1336.9
P11 N,P11(1440),pN,pD( l pD51) 1209.2
P31 pN,pD( l pD51) 1500.0
P13 pN,pD( l pD51,3) 1372.6
P33 P33(1232),pN,pD( l pD51,3) 1172.7
D13 D13(1520),pN,pD( l pD50,2) 1205.7
tw

a

si

g
m

sing

a

VmB,m8B8~q,q8;z!5UmB,m8B8~q,q8!

1(
B9

UmB,B9~q!UB9,m8B8~q8!

2mB9@z2mB9
(0)

#
.

~4.8!
Since the pi and eta mesons are spinless and our

particle channels areupN&, upD&, and uhN&, the angular
momentum eigenstates we need to carry out a partial w
analysis of Eq.~4.7! are the ones defined by

Y ls j
m ~ q̂!5 (

m1m2

Yl
m1~ q̂!usm2&^ lsm1m2u jm&, s51/2,3/2,

~4.9!

wheres is the spin of the baryon. The partial wave analy
of the potentials is greatly facilitated by the identity

~ q̂•Sus!Y ls j
m ~ q̂!

5~21! j 2u22s(
L
Y Lu j

m ~ q̂!A~2l 11!~2s11!~2L11!

3S l 1 L

0 0 0D H u L j

l s 1J , ~4.10!
04400
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s

where () and$% are a 3-j and 6-j symbol, respectively. The
3- j symbol restricts the sum onL to L51 for l 50 andL
5 l 71 for l>1. This identity can be derived by combinin
Eqs.~3.33! and~4.9!, and using standard angular momentu
recoupling techniques. An important special case isS1/2,1/2

5SNN52s/A3, where Eq.~4.10! leads to the well known
result

~ q̂•s!Y l ,1/2,j
m ~ q̂!52Y 2 j 2 l ,1/2,j

m ~ q̂!. ~4.11!

The spin factors in the potentials can be rearranged by u
the identity

~ q̂8•Ssv!~ q̂•Svu!5(
w

~21!v1w1122uA~2v11!~2w11!

3H 1 u w

1 s vJ ~ q̂•Ssw!~ q̂8•Swu!, ~4.12!

which when used in conjunction with Eq.~4.10! makes it
possible to work out the partial wave matrix elements in
relatively straightforward manner. The partial wave,pN-pN
elastic scattering amplitudes are given by
TABLE II. Vertex parameters. The particles are designated according toP11(938)2N, P33(1232)2D,
P11(1440)2R, D13(1520)2D, S11(1535)2S, andS31(1620)2S8.

Vertices Parameters. Particle massesm and cutoff massesL are in MeV.
mp5139.57,mh5547.45.

pN⇔N, gpNN
(0) /A4p56.5069, mN

(0)5777.78, mN5938.92, lNN50.0, LpNN
(0) 51529.5,

pD⇔N gpND
(0) /A4p50.39835,LpDN

(0) 52349.8

pN⇔D gpND
(0) /A4p50.39835,mD

(0)51367.3, mD51232.0, LpND
(0) 52304.6

pN⇔R, gpNR
(0) /A4p51.3501, mR

(0)51304.4, mR51440.0, lNR50.0, LpNR
(0) 54003.2,

pD⇔R gpRD
(0) /A4p521.3219, LpDR

(0) 5918.44

pN⇔D, gpND
(0) /A4p50.26510,mD

(0)51451.2, mD51520.0, LpND
(0) 55029.3,

pD⇔D gpDD
(0) /A4p520.72369,LpDD

(0) 5600.0

pN⇔S, gpNS
(0) /A4p50.16071,mS

(0)51874.3, mS51535.0, lpNS50.0, LpNS
(0) 54886.3,

hN⇔S ghNS
(0) /A4p50.77541,lhNS50.0, LhNS

(0) 52583.4

pN⇔S8 gpNS8
(0) /A4p53.6812, mS8

(0)
51302.0, mS851620.0, lpNS850.0, LpNS8

(0)
52581.4

pD⇔S8 gpDS8
(0) /A4p518.277, LpDS8

(0)
5800.0
1-8
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TABLE III. Exchange potential parameters.

Exchange potentials Parameters. Particle massesm and cutoff massesL are in MeV.

N exchange,pN⇔pN gpNN /A4p53.7815,lNN50.0, LpNN52483.4

N exchange,pN⇔pD gpNN /A4p53.7815,gpND /A4p50.40707,lNN50.0,
LpNN52483.4,LpND54167.3

D exchange,pN⇔pN gpND /A4p50.40707,LpDN52361.8

s exchange,pN⇔pN gsppgsNN/4p5256.63,g̃sppgsNN/4p52168.44,
ms51011.2,Lspp52641.5,LsNN52013.6

r exchange,pN⇔pN grppgrNN/4p56.7264,kr57.8540,
mr5769.0,Lrpp54975.4,LrNN52447.0
th

a

ta
le
th
th

o

at
e-
e

I.
in

nd
in

ns

-
the
ns
d

ive
-
e-
u-
d a

Eq.
IV
rtex
ull-

in-
e
n-
rent
TLJ
I ~W!5E dVq dVq8 Y L,1/2,J

M† ~ q̂!^~ IM 8!pNu

3TpN,pN~q,q8;W1 i«!u~ IM 8!pN&Y L,1/2,J
M ~ q̂8!

52~32p2W/2iq !$hLJ
I ~W!exp@2idLJ

I ~W!#21%,

W5WpN~q!5WpN~q8!, ~4.13!

where I is the total isospin of thepN system, anddLJ
I and

hLJ
I are the phase shift and inelasticity, respectively, for

(L,I ,J) partial wave.

V. RESULTS

The parameters in our model were determined by a le
squares fit to the phase shifts,dLJ

I , and inelasticities,hLJ
I , of

the SAID-SP95 analysis of the pion-nucleon scattering da
@45#. The partial waves included in the fit are given in Tab
I, along with the single-baryon and meson-baryon states
contribute in each partial wave. The parameters in paren
ses, i.e.,l hN and l pD , are the orbital angular momentum
quantum numbers for the inelastic channels. In carrying
the fits we have allowed thepD threshold energy to vary
with the partial wave. This is partly justified by the fact th
the D5P33(1232) has a width of 120 MeV, and by the r
lated fact that thepD channel mocks up the effect of th

FIG. 1. Fit of theS11 phase shifts to theSAID-SP95analysis.
04400
e

st

at
e-

ut

ppN channel. TheD threshold masses are given in Table
The model parameters that result from the fit are given
Tables II and III, while comparisons of the theoretical a
experimental phase shifts and inelasticities are shown
Figs. 1–14.

The parameters associated with the^mBuUuB8& or vertex
interactions are given in Table II. For each of the baryo
there is a bare massmB

(0) , which appears in the effectivemB-
m8B8 potentials given by Eq.~4.8!, as well as a bare cou
pling constant for each meson-baryon channel that
baryon couples to. For some of the interactio
(pN⇔N,R,S,S8;hN⇔S) there is also a parameter, calle
l, that determines the mix of nonderivative and derivat
coupling; wherel51 and l50 correspond to pure non
derivative and pure derivative coupling, respectively. R
markably, we found that in every case the derivative co
pling is preferred. With each vertex there is also associate
bare cutoff mass that appears in the form factor given by
~3.38!. As is shown clearly by the analysis given in Sec.
of Ref. @40#, the bare coupling constants, masses, and ve
functions are dressed by the interactions, just as in a f
blown field theory. TheN-exchange andD-exchange cou-
pling constants and cutoff masses given in Table III are
terpreted as dressed parameters. The parameters for ths-
andr-exchange potentials include products of coupling co
stants, the masses of the exchanged particles, and diffe
cutoff masses for each vertex. Ther-exchange potential also

FIG. 2. Fit of theS11 inelasticities to theSAID-SP95analysis.
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YASSER ELMESSIRI AND MICHAEL G. FUDA PHYSICAL REVIEW C60 044001
includes¸r , which determines the relative strength of t
tensor and vectorrNN coupling. The exponentn that ap-
pears in the form factors, Eqs.~3.38a! and~3.40!, is n510 in
all cases. This gave us excellent numerical stability in
numerical solution of the partial wave integral equations
tained from Eq.~4.7!.

The parameters that play a role in theP11 partial wave are
constrained not only by the fit to theP11 elastic amplitude,
but also by the requirement that this amplitude should hav
pole atW5mN with a residue determined by the dressed
physical coupling constantgpNN . It follows from Eqs.
~3.29!, ~4.8!, and~4.13! that at the nucleon pole

T1,1/2
1/2 ~W!˜2

12pmp
2 gppN

2

2mN~W2mN!
. ~5.1!

We have ensured that the residue that appears here is
thatgppN

2 /4p514.3, which is consistent with the value give
in Table III for theN-exchange potentials.

VI. DISCUSSION

It is clear that the model presented here gives a reason
description of the pion-nucleon elastic scattering amplitu
up to a pion laboratory kinetic energy of 700.0 MeV. T
model accounts for the rapid variation of the amplitudes d
to the presence of the various resonances, as well as
opening of the inelastic channels.

FIG. 3. Fit of theS31 phase shifts to theSAID-SP95analysis.

FIG. 4. Fit of theS31 inelasticities to theSAID-SP95analysis.
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At this point it is appropriate to compare our exchan
model with the models created by other workers. To set
stage for the comparison, we restate the ingredients of
model in terms of the various contributions to the effecti
mB-m8B8 potentials that appear in the coupled Lippman
Schwinger equations~4.7!, and which are defined by Eq
~4.8!. The first term on the right hand side of Eq.~4.8! is one
of the interactionsUpN,pN , UpN,pD , or UpD,pN , where
UpN,pN is due toN, D, s, andr exchange, whileUpN,pD ,
andUpD,pN are due toN exchange. These potentials contri
ute in all partial waves. The second term on the right ha
side of Eq.~4.8! consists of energy dependent potentials,
so-called pole contributions, which arise from the proces
mB⇔B9⇔m8B8. In our modelB95$N, D5P33(1232), R
5P11(1440), D5D13(1520), S5S11(1535), S8
5S31(1620)}. Perusal of Table II shows how these baryo
mediate coupling to the inelastic channels.

In general the models constructed by other workers c
tain interactions which play a role similar to ourUpN,pN ,
and are due toN, D, s, and r exchange. They also hav
interactions which correspond to the pole terms in Eq.~4.8!,
where the intermediate baryons are anN or aD. This is true
for the models reported in Refs.@6–8# and @10–15#, except
that the Sato-Lee model@8# has nos exchange; and the
Gross-Surya model@13,14# has noD exchange as the resu
of an approximation that is made. Also, the Schu¨tz et al.
models @10–12# have a more sophisticated treatment ofs

FIG. 5. Fit of theP11 phase shifts to theSAID-SP95analysis.

FIG. 6. Fit of theP11 inelasticities to theSAID-SP95analysis.
1-10
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POINCARÉINVARIANT EXCHANGE MODEL OF PION- . . . PHYSICAL REVIEW C 60 044001
and r exchange in that the scalar-isoscalar (s) and vector-
isovector (r) terms are viewed as arising from a correlat
pair of two pions in theJ50 (s) andJ51 (r) t channels.
Some models also include the effects of baryons other t
the N and D. In particular, the model of Ref.@12# also in-
cludes a pole contribution due to theS11(1535) resonance
The Gross-Surya model@13,14# includesR and D poles, as
well as R exchange. The Pascalutsa-Tjon model@15# takes
into account theR pole andR exchange.

The models reported in Refs.@6–8,15# do not allow for
inelastic channels. The original Gross-Surya model@13# in-
cludes inelasticity through the processesR⇔pD8 and
D⇔pD8, whereD8 is an effective baryon with the spin an
isospin of the actualD, while in their second model@14# the
inelasticity arises through the processesR⇔s* N and
D⇔s* N where s* is an isoscalar-scalar particle with
mass equal to that of two pions. The Schu¨tz et al. model
reported in Ref.@12# allows for pD, hN, andsN inelastic
channels with various mechanisms for coupling to th
channels. TheirpN-hN interaction is due toN and a0 ex-
change, and the direct processpN⇔S11(1535)⇔hN; while
their hN-hN interaction is due toN and f 0 exchange, and
hN⇔S11(1535)⇔hN. Their pN-pD and pD-pD interac-
tions are due toN, D, andr exchange. TheirpN-sN inter-
action arises fromN exchange, while theirsN-sN interac-
tion arises fromN and s exchange. The emphasis in the
work @12# is on trying to decide whether theS11(1535) and

FIG. 7. Fit of theP31 phase shifts to theSAID-SP95analysis.

FIG. 8. Fit of theP31 inelasticities to theSAID-SP95analysis.
04400
n

e

P11(1440) resonances are genuine three-quark states,
they are generated dynamically by the interactions in thepN
model. This is an issue which other workers, including o
of us, have also considered@40,46#, but in the present work
we have been more concerned with obtaining a good
counting of the data with as simple a model as possible.

The Gross-Surya model@14#, the Schu¨tz et al. model@12#,
and the present model account for thepN, elastic partial
wave amplitudes up to pion laboratory kinetic energies
600, 744, and 700 MeV, respectively. In their common e
ergy range, the Gross-Surya fits@14# and ours are of similar
quality. TheS11, P11, andP33 elastic amplitudes obtained i
the Schu¨tz et al. model@12# and the present model are sim
lar. TheirP31 phase shifts rise above the experimental pha
at the high energy end, while ours fall below. OurP13 phase
shifts are in noticeably better agreement with the experim
tal phases than theirs. Since Schu¨tz et al. @12# do not include
S31(1620) andD13(1520) poles in their model, they do no
obtain a good accounting of theS31 andD13 phase shifts and
inelasticities in the neighborhood of these resonances.

Trying to establish the nature of thepN resonances is a
difficult and rather old problem. As pointed out in Sec. I , the
original Chew-Low model@5# was able to produce the
P33(1232) resonance without introducing a single-bary
state corresponding to theD. Nowadays, most people agre
that theD is a three-quark state, and would not questi
including it in our model on a footing equivalent to th

FIG. 9. Fit of theP13 phase shifts to theSAID-SP95analysis.

FIG. 10. Fit of theP13 inelasticities to theSAID-SP95analysis.
1-11
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YASSER ELMESSIRI AND MICHAEL G. FUDA PHYSICAL REVIEW C60 044001
nucleon. At higher energies the importance of the inela
channels makes it even more difficult to pin down the nat
of the resonances, as it is clear that in certain cases the
pling to the inelastic channels is sufficient to produce a re
nance@40,46,12#. Unless an unambiguous procedure is d
veloped for deriving effective few-particle equations fro
QCD that are valid over a wide energy range, the nature
the pN resonances will probably remain ambiguous. A
analysis of the inelastic cross sections, as well as calculat
of pion photoproduction and electroproduction, should ma
it possible to reduce the ambiguities.

In its present form, our model will make it possible
calculateh production up to pion laboratory energies of 7
MeV, and pion photoproduction up to photon laboratory e
ergies of 850 MeV. As pointed out in Sec. I, one of us h
extended the mass operator–Okubo method used in
present work to allow for a photon-nucleon channel@42#.
This extension is both Poincare´ and gauge invariant, so
satisfactory formalism exists for applying our present mo
to photoproduction calculations. An effort is underway
extend the formalism so as to make possible electroprod
tion calculations. This involves replacing real photons w
virtual photons.

Extending our model to higher energies will obvious
entail including more resonances and inelastic channels
an isobar model analysis ofpN˜ppN for total c.m. ener-
gies in the range 1.32–1.93 GeV, Manleyet al. @47# found it

FIG. 11. Fit of theP33 phase shifts to theSAID-SP95analysis.

FIG. 12. Fit of theP33 inelasticities to theSAID-SP95analysis.
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necessary to treat the inelasticity as arising from a cohe
superposition of the two-body channels;pD, rN, sN, and
pR. In a more recent multichannel resonance parametr
tion of pN scattering, Manley and Saleski@48# extended this
set to includehN, KL, vN, andrD channels. Even though
at higher energies an exchange model of the type develo
here becomes quite complex, it is clear that with present
computing capabilities it is tractable.

Our present model can be used as an ingredient in mo
of the NNp and Npp systems. In three-particle system
such as these, besides Poincare´ invariance, it is also neces
sary to considercluster separability. This is the requiremen
that when subsystems are separated by large spacelike
vals, the subsystems should become dynamically indep
dent. In particular, the Hamiltonian, as well as the oth
Poincare´ generators, should reduce to the sum of the s
system generators. For a nonrelativistic system it is rat
trivial to satisfy cluster separability, but for relativistic mod
els based on the Bakamjian-Thomas construction@36# this
requirement can be problematic. It is possible to constr
unitary transformations which when applied to the genera
obtained with the Bakamjian-Thomas construction, lead
generators that satisfy cluster separability@37,38,49,50#.
These unitary operators are called Sokolov transformati
or packing operators. Unfortunately the construction of th
operators is rather complicated. For a true three-particle
tem, i.e., one in which no particle creation or annihilati

FIG. 13. Fit of theD13 phase shifts to theSAID-SP95analysis.

FIG. 14. Fit of theD13 inelasticities to theSAID-SP95analysis.
1-12
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POINCARÉINVARIANT EXCHANGE MODEL OF PION- . . . PHYSICAL REVIEW C 60 044001
takes place, it has been shown that the Sokolov transfor
tion has no effect on the bound state spectrum or theSmatrix
@37#, thus calculations of three-particle observables can
carried out without ever actually constructing the pack
operators. Fadeev-like integral equations for three-part
systems described by Bakamjian-Thomas models have
derived by several workers@37,51,52#. The kernels of these
equations are related to the two-particlet matrices, however
the connection is not as direct as it is in the nonrelativis
Fadeev equations.

It is possible to construct Bakamjian-Thomas, thre
particle models in which particle creation and annihilati
takes place, and cluster separability is satisfied. These
essentially relativistic Lee models@53#, whose superselectio
rules lead to the satisfaction of the cluster separability
quirement@37,38#. The Betz-Coester model of theNNp sys-
tem @54# is a model of this type. This model allows for th
inclusion of apN⇔D vertex, so it can accommodate th
type of model for thepN system that has been present
here. The calculations of Betz and Lee@55# demonstrate tha
a Betz-Coester type of model provides a practical framew
for analyzing theNNp system. TheVu-Nuu sector of the
Lee model@53# has many of the features of theNpp system
@56#, so it should also be possible to construct a Bakamji
Thomas model of theNpp system that satisfies cluster sep
rability. We are presently exploring the application of o
pN model to theNpp system.
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APPENDIX

In this appendix, we give the interaction Lagrangian de
sities LI(x), as well as the various vertex function
UmB,B8(q), and potentials,UmB,m8B8(q,q8). The fields for
the various baryons are notated according toP11(938)-N,
P33(1232)-D, P11(1440)-R, D13(1520)-D, S11(1535)-S,
andS31(1620)-S8. The meson fields are notated in the ob
ous way; i.e.,p, h, s, andr.

The interaction Lagrangians are

LpNN~x!52 igpNNN̄~x!@GNN~ i ]!t•p~x!#N~x!, ~A1!

LpNR~x!52 igpNRR̄~x!@GNR~ i ]!t•p~x!#N~x!1~†!,
~A2!

GNB~q!5S lNB1
12lNB

mN1mB
q” Dg5 , ~A3!

LpBD~x!52~gpBD /mp!D̄m~x!@]mTBD
†

•p~x!#B~x!1~†!,

B5N,R ~A4!

LpND~x!5~gpND /mp!D̄m~x!@]mt•p~x!#g5N~x!1~†!,
~A5!
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LpDD~x!5~gpDD /mp!D̄m~x!@]”TDD•p~x!#Dm~x!1~†!,
~A6!

LpNS~x!5gpNSS̄~x!@GpNS~ i ]!t•p~x!#N~x!1~†!,
~A7!

LhNS~x!5ghNSS̄~x!@GhNS~ i ]!h~x!#N~x!1~†!, ~A8!

GmNB~q!5lmNB1
12lmNB

mB2mN
q” , ~A9!

L pNS8~x!5gpNS8S̄8~x!@GpNS8~ i ]!TNS8
†

•p~x!#N~x!1~†!,
~A10!

L pDS8~x!5 i ~gpDS8/mp!D̄m~x!@]mTS8D
†

•p~x!#g5S8~x!

1~†!, ~A11!

LsNN~x!5gsNNN̄~x!s~x!N~x!, ~A12!

Lspp~x!5Fgspp

mp

2
p~x!•p~x!

1g̃spp

1

2mp
@]mp~x!#•@]mp~x!#Gs~x!,

~A13!

LrNN~x!5grNNN̄~x!~1/2!t•@gmrm~x!

1~kr/2mN!smn]mrn~x!#N~x!, ~A14!

Lrpp~x!5grpprm~x!•@p~x!3]mp~x!#. ~A15!

In writing the results for the vertex functions,UmB,B8(q),
and potentials,UmB,m8B8(q,q8) we use the shorthand nota
tion «B5«B(q), vm8 5vm(q8), «B95«B(q1q8), etc.

ThepN,D vertex function is derived from Eq.~3.32!, and
is found to be

^t~ ih !NuUpN,D~q!u~ i 8h8!D&

52 i ~gpND /mp!~«N1mN!1/2~2mD!1/2

3~«t* •TND! i i 8~q•SND!hh8 , ~A16!

where «t is defined by Eq.~3.26!, and TND and SND are
defined by Eq.~3.33!.

ThepN,pD transition potential due to nucleon exchan
is derived from Eq.~3.35!, and is given by

UpN,pD
N ~q,q8!5gpNN~gpND /mp!~2A8/3P1/2

pN,pD

1A5/3P3/2
pN,pD!~«N1mN!1/2~«D8 1mD!1/2

3@F~q,q8;mN ,mD!s•xN

1F~q,q8;2mN ,2mD!s•xD8 #

3@q•SND1~1/mD!~vp1q•xD8 !q8•SND#,
1-13
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F~q,q8;mN ,mD!5
1

2«N9
Fvp8 1«D8 2mD

«N2vp8 2«N9
112

12lNN

2mN

3~«N2«D8 1«N9 1mD12mN!G ,

~A17!

xN5q/~«N1mN!, xD8 5q8/~«D8 1mD!. ~A18!

Here PI
pN,pD is an operator that connects states of thepN

system of total isospinI to states of thepD system of total
isospinI, and its matrix elements between normalized sta
is simply 1.

ThepN,pN potential due toD exchange is derived from
Eqs.~3.36! and ~3.37!, and is found to be

UpN,pN
D ~q,q8!5~gpND /mp!2S 4

3
P1/2

pN1
1

3
P3/2

pND
3~«N1mN!1/2~«N8 1mN!1/2

3@G~q,q8;mN ,mD!1~s•xN!

3~s•xN8 !G~q,q8;2mN ,2mD!#

3
1

4«D9
S 1

«N2«D9 2vp8
1

1

«N8 2«D9 2vp
D ,

G~q,q8;mN ,mD!5@~«D9 1mD!2~«N2mN!2~«N8 2mN!#

3@~12a2a8!q•q81~2/3!

3~aa8uq1q8u22aq22a8q82!#

1~1/3!~12a2a8!~«N2mN!

3~«N8 2mN!@~«D9 2mD!

2~«N1mN!2~«N8 1mN!#, ~A19!

a5a~q,q8!5
1

mD
Fvp1mD1

q•~q1q8!

«D9 1mD
G ,

a85a~q8,q!.

The pN,B and pD,B vertex functions, whereB is the
nucleon or the Roper resonance, are calculated from ma
elements such as Eqs.~3.25! and~3.36!, and are found to be

^t~ ih !NuUpN,B~q!u~ i 8h8!B&

5 igpNB~«t* •t! i i 8~«N1mN!1/2~2mB!1/2

3FlNB1~12lNB!
WpN1mN

mB1mN
G~s•xN!hh8 , ~A20!
04400
s
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^t~ ih !DuUpD,B~q!u~ i 8h8!B&

52 i ~gpBD /mp!~«t* •TBD
† ! i i 8~«D1mD!1/2~2mB!1/2

3~WpD /mD!~q•SBD
† !hh8 , ~A21!

B5N,R.

The pN,D and pD,D vertex functions, whereD is the
D13(1520) resonance, are calculated from the matrix e
ments

^kt~pih !NuHpNDu~p8i 8h8!D&

5~2p!3d3~Q2p8!i ~gpND /mp!

3~«t* •t! i i 8ūN~p,h!g5kmuD
m~p8,h8!,

~A22!

^kt~pih !DuHpDDu~p8i 8h8!D&

5~2p!3d3~Q2p8!~2 i !~gpDD /mp!

3~«t* •TDD
† ! i i 8ūm

D~p,h!k”uD
m~p8,h8!,

~A23!

and are found to be

^t~ ih !NuUpN,D~q!u~ i 8h8!D&

52 i ~gpND /mp!~«t* •t! i i 8~«N1mN!1/2

3~2mD!1/2~s•xN SND .q!hh8 , ~A24!

^t~ ih !DuUpD,D~q!u~ i 8h8!D&

5 i ~gpDD /mp!~«t* •TDD
† ! i i 8~«D1mD!1/2~2mD!1/2

3~WpD2mD!F11
~q•SND

† !~q•SND!

mD~«D1mD!
G

hh8

.

~A25!

The pN,S and hN,S vertex functions, whereS is the
S11(1535) resonance, are calculated from the matrix e
ments

^kt~pih !NuHpNSu~p8i 8h8!S&

5~2p!3d3~Q2p8!~2gpNS!

3~«t* •t! i i 8ūN~p,h!GpNS~k!uS~p8,h8!,

~A26!

^k~pih !NuHhNSu~p8i 8h8!S&

5~2p!3d3~Q2p8!~2ghNS!d i i 8ūN~p,h!

3GhNS~k!uS~p8,h8!, ~A27!

and are given by
1-14
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^t~ ih !NuUpN,S~q!u~ i 8h8!S&

52gpNS~«t* •t! i i 8~«N1mN!1/2~2mS!1/2

3FlpNS1~12lpNS!
WpN2mN

mS2mN
Gdhh8 ,

~A28!

^~ ih !NuUhN,S~q!u~ i 8h8!S&

52ghNSd i i 8~«N1mN!1/2~2mS!1/2

3FlhNS1~12lhNS!
WhN2mN

mS2mN
Gdhh8 .

~A29!

The pN,S8 andpD,S8 vertex functions, whereS8 is the
S31(1620) resonance, are calculated from the matrix e
ments

^kt~pih !NuHpNS8u~p8i 8h8!S8&

5~2p!3d3~Q2p8!~2gpNS8!

3~«t* •TNS8! i i 8ūN~p,h!GpNS8~k!uS8~p8,h8!,

~A30!

^kt~pih !DuHpDS8u~p8i 8h8!S8&

5~2p!3d3~Q2p8!~gpDS8 /mp!

3~«t* •TDS8! i i 8ūD
m~p,h!kmg5uS8~p8,h8!,

~A31!

and are given by

^t~ ih !NuUpN,S8~q!u~ i 8h8!S8&

52gpNS8~«t* •TNS8! i i 8~«N1mN!1/2~2mS8!
1/2

3FlpNS81~12lpNS8!
WpN2mN

mS82mN
Gdhh8 ,

~A32!

^t~ ih !DuUpD,S8~q!u~ i 8h8!S8&

52~gpDS8 /mp!~«t* •TDS8! i i 8~«D1mD!1/2~2mS8!
1/2

3~WpD /mD!@~q•SS8D
†

!~s•xD!#hh8 . ~A33!

ThepN,pN potential due tos exchange is derived from
Eq. ~3.38!, and is found to be

UpN,pN
s ~q,q8!5~gsNN/2mp!@gsppmp

2 1g̃spp

3~vpvp8 2q•q8!#~«N1mN!1/2

3~«N8 1mN!1/2@12~s•xN!~s•xN8 !#
04400
-

3F 1

~vp2vp8 !22~q2q8!22ms
2

1
1

~«N2«N8 !22~q2q8!22ms
2G . ~A34!

The pN,pN potential due tor exchange is derived from
the Feynman-like amplitude

^t~ ih !NuUpN,pN
r ~q,q8!ut8~ i 8h8!N&

5grppgrNNF1

2
«t8•t,

1

2
«t* •tG

i i 8

1

2
ūN~p,h!

3FGm~p2p8!Dmn~p2p8!

~p2p8!22mr
2

1
Gm~k82k!Dmn~k82k!

~k82k!22mr
2 G

3~kn1kn8!uN~p8,h8!, ~A35!

Gm~q!5gm1
kr

2mN
ismnqn, Dmn~q!52gmn1

qmqn

mr
2

,

k1p5k81p850,

and is found to be

UpN,pN
r ~q,q8!5grppgrNNS P1/2

pN,pN2
1

2
P3/2

pN,pND
3~«N1mN!1/2~«N8 1mN!1/2

3
1

2
@R~q,q8;mN!1~s•xN!~s•xN8 !

3R~q,q8;2mN!#,

R~q,q8;mN!

5
S~q,q8;mN!1~kr/2mN!~WpN2WpN8 !~«N2«N8 !

~vp2vp8 !22~q2q8!22mr
2

1
S~q,q8;mN!

~«N2«N8 !22~q2q8!22mr
2

, ~A36!

S~q,q8;mN!5WpN1WpN8 22mN2
kr

2mN
@~WpN1WpN8 !

3~«N1«N8 22mN!22~«N«N8 2q•q82mN
2 !#.
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