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Field theory of nucleon to higher-spin baryon transitions
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We discuss the nucleon to higher-splnandA-resonance transitions by pions and photons. The higher-spin
baryons are described by Rarita-Schwinger fields and, as we argue, this imposes a stringent consistency
requirement on the form of the couplings. PoputadA and yNA couplings are inconsistent from this point
of view. We construct examples of consistent interactions with the same nonrelativistic limit as the conven-
tional ones[S0556-28139)50310-X]

PACS numbgs): 11.10.Ef, 11.15-q, 13.75.Gx, 14.20.Gk

Current experimental efforts promise to greatly advanceshould not “activate” the spurious DOF, and therefore the
the understanding of the strong and electroweak structurtill interacting theory must obey similar symmetry require-
and the in-medium properties of the nucleon and its excitednents as the corresponding free theory.

N* states, such as the spin-3{2isobar[1-3]. In theoretical It is sometimes possible to formulate interactions which
studies, an important role is played by relativistic destroy the symmetries of the massless free theory, but in a
Lagrangians describing on a hadronic level the interaction¥/ay similar to the mass term. For instance, the “minimal”
of the baryons with pions and photons. They are often usecglectromagnetic coupling of the RS field, or the conventional
at tree level or in a unitarized model, to extract the relevant7NA coupling of Eq.(16) with z,=1/2, are interactions of
coupling constants from the data, which can then be comthis type. It then appears that the constraints can be violated
pared to results obtained in quark or other “QCD-inspired” only for specific values of the interaction strength. However,
microscopic models. To do this in a meaningful manner, onguch theories in general have nonpositive-definite
needs consistent interactions between nucledifs,reso- commutators—the Johnson-Sudarshan probld®,8], as
nances, and pions and photons. well as acausal propagations—the Velo-Zwanziger problem

However, modern treatments of higher-spis=@/2) [16,9. Also, correct derivations of Feynman rules in these
baryon fields within the standard Rarita-Schwin¢es) for-  theories indicate that Lorentz invariance is not obvious
malism are problematic. The difficulties are generic to anyl17,11 despite the fact that one starts from a manifestly
field-theoretic description of higher-spin particles and are reLorentz-invariant Lagrangian. We shall not further discuss
lated to the fact thatin a relativistic, local formulation in these problems here, but merely assume that they should be
four space-time dimensionsa higher-spin field contains absent in a consistent theory. We therefore adopt the view-
more components than is needed to represent the spin dBoint that consistent interactions must support the local sym-
grees of freedon{DOF) of the particle. The standard free- metries of the free massless RS formulation, while the mass
field formulations[4—6] are given by Lagrangians which, in term breaks these symmetries in the correct manner.
addition to the Dirac- or Proca-type equations, yield con- In first instance, the interactions can be chosen to simply
straint equations that reduce the number of independent confreserve the gauge symmetries of the free massless theory. In
ponents of the field to the correct value. The issue is how tdact, the possibility to construct consistent higher-spin field
introduce interactions: When these are not constructed cofibeories with such gauge-invariarGl) couplings was
sistently with the free theory, the constraints may be violatedPOinted out by Weinberg and Witten already some time ago
and consequently the unphysical extra DOF will become in{18], but apparently has never been exploited in hadronic
volved. The widely-usedrNA and yNA interactions given Physics. Here we shall confine ourselves to exploring this
below in Eqs(le) and (17) are examp|es of such inconsis- road, which is sufficient for formulating consistent
tent couplings. The pathologies of theNA coupling have  N™)N* interactions.
been especially thoroughly discussigd-11]. It is the pur- To present our arguments more systematically, let us first
pose of this Rapid Communication to present a remedy fOfecall that within the RS formalism a field of spis=j

consistent interactions, and illustrate some consequences. tensor-spinon//(a) (X) of rankj- the Spinor indexa will
B - M ’

An elegant general way to distinguish consistent theorie
for high-spin fields is to use the correspondence between t
local symmetries and the DOF content of the the@se the Ci=4(j+1)(j+2)(j+3)/6 (1)
theorem quoted belowThe free massless theory can be con- '
structed by demanding the action to be invariant under @ndependent components. The requirement that the field de-
number of gauge transformatiof$2—14), constraining the scribes a massless particle, with only two helicities, leads to
number of DOF to two. The mass term breaks these symmean essentially unique definition of the theof§,12—14.
tries such that the number of DOF is raised to the appropriatBlamely, the action must be invariant under the gauge trans-
2s+1. Our basic premise is that a consistent interactiorformation

e omitted in what follows. Note that such a field has
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5%1---uj:(1/j)[‘9ul‘~‘uz---u + .. +(9Mj6l*1---ﬂj71]’ 2) higher-spin fermion formulation. A similar proof applies to

) the formulation for higher-spin bosons.

where e(x) is a symmetric tensor-spinor field of rafk 1, The mass term is u_sually introduced so as to b.reak. the
subject to the traceless conditiop“te, , ., =0. Fur- gauge symmetry, turning all the first-class constraints into
1Mo - Hj—1 . )
thermore, the field itself must satisfy the gauge-invariant'€ S€cond class. The resulting number of the second-class
condition constraintaN;; must provide the physical DOF counting
gM1M27M3¢#1M2M3 c Mg =0. (3) 2Ncomp_ﬁll = 2(23+ 1)- (8)

To count the number of DOF we may use the Hamiltonian,
framework[19-22, where, given the Lagrangian density for
¢, one defines the conjugate momentum*1 - #j

ne can in general writhl;; =N, +N,;,+N/,, and find from
Egs. (6)—(8) that NJ,=4j2. This shows that the mass term

. ] . . should play a rather subtle role: in addition to turning the
=0dLldy,, ..., and determines all the constraints in the firsiclass constraints of the massless theory into the second
(m,¢) phase space of the theory. Taking into account theslass, some numbet], of new second-class constraints must

condition Eq.(3), the field actually has be generated.
o The couplings consistent with the above free-theory con-
Neomp=Cj—Cj-5=6j(j+1)+4 (4) struction, for both massless and massive cases, will appar-

. ) . ently be only those which are invariant under transformation
independent components, and so does its conjugate MOMeRG (2) or its “deformations” with the samel andn. Real-
tum. However, only two(fpr each of th‘?m are negdgd 0 jzations based on deformations of the free-theory symmetries
describe a massless particle. The rest is to be eliminated bé'ppear to be unavoidable in the construction of “minimal”

means of the phase-space constraints.NyeandN,, denote ., hjings of the RS fields to the photon or gravity. However,
the number of first- and second-class constraints, respegris not necessary for constructing consisthint: N* transi-

tively. Each first-clasgsecond-clagsconstraint eliminates o interactions. In this case, one can generally construct
two (one DOF [21]. Thu;, in a theory with only physical couplings invariant under Ed2).

DOF N, andN; must satisfy To illustrate all this, let us specify the discussion to the
spin-3/2 case, relevant to the important example of she
isobar. The spin-3/2 field is described by the sixteen-
An explicit determination of the constraints in the most gen-COMPOnent vector-spinap”(x), with for the massless case

eral case by, for instance, the usual Dirac-Bergmann procér'he Lagrangian density
dure[19] is a formidable task. But their number can easily be

2Neomp— 2N, =N =2+2. (5)

assessed by using the following theorem, which establishes a L=y Oyo(a)3{a?",i8}0,,(a)y", 9
precise correspondence between the local symmetries of the
action and the first-class constraints. where
Theorem A Lagrangian theory invariant under a local
transformation wit independent parameters hagrimary O (a)=expiay,y,)=0,,+i(e*~1)y,y,, (10

first-class constrain{20]; and the total number of first-class
constraints is ¢+ 1)xn, whered is the highest order of the  and the arbitrary constaatrepresents the freedom due to the
time-derivative operator acting on the parameters of thggint-transformation invariancd7,10; o2“=[2,y*]/2.

transformatior{23]. S The action of this theory is invariant under the gauge trans-
In our case, the Lagrangian is invariant under E2),  formation

henced=1 andn=C;_;—C;_,=2j(j+1), while
S, =0, (—a)d’e, 11
N=4](+1) ® I Ol "

. wheree(x) is a spinor field. By using the theorem we have
by the second part of the theorem. Furthermore, since ferm|N|:8 andN,, =12, which is of course in agreement with an

onic theories are of first order in space-time derivatives, the

total number of primary constraints is equal to the number mexplicit evaluation of the constrainid1,24.
P y 1) q For |a| <=, the tensorg)(a) form a group withO,,,(0)

] (1) (- i i
Of the (heorem we havhL)—n. From the fact thain fne. Oy 25 the unit element and produc 2 (2, 0 (2,
U =0,,(a;+ay). Different choices among these finite values
massless cagethere are only primary second-class con- ® . o v e
straints, i.e.N. =N© . we find of a amount 'to the field redeflnltloqfﬂ—ow(a)t// . Slnge
el n detO(a)=e€? is a constant, any choice can be made without

. affecting theS matrix.
= —n=4j(j+1)+4.
Nir=Neomp=n=4j(j+1)+4 @ For the “forbidden” valuea=—, the Lagrangian be-

By using these values fo¥; andN,, , one can check that Eq. ©OM€S
(5) is indeed satisfied. We have thus proven the unitarity, or _
the so-called “no-ghost” theorem6,12], of the massless £=iWOAM(—w)yQO’”(—oo)agw,,, (12
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whereO,,,(—*)=g,,~ 7 ¥,7¥,. This is the massless ver- " " k ’ k

sion of the theory recently considered by Haberzg2g]. » RPN
Determining the constraints for this case we fid=4 and ——» «———»—

N;; =12, hence more DOF than the RS theory. This can be
understood by observing that the Lagrangian @) is in-
variant underéy, = v ,e€, i.e., it has the same number of oG
local transformations as the RS theory, but without the (3) _ 3 o v :
space-time derivative. Note that the massive case ofahis (2m)2l/l Oou(2yd ysWI,FH HH.C

= — theory[25] has the saméy, =y, e symmetry.

The massive RS theory is obtained by the replacemergee, e.g., Refd.27-29. Here, ¢*, ¥, and ¢ denote the
M—o*+ LiMy* in Eq. (9). The mass term breaks the A-isobar vector-spinor, nucleon spinor, and pion pseudo-
gauge symmetry Eq(11) in the correct way, raising the Scalar fields, with massé8, m, andm,, respectivelyf*" is
number of DOF to four as is appropriate for a massive spinthe photon field tensore=y4=/137 is the proton charge;
3/2 particle. The propagator of the theory is the well-knownf»na @nd G; (i=1,2,3) are dimensionless coupling con-
RS propagator; in terms of spin-projection operatBfd  stants. For real photons, only ti& andG, terms contrib-
[6,26] it reads ute. The interactions in Eq$16) and (17) all contain the

tensor© ,,(2)=9,,~ (z+ 3)v,7,; the constants, and

FIG. 1. TypicalA-exchange graphs.

yNA ™

1 2 z,; (i=1,2,3) with arbitrary values are the so-called “off-
— 3/2 12 a
Su(P)= m (32— W(IZPr M)PE2, shell parameters.”
These “conventional”’ 7NA and yNA interactions are
1 inconsistent with the free spin-3/2 RS theory, for any value
+—=— (P32, + P2, (13)  of the off-shell parameters, see, e.g., RETs:9,11. They do
J3M not possess any local symmetries of the RS field, and as a
consequence they violate the constraints and involve the un-
where physical lower-spin DOF. The latter contribute to the observ-
ables in terms of the “spin-1/2 backgroundg29].
1 1 ™Y . : . .
peA—g = J— A+ ) 14 In contrast,N— A couplings which are invariant under
wo = QT 3 VY sz(pyﬂp Puy) (14 the gauge transformation E¢L1) will be fully consistent in
that sense. Such Gl couplings can easily be constructed by
projects onto the pure spin-3/2 states, while using the manifestly invariant RS field tensor
P(2]é/,i)]/: pMpV/pZ, GH'= gk " — 9" y* (19
and its dualG**=1 £#7¢°G, . The corresponding vertices
1) _ 2 2 oo
P32, =P%P,0e /(V3P?), (159 rx(p,p—k,k), wherep andk are the momenta of thé and,
e.g., the pion, whileu is the Lorentz index associated with
P2, =p,.p2o,, /(\3p?), the A field, will satisfy
are projection operators onto the spin-1/2 sector of the RS p.I*(p,p—k,k)=0. (19
theory. ) .
Consider next the interactions. In the literature, a populaffom Egs.(13) and(15) one can then immediately see that
choice for thewNA coupling i€ all nonvanishingA-exchange amplitudesee, e.g., Fig. )1

I Y N ’ v _
Lons=(Fons M) P40, (2, ¥ "+ He., (16 PRSI (R =i,
_ _ are proportional to the spin-3/2 projection operator, and thus
while for the yNA couplings one often takes the unphysical spin-1/2 sector decouples.
oG In principle, there are many GI couplings one can con-
1y 1€61— Y struct. We will focus here only on the ones that become
E(VN)A_ 2m ¥20,0u(2,)y, ¥ W HHC,  (17) equivalent to the conventional couplings at thepole and
hence have the same nonrelativistic limit. By using this
eG, “pole equivalence” we can establish the connection with
g(ﬂA: — 2 $°0,,(2,2) v5d, YF*’+H.c., coupling constants used in the vast number of previous stud-
7 (2m)? ' ies, including the nonrelativistif30] and heavy-baryon
[31,32 formalisms.
For thewNA interaction we take

1in what follows, we choosa=0 without loss of generality. _ ~
2For brevity, isospin space is omitted throughout. Laona=tVysy,G*"d,¢+H.c. (20
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The pole equivalence implies that the verteX obtained 3Ge=m(M—m)(g3+0,—0y). (24)
from this Lagrangian, when contracted with the free RS _ _ . .
vector-spinoruﬂ(fJ), wherep is the on-shell momentum of Since the conS|deregNA couplings are invariant under
the A, p2=M2, becomes equivalent to the conventional both the electromagnetic and the RS gauge transformation,

. the corresponding verteK#¢(p,q), whereq is the photon
Y23
mNA vertex, I'cop,, found from Eq.(16), i.e., momentum, obeys the transversality condition with respect

to both indices, i.e.,

p.L*(p,a)=0,l'*¢(p,q)=0. (25
This condition requires us to identify the coupling constant ) )
in Eq. (20) as f="f_y,/(Mm,M), in terms of the coupling Note that we have (_axcluded couplings tha_t contay;G’f”. .
f.na Of EQ. (16). However, we emphasize that despite theSuch couplings pr_OJect_onto the purely spln-1/2 cont_r|bu_t|on
imposed pole equivalence, the two couplings will give dif- (Y., can be written in terms of the spin-1/2 projection
ferent results fon -exchange amplitudes of, e.g., Fig. 1, evenOPerators only which on the other hand decouple because
at the polep?=M?2. This is because with the conventional Of the gauge symmetry. Hence, these couplings lead to van-
coupling one still encounters the background due to théShing amplitudes, see RqfL1] for an example.
negative-energy state contribution of the spin-1/2 sector. In An interesting extension is to study interactions that are

contrast, using the Gl interaction ERO), we obtain the not exa_lctly gauge invariant, but the_ variation_of WhiCh is
amplitude proportional to some free-field equations. The invariance of

the full action can then be provided by a variation of a cor-
T4(p,p—k',k')S,,(p)T*(p,p—k,k) responding free action, as illugtrated below. In such theories,
the decoupling of the unphysical DOF happens only when
(f.na/m,)? p? (32 the particles, the free-field equations of which become in-
= — P KK, (22)  volved, are on their mass shell. An analogous situation
p—M M arises, for instance, in QED where the electromagnetic cur-
L _ rents are conserved only when the external lepton legs are
for any A-momentump. Some realistic calculations afN 1 ghell. This can be physically acceptable since the spurious
scattering lengths and phase shifts using this amplitude ha‘@OF, even though present off-shell, do not contribute to ob-
recently been reportel83,34. These studies indicate large gopaples.
qualitative differences with the conventional approach, while However, for theN— A case our attempts to find an in-
in both approaches agreement with experiment can bgyaction of this type led only télocally) supersymmetric
achieved due to the interplay of other reaction mechanismsggjizations. Consider, e.g.,
Considering the photon couplings, the @NA interac-
tions that are lowest in number of derivatives read L=gWy,(i0p+me)yt, (26)

T#(p,p—k,K)u,(p)=T% (p,p—KKu,(p). (21)

ﬁyNA:e‘l_’(gléMﬁ 9275G gsmyeégv where for now all the fields are Hermitian. Under the varia-
tion 6¢,=d,€, we have, up to a total derivative,
+04¥57,7°G,,)F#+H.c. (23 o B
. _ o 6L=—g[(i9,Vy*+mW¥)(dp—ime)

The first term contributes purely to the magnetic-dipole tran- -
sition in the Sachs-type decomposition of thBIA vertex +iW(Pp+m?ep)]e, (27)
[35]. The second term is up to a total derivative equal to the
sum of the conventionab, and G5 couplings of Eq.(17),  Wwhich is indeed proportional to the free-field equation, if the
provided that G,=G3=(2m)%g, and z,,=2,3=—1/2.  pseudoscalar and the spinor field have the same mass equal
Therefore, for real photons the coupling and thes, cou- to m. This variation is canceled by the variation of the free
pling with z, ,=—1/2 are fully equivalent. Thg; and g, Lagrangian,ﬂoz%,}'Md)&“(ﬁ—%mzqs—Q—%\If(i{)—m)\]fl under
terms are new. However, at the pole theg; and G; cou-  the local transformation
plings become equivalent, provided thgg=G,/(2mM).
The same applies to they term.. Thus, the contribution_ of 5¢:ig\l—fe-, SV=g[dp—imdole,
the GI couplings to the magnetic-dipdBy, and the electric-
quadrupoleGg transition form factors at thd pole readS,  which obviously is a supersymmetric transformation. It can

in the conventions of Ref35], still be suspected that this model is not fully consistent: a
nontrivial supersymmetry necessitates the balance between
3Gy=2m(M +m)g;—m(M —m)g, fermionic and bosonic DOF, which may thus require the in-
clusion of more boson fields as well as more interaction
+m(3M+m)(gz+da), terms, see, e.g.26]. However, as far all— A couplings are

concerned, a development of such supersymmetric models
seems neither necessary nor promising at present.
3A complete treatment of the Coulonilongitudina) quadrupole In conclusion, we have shown how the requirement of
requires higher derivatives than in EQ3). gauge invariance allows one to incorporate both manifest
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covariance and consistent DOF counting in a local high-spirfield equations can also be consistent, but in our attempts to
field formulation. We have therefore proposed to use theonstruct such arNA coupling we were led to a locally
gauge-invariant interactions for describing the varioussupersymmetric realization which has an obscure phenom-
meson- and photon-induced— N* transitions. This ap- €nological implementation. On the other hand, our results
proach has been illustrated by the example of a spirN&/2 concerning the explicitly gauge-invariant interactions are
resonance, thd isobar. While the conventional interactions certainly relevant to theoretical studies related to the ongoing
used to describe the nucleonAeisobar transitions by pions experlmentzil programs on meson-, photo-, and electropro-
and photons are well known to be inconsistent, we have coruction ofN* resonances.

structed explicit e;xamples of novel Cor_15|stent interactions \; p_would like to thank B. de Wit, J. W. van Holten, and
that become equivalent to the conventional ones atAhe A waldron for a number of illuminating discussions, and J.
pole and in the nonrelativistic limit. We emphasize that, every_ Koch for helpful remarks on the manuscript. R.T. is grate-
though most of our discussion has been focused on the intefg| to J. Weda and O. Scholten for useful conversations. The
actionsexplicitly invariant under the free-field transforma- research of V.P. was supported by the Netherlands Research
tion Eq. (2), one can possibly construct consistent interac-OrganizationNWO) via FOM, while that of R.T. was made
tions based on its deformations with the same parameterpossible by the Royal Netherlands Academy of Arts and Sci-
Moreover, interactions which are invariant up to some freeences.

[1] J. C. Bergstromet al, Phys. Rev. C53, R1052(1996; G. [19] P. A. M. Dirac, Lectures on Quantum Mechani¢¥eshiva

Blanpied et al, Phys. Rev. Lett69, 1880 (1992; ibid. 79, University, 1964.
4337(1997; M. Fuchset al, Phys. Lett. B368 20(1996; R. [20] D. M. Gitman and I. V. Tyutin,Canonical Quantization of
Beck et al, Phys. Rev. Lett78, 606 (1997); M. A. Kovash Fields with Constraints(Nauka, Moscow, 1986 (Extended
etal, wN Newslett. 12, 51 (1997; C. Mertz etal, English version: Springer-Verlag, Berlin, 1990
nucl-ex/9902012. [21] M. Henneaux and C. TeitelbonQuantization of Gauge Sys-
[2] O. Hanstein, D. Drechsel, and L. Tiator, Nucl. Phy&32, tems(Princeton University Press, Princeton, NJ, 1992
561(1998; Th. Wilbois, P. Wilhelm, and H. Arenhel, Phys.  [22] S. Weinberg,;The Quantum Theory of Field€ambridge Uni-
Rev. C57, 295(1998; R. M. Davidson, N. C. Mukhopadhyay, versity Press, Cambridge, England, 1998ol. |, Chap. 7.
M. S. Pierce, R. A. Arndt, I. I. Strakovsky, and R. L. Work- [23] M. Vasiliev, private communication. See also Rf9].
man,ibid. 59, 1059(1999. [24] G. Senjanovic, Phys. Rev. D6, 307 (1977).
[3] W. Weinhold, B. Friman, and W. Nenberg, Phys. Lett. B [25] H. Haberzettl, nucl-th/9812043.
433 236(1998; B. Honget al, ibid. 407, 115(1997). [26] P. van Nieuwenhuizen, Phys. Re§8, 189 (1981).

[4] W. Rarita and J. Schwinger, Phys. Ref0, 61 (1941); J. [27] R. D. Peccei, Phys. Re\.76, 1812(1968; 181, 1902(1969.
Schwinger,Particles, Sources, and Field@ddison-Wesley, [28] G. Hohler, in Landolt-Banstein Vol. 1/9b2, edited by H.

Reading, MA, 1979 Vol. 1, Chap. 2. Schopper(Springer-Verlag, Berlin-Heidelberg, 1983
[5] L. P. S. Singh and C. R. Hagen, Phys. Re\9,[8398(1974); 9, [29] M. G. Olsson and E. T. Osypowski, Nucl. Phy887, 399
910 (1974). (1974; Phys. Rev. D17, 174(1978; R. M. Davidson, N. C.
[6] C. Fronsdal, Phys. Rev. 08, 3624 (1978; J. Fang and C. Mukhopadhyay, and R. S. Wittmaibid. 43, 71 (1991); H.
Fronsdal,ibid. 18, 3630(1978. Garcilaso and E. Moya de Guerra, Nucl. Phy&62, 521
[7] L. M. Nath, B. Etemadi, and J. D. Kimel, Phys. Rev32153 (1993; V. Pascalutsa and O. Scholteiid. A591, 658(1995;
(1972; L. M. Nath and B. K. Bhattacharryya, Z. Phys.5C9 T. Sato and T.-S. H. Lee, Phys. Rev.53, 2660(1996; T.
(1980. Feuster and U. Mosebid. 59, 460(1998; A. Yu. Korchin, O.
[8] C. R. Hagen, Phys. Rev. B, 2204(1971). Scholten, and R. Timmermans, Phys. Lett483 1 (1998.
[9] L. P. S. Singh, Phys. Rev. b, 1256(1973. [30] J. H. Koch and E. J. Moniz, Phys. Rev.20, 235(1979; J. H.
[10] M. Benmerrouche, R. M. Davidson, and N. C. Mukhopadhyay, Koch, E. J. Moniz, and N. Ohtsuka, Ann. Phy.Y.) 154, 99
Phys. Rev. (39, 2339(1989. (1984.
[11] V. Pascalutsa, Phys. Rev. &8, 096002(1998. [31] E. Jenkins and A. V. Manohar, Phys. Lett2B5 558(1991).
[12] T. Curtright, Phys. Lett. BB5, 219(1979. [32] T. R. Hemmert, B. R. Holstein, and J. Kambor, Phys. Lett. B
[13] C. Aragone and S. Deser, Phys. Rev2D) 352 (1980. 385 89 (1997); J. Phys. G24, 1831(1998.
[14] B. de Wit and D. Z. Freedman, Phys. Rev.2l, 358 (1980. [33] A. D. Lahiff and I. R. Afnan, nucl-th/9903058; Few-Body
[15] K. Johnson and E. C. G. Sudarshan, Ann. PlijsY.) 13, 126 Syst., Suppl10, 147 (1999.
(1962. [34] V. Pascalutsa and J. A. Tjon, Few-Body Syst., Supf).105
[16] G. Velo and D. Zwanziger, Phys. Rel86, 267 (1969. (1999.
[17] M. Yamada, Nuovo Cimento A1, 205(1986. [35] H. F. Jones and M. D. Scadron, Ann. PhyhalLY.) 81, 1
[18] S. Weinberg and E. Witten, Phys. Le®6B, 59 (1980. (1973.

042201-5



