
RAPID COMMUNICATIONS

PHYSICAL REVIEW C, VOLUME 60, 042201
Field theory of nucleon to higher-spin baryon transitions
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We discuss the nucleon to higher-spinN- andD-resonance transitions by pions and photons. The higher-spin
baryons are described by Rarita-Schwinger fields and, as we argue, this imposes a stringent consistency
requirement on the form of the couplings. PopularpND andgND couplings are inconsistent from this point
of view. We construct examples of consistent interactions with the same nonrelativistic limit as the conven-
tional ones.@S0556-2813~99!50310-X#

PACS number~s!: 11.10.Ef, 11.15.2q, 13.75.Gx, 14.20.Gk
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Current experimental efforts promise to greatly advan
the understanding of the strong and electroweak struc
and the in-medium properties of the nucleon and its exc
N* states, such as the spin-3/2D-isobar@1–3#. In theoretical
studies, an important role is played by relativis
Lagrangians describing on a hadronic level the interacti
of the baryons with pions and photons. They are often us
at tree level or in a unitarized model, to extract the relev
coupling constants from the data, which can then be co
pared to results obtained in quark or other ‘‘QCD-inspire
microscopic models. To do this in a meaningful manner, o
needs consistent interactions between nucleons,N* reso-
nances, and pions and photons.

However, modern treatments of higher-spin (s>3/2)
baryon fields within the standard Rarita-Schwinger~RS! for-
malism are problematic. The difficulties are generic to a
field-theoretic description of higher-spin particles and are
lated to the fact that~in a relativistic, local formulation in
four space-time dimensions! a higher-spin field contains
more components than is needed to represent the spin
grees of freedom~DOF! of the particle. The standard free
field formulations@4–6# are given by Lagrangians which, i
addition to the Dirac- or Proca-type equations, yield co
straint equations that reduce the number of independent c
ponents of the field to the correct value. The issue is how
introduce interactions: When these are not constructed
sistently with the free theory, the constraints may be viola
and consequently the unphysical extra DOF will become
volved. The widely-usedpND andgND interactions given
below in Eqs.~16! and ~17! are examples of such inconsi
tent couplings. The pathologies of thepND coupling have
been especially thoroughly discussed@7–11#. It is the pur-
pose of this Rapid Communication to present a remedy
these problems, construct explicit examples of alterna
consistent interactions, and illustrate some consequence

An elegant general way to distinguish consistent theo
for high-spin fields is to use the correspondence between
local symmetries and the DOF content of the theory~see the
theorem quoted below!. The free massless theory can be co
structed by demanding the action to be invariant unde
number of gauge transformations@12–14#, constraining the
number of DOF to two. The mass term breaks these sym
tries such that the number of DOF is raised to the appropr
2s11. Our basic premise is that a consistent interact
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should not ‘‘activate’’ the spurious DOF, and therefore t
full interacting theory must obey similar symmetry requir
ments as the corresponding free theory.

It is sometimes possible to formulate interactions wh
destroy the symmetries of the massless free theory, but
way similar to the mass term. For instance, the ‘‘minima
electromagnetic coupling of the RS field, or the conventio
pND coupling of Eq.~16! with zp51/2, are interactions of
this type. It then appears that the constraints can be viola
only for specific values of the interaction strength. Howev
such theories in general have nonpositive-defin
commutators—the Johnson-Sudarshan problem@15,8#, as
well as acausal propagations—the Velo-Zwanziger prob
@16,9#. Also, correct derivations of Feynman rules in the
theories indicate that Lorentz invariance is not obvio
@17,11# despite the fact that one starts from a manifes
Lorentz-invariant Lagrangian. We shall not further discu
these problems here, but merely assume that they shoul
absent in a consistent theory. We therefore adopt the vi
point that consistent interactions must support the local s
metries of the free massless RS formulation, while the m
term breaks these symmetries in the correct manner.

In first instance, the interactions can be chosen to sim
preserve the gauge symmetries of the free massless theo
fact, the possibility to construct consistent higher-spin fie
theories with such gauge-invariant~GI! couplings was
pointed out by Weinberg and Witten already some time a
@18#, but apparently has never been exploited in hadro
physics. Here we shall confine ourselves to exploring t
road, which is sufficient for formulating consisten

N→
p,g

N* interactions.
To present our arguments more systematically, let us

recall that within the RS formalism a field of spins5 j
11/2 (j is an integer! is represented by a symmetric Loren
tensor-spinorcm1 . . . m j

(a) (x) of rank j; the spinor indexa will

be omitted in what follows. Note that such a field has

Cj[4~ j 11!~ j 12!~ j 13!/6 ~1!

independent components. The requirement that the field
scribes a massless particle, with only two helicities, leads
an essentially unique definition of the theory@6,12–14#.
Namely, the action must be invariant under the gauge tra
formation
©1999 The American Physical Society01-1
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dcm1 . . . m j
5~1/j !@]m1

em2 . . . m j
1 . . . 1]m j

em1 . . . m j 21
#, ~2!

wheree(x) is a symmetric tensor-spinor field of rankj 21,
subject to the traceless condition:gm1em1m2 . . . m j 21

50. Fur-
thermore, the field itself must satisfy the gauge-invari
condition

gm1m2gm3cm1m2m3 . . . m j
50. ~3!

To count the number of DOF we may use the Hamilton
framework@19–22#, where, given the Lagrangian density f
c, one defines the conjugate momentumpm1 . . . m j

5]L/]ċm1 . . . m j
and determines all the constraints in t

(p,c) phase space of the theory. Taking into account
condition Eq.~3!, the field actually has

Ncomp5Cj2Cj 2356 j ~ j 11!14 ~4!

independent components, and so does its conjugate mo
tum. However, only two~for each of them! are needed to
describe a massless particle. The rest is to be eliminate
means of the phase-space constraints. LetNI andNII denote
the number of first- and second-class constraints, res
tively. Each first-class~second-class! constraint eliminates
two ~one! DOF @21#. Thus, in a theory with only physica
DOF NI andNII must satisfy

2Ncomp22NI2NII 5212. ~5!

An explicit determination of the constraints in the most ge
eral case by, for instance, the usual Dirac-Bergmann pro
dure@19# is a formidable task. But their number can easily
assessed by using the following theorem, which establish
precise correspondence between the local symmetries o
action and the first-class constraints.

Theorem. A Lagrangian theory invariant under a loc
transformation withn independent parameters hasn primary
first-class constraints@20#; and the total number of first-clas
constraints is (d11)3n, whered is the highest order of the
time-derivative operator acting on the parameters of
transformation@23#.

In our case, the Lagrangian is invariant under Eq.~2!,
henced51 andn5Cj 212Cj 2252 j ( j 11), while

NI54 j ~ j 11! ~6!

by the second part of the theorem. Furthermore, since fe
onic theories are of first order in space-time derivatives,
total number of primary constraints is equal to the numbe
field components,NI

(1)1NII
(1)5Ncomp. Invoking the first part

of the theorem we haveNI
(1)5n. From the fact that~in the

massless case! there are only primary second-class co
straints, i.e.,NII 5NII

(1) , we find

NII 5Ncomp2n54 j ~ j 11!14. ~7!

By using these values forNI andNII , one can check that Eq
~5! is indeed satisfied. We have thus proven the unitarity
the so-called ‘‘no-ghost’’ theorem@6,12#, of the massless
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higher-spin fermion formulation. A similar proof applies t
the formulation for higher-spin bosons.

The mass term is usually introduced so as to break
gauge symmetry, turning all the first-class constraints i
the second class. The resulting number of the second-c

constraintsN̄II must provide the physical DOF counting

2Ncomp2N̄II 52~2s11!. ~8!

One can in general writeN̄II 5NI1NII 1NII8 , and find from
Eqs. ~6!–~8! that NII8 54 j 2. This shows that the mass term
should play a rather subtle role: in addition to turning t
first-class constraints of the massless theory into the sec
class, some numberNII8 of new second-class constraints mu
be generated.

The couplings consistent with the above free-theory c
struction, for both massless and massive cases, will ap
ently be only those which are invariant under transformat
Eq. ~2! or its ‘‘deformations’’ with the samed andn. Real-
izations based on deformations of the free-theory symmet
appear to be unavoidable in the construction of ‘‘minima
couplings of the RS fields to the photon or gravity. Howev
it is not necessary for constructing consistentN→N* transi-
tion interactions. In this case, one can generally const
couplings invariant under Eq.~2!.

To illustrate all this, let us specify the discussion to t
spin-3/2 case, relevant to the important example of theD
isobar. The spin-3/2 field is described by the sixtee
component vector-spinorcm(x), with for the massless cas
the Lagrangian density

L5c̄lOl%~a! 1
2 $s%m,i ]” %Omn~a!cn, ~9!

where

Omn~a![exp~ 1
4 agmgn!5gmn1 1

4 ~ea21!gmgn , ~10!

and the arbitrary constanta represents the freedom due to th
point-transformation invariance@7,10#; s%m5@g%,gm#/2.
The action of this theory is invariant under the gauge tra
formation

dcm5Omn~2a!]ne, ~11!

wheree(x) is a spinor field. By using the theorem we ha
NI58 andNII 512, which is of course in agreement with a
explicit evaluation of the constraints@11,24#.

For uau,`, the tensorsO(a) form a group withOmn(0)
5gmn as the unit element and product lawO m

%(a1)O%n(a2)
5Omn(a11a2). Different choices among these finite valu
of a amount to the field redefinitioncm8 5Omn(a)cn. Since
detO(a)5ea is a constant, any choice can be made witho
affecting theS matrix.

For the ‘‘forbidden’’ valuea52`, the Lagrangian be-
comes

L5 i c̄lOlm~2`!g%O mn~2`!]%cn , ~12!
1-2
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whereOmn(2`)5gmn2 1
4 gmgn . This is the massless ver

sion of the theory recently considered by Haberzettl@25#.
Determining the constraints for this case we findNI54 and
NII 512, hence more DOF than the RS theory. This can
understood by observing that the Lagrangian Eq.~12! is in-
variant underdcm5gme, i.e., it has the same number o
local transformations as the RS theory, but without
space-time derivative. Note that the massive case of tha
52` theory @25# has the samedcm5gme symmetry.

The massive RS theory is obtained by the replacem

]m→]m1 1
4 iM gm in Eq. ~9!. The mass term breaks th

gauge symmetry Eq.~11! in the correct way, raising the
number of DOF to four as is appropriate for a massive sp
3/2 particle. The propagator of the theory is the well-kno
RS propagator; in terms of spin-projection operatorsP(J)

@6,26# it reads1

Smn~p!5
1

p”2M1 i«
Pmn

(3/2)2
2

3M2
~p”1M !P22,mn

(1/2)

1
1

A3M
~P12,mn

(1/2) 1P21,mn
(1/2) !, ~13!

where

Pmn
(3/2)5gmn2

1

3
gmgn2

1

3p2
~p”gmpn1pmgnp” ! ~14!

projects onto the pure spin-3/2 states, while

P22,mn
(1/2) 5pmpn /p2,

P12,mn
(1/2) 5p%pnsm% /~A3p2!, ~15!

P21,mn
(1/2) 5pmp%s%n /~A3p2!,

are projection operators onto the spin-1/2 sector of the
theory.

Consider next the interactions. In the literature, a popu
choice for thepND coupling is2

LpND5~ f pND /mp!c̄mQmn~zp!C]nf1H.c., ~16!

while for thegND couplings one often takes

L gND
(1) 5

ieG1

2m
c̄%Q%m~zg,1!gng5CFmn1H.c., ~17!

L gND
(2) 52

eG2

~2m!2
c̄%Q%m~zg,2!g5]nCFmn1H.c.,

1In what follows, we choosea50 without loss of generality.
2For brevity, isospin space is omitted throughout.
04220
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L gND
(3) 52

eG3

~2m!2
c̄%Q%m~zg,3!g5C]nFmn1H.c.;

see, e.g., Refs.@27–29#. Here, cm, C, and f denote the
D-isobar vector-spinor, nucleon spinor, and pion pseu
scalar fields, with massesM, m, andmp , respectively;Fmn is
the photon field tensor;e.A4p/137 is the proton charge
f pND and Gi ( i 51,2,3) are dimensionless coupling co
stants. For real photons, only theG1 andG2 terms contrib-
ute. The interactions in Eqs.~16! and ~17! all contain the

tensor Qmn(z)5gmn2(z1 1
2 )gmgn ; the constantszp and

zg,i ( i 51,2,3) with arbitrary values are the so-called ‘‘of
shell parameters.’’

These ‘‘conventional’’pND and gND interactions are
inconsistent with the free spin-3/2 RS theory, for any va
of the off-shell parameters, see, e.g., Refs.@7–9,11#. They do
not possess any local symmetries of the RS field, and a
consequence they violate the constraints and involve the
physical lower-spin DOF. The latter contribute to the obse
ables in terms of the ‘‘spin-1/2 backgrounds’’@29#.

In contrast,N→
p,g

D couplings which are invariant unde
the gauge transformation Eq.~11! will be fully consistent in
that sense. Such GI couplings can easily be constructed
using the manifestly invariant RS field tensor

Gmn5]mcn2]ncm ~18!

and its dualG̃mn5 1
2 «mn%sG%s . The corresponding vertice

Gm(p,p2k,k), wherep andk are the momenta of theD and,
e.g., the pion, whilem is the Lorentz index associated wit
the D field, will satisfy

pmGm~p,p2k,k!50. ~19!

From Eqs.~13! and ~15! one can then immediately see th
all nonvanishingD-exchange amplitudes~see, e.g., Fig. 1!,

Gm~p,p2k8,k8!Smn~p!Gn~p,p2k,k!,

are proportional to the spin-3/2 projection operator, and t
the unphysical spin-1/2 sector decouples.

In principle, there are many GI couplings one can co
struct. We will focus here only on the ones that beco
equivalent to the conventional couplings at theD pole and
hence have the same nonrelativistic limit. By using th
‘‘pole equivalence’’ we can establish the connection w
coupling constants used in the vast number of previous s
ies, including the nonrelativistic@30# and heavy-baryon
@31,32# formalisms.

For thepND interaction we take

LpND5 f C̄g5gmG̃mn]nf1H.c. ~20!

FIG. 1. TypicalD-exchange graphs.
1-3
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The pole equivalence implies that the vertexGm obtained
from this Lagrangian, when contracted with the free R
vector-spinorum( p̂), wherep̂ is the on-shell momentum o
the D, p̂25M2, becomes equivalent to the convention
pND vertex,Gconv

m , found from Eq.~16!, i.e.,

Gm~ p̂,p̂2k,k!um~ p̂!5Gconv
m ~ p̂,p̂2k,k!um~ p̂!. ~21!

This condition requires us to identify the coupling consta
in Eq. ~20! as f 5 f pND /(mpM ), in terms of the coupling
f pND of Eq. ~16!. However, we emphasize that despite t
imposed pole equivalence, the two couplings will give d
ferent results forD-exchange amplitudes of, e.g., Fig. 1, ev
at the polep25M2. This is because with the convention
coupling one still encounters the background due to
negative-energy state contribution of the spin-1/2 sector
contrast, using the GI interaction Eq.~20!, we obtain the
amplitude

Gm~p,p2k8,k8!Smn~p!Gn~p,p2k,k!

5
~ f pND /mp!2

p”2M

p2

M2
Pmn

(3/2)k8mkn, ~22!

for any D-momentump. Some realistic calculations ofpN
scattering lengths and phase shifts using this amplitude h
recently been reported@33,34#. These studies indicate larg
qualitative differences with the conventional approach, wh
in both approaches agreement with experiment can
achieved due to the interplay of other reaction mechanis

Considering the photon couplings, the GIgND interac-
tions that are lowest in number of derivatives read

LgND5eC̄~g1G̃mn1g2g5Gmn1g3gmg%G̃%n

1g4g5gmg%G%n!Fmn1H.c. ~23!

The first term contributes purely to the magnetic-dipole tr
sition in the Sachs-type decomposition of thegND vertex
@35#. The second term is up to a total derivative equal to
sum of the conventionalG2 and G3 couplings of Eq.~17!,
provided that G25G35(2m)2g2 and zg,25zg,3521/2.
Therefore, for real photons theg2 coupling and theG2 cou-
pling with zg,2521/2 are fully equivalent. Theg3 and g4
terms are new. However, at theD pole theg3 andG1 cou-
plings become equivalent, provided thatg35G1 /(2mM).
The same applies to theg4 term. Thus, the contribution o
the GI couplings to the magnetic-dipoleGM and the electric-
quadrupoleGE transition form factors at theD pole reads,3

in the conventions of Ref.@35#,

3GM52m~M1m!g12m~M2m!g2

1m~3M1m!~g31g4!,

3A complete treatment of the Coulomb~longitudinal! quadrupole
requires higher derivatives than in Eq.~23!.
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Since the consideredgND couplings are invariant unde
both the electromagnetic and the RS gauge transforma
the corresponding vertexGm%(p,q), whereq is the photon
momentum, obeys the transversality condition with resp
to both indices, i.e.,

pmGm%~p,q!5q%Gm%~p,q!50. ~25!

Note that we have excluded couplings that containsmnGmn.
Such couplings project onto the purely spin-1/2 contribut
(gmgn can be written in terms of the spin-1/2 projectio
operators only!, which on the other hand decouple becau
of the gauge symmetry. Hence, these couplings lead to v
ishing amplitudes, see Ref.@11# for an example.

An interesting extension is to study interactions that
not exactly gauge invariant, but the variation of which
proportional to some free-field equations. The invariance
the full action can then be provided by a variation of a c
responding free action, as illustrated below. In such theor
the decoupling of the unphysical DOF happens only wh
the particles, the free-field equations of which become
volved, are on their mass shell. An analogous situat
arises, for instance, in QED where the electromagnetic c
rents are conserved only when the external lepton legs
on-shell. This can be physically acceptable since the spur
DOF, even though present off-shell, do not contribute to
servables.

However, for theN→D case our attempts to find an in
teraction of this type led only to~locally! supersymmetric
realizations. Consider, e.g.,

L5gC̄gm~ i ]”f1mf!cm, ~26!

where for now all the fields are Hermitian. Under the var
tion dcm5]me, we have, up to a total derivative,

dL52g@~ i ]mC̄gm1mC̄!~]”f2 imf!

1 i C̄~]2f1m2f!#e, ~27!

which is indeed proportional to the free-field equation, if t
pseudoscalar and the spinor field have the same mass e
to m. This variation is canceled by the variation of the fr

Lagrangian,L05 1
2 ]mf]mf2 1

2 m2f1 1
2 C̄( i ]”2m)C, under

the local transformation

df5 igC̄e, dC5g@]”f2 imf#e,

which obviously is a supersymmetric transformation. It c
still be suspected that this model is not fully consistent
nontrivial supersymmetry necessitates the balance betw
fermionic and bosonic DOF, which may thus require the
clusion of more boson fields as well as more interact
terms, see, e.g.,@26#. However, as far asN→D couplings are
concerned, a development of such supersymmetric mo
seems neither necessary nor promising at present.

In conclusion, we have shown how the requirement
gauge invariance allows one to incorporate both mani
1-4
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covariance and consistent DOF counting in a local high-s
field formulation. We have therefore proposed to use
gauge-invariant interactions for describing the vario
meson- and photon-inducedN→N* transitions. This ap-
proach has been illustrated by the example of a spin-3/2N*
resonance, theD isobar. While the conventional interaction
used to describe the nucleon toD-isobar transitions by pions
and photons are well known to be inconsistent, we have c
structed explicit examples of novel consistent interactio
that become equivalent to the conventional ones at thD
pole and in the nonrelativistic limit. We emphasize that, ev
though most of our discussion has been focused on the in
actionsexplicitly invariant under the free-field transforma
tion Eq. ~2!, one can possibly construct consistent inter
tions based on its deformations with the same parame
Moreover, interactions which are invariant up to some fr
,
-

ay
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field equations can also be consistent, but in our attempt
construct such apND coupling we were led to a locally
supersymmetric realization which has an obscure phen
enological implementation. On the other hand, our res
concerning the explicitly gauge-invariant interactions a
certainly relevant to theoretical studies related to the ongo
experimental programs on meson-, photo-, and electro
duction ofN* resonances.
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