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Quarkonium formation time in a model-independent approach
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We use dispersion relations to reconstruct, in a model-independent way, the formation dynamics of heavy

quarkonium from the experimental data one1e2→Q̄Q annihilation. We extract a distribution of formation
times with a mean value for theJ/c, ^tJ/c&50.44 fm; and for theY, ^tY&50.32 fm. The corresponding
widths of these distributions are given byDtJ/c50.31 fm andDtY50.28 fm. This information can be used as
an input in modeling of heavy quarkonium production on nuclear targets.@S0556-2813~99!50710-3#

PACS number~s!: 25.75.2q, 24.85.1p, 13.65.1i, 14.40.Gx
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The creation of a heavy quark-antiquark pair occurs
small distances (;1/mQ) and produces compactQ̄Q states
that later transform into physical heavy hadrons. In the c
of quarkonium production on nuclear targets, this evolut
can cause observable effects@1#. While these ‘‘formation’’
@2# effects can in principle be evaluated in Glauber-Grib
theory @3#, in practice this calculation is difficult to perform
in a model-independent way, since it requires the knowle
of all off-diagonal components of the quarkonium-nucle
scattering amplitude. Therefore one often uses a simpl
approach, in which the evolution of the quark-antiquark p
is mimicked by a fixed ‘‘formation time,’’ during which the
interactions of the pair are different from the interactions
the physical quarkonium; depending on the color state of
pair, the interactions of the ‘‘unformed’’ pair can be eith
suppressed~‘‘color transparency’’ @1#! or enhanced, if the
pair is formed in the color octet state@4#.

In the literature one can find different prescriptions for t
formation timet f . A still popular viewpoint, for instance, is
to assume a universal parameter on the order of some c
acteristic hadronic scale, say,t f;mr

21. Alternatively, one
considers the classical expansion of the heavy quark pair
defines formation time as the time when the separation of
pair reaches the size of a physical quarkonium state@5#.
Much work has been done also on the quantum-mechan
approach to quarkonium formation, where the expansion
small initial wave packet is controlled by the spacings of
bound state mass spectrum@6,7#. In this work we address the
problem of formation time starting from the idea that
essential information about the expansion of the wave pa
is contained in the correlator of the hard scattering oper
@8#.

Let us consider the space-time correlator of an operatoĴ,
which produces from initial stateui& the (Q̄Q) state with
certain quantum numbers

P~x!5^ i uT$Ĵ~x!Ĵ~0!%u i &. ~1!

The basic expression that allows the use of experimental
for extracting information from this correlator is the dispe
sion relation, which in coordinate representation@9,10# takes
the form
0556-2813/99/60~4!/041901~4!/$15.00 60 0419
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P~x!5
1

p E Im P~s!D~As,x2!ds, ~2!

where

D~As,t252x2!5
As

4p2t
K1~Ast! ~3!

is the relativistic causal propagator in the coordinate rep
sentation;K1 is the Hankel function. The expression~2! re-
lates the behavior of the correlator~1! to experimentally
measurable cross sections for physical processes. For
ample, in the case of (Q̄Q) pair production ine1e2 annihi-
lation one has simply

Im P~s!5
s

~4pa!2 s~e1e2→Q̄Q;s!. ~4!

The physical meaning of Eq.~2! is transparent: it repre
sents the correlator as a superposition of propagators
physical states, each with the weight proportional to
probability of their production in a hard process. Thus it
possible to extract information about the space-time evo
tion of various states in a given hadronic channel with fix
quantum numbers directly from experimental data. For
ample, we can define the formation time of the ground st
with massm by the time t f at which the correlator ap
proaches its asymptotic behavior:

P~t!;t23/2exp~2mt!; ~5!

note thatt5 i t is Euclidean time.
To illustrate the notion of formation time in more deta

let us use the following simple example—assume that
spectral density~4! consists of two narrow states of identic
strength, i.e.,

Im P~s!;d~s2m1
2!1d~s2m2

2!. ~6!

At large timet, the correlator~1! will look like

P~t!;t23/2exp~2m1t!@m1
1/21m2

1/2exp„2~m22m1!t…#.
~7!

The use of criterion~5! therefore leads to
©1999 The American Physical Society01-1
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t f;
1

m22m1
. ~8!

Let us now introduce invariantl[t22r 2 and decompose
Eq. ~3! in the following way@9#:

D~As,l!5
1

4p
d~Al!2

As

8pAl
u~l!@J1~AsAl!

2 iN1~AsAl!#1
iAs

4p2A2l

3u~2l!K1~AsA2l!. ~9!

It is clear from Eq.~9! that the formation timet f extracted
from the Euclidean asymptotics~5! of the correlator~2! will
also determine the propagation of the quark-antiquark s
in Minkowski space, withl.0. Let us introduce the light-
cone variablesx15t1z, x25t2z, so that l5t22r 2

5x1x2, and conjugate momentap25p02pz.m2/2pz and
p15p01pz . As can be seen from Eqs.~2!, ~6!, and~9!, in
Minkowski space the criterion~5! leads to

l f5Dx1;
1

Dp2 .
2p

m2
22m1

2 , ~10!

i.e., the formation length of quarkoniuml f grows linearly
with its momentump5pz in the lab frame. The formation
time ~8! extracted from Euclidean asymptotics~5! of the cor-
relator is related to the formation length~10! by the Lorentz
transformation

l f.
p

~m11m2!/2
t f5

2p

m2
22m1

2 , ~11!

where (m11m2)/2 can be interpreted as a characteris
mass of the wave packet. One can recognize this length
as the inverse of the longitudinal momentum transfer@3#

Dqi.Ap0
22m1

22Ap0
22m2

2.
m2

22m1
2

2p
, ~12!

which accompanies the transition between the two hadro
states at high energy. The wave packet can escape fro
nucleus of radiusRA before being ‘‘formed’’ if l f@RA or,
equivalently, if

m2
22m1

2

2p
R4!1. ~13!

This condition was derived many years ago by Gribov@3#.
One can clearly see that the value of formation time is

no means a universal constant. It depends both on the p
erties of the interactionĴ and on the entire spectrum of stat
in a given hadronic channel. Models using some unive
value of formation time are therefore misleading. Let us n
that Eqs.~1!–~4! indicate that the space-time picture of
hard process can be equivalently described in the languag
the spectrum of hadronic excitations which are formed a
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result of this hard process. If the operatorJ is of a short-
range nature, then it produces a compact object; Eq.~2! tells
us that it is composed of many normal-sized hadronic sta

Since there exist high quality data on the production
heavy quark states ine1e2 annihilation, we will concentrate
in the remainder of this Rapid Communication on the form
tion dynamics of vectorJPC5122 quarkonium states. In
this case the Fourier transform of the correlatorPmn

5^0uT$Jm(x)Jn(0)%u0& has the following familiar structure

i E d4xeiqxPmn~x!5P~q2!~qmqn2q2gmn!. ~14!

We use the cross section fore1e2→m1m2 annihilation,

s~e1e2→m1m2;s!5
4pa2

3s
, ~15!

to express Eq.~4! in terms of the familiar ratio

R~s!5
s~e1e2→Q̄Q;s!

s~e1e2→m1m2;s!
, ~16!

resulting in

Im P~s!5
1

12p
R~s!. ~17!

Contracting Lorentz indices and using the relation (qmqn

2q2gmn)um5n53q2523]2, one can write down the ex
pression~2! as @9,10#

P~x!523
1

12p2 E
0

`

R~s!]2D~As,x2!ds. ~18!

Since the scalar propagator satisfies the equation

~2]22s!D~As,x2!52d~x! ~19!

at x2Þ0, the final result takes the following form:

P~x!5
1

4p2 E
0

`

sR~s!D~As,x2!ds. ~20!

We parametrize the ratioR(s) in terms of narrow resonance
plus a continuum contribution:

R~s!5(
i

Ri~s!1Rcont~s!, ~21!

where

Ri~s!5~2Ji11!
3

4a2

B~C i→e1e2!G i
2

~As2Mi !
21

G i
2

4

~22!

is the contribution of theC i resonance with spinJi , mass
Mi , and total widthG i . The continuum contribution can b
described with a reasonable accuracy as
1-2
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Rcont~s!53eQ
2 Q~s2sth!, ~23!

whereeQ is the electric charge of the heavy quark.
From Eqs.~3!, ~20!, and ~22! we calculate the contribu

tion of each narrow resonance term,

P i~t!5
3s iG iM i

6

64p4a2t
K1~Mit!, ~24!

where

s i5
4p

Mi
2 ~2Ji11!B~C i→e1e2! ~25!

is the magnitude of the annihilation cross section at the re
nance peakAs5Mi .

The continuum contribution is

Pcont~t!5
3eQ

2

8p4t6 E
2M tht

`

x4K1~x!dx, ~26!

where the open flavor thresholdsth54M th
2 . The standard

limiting forms of the Bessel function then give the behav
of these terms for large and small Euclidean times:

P i~t→`!5
3s iG iM i

11/2

64p3a2A2pt3/2
e2Mit, ~27!

Pcont~t→`!5
3eQ

2 M th
7/2

p7/2t5/2 e22M tht, ~28!

P i~t→0!5
3s iG iM i

5

64p4a2t2 , ~29!

Pcont~t→0!5
6eQ

2

p4t6 . ~30!

One sees that ast→`, the correlator is dominated by th
ground state contribution, but ast→0, the continuum con-
tribution always dominates, independent of the mass sp
trum.

We now consider the fractionFi of a given stateC i

present in theQ̄Q correlator at a given Euclidean timet :

Fi~t!5
P i~t!

P~t!
. ~31!

By definition,Fi(t)<1, and for the ground state

F0~t→`!51. ~32!

The formation timet f for the ground state can be define
now by the time at which the correlator is dominated by
ground state contribution, or equivalently when the relat
~32! is satisfied with a certain accuracy.

To illustrate the time evolution of the contents of theQ̄Q
correlator, we plot in Fig. 1 the functionsFi(t) for J/C and
for Y. For the charm case, we have included theJ/C andC8
04190
o-

r

c-

e
n

resonances, the continuum starting atM th5MD , and also the
next three prominentC(nS) resonances above open char
threshold. For the bottom quark case, we have included
Y(1S), Y(2S), andY(3S) resonances, the continuum sta
ing at M th5MB , and again three prominentS-wave reso-
nances above threshold. To exhibit the effect of the c
tinuum contribution for smallt, we also show curves fo
these ratios with the continuum omitted.

Also shown in Fig. 1 are the discrete values of formati
time t f

(o) which result from the simple estimates in Eq.~8!,
using the inverse mass spacing between the ground and
excited states. One sees that the rapid increase in theFi(t)
ratios occurs generally in the region oft f

(o) values, but of
course a range of formation time values is involved in t
approach towards the ground state dominance of the
relator. Operationally, we can then interpret the ratio fun
tions Fi(t) as the generalization of the form

Fi
~o!~t ![u~t2t f

~o!!, ~33!

which would be expected if the narrow resonance stateC i
had been absent until its instantaneous formation at the
t f

(o) . We are then led to interpret the derivative of theFi(t)
ratios as a continuous distributionP~t! of formation times
which occur in the evolution of the real correlator,

Pi~t!5
dFi~t!

dt
. ~34!

These distributions are shown in Fig. 2, again for the grou
states of charmonium and bottomonium, and compared w
thed-function position at the correspondingt f

(o) values. One
sees that the distributions peak att somewhat less than thes
single formation time values. The mean values for these
tributions are comparable to thet f

(o) , but the widths of the
distributions are also comparable to the mean. Thus in ev

FIG. 1. Formation times for the ground states of quarkonium
e12e2 annihilation.
1-3



fo
di

r-
te
ow
th
de
hi
a

ur
be
s
ct
th

pe
at

n
n-
ute
se,
con-
ated.
ata
tion
for-
by

-
ple
t in
es.
ical

of te
in

RAPID COMMUNICATIONS

D. KHARZEEV AND R. L. THEWS PHYSICAL REVIEW C60 041901
ating any physical quantity that depends on a resonance
mation time, one should average this quantity over the
tribution in Eq.~34!.

In principle, information is also contained in the co
relator about the time evolution and formation of the exci
states of quarkonium. However, it is not straightforward h
to extract this information, since the procedure used for
ground states depends on their dominance at large Eucli
times. We have attempted an approximate procedure, w
involves omitting in the dispersion integral all states with
lower mass than the state under consideration. This of co
neglects the effects of interference in the wave function
tween the states under consideration and all lower state
the wave packet evolution picture, or equivalently negle
all initial fluctuations with energy less than the mass of
excited state in the virtual state picture. The results forc8,
Y(2S), andY(3S) are shown in Fig. 3. The general sha
and parameters are in accord with those for the ground st

FIG. 2. Normalized distribution functions for formation times
J/c andY in e1-e2 annihilation.
to

l.
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It is interesting to note that the relatively longer formatio
time for thec8 is a direct result of its closeness to the co
tinuum threshold, whereas one might alternatively attrib
this to the larger size of the final physical state. Of cour
both of these pictures must be consistent with the same
finement dynamics, and hence may be expected to be rel

In summary, we have shown how the experimental d
on the current correlators can be converted to the forma
time distributions of the physical states. The necessary in
mation in the case of vector heavy quarkonia is provided
the data one1e2 annihilation. The formation time distribu
tions are nonzero in the region of time expected from sim
arguments involving the inverse bound state spacings, bu
addition show interesting shapes that persist to large tim
Our results could be used as an input in phenomenolog
modeling of quarkonium production inp-A and A-B colli-
sions.

FIG. 3. Normalized distribution functions from approxima
treatment of formation times for excited quarkonium states
e1-e2 annihilation.
urt,
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