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We use dispersion relations to reconstruct, in a model-independent way, the formation dynamics of heavy
quarkonium from the experimental data eﬁe’ﬂaQ annihilation. We extract a distribution of formation
times with a mean value for th&/y, (7;,)=0.44fm; and for theY, (7y)=0.32fm. The corresponding
widths of these distributions are given Byr;,,=0.31 fm andA 7y =0.28 fm. This information can be used as
an input in modeling of heavy quarkonium production on nuclear tarf®6556-2818950710-3

PACS numbeps): 25.75—(q, 24.85+p, 13.65+i, 14.40.Gx

The creation of a heavy quark-antiquark pair occurs at 1 )
small distances~{ 1/mg) and produces compaQQ states (%)= ;f ImI1(s)D(Vs,x*)ds, 2
that later transform into physical heavy hadrons. In the case
of quarkonium production on nuclear targets, this evolutiorwhere
can cause observable effe¢fd. While these “formation” \/_
[2] effects can in principle be evaluated in Glauber-Gribov _ NS
theory[3], in practice this calculation is difficult to perform D(Vs, 7= —x*)= STt Vs7) ®)
in a model-independent way, since it requires the knowledge
of all off-diagonal components of the quarkonium-nucleonis the relativistic causal propagator in the coordinate repre-
scattering amplitude. Therefore one often uses a simplistigentation;K; is the Hankel function. The expressi¢®) re-
approach, in which the evolution of the quark-antiquark paifates the behavior of the correlat¢t) to experimentally
is mimicked by a fixed “formation time,” during which the measurable cross sections for physical processes. For ex-
interactions of the pair are different from the interactions ofample, in the case ofgQ) pair production ine* e~ annihi-
the physical quarkonium; depending on the color state of th¢ation one has simply
pair, the interactions of the “unformed” pair can be either
suppressed“color transparency”[1]) or enhanced, if the S b =
pair is formed in the color octet stafd]. (4ra)? oe’e —QQis). )

In the literature one can find different prescriptions for the
formation timer; . A still popular viewpoint, for instance, is The physical meaning of Eq2) is transparent: it repre-
to assume a universal parameter on the order of some chasents the correlator as a superposition of propagators of
acteristic hadronic scale, say;~m,*. Alternatively, one  physical states, each with the weight proportional to the
considers the classical expansion of the heavy quark pair arfefobability of their production in a hard process. Thus it is
defines formation time as the time when the separation of theossible to extract information about the space-time evolu-
pair reaches the size of a physical quarkonium sfafe tion of various states in a given hadronic channel with fixed
Much work has been done also on the quantum-mechanicguantum numbers directly from experimental data. For ex-
approach to quarkonium formation, where the expansion of ample, we can define the formation time of the ground state
small initial wave packet is controlled by the spacings of thewith massm by the time 7; at which the correlator ap-
bound state mass spectriif)7]. In this work we address the proaches its asymptotic behavior:
problem of formation time starting from the idea that all _3p _
essential information about the expansion of the wave packet [1(7)~ 7 "“exp(—m7); ®)
is contained in the correlator of the hard scattering operator

[8].

ImII(s)=

note thatr=it is Euclidean time.
To illustrate the notion of formation time in more detail,
Let us consider the space-time correlator of an operhtor let us use the following simple example—assume that the

which produces from initial staté) the (QQ) state with  spectral density4) consists of two narrow states of identical

certain quantum numbers strength, i.e.,
L IMTI(S)~ 8(s—m?)+ &(s—m3). (6)
I1(x) = (i[T{I(x)I(0)}]i). D
At large time 7, the correlato(1) will look like

The basic expression that allows the use of experimental datgy ;) ~ 7~32exg — m, r)[ M2+ mi2exp(— (my—my) 7)].
for extracting information from this correlator is the disper- 7
sion relation, which in coordinate representatjiériL0] takes
the form The use of criterion5) therefore leads to
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1 result of this hard process. If the operatbis of a short-
Ti™ (8 range nature, then it produces a compact object(Bqgells

m,—m;y o ; .
2 1 us that it is composed of many normal-sized hadronic states.

Let us now introduce invariank=t2—r? and decompose Since there exist high quality data on the production of
Eq. (3) in the following way[9]: heavy quark states i@" e~ annihilation, we will concentrate
N in the remainder of this Rapid Communication on the forma-
1 S tion dynamics of vectod®©=1"" quarkonium states. In
D(Vs,\)= Ea( - 87\/{0()\)[‘]1(\/;&) this case the Fourier transform of the correlatdr,,
=(0|T{J,(x)J,(0)}|0) has the following familiar structure:

is
—iN M+ —— , :
NS 1+ [ axemin, 00 =@ a0, 0, (14
X 0(=N)Ky(Vsy=N). (9 We use the cross section fef e — " 1~ annihilation,
It is clear from Eq.(9) that the formation timer; extracted Ao
from the Euclidean asymptoti¢5) of the correlator2) will olete —u u";s)= 35 (15

also determine the propagation of the quark-antiquark state
in Minkowski space, withh\>0. Let us introduce the light- ;. express Eq(4) in terms of the familiar ratio
cone variablesx*=t+z, X =t—z, so that \=t>—r?

=x"x", and conjugate momen = p,— p,=m?/2p, and a(e*e*—>6Q's)
p*=po+p,. Ascan be seen from Eg®), (6), and(9), in R(s)= — — (16
Minkowski space the criteriofb) leads to ole"e —u u";s)
1 2p resulting in
= +~ —
l+=AX Ap m, (10 1
ImH(s)—ER(S). (17)

i.e., the formation length of quarkoniuiy grows linearly

with its momentump=p, in the lab frame. The formation
time (8) extracted from Euclidean asymptoti@ of the cor-

relator is related to the formation lengthO) by the Lorentz

transformation

Contracting Lorentz indices and using the relatiay),q,
—0%d,,,)| .- ,=309°=—34% one can write down the ex-
pression(2) as[9,10]

l )
2 _ 2 2
- +pm . pmz, 11 N(x)=-375> fo R(s)#?D(4/s,x?)ds. (18
1 2 2 1

f:

where (m;+m,)/2 can be interpreted as a characteristicSINce the scalar propagator satisfies the equation

mass of the wave packet. One can recognize this length also e o
as the inverse of the longitudinal momentum trang8dr (=7 =9)D(5x%) = = 3(x) (19
2_ 2 at x2#0, the final result takes the following form:
2 2 2 MMy
Agy=pg—mi— Vpg—mi= 20 (12) 1 e
H(x)sz sR(s)D(4/s,x?)ds. (20)
0

which accompanies the transition between the two hadronic
states at high energy. The wave packet can escape from
nucleus of radiuR, before being “formed” if [;>R, or,
equivalently, if

We parametrize the ratig(s) in terms of narrow resonances
plus a continuum contribution:

m%z_pmi R,<1. (13) R(s)= Z Ri(S)+ Reon((S), 21)

This condition was derived many years ago by Gripdy where

One can clearly see that the value of formation time is by o2
no means a universal constant. It depends both on the prop- R(s)=(2J;+1) iz B(¥i—e'e )in 22)
1 I
4

erties of the interactiod and on the entire spectrum of states (V5= M:)2+ i

in a given hadronic channel. Models using some universal ! 4

value of formation time are therefore misleading. Let us note

that Egs.(1)—(4) indicate that the space-time picture of ais the contribution of thel; resonance with spid;, mass
hard process can be equivalently described in the language df;, and total widthl’; . The continuum contribution can be
the spectrum of hadronic excitations which are formed as aescribed with a reasonable accuracy as
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Reon(S) =3€50 (5= Sy, (23
whereeg, is the electric charge of the heavy quark.

From Egs.(3), (20), and(22) we calculate the contribu-
tion of each narrow resonance term,

30’iFiMi6
Hi(T):mKl(MiT), (24)
where
4
ai=W(2Ji+1)B(\Ifi—>e+e‘) (25
i

is the magnitude of the annihilation cross section at the reso

nance peak/s=M,;.
The continuum contribution is

2 o0
Meond 7) = 39 XK (x)dx (26)
con 877—41'6 Myr 1 )

where the open flavor threshols:lh=4Mt2h. The standard
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FIG. 1. Formation times for the ground states of quarkonium in
et —e™ annihilation.

resonances, the continuum startindvgt=Mp , and also the

limiting forms of the Bessel function then give the behaviornext three prominen®¥ (nS) resonances above open charm

of these terms for large and small Euclidean times:
11/2
30'iFi Mi o M~
64773a2\/§7'3/2 7

2 712
_ 3egMy;
Meon{ 7— ) = 7T7727'572 e

Hj(r—)= (27)

*ZMthT’ (28)

3o-iriMi5
M= 0= a7, 9

6€5
1_[cont( —0)= 7747_6 . (30

One sees that as—», the correlator is dominated by the
ground state contribution, but as-0, the continuum con-

tribution always dominates, independent of the mass spec-

trum.
We now consider the fractiofr; of a given stateV,

present in theQQ correlator at a given Euclidean time

F ()= lm) (31)

NN

By definition, F;(7)<1, and for the ground state
Fo(7—0)=1. (32

threshold. For the bottom quark case, we have included the
Y (1S), Y(2S), andY (3S) resonances, the continuum start-
ing at Myp=Mpg, and again three promine@wave reso-
nances above threshold. To exhibit the effect of the con-
tinuum contribution for smallr, we also show curves for
these ratios with the continuum omitted.

Also shown in Fig. 1 are the discrete values of formation
time 7{°) which result from the simple estimates in H§),
using the inverse mass spacing between the ground and first
excited states. One sees that the rapid increase iR ("9
ratios occurs generally in the region ®$°) values, but of
course a range of formation time values is involved in the
approach towards the ground state dominance of the cor-
relator. Operationally, we can then interpret the ratio func-
tions F;(7) as the generalization of the form

Fio(r)= (77, (33

which would be expected if the narrow resonance state

had been absent until its instantaneous formation at the time
7% We are then led to interpret the derivative of fh¢7)
ratios as a continuous distributio®(7) of formation times

which occur in the evolution of the real correlator,

dFi(7)
dr

Pi(n)= (34)

The formation timer; for the ground state can be defined These distributions are shown in Fig. 2, again for the ground
now by the time at which the correlator is dominated by thestates of charmonium and bottomonium, and compared with
ground state contribution, or equivalently when the relatiorthe sfunction position at the correspondinff’ values. One

(32) is satisfied with a certain accuracy.

To illustrate the time evolution of the contents of R
correlator, we plot in Fig. 1 the functiortg(7) for /¥ and
for Y. For the charm case, we have included if# and¥’

sees that the distributions peakratomewhat less than these

single formation time values. The mean values for these dis-
tributions are comparable to th¢® , but the widths of the
distributions are also comparable to the mean. Thus in evalu-
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FIG. 3. Normalized distribution functions from approximate
treatment of formation times for excited quarkonium states in
e*-e™ annihilation.

FIG. 2. Normalized distribution functions for formation times of
J/y andY in e*-e” annihilation.

ating any physical quantity that depends on a resonance for-
mation time, one should average this quantity over the dish is interesting to note that the relatively longer formation
tribution in Eq.(34). time for the ' is a direct result of its closeness to the con-
In principle, information is also contained in the cor- tinuum threshold, whereas one might alternatively attribute
relator about the time evolution and formation of the excitedthis to the larger size of the final physical state. Of course,
states of quarkonium. However, it is not straightforward howboth of these pictures must be consistent with the same con-
to extract this information, since the procedure used for thdinement dynamics, and hence may be expected to be related.
ground states depends on their dominance at large Euclidean In summary, we have shown how the experimental data
times. We have attempted an approximate procedure, whicbn the current correlators can be converted to the formation
involves omitting in the dispersion integral all states with atime distributions of the physical states. The necessary infor-
lower mass than the state under consideration. This of courgmation in the case of vector heavy quarkonia is provided by
neglects the effects of interference in the wave function bethe data ore™ e~ annihilation. The formation time distribu-
tween the states under consideration and all lower states tions are nonzero in the region of time expected from simple
the wave packet evolution picture, or equivalently neglectarguments involving the inverse bound state spacings, but in
all initial fluctuations with energy less than the mass of theaddition show interesting shapes that persist to large times.
excited state in the virtual state picture. The resultsgfor ~ Our results could be used as an input in phenomenological
Y (2S), andY (3S) are shown in Fig. 3. The general shape modeling of quarkonium production ip-A and A-B colli-
and parameters are in accord with those for the ground statesions.
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