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Exchange part of the real a-nucleus potential
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We improved the accuracy of calculating the exchangeucleus real potential by suggesting a simple
expression for the nondiagonal density matrixagparticle{p,(F,f")}. We found that this expression reduces
the error in calculating the total-nucleus potential by more than 20% compared with using the density matrix
expansion method to treat,(7,F"). [S0556-28189)04903-1]

PACS numbds): 24.10.Ht, 21.30.Fe, 25.55.Ci

The double folding model is widely used to calculate thewhere b is the harmonic oscillator parameter. For a target
real parts ofa-nucleus a.nd nucleus-nucleus optical potentials,cleus with nondiagonal densit;y(F,F’), the DME ap-
[1,2]. For many scattering processes the heavyttsh po-  proximation is
tential is dominated by strong absorption and the elastic scat-
tering data are sensitive to the value of the real optical po- p
tential only in the surface and tail regions. However, in some
cases of nuclear rainbow scattering observed iand light - -
HI systemg[3] the scattering data is sensitive to the HI op-WhereR’ ands are the center of mass and relative vectors of
tical potential over a wider radial domain. For these cases ththe two interacting nucleons, respectivefy(x)=j(x)/x
simple double folding model in which the finite range ex- andK is given by[10]
change nucleon-nucleotNN) force is replaced by a zero 5
range pseudopotentigd] failed to give good results. It was Kgﬁ(R’):—,
found that the refractive-scattering data require an accurate 3p(R')
treatment of both density dependence of the effechi¢
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2 2 =p(R")j1[Ker(R")s], (2)
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T(R’)—szp(R’) : ()

interaction[5] and the exchange part of tlenucleus poten- As pomted outin Re_f[lo_], Eq. (2) is a very good_ approxi-
mation for thea particle if 7 is calculated from single par-

tial which comes from applying the Pauli princigle]. The ticle wave functions and not from the Thomas-Fermi ap-

exchange part contains the nondiagonal density matrix of thSroximation[9]
«a particle that is usually approximated using the density ma* Proceeding as in Refg], the real part of thex-nucleus

mXReecheilr;ﬁllor\:\(/E'\fgs?t:jemgdg:]éuracy of calculating the expotential as a function of the distance between the centers of

change part of ther-nucleus potential8] using the DME the two interacting nuclelR) is given by
method to simplify the nondiagonal density matpif,r").

We found that this method produces a large error in the value
of the totala-nucleus potentidl. The error is mainly due to

UR)= [ pu(ra)pulravo(so)drdr,

deriving p(r,r") for the a particle[ p,(F,F’)] from the DME +f e Tat9) 0 (Fs Toe SIS

method and using the extended Thomas-Fermi approxima- PN(T1M2F8)pall2. T2 S)VelS.p)

tion [9] to calculate thea-particle kinetic energy density = -

(74)- X m dF dF (4)
In the present Brief Report we show that the error in M =2

calculatingU can be largely reduced if we calculatg(r,r")

using oscillator model wave functions or even if we use thewhere the first and second terms are the dirét})( and

DME method withr, derived from the oscillator model. In exchange U, parts of thea-nucleus potential. In Eqs4)

the oscillator model the nondiagonal density matrix foréhe vp andve, are the direct and exchange parts of the effective

particle is simply given by nucleon-nucleon potentighy is the matter density distribu-
tion of the target nucleus, and(R) is the relative-motion
momentum given by

S 1- > 1* *| &7 1- > 1-
po| R'+5SR =58 => ¢*|R +58|¢i| R =5 , omM
' KA(R)= Py [Ecm—U(R)=Vc(R)], (5)
2
:pa(R’)EX'{ _E> @ WwhereM and E.m are the reduced mass and the relative

energy in the center of mass system, respectivalys the
nucleon mass, andc(R) is the Coulomb potential.

“Present address: Physics Department, Faculty of Science, Helwan FP[ the nondiagonal density of the target nucleus

University, Egypt. pn(r,r') we use the DME approximation given by E®)
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TABLE |I. The percentage error AU;=(UgyacfR)
—U;i(R))/Ugyac R) X 100 for the potential&) ;(R) andU,(R) cal-
culated for three values of the separation distadReg two different
values of the laboratory energy per projectile particE{/A,
=0.0 and 20.7 MeYfor a-0'*® and a-C&" by using the densny-
and energy-dependenN forces(BDM3Y) derived in Ref[6].

BDM3Y1 BDM3Y3
Pair ib(lvl V) R@m) AUl AU2 AUl  AU2
00 -03 07 1.1 1.8

0.0 30 -01 43 0.2 4.6

60 -04 95 0.4 9.1

a-1%0 20.7 00 -02 06 0.8 1.4
30 -0.0 30 0.1 3.6

60 -04 6.0 0.4 6.6

00 -02 02 -14 -08

0.0 4.0 07 22 0.6 2.3

80 -03 17 -19 0.9

a-*°Ca 00 -02 02 -11 -06
20.7 4.0 04 16 0.4 1.8

8.0 00 05 0.0 0.5
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FIG. 1. The reale-O interaction potential at energj,,/A,
=0.0 MeV calculated from Edq4) for the twoNN forces BDM3Y1
first, then we calculate it exactly by building it from (upper pan, BDM3Y3 (lower pary. The solid line and dashed lines
oscillator-model wave functions. In the first case we use EqrePresentUeac(R) andUx(R), respectively.

(3) to calculateK ¢ with 7 given by one of the following
Thomas-Fermi approximatio8,11]: to derive thea-nucleus potential whose internal region is

sensitive to the value df. They used them to fit the data for

3 1 1 |§p (R")|? refractive a-nucleus scattering which is also sensitive to the
(R =—KZpn(R)+ 5 V2o (R) + — N—, value of the real potential at small distances. This permits the
> 3 36 pn(RY) 6a) determination of the incompressibility coefficient for cold
3 1 L [Von(R)I °
PN
wR)=¢ KfPN(R)+ VZPN(R) I puR)
(6b) -50

whereK?=[272p\(R')]?3.

In the present work we considered the two scattering pro-
cessesr-1%0 anda-%°Ca at the following three values of the
incident energyin laboratory systemper projectile particle:
Eia/Ap=0, 20.7, and 46.6 MeV In all our calculations we

used Eq(1) to calculatepa(r r ). For the nondiagonal den-

sity matrix of the target nucleq@N(r r "), we first calculate

it using harmonic oscillator wave functions and denote the
a-nucleus potential calculated in this way by,.(R). Sec-
ond we calculatdJ(R) using the DME method to approxi-

matepy(r,r’). We denote byJ(R) andU,(R) the poten-
tials calculated using approximatiof®a) and (6b) for 7 of

the target nucleus, respectively. The nucleon-nucleon forces
considered in the present calculations are the density-
dependent M3Y forceSBDM3Y1 and BDM3Y3 proposed

in Ref.[9]. These forces reproduced correctly both the fea-
tures of the normal nuclear matter and the microscopic re-
sults of the nucleon optical-model potential. Moreover they
generate different values of nuclear matter incompressibility
coefficientK. Khoaet al.[2] have used BDM3WNN forces
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FIG. 2. The same as Fig. 1 but farC&®.
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nuclear matter. This recent applicationehucleus potential
needs a correct real potential at all distances.
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scattering pair. As the mass number of the target nucleus
increase the modified Thomas-Fermi approximation for

_ Our results are shown in Table | and Figs. 1 and 2. ThegEq. (6)], becomes more correct and the maximum erkbys
figures show two examples of our calculations where the twaindU,, are reduced to less than 2% and 3%, respectively, for
density-dependent nucleon-nucleon interactions, namely,.49ca scattering pair. Table | shows that the error in calcu-

BDM3Y1 and BDM3Y3 of Ref.[9] have been used to cal-
culate the -0 and «-*Ca potentials atE,/Ap
=0.0MeV.

lating bothU, andU, is reduced by increasing the incident
energy. Moreover the error corresponding to the force
BDM3Y3 (K=275 MeV is usually larger than that for

The figures and the table indicate that the exchange PaBpDM3Y1 NN force (K=232 Me\). The reason for this is

of the reala-nucleus optical potential can be calculated cor-

rectly if Eq. (1) is used forp(r,r') and Egs.(2), (3), (63)

the difference in the shape of the density dependent functions
of the two NN forces.

are used to approximate the density matrix of the target At the end of this Brief Report we can say that the

nucleus. In this case the maximum error in the potertfial
for the two considered-nucleus scattering pairs is less than
2% for BDM3Y3 force and 0.7% for BDM3Y1 force. If

pa(F,F') is calculated from Eq(6a) the maximum error in
U, jumps to more than 25% fox-1%0 [8]. Equation(6b)
produces an error in tail region of about 10% fer'%O

a-nucleus real potential can be calculated with very good

accuracy using the very simple expression io;(F, F’)
given by Eq.(1) together with the DME approximation given
by Eqg.(2), (3), (6a) for the target nucleus nondiagonal den-

sity py(r.r").
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