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Bremsstrahlung spectrum in & decay
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Using our previous approach to electromagnetic emission during tunneling, an explicit, essentially classical,
formula describing the bremsstrahlung spectrura @ecay is derived. The role of tunneling motion in photon
emission is discussed. The shape of the spectrum is a universal function of the yéfg, whereE , is the
photon energy anét, is a characteristic energy depending only on the nuclear charge and the energy of the
particle.[ S0556-281®9)07308-2

PACS numbds): 23.60+€, 03.65.Sq, 27.80:w, 41.60—m

During the « decay of a nucleus the particle tunnels celeration model. These results are strange since even the
through the Coulomb barrier and is accelerated beyond th€oulomb acceleration model grossly overestimates the emis-
classical turning point to its final energy. Thus electromag-sion probability. Recently Kasagit al. [3] measured they
netic radiation should be emitted during the process. In spitemission associated with the decay of 2!%Po, obtaining
of the fundamental nature of theemission duringx decay, probabilities which are almost two orders of magnitude
the corresponding bremsstrahlung spectrum was neith&imaller than those of Ref2], and which have a quite dif-
measured, nor considered theoretically until recent yeargerent dependence on the photon energy. Kasagil. ap-
Normally softy emission accompanying the Coulomb inter- plied the general formula of Ref1] and by numerical cal-
action of heavy particles is well described by classical elecgylations obtained a good fit to their experimental data.
trodynamics. The case af decay is somewhat special, since However, numerical calculations for the specific case of
part of the “trajectory” of thea particle lies within the un-  210p5 4o not allow us to understand the general features of

derbar_rie_r region and may b.e dgspribeq clas.sically o_nIy irlhe spectrum and its dependence on the nuclear charge and
some limited sense, as a motion in imaginary time. While th article energy. Thus, there is a need for an explicit theoret-

golden rule of quantum mechanics gives a straightforwar cal formula describing the bremsstrahlung spectrum.

recipe to calculate the emission probability, intuitively one .
would like to understand whether tunneling may be some- Eapenbrock and Be_rtsc{h] conS|dere_3d the p_rob_lem and
arrived at the conclusion that the main contribution to the

how incorporated in the general framework of classical elec- o . )
trodynamics and whether it makes any sense to say that phB-hOton emission stems from Coulomb acceleration, while the
tons are emitted during tunneling motion. contribution of tunneling is negligible, contrary to the point

In Ref.[1] the electromagnetic radiation by a charge tun-Of View expressed in Ref$1] and[3]. Their theoretical re-
neling through a potential barrier was considered under th&Ults also agree well with the experimental data of R&f.
conditions that the motion is quasiclassical, i.e., the barrieris The purpose of the present paper is to derive an explicit
smooth compared to the particle wave length, and that théormula for the bremsstrahlung spectrumdndecay and to
energy of the emitted photons is small compared to the pa€lucidate the role of tunneling. It will be shown that taking
ticle energy. It was shown that in this case the emissiofiunneling motion into account is very important to obtain the
spectrum is described by the well-known classical formulacorrect description of the bremsstrahlung.
involving the Fourier transform of the particle acceleration, The « particle moves in the Coulomb potenti&l(r)
with the only difference that the Fourier integral should be=2Z€*/r, which is truncated at the nuclear radiys The
taken along a special contour in the complex plane of thelassical turning point is defined by=2Z€’/E,,, where 2
time variable. The resulting formula for the bremsstrahlungs the charge of the particle,Zeis the charge of the daugh-
spectrum per tunneling particle éiassical(does not contain  ter nucleus,E,=mv?/2 is the « particle energym is the
Planck constanti), even though it describes radiation emit- reduced mass, and is the relative velocity at =o. We
ted in the tunneling process, which is unknown to classicabssumer, to be much smaller than,. The initial state is
mechanics. The result of Rgfl] may be directly applied to described by an outgoing wave with the asymptotic form
« decay. « (1/r)exp(kir), wherek;=(2mE,)Y%#%. The final state at

On the experimental side, D’Arriget al. [2] were the r=« has the forme(1/r)coskir+ ¢), wherek;=[2m(E,
first to report bremsstrahlung indecay. Their data fo*®Ra  —#iw)]Y¥%, hw=E, is the energy of the emitted photon,
and?¥Po gave emission probabilities much larger than thos@nd ¢ is a phase, related to the scattering phase. In the un-
predicted by the so-called Coulomb acceleration model, irderbarrier region the wave function of the initial state in-
which only acceleration outside the Coulomb barrier is takercreases exponentially wherthanges fronm . inwards, while
into account, but close to those predicted by the sudden athe wave function of the final state decreases fiqin-

wards.(For a detailed discussion of the initial and final states
entering the matrix element for photon emission see Ref.
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kirc=2Z€lfiv>1, ) Introduce the dimensionless coordingter/r., the di-
mensionless timep=vt/r., and the dimensionless fre-
hw<E,. (2 quencyr=(1/2)wr./v=wZe’(E,v). ThendE/dw may be

) o . . ~_ expressed as
Equation(1) says that the motion is quasiclassical which is

generally very well justified, e.g., fat=50, E,=4 MeV we JE  2(Zege)?v? )
havek;r.=100. Equation(2) means that the energy losses o W| (@)% ®)
are small, and we will see below that the main body of the
bremsstrahlung spectrum lies in this energy range.

We can now use the quasiclassical approximation for the J(v)=2i Vf - dn(dé/dn)exp(—2ivy), (6)
initial and final wave functions by replacingr with ~iml2

[k(rydr,  where ki(r)=[2m(E,~U()]"%2 k()  \where the function(s) i - , ,

@ : 7) is the solution of thédimensionless
=[2m(E,~fiw—U(r)]"% The reflected part of the final \awton equationd?&/dn?= (2¢2)~ with the conditions
state wave function with the asymptotic behavieexp £0)=1, (déldn),_.=1

1 77:(‘0 -

(—iksr) may be neglectedll], since its contribution to the
matrix element is exponentially small, compared to the con
tribution of the outgoing wave-exp(k:r). To the first order

in the small ratiofw/E, we havek;(r) —k;(r)=w/v(r),
wherev(r) is the classical velocity at point Proceeding
further as in Ref[1], one finally obtains the classical for-
mula[5] describing the bremsstrahlung spectrum:

o

This may be compared with the results for two related
classical problemsia The Coulomb acceleration modéh
which only acceleration outside the Coulomb barrier is taken
into account. The lower limit for the integral in E6)
should ben=0, instead ofp= —i /2. (b) Head-on collision
of two particles with chargee and Ze In this case the
lower limit in Eq. (6) should ben=—«, instead ofp=

2 —iml2.
E= 2 (Zeze) la,|?, (3) Introducing a new variablez, such that é=(1
do 3w € +coshz)/2, = (z+sinhz)/2, we obtain

wheredE/dw is the total energy emitted per decay per unit o
frequency range,Z.s=2(A—22)/(A+4) is the effective J(V)=ivf ~ dzsinhzexd —iv(z+sinhz)]. (7)
charge A is the mass number of the daughter nucleus, i

The integration contour in Eq7) goes from—i to 0 along
aw=f a(t)exp —iot)dt (4)  the imaginary axis and from 0 t® along the real axis. It
¢ may be safely deformed to go fromim to —i7+o (see

is the “Fourier transform” of the acceleratica(t), the in- Ref. [5]). Finally, introducingx=z+im, we get

tegral is taken along the conto@ which is defined by the

manner in which the time variabl'e=f[cdr/v(r) changes J(v)z—ivexp(—m»)f dxsinhx exdiv(sinhx—x)].
whenr runs from 0 to= along real axis. In the underbarrier 0 ®)
regiont is imaginary, and it is easy to calculate the value of

t for r=0: t=—ir, wherer=(n/2)r./v is the tunneling By integration by partd(v) may be also expressed in a form

time. This value practically does not depend on the details ofvhich is more suitable for numerical calculationd(v)
the potential curve at small distances and may be calculated exp(— 7v)[1—ivI(»)], where

by extending the Coulomb potential down te=0. In the
following we will use the relatiora,=iwv,, Wherev,, is
defined through the classical velociyt) analogous to Eq.
(4.

The functionv,, generally depends on the details of the The integral in Eq(9) converges more rapidly than the one
potential function in the region close to the nuclear radiusin Eq. (8).
However, these details are irrelevant for sufficiently low fre-  Equations(5) and (8) give an explicit formula for the
quencies, such thabt;<1, wheret; is the characteristic bremsstrahlung spectrum indecay, provided the conditions
time the particle spends in the vicinity of. This time can given by Egs.(1) and (2) are fulfilled, and this is the main
be estimated ad;~ry/vqy, with mvS~Ze2/r0, thus t; result of this work. For the head-on collision problem, men-
~1(ro/r.)%? and the conditionwt; <1 may be rewritten as tioned aboveJ(») should be replaced by.y(»), where
w7<(r¢/ro)%2 Since, as shown below, the main part of the J.,(») is given by the same Eg8) but with the lower limit
bremsstrahlung spectrum lies in the region~ 1, and since  of integration replaced by-« (see Ref[5]). ThusJ.y(»)
ro/ro=>1, it can be seen that the structure of the potentialF2 ReJ(v).
function in the vicinity of the nuclear radius may influence  The Coulomb acceleration model, which neglects tunnel-
only the high-energy tail of the spectrum where the emissioring, predicts a spectrum that falls down at high frequencies
probability is already exponentially small. Thus, the mainasw 2. The reason is that in this model the acceleration has
body of the spectrum may be calculated by extending the singular behavior, increasing stepwise from a zero value at
Coulomb potential down to=0. t<0 to a finite value at=0. Taking tunneling into account

I(v)=fomdx(l—efx)ex;{iv(sinhx—x)]. 9
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makes the functiora(t) smooth, and as a result, the spec- 1
trum falls down exponentially. One might say that there is a @
destructive interference between electromagnetic fields emit- 081
ted during the tunneling motion a&r; and during the clas- « 0.6+
sical acceleration stage at-r.. (Similarly, in the classical z \
Coulomb collision problem, the interference between the in- 2 04f 2%
coming and outgoing parts of the trajectory also produces an NI
exponentially decreasing spectrum at high frequenidés 021 3
Thus, as can be also seen from E@8, (6), taking account 0 , ‘ : .
of the tunneling motion is very important to obtain the cor- 0 0.2 0.4 0.6 0.8 1
rect description of bremsstrahlung. Dimensionless freguency, v
The opposite conclusion reached by Papenbrock and T NG )
Bertsch[4] is due to a misinterpretation. When applied to the A F - 4
quasiclassical limit of the acceleration matrix elemsad). 10 T 3 N
(8) abovd, their reasoning goes as follows. Noticing that o F 5 TTTTRRmmao.
Im J(v)=0 at v=0 [6], they find that ImJ(v) is numerically o 107
small compared to R&v) for arbitrary v [for v>1, one can f . !
see that the ratio Id(»)/ReJ(v) is equal to—1/y/3]. On TR
these grounds the imaginary partXfv) is discarded, while ot L
the real part, as shown above, can be expressed as
($)Jcon(v). Since calculation ofl,(v) does not involve 105 L ; , ‘
tunneling motion, the conclusion is made, that the contribu- 0 0.5 1 1.5 2
tion of tunneling is negligible. In fact, as one can verify by Dimensionless frequency, v

calculating the corresponding parts of the integral, it is the )
strong cancellation of the large contributions toJfv) from FIG. 1. Normalized bremsstrahiung spectrum.Normal scale:
the barrier region and the classically allowed region, thaﬁl) numer'ce.‘l calculation(2) low frequency asympto@(”.' =1

. .=, (3) high frequency asymptote, Eq11). (b) Logarithmic
makes !mJ(V) relatlvely small. _On the other_ hﬁnd, neglecting scale:(1) numerical calculation(3) high frequency asymptote, Eq.
Im J(») is equivalent to replacing the true initial wave func- (1) (4) result for Coulomb acceleration modé) high frequency
tion [cexp(kir) atr =] by its real part which describes an asymptote for Coulomb acceleration mofig(v)|?= (4v) 2.
«a particle scattered by the nuclefscoskr) at r=o0], but

normalized to; incoming flux. Not surprisingly, the spec- J(v)=—i exp(i w/3)T(2/3)(4vI3)Rexp — wv), (10)
trum for a decay, obtained in Ref{4] after neglecting

Im J(v), is equal toz of the spectrum for the head-on Cou- |3(v)|2=T2(2/3)(4vI3)%3exp( — 2mv)

lomb collision problenj7]. However, the difference between

this result and the true spectrum is not very lat@8% for =2.22%exp(—2mv). (13)

v>1). Clearly, the fact that the spectrum for the collision
problem(with a factor3) is similar to the true spectrum im
decay, does not mean that tunneling is not important.
Papenbrock and Bertsd4] have also performed a nu-
merical calculation of the exact matrix element, without ne-
glecting its real part and without using the quasiclassica
approximation, for the specific case ®Po. The resulting

It follows from Egs. (10), (11) that for v>1 |J(v)|?
=3|J(v)|?. Figure 1 shows the normalized spectrum, given
by the function|J(»)|?, calculated numerically, together
with the asymptotic curves far<1 andv>1. It can be seen
fhat Eq. (11) becomes a very good approximation for
>0.5. In this region théJ(v)|? dependence is dominated by
; -fhe exponential factor in Eq11), which may be expressed

Egs. (5), (8), (9) of the present worksee below. Thus the &S €XPCE,/Eo), whereEO=(Ea/277)(ﬁv/Ze2)' is a charac-
numerical results of Ref4] are correct and are in agreement (€rstic energy, zv=E,/E,. For the experimental condi-
with the above formulas, which explicitly take into accounttions of Ref. [3] (Z=82, E=5.3 MeV) one finds E,

the tunneling part of the trajectory. However, the physical™ 75 _keV. Note that the shape of the spectrum is a universal
interpretation of these results in R&4], leading to the con- function of E, /E,. o _ _
clusion that the main contribution to the photon emission 1he experimentally measured quantity is the differential
stems from the Coulomb acceleration, is erroneous. In fact, roPability fif photon emission per deca§’N/JE i

is the contribution of the tunneling region that accounts for=(4mhE,)""0E/dw. Thus

the very large difference between the true spectrum and the

2
predictions of the Coulomb acceleration model. 9N _ Lot e’ E, i|‘](v)|2 12
It is easy to find the asymptotic form af(v) both for JE 90 372\ hc/m E, '

small and for large values of. For v<1J(v)=1—7v/2
—ivIn(2y/v), where y=1.781, so that|J(v)|*~1—mv, This quantity is plotted in Fig. 2 as a function Bf, for the
while for v>1 case ofa decay of?!%Po (heavy ling, together with the ex-
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108 + Data oo sion of the Coulomb potential down to=0. As explained
points, Ref. [3] R . . 32
—_ above, this is justified iE,<Ey(r./ro)*~860keV (r./rg
T A Calculated, Ref. [3] ~5 for 2'%0). For energies comparable to or higher than
2 Present theory this value the shape of the spectrum should depend on the
i oy Asymptote, Eq. (11) parameters of the inner barrier region. Thus, the maximum
= on the curve calculated in R€f3] (where the cutoff of the
) Coulomb potential at=r, was taken into accouniight be
£ 107" related to this circumstance. More precise experimental data
2 are needed to determine unambiguously the true slope at low
'§ 102 energies, as well as the existence of any specific features at
= the high energy tail of the spectrum.
§ 3 In summary, an explicit, essentially classical, formula, de-
R - scribing the bremsstrahlung spectrumdndecay, was de-
= rived, and it was shown that taking the tunneling motion into
107 ’ ‘ ‘ account is crucial for the correct description of the spectrum.
The shape of the spectrum is a universal function of the ratio
0 200 400 600 800 , -
E,/Eq, whereE, is the photon energy arff, is a charac-
E , (keV) teristic energy depending only on the nuclear charge and the
energy of thea particle.
FIG. 2. y ray emission probability inx decay of?%Po. Results Note added in proofRecently Takigawzet al. [8] per-

of the present theorgheavy solid ling are presented together with  formed numerical calculations of various contributions to the
the experimental data points and results of numerical Calcmatio'bremsstrahlung spectrum, which led them to the conclusion
from Ref.[3]. The thin solid line is the high frequency asymptote nat the spectrum “results from subtle interferences of the
given by Eqgs(11) and(12). contributions of the tunneling, mixed and classical regions as
) well as the wall of the potential well, each of which has a
perimental data taken from Ref3]. The result of the nu-  omparable magnitude.” In the present work both the mixed
merical calculation in Re{3] is presented by the dotted line. yegion, which does not exist in the quasiclassical approxima-
This calculation was done by using the general formula otion and the inner barrier region were completely ignored on
Ref.[1], and thus should give the same result as the preseqte grounds described above. In this context it should be
work. However, one can see that the two results are qualitaypted that the final results of RéB] for the total emission
tively different: (a) the.slopes at lowy ray energies differ by probability (curves denoted “total” in their Figs. 133al-

a factor~2 and(b) while the present theory gives a spectrum .t exactly coincide with the result of the present work, as
that falls down exponentially at higk,,, the calculation of given by Egs(5), (8) (heavy solid line in my Fig. 2

Ref.[3] gives a broad maximum arourkt, ~500 keV. The
difference in the slopes can not be easily understood. As to | thank Michael Shur for his hospitality during my stay at
the high energy part of the spectrum, we should note thaRensselaer Polytechnic Institute, where this work was com-
there is a limitation of the present theory related to our nepleted. | appreciate useful discussions with Thomas Papen-
glecting the details of the inner barrier region and the extenbrock.
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