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Bremsstrahlung spectrum in a decay
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Using our previous approach to electromagnetic emission during tunneling, an explicit, essentially classical,
formula describing the bremsstrahlung spectrum ina decay is derived. The role of tunneling motion in photon
emission is discussed. The shape of the spectrum is a universal function of the ratioEg /E0 , whereEg is the
photon energy andE0 is a characteristic energy depending only on the nuclear charge and the energy of thea
particle.@S0556-2813~99!07308-2#

PACS number~s!: 23.60.1e, 03.65.Sq, 27.80.1w, 41.60.2m
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During the a decay of a nucleus thea particle tunnels
through the Coulomb barrier and is accelerated beyond
classical turning point to its final energy. Thus electroma
netic radiation should be emitted during the process. In s
of the fundamental nature of theg emission duringa decay,
the corresponding bremsstrahlung spectrum was ne
measured, nor considered theoretically until recent ye
Normally softg emission accompanying the Coulomb inte
action of heavy particles is well described by classical el
trodynamics. The case ofa decay is somewhat special, sinc
part of the ‘‘trajectory’’ of thea particle lies within the un-
derbarrier region and may be described classically only
some limited sense, as a motion in imaginary time. While
golden rule of quantum mechanics gives a straightforw
recipe to calculate the emission probability, intuitively o
would like to understand whether tunneling may be som
how incorporated in the general framework of classical el
trodynamics and whether it makes any sense to say that
tons are emitted during tunneling motion.

In Ref. @1# the electromagnetic radiation by a charge tu
neling through a potential barrier was considered under
conditions that the motion is quasiclassical, i.e., the barrie
smooth compared to the particle wave length, and that
energy of the emitted photons is small compared to the
ticle energy. It was shown that in this case the emiss
spectrum is described by the well-known classical formu
involving the Fourier transform of the particle acceleratio
with the only difference that the Fourier integral should
taken along a special contour in the complex plane of
time variable. The resulting formula for the bremsstrahlu
spectrum per tunneling particle isclassical~does not contain
Planck constant\!, even though it describes radiation em
ted in the tunneling process, which is unknown to class
mechanics. The result of Ref.@1# may be directly applied to
a decay.

On the experimental side, D’Arrigoet al. @2# were the
first to report bremsstrahlung ina decay. Their data for226Ra
and214Po gave emission probabilities much larger than th
predicted by the so-called Coulomb acceleration model
which only acceleration outside the Coulomb barrier is tak
into account, but close to those predicted by the sudden
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celeration model. These results are strange since even
Coulomb acceleration model grossly overestimates the e
sion probability. Recently Kasagiet al. @3# measured theg
emission associated with thea decay of 210Po, obtaining
probabilities which are almost two orders of magnitu
smaller than those of Ref.@2#, and which have a quite dif-
ferent dependence on the photon energy. Kasagiet al. ap-
plied the general formula of Ref.@1# and by numerical cal-
culations obtained a good fit to their experimental da
However, numerical calculations for the specific case
210Po do not allow us to understand the general feature
the spectrum and its dependence on the nuclear charge aa
particle energy. Thus, there is a need for an explicit theo
ical formula describing the bremsstrahlung spectrum.

Papenbrock and Bertsch@4# considered the problem an
arrived at the conclusion that the main contribution to t
photon emission stems from Coulomb acceleration, while
contribution of tunneling is negligible, contrary to the poi
of view expressed in Refs.@1# and @3#. Their theoretical re-
sults also agree well with the experimental data of Ref.@3#.

The purpose of the present paper is to derive an exp
formula for the bremsstrahlung spectrum ina decay and to
elucidate the role of tunneling. It will be shown that takin
tunneling motion into account is very important to obtain t
correct description of the bremsstrahlung.

The a particle moves in the Coulomb potentialU(r )
52Ze2/r , which is truncated at the nuclear radiusr 0 . The
classical turning point is defined byr c52Ze2/Ea , where 2e
is the charge of thea particle,Ze is the charge of the daugh
ter nucleus,Ea5mv2/2 is the a particle energy,m is the
reduced mass, andv is the relative velocity atr 5`. We
assumer 0 to be much smaller thanr c . The initial state is
described by an outgoing wave with the asymptotic fo
}(1/r )exp(ikir), whereki5(2mEa)1/2/\. The final state at
r 5` has the form}(1/r )cos(kfr1f), where kf5@2m(Ea
2\v)#1/2/\, \v5Eg is the energy of the emitted photon
andf is a phase, related to the scattering phase. In the
derbarrier region the wave function of the initial state i
creases exponentially whenr changes fromr c inwards, while
the wave function of the final state decreases fromr c in-
wards.~For a detailed discussion of the initial and final sta
entering the matrix element for photon emission see R
@4#.!

The following conditions will be assumed:
-
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BRIEF REPORTS PHYSICAL REVIEW C 60 037602
kir c52Ze2/\v@1, ~1!

\v!Ea . ~2!

Equation~1! says that the motion is quasiclassical which
generally very well justified, e.g., forZ550,Ea54 MeV we
havekir c5100. Equation~2! means that the energy loss
are small, and we will see below that the main body of
bremsstrahlung spectrum lies in this energy range.

We can now use the quasiclassical approximation for
initial and final wave functions by replacingkr with
*k(r )dr, where ki(r )5@2m(Ea2U(r )#1/2, kf(r )
5@2m(Ea2\v2U(r )#1/2. The reflected part of the fina
state wave function with the asymptotic behavior}exp
(2ikfr) may be neglected@1#, since its contribution to the
matrix element is exponentially small, compared to the c
tribution of the outgoing wave}exp(ikfr). To the first order
in the small ratio\v/Ea we haveki(r )2kf(r )'v/v(r ),
where v(r ) is the classical velocity at pointr. Proceeding
further as in Ref.@1#, one finally obtains the classical for
mula @5# describing the bremsstrahlung spectrum:

]E

]v
5

2

3p

~Zeffe!2

c3 uavu2, ~3!

where]E/]v is the total energy emitted per decay per u
frequency range,Zeff52(A22Z)/(A14) is the effective
charge,A is the mass number of the daughter nucleus,

av5E
C
a~ t !exp~2 ivt !dt ~4!

is the ‘‘Fourier transform’’ of the accelerationa(t), the in-
tegral is taken along the contourC which is defined by the
manner in which the time variablet5* r c

r dr/v(r ) changes

whenr runs from 0 to` along real axis. In the underbarrie
region t is imaginary, and it is easy to calculate the value
t for r 50: t52 i t, where t5(p/2)r c /v is the tunneling
time. This value practically does not depend on the detail
the potential curve at small distances and may be calcul
by extending the Coulomb potential down tor 50. In the
following we will use the relationav5 ivvv , wherevv is
defined through the classical velocityv(t) analogous to Eq.
~4!.

The functionvv generally depends on the details of t
potential function in the region close to the nuclear radi
However, these details are irrelevant for sufficiently low fr
quencies, such thatvt1!1, where t1 is the characteristic
time the particle spends in the vicinity ofr 0 . This time can
be estimated ast1;r 0 /v0 , with mv0

2;Ze2/r 0 , thus t1

;t(r 0 /r c)
3/2, and the conditionvt1!1 may be rewritten as

vt!(r c /r 0)3/2. Since, as shown below, the main part of t
bremsstrahlung spectrum lies in the regionvt;1, and since
r c /r 0@1, it can be seen that the structure of the poten
function in the vicinity of the nuclear radius may influen
only the high-energy tail of the spectrum where the emiss
probability is already exponentially small. Thus, the ma
body of the spectrum may be calculated by extending
Coulomb potential down tor 50.
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Introduce the dimensionless coordinatej5r /r c , the di-
mensionless timeh5vt/r c , and the dimensionless fre
quencyn5(1/2)vr c /v5vZe2/(Eav). Then]E/]v may be
expressed as

]E

]v
5

2~Zeffe!2v2

3pc3 uJ~n!u2, ~5!

J~n!52inE
2 ip/2

`

dh~dj/dh!exp~22inh!, ~6!

where the functionj~h! is the solution of the~dimensionless!
Newton equationd2j/dh25(2j2)21 with the conditions
j(0)51, (dj/dh)h5`51.

This may be compared with the results for two relat
classical problems.~a! The Coulomb acceleration modelin
which only acceleration outside the Coulomb barrier is tak
into account. The lower limit for the integral in Eq.~6!
should beh50, instead ofh52 ip/2. ~b! Head-on collision
of two particles with charges2e and Ze. In this case the
lower limit in Eq. ~6! should beh52`, instead ofh5
2 ip/2.

Introducing a new variable z, such that j5(1
1coshz)/2, h5(z1sinhz)/2, we obtain

J~n!5 inE
2 ip

`

dzsinhz exp@2 in~z1sinhz!#. ~7!

The integration contour in Eq.~7! goes from2 ip to 0 along
the imaginary axis and from 0 tò along the real axis. It
may be safely deformed to go from2 ip to 2 ip1` ~see
Ref. @5#!. Finally, introducingx5z1 ip, we get

J~n!52 in exp~2pn!E
0

`

dx sinhx exp@ in~sinhx2x!#.

~8!

By integration by partsJ(n) may be also expressed in a for
which is more suitable for numerical calculations:J(n)
5exp(2pn)@12inI(n)#, where

I ~n!5E
0

`

dx~12e2x!exp@ in~sinhx2x!#. ~9!

The integral in Eq.~9! converges more rapidly than the on
in Eq. ~8!.

Equations~5! and ~8! give an explicit formula for the
bremsstrahlung spectrum ina decay, provided the condition
given by Eqs.~1! and ~2! are fulfilled, and this is the main
result of this work. For the head-on collision problem, me
tioned above,J(n) should be replaced byJcoll(n), where
Jcoll(n) is given by the same Eq.~8! but with the lower limit
of integration replaced by2` ~see Ref.@5#!. Thus Jcoll(n)
52 ReJ(n).

The Coulomb acceleration model, which neglects tunn
ing, predicts a spectrum that falls down at high frequenc
asv22. The reason is that in this model the acceleration
a singular behavior, increasing stepwise from a zero valu
t,0 to a finite value att50. Taking tunneling into accoun
2-2
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BRIEF REPORTS PHYSICAL REVIEW C 60 037602
makes the functiona(t) smooth, and as a result, the spe
trum falls down exponentially. One might say that there i
destructive interference between electromagnetic fields e
ted during the tunneling motion atr ,r c and during the clas-
sical acceleration stage atr .r c . ~Similarly, in the classical
Coulomb collision problem, the interference between the
coming and outgoing parts of the trajectory also produces
exponentially decreasing spectrum at high frequencies@5#.!
Thus, as can be also seen from Eqs.~4!, ~6!, taking account
of the tunneling motion is very important to obtain the co
rect description of bremsstrahlung.

The opposite conclusion reached by Papenbrock
Bertsch@4# is due to a misinterpretation. When applied to t
quasiclassical limit of the acceleration matrix element@Eq.
~8! above#, their reasoning goes as follows. Noticing th
Im J(n)50 at n50 @6#, they find that ImJ(n) is numerically
small compared to ReJ(n) for arbitraryn @for n@1, one can
see that the ratio ImJ(n)/ReJ(n) is equal to21/A3#. On
these grounds the imaginary part ofJ(n) is discarded, while
the real part, as shown above, can be expressed

( 1
2 )Jcoll(n). Since calculation ofJcoll(n) does not involve

tunneling motion, the conclusion is made, that the contri
tion of tunneling is negligible. In fact, as one can verify b
calculating the corresponding parts of the integral, it is
strong cancellation of the large contributions to ImJ(n) from
the barrier region and the classically allowed region, t
makes ImJ(n) relatively small. On the other hand, neglectin
Im J(n) is equivalent to replacing the true initial wave fun
tion @}exp(ikir) at r 5`# by its real part which describes a
a particle scattered by the nucleus@}cos(kir) at r 5`#, but
normalized to1

2 incoming flux. Not surprisingly, the spec
trum for a decay, obtained in Ref.@4# after neglecting
Im J(n), is equal to1

4 of the spectrum for the head-on Co
lomb collision problem@7#. However, the difference betwee
this result and the true spectrum is not very large~25% for
n@1!. Clearly, the fact that the spectrum for the collisio
problem~with a factor 1

4! is similar to the true spectrum ina
decay, does not mean that tunneling is not important.

Papenbrock and Bertsch@4# have also performed a nu
merical calculation of the exact matrix element, without n
glecting its real part and without using the quasiclass
approximation, for the specific case of210Po. The resulting
spectrum is very close to the spectrum given by the exp
Eqs. ~5!, ~8!, ~9! of the present work~see below!. Thus the
numerical results of Ref.@4# are correct and are in agreeme
with the above formulas, which explicitly take into accou
the tunneling part of the trajectory. However, the physi
interpretation of these results in Ref.@4#, leading to the con-
clusion that the main contribution to the photon emiss
stems from the Coulomb acceleration, is erroneous. In fac
is the contribution of the tunneling region that accounts
the very large difference between the true spectrum and
predictions of the Coulomb acceleration model.

It is easy to find the asymptotic form ofJ(n) both for
small and for large values ofn. For n!1J(n)512pn/2
2 in ln(2g/n), where g51.781, so thatuJ(n)u2'12pn,
while for n@1
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J~n!52 i exp~ ip/3!G~2/3!~4n/3!1/3exp~2pn!, ~10!

uJ~n!u25G2~2/3!~4n/3!2/3exp~22pn!

52.22n2/3exp~22pn!. ~11!

It follows from Eqs. ~10!, ~11! that for n@1 uJcoll(n)u2
53uJ(n)u2. Figure 1 shows the normalized spectrum, giv
by the function uJ(n)u2, calculated numerically, togethe
with the asymptotic curves forn!1 andn@1. It can be seen
that Eq. ~11! becomes a very good approximation forn
.0.5. In this region theuJ(n)u2 dependence is dominated b
the exponential factor in Eq.~11!, which may be expresse
as exp(2Eg /E0), whereE05(Ea/2p)(\v/Ze2) is a charac-
teristic energy, 2pn5Eg /E0 . For the experimental condi
tions of Ref. @3# ~Z582, E55.3 MeV! one finds E0
'75 keV. Note that the shape of the spectrum is a unive
function of Eg /E0 .

The experimentally measured quantity is the differen
probability of photon emission per decay]2N/]Eg]V
5(4p\Eg)21]E/]v. Thus

]2N

]Eg]V
5

Zeff
2

3p2 S e2

\cD Ea

mc2

1

Eg
uJ~n!u2. ~12!

This quantity is plotted in Fig. 2 as a function ofEg for the
case ofa decay of210Po ~heavy line!, together with the ex-

FIG. 1. Normalized bremsstrahlung spectrum.~a! Normal scale:
~1! numerical calculation,~2! low frequency asymptoteuJ(n)u251
2pn, ~3! high frequency asymptote, Eq.~11!. ~b! Logarithmic
scale:~1! numerical calculation,~3! high frequency asymptote, Eq
~11!, ~4! result for Coulomb acceleration model,~5! high frequency
asymptote for Coulomb acceleration modeluJ(n)u25(4n)22.
2-3
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BRIEF REPORTS PHYSICAL REVIEW C 60 037602
perimental data taken from Ref.@3#. The result of the nu-
merical calculation in Ref.@3# is presented by the dotted line
This calculation was done by using the general formula
Ref. @1#, and thus should give the same result as the pre
work. However, one can see that the two results are qua
tively different: ~a! the slopes at lowg ray energies differ by
a factor;2 and~b! while the present theory gives a spectru
that falls down exponentially at highEg , the calculation of
Ref. @3# gives a broad maximum aroundEg ;500 keV. The
difference in the slopes can not be easily understood. A
the high energy part of the spectrum, we should note
there is a limitation of the present theory related to our
glecting the details of the inner barrier region and the ext

FIG. 2. g ray emission probability ina decay of210Po. Results
of the present theory~heavy solid line! are presented together wit
the experimental data points and results of numerical calcula
from Ref. @3#. The thin solid line is the high frequency asympto
given by Eqs.~11! and ~12!.
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sion of the Coulomb potential down tor 50. As explained
above, this is justified ifEg!E0(r c /r 0)3/2'860 keV ~r c /r 0

'5 for 210Po!. For energies comparable to or higher th
this value the shape of the spectrum should depend on
parameters of the inner barrier region. Thus, the maxim
on the curve calculated in Ref.@3# ~where the cutoff of the
Coulomb potential atr 5r 0 was taken into account! might be
related to this circumstance. More precise experimental d
are needed to determine unambiguously the true slope at
energies, as well as the existence of any specific feature
the high energy tail of the spectrum.

In summary, an explicit, essentially classical, formula, d
scribing the bremsstrahlung spectrum ina decay, was de-
rived, and it was shown that taking the tunneling motion in
account is crucial for the correct description of the spectru
The shape of the spectrum is a universal function of the r
Eg /E0 , whereEg is the photon energy andE0 is a charac-
teristic energy depending only on the nuclear charge and
energy of thea particle.

Note added in proof.Recently Takigawaet al. @8# per-
formed numerical calculations of various contributions to t
bremsstrahlung spectrum, which led them to the conclus
that the spectrum ‘‘results from subtle interferences of
contributions of the tunneling, mixed and classical regions
well as the wall of the potential well, each of which has
comparable magnitude.’’ In the present work both the mix
region, which does not exist in the quasiclassical approxim
tion, and the inner barrier region were completely ignored
the grounds described above. In this context it should
noted that the final results of Ref.@8# for the total emission
probability ~curves denoted ‘‘total’’ in their Figs. 1–3! al-
most exactly coincide with the result of the present work,
given by Eqs.~5!, ~8! ~heavy solid line in my Fig. 2!.

I thank Michael Shur for his hospitality during my stay
Rensselaer Polytechnic Institute, where this work was co
pleted. I appreciate useful discussions with Thomas Pap
brock.
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