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Statistical properties of the charmonium spectrum and a new mechanism ofJ/c suppression
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The statistical properties of the charmonium energy spectrum determined by the Bethe-Salpeter equation are
investigated. It is found that the regular motion of thecc̄ system can be expected at a small value of color
screening mass but the chaotic motion is expected at a large one. It is shown that the level mixing due to color
screening serves as a new mechanism resulting in theJ/c suppression. Moreover, this kind of suppression can
occur before the color screening mass reaches its critical value forJ/c dissociation. This implies that a strong
J/c suppression is possible in the absence of dissociation ofJ/c. @S0556-2813~99!03509-8#

PACS number~s!: 14.40.Gx, 11.10.St, 25.75.Dw, 12.38.Mh
is
ne
lo

l o
av

c
en
he
es
be
s a

A
ou
tte
is

a
o
y

th

le
o

s-

tie

an
m
a
.

un

ic
n
t in

to
ark

nd
ake
har-

n

l

at-
in-

as

l-

rk,
Strongly interacting matter of sufficiently high density
predicted to undergo a transition to a state of deconfi
quarks and gluons. Deconfinement occurs when co
screening shields a given quark from the binding potentia
any other quarks or antiquarks. Bound states of he
quarks, such as theJ/c or the Y, whose radii are much
smaller than those of the usual mesons and nucleons,
survive in a deconfined medium until the temperature or d
sity becomes so high that color screening prevents t
tighter binding. It was theoretically predicted that a suppr
sion of J/c or c8 production due to the dissociation can
found in relativistic heavy ion collision, which can serve a
clear signature for the formation of quark-gluon-plasma@1#.
Subsequently this suppression was observed by the N
Collaboration@2#. However, successive research pointed
that such suppression could also exist in hadronic ma
even though caused by a completely different mechan
@3#. Recently, an anomalously strongJ/c suppression has
been observed by the NA50 Collaboration@4# and there have
been a number of attempts~see, for example, Refs.@5–7#! to
explain it. However, the mechanism ofJ/c suppression is
still a question of debate.

It is known that, for a complex system, the statistic
properties of the quantum spectrum and the complexity
the eigenfunctions reveal frequently new features of the s
tem. Because of the complexity of the interaction and
temperature and density effect, the heavyqq̄ systems in hot
matter can be regarded as complex systems. Neverthe
the spectral statistical properties and the complexity
eigenfunctions of heavyqq̄ systems have not yet been di
cussed.

In this paper we study the spectral statistical proper
and the complexity of eigenfunctions of thecc̄ system. The
influence of color screening on the statistical properties
the mixing of eigenfunctions which characterizes the co
plexity of eigenfunctions will be examined. And an altern
tive interpretation of the strongJ/c suppression is proposed

To investigate the statistical properties of thecc̄ system a
reasonable energy spectrum is crucial. Usually the bo
0556-2813/99/60~3!/035211~5!/$15.00 60 0352
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states of thecc̄ system were studied in the nonrelativist
formulation @8,9#. However, the motion of a quark and a
antiquark in a meson should be relativistic. As pointed ou
Ref. @10#, the kinetic energy of thecc̄ system is about 13%
of the total energy and the ratio of relativistic corrections
the quark mass will not decrease with the increase of qu
mass. As a result the bound state equation forJ/c should be
relativistic. Since the Bethe-Salpeter~BS! equation@11# is
the unique effective relativistic equation of two-body bou
states and is consistent with quantum field theory, we t
the BS equation to determine the energy spectrum of c
monium in this paper.

It is known that the full bound state BS equation, writte
in the two-sided notation, reads@12#

~h1P” 1p”2m1!xP~p!~h2P” 2p”1m2!

5
i

~2p!4E d4p8V~p,p8;P!xP~p8!, ~1!

whereh i5mi /(m11m2) ~i51,2!, xP is the wave function
for the quark-antiquark system with total four momentumP,
p is the relative four momentum.V is the interaction kerne
that acts onxP and formal productsVxP(p8) take the form
VxP(p8)5VsxP(p8)1gm ^ gmVvxP(p8), in which Vs and
Vv are the scalar, vector potential, respectively.

With the standard reduction and spin-independent tre
ment being implemented, the three-dimensional sp
independent reduced Salpeter equation can be written
@13#,

~M2E12E2!f~pW !

5E d3p8

~2p!3 (
i 5s,v

Fi
SI~pW ,pW 8!Vi~ upW 2pW 8u!f~pW 8!, ~2!

wheref(pW )5*dp0xP(p0,pW ) is the three-dimensional equa
time BS wave function.M is the mass of theqq̄ bound state.
Ei5(pW 21mi

2)1/2, i51,2 represent a quark and an antiqua
©1999 The American Physical Society11-1
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respectively. The functionsFv
SI and Fs

SI are the transforma
tion coefficients of the spin-independent vector, scalar po
tial, respectively, when the four-dimensional BS equation
reduced to the three-dimensional spin-independent BS e
tion. Their expressions have been given explicitly in R
@13#.

It is definite that the momentum dependence of the in
action is treated exactly in Eq.~2!. Equation~2! gives a well-
defined eigenvalue problem for the massesM of the qq̄
bound states in the momentum space. To solve Eq.~2!, we
take the color screening potential between the quark and
tiquark@8#. In momentum space the color screening poten
is written as

In our calculation, the reduced BS equation which h
been described well in Refs.@12,13# and a color screene
quark-antiquark potential@13# are implemented. In a mo
mentum space, the potential with the color screening can
written as

Vs~ upW 2pW 8u!5
s

m
d3~pW 2pW 8!2

s

p2

1

@~pW 2pW 8!21m2#2
~3!

and

Vv~ upW 2pW 8u!52
2

3p2

as

@~pW 2pW 8!21m2#
, ~4!

where Vs , Vv refer to the scalar, vector potential respe
tively, ands is the string tension,as the effective coupling
constant, andm the Debye screening mass. The parame
including the value of them at zero temperature~denoted as
m0 hereafter! are determined by a least square fitting to t
experimental data of 1S, 2S, and 3S states of thecc̄ system.
The fixed parameters ares50.22 GeV2, m050.06 GeV,
mc51.474GeV,as(cc̄)50.47,which are within the scope
of customary usage. Some of the obtained spin-averaged
ergy ~mass! @13# spectrum of thecc̄ bound states at zer
temperature (T50) are listed in Table I. From Table I, on
can observe that the mass spectrum obtained at prese
more consistent with the experiment than the previous o
@8,9#. With the parameterss, mc , andas(cc̄) fixed above,
we evaluate the mass spectrum of thecc̄ bound states for
different m, so that the temperature dependence of the sp

TABLE I. The calculated spin-averaged mass spectraMnl of the

cc̄ bound states and the comparison with experimental data
previous calculations.

nl Exp. ~GeV!

Cal. ~GeV!

Ref. @8# Ref. @9# Ours

cc̄ 1S J/c~3.068! 3.070 3.070 3.067

2S c8~3.663! 3.698 3.686 3.663
3S c9~4.025! 4.170 4.081 4.019
1P xc~3.525! 3.500 3.505 3.526
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trum can be investigated. The calculation indicates that
critical value of the screening mass forJ/c to be dissociated
is aboutmc50.90 GeV.

As the spectrum has been determined, we study the s
tral statistics. To this end we exploit the well-establish
random matrix theory~RMT! @14,15#. The RMT was ini-
tially used to describe the statistical properties of comp
nuclear spectra in the early of 1950’s@14#. In the RMT, the
matrix of the Hamiltonian of the system, which is suffi
ciently complex and~or! governed by a very complicated o
even unknown dynamics, is replaced by a random ma
with well-defined symmetry properties. Any desired quant
of the system is determined by performing an average o
an ensemble of the random matrices of which the eleme
are distributed according to a certain probability distributio
The distribution is usually taken to be a Gaussian with
parameterd,

P~H !}exp~2Tr$HH1%/2d2!, ~5!

and the corresponding random matrix ensemble is called
Gaussian ensemble. The underlying space-time symme
obeyed by the system impose some important restrictions
the admissible ensemble. If the Hamiltonian is time-rever
and rotational invariant, the Hamiltonian matrices can
chosen to be real symmetric. The corresponding ensemb
called the Gaussian orthogonal ensemble~GOE!. If the
Hamiltonian is not time-reversal invariant, irrespective of
behavior under rotations, the Hamiltonian matrices are co
plex Hermitian. The corresponding ensemble is called
Gaussian unitary ensemble~GUE!. If the system is time-
reversal invariant but not invariant under rotations, and it h
half-odd-integer total angular momentum, the matrices
quaternion real. The corresponding ensemble is called
Gaussian symplectic ensemble~GSE!.

If the Hamiltonian possesses other invariances, the co
sponding ensemble can be the Gaussian unitary ensemb
the Gaussian symplectic ensemble. The RMT has been
plied successfully in many areas of physics, such as nuc
physics@16#, quantum field theory@17#, and the physics of
disordered systems@18#. The success of the RMT is rooted i
the fact that there exist so-called universal quantities wh
do not depend on the details of the dynamics but only on
underlying symmetries. This enables one to separate gen
features from properties that do depend on the details
dynamics. The universal quantities usually mean the nea
neighbor level spacing distributionP(s) and the spectral ri-
gidity D3(L) which are powerful to analyze the spectral s
tistical properties of complex systems.

In present case thecc̄ system is time-reversal and rota
tional invariant. It is then a member of the GOE and
spectrum should be analyzed by comparing with the pre
tions of the GOE. To make comparison with the univer
and dimensionless results of the RMT, it is necessary
make a transformation or normalization on the spectru
This operation is called the unfolding. The procedure is
follows. For a spectrum$Ei%, one separates its smoothe
average part from its fluctuating part at first. then counts

nd
1-2
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number of the levels belowE so that one can define a stai
case functionN(E) of the spectrum

N~E!5Nav~E!1Nfluct~E!.

The unfolded spectrum can be finally obtained with the m
ping

Ẽi5Nav~Ei ! .

This unfolded levelsẼi are obviously dimensionless an
have a constant average spacing of 1, but the actual spa
exhibit frequently strong fluctuations. The nearest neigh
level spacings are defined assi5Ẽi 112Ẽi . The distribution
P(s) is defined as thatP(s) ds is the probability thatsi lies
within the infinitesimal interval@s,s1ds#.

It has been shown that the nearest neighbor level spa
distributionP(s) measures the level repulsion~the tendency
of levels to avoid clustering! and short-range correlation
between levels, which mean that, for a given level, its rep
sion to the neighbor levels is limited within several lev
spacings@18,19#. For the GOE, the distribution can be e
pressed explicitly asP(s)5 (p/2)exp(2 ps2/4), which can
be deduced from Eq.~5! @15#. With the Brody parameterv in
the Brody distributionPv(s)5(11v)asvexp(2as11v) „a
5$G@(21v)/(11v)#%11v,G(x) is the G function…, the
transition from regularity to chaos can be measured qua
tatively. It is evident thatv51 corresponds to the GOE dis
tribution, while v50 to the Poisson-type distribution. A
value 0,v,1 means an interplay between the regular a
the chaotic.

As to the spectral rigidityD3(L), it is defined as

D3~L !5K minA,B

1

LE2L/2

L/2

@N~x!2Ax2B#2dxL , ~6!

whereN(x) is the staircase function of a unfolded spectru
in the interval@2L/2,x#. The minimum is taken with respec
to the parametersA andB. The average denoted by^•••& is
taken over a suitable energy interval overx. Thus from this
definition D3(L) is the local average least square deviat
of the staircase functionN(x) from the best fitting straigh
line. For the GOE the expected value ofD3(L) can only be
evaluated numerically, but it approaches the valueD3(L)
>1/p2(lnL20.0687) for largeL. It has also been shown tha
the spectral rigidityD3(L) signifies the long-range correla
tions of quantum spectra@18,19# which make it possible tha
for a chaotic spectrum very small fluctuation of the stairc
function around its average can be found in an interval
given length~the interval may cover dozens of level spa
ings!. It has been generally accepted that if the spectral
tistical properties of a quantum system approach to the G
the motion of the system is chaotic, and if the statisti
properties appear as Poisson-types@P(s)5exp(2s) and
D3(L)5 L/15], the motion is regular@18#.

To perform a meaningful RMT analysis one has to s
the spectrum in symmetry sectors corresponding to the s
metry of the Hamiltonian. Since the symmetry invariant su
spaces are orthogonal to one another, each such symm
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invariant subspace is characterized by a specific set of q
tum numbers. The RMT analysis is performed on sets of
eigenlevels having the same quantum numbers. In view
the above consideration we take the first 200 levels ou
300 s-wave ~spin-weighted! eigenvalues which have th
same quantum numbers~e.g., l 50). We have noticed tha
p-wave eigenvalues~spin-weighted! have the same statistica
properties as those of thes-wave ones. The spacing distribu
tion P(s) and spectral rigidityD3 for several color screening
massesm are shown in Fig. 1. The figure shows obvious
that, whenm is small, for instance 0.06 GeV, both theP(s)
andD3 display the Poisson-type distribution. This indicat
that the spectrum is regular and the levels are uncorrela
The motion of thecc̄ system is then regular. With the in
crease ofm ~for example,m50.20 GeV!, the P(s) and D3
depart from the Poisson types. Then the spectrum beco
less regular and the level correlation and repulsion incre
gradually. Asm is large enough, saym50.60 GeV, both the
P(s) and theD3 appear the GOE behavior. This means th
the spectrum becomes extreme irregular~chaotic! and the
levels are strongly correlated. Strong level repulsion can t
be expected and the motion of thecc̄ system is chaotic.

Fitting to the Brody distribution, we get the Brody param
eterv50.22,0.51,0.89 form50.06,0.20,0.60~GeV!, respec-
tively. This also indicates that a transition from regular
chaotic motion can be induced in thecc̄ system by the in-
creasing of the color screening and the chaotic motion ta
place when the hot matter is of high temperature. Recal
the idea that theP(s) and D3 measures the correlatio
among the levels@18,19#, one can recognize that the corr
lation of thecc̄ resonances can be manifested by theP(s)
and D3. The calculated result shows thus that thecc̄ reso-
nances are strongly correlated at a high temperature.

FIG. 1. The spacing distributionP(s) and the spectral rigidity
D3 of the s-wave charmonium energy spectrum at different valu
of color screening massesm measured in GeV. In~a! the dashed-
line for Poisson distribution, the solid one for the GOE distributio
and the histograms for our numerical results.
1-3
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FIG. 2. The probability densityP(c2) of J/c
versusc2 for various values ofm. The solid his-
togram for m50.90 GeV, the dotted one fo
m50.60 GeV, the dash-dotted one form50.20
GeV, and the dashed one form50.10 GeV.
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information may be useful for us to analyze the relev
experiments.

As a matter of fact, both the level correlation and lev
repulsion stem from level mixing@20# which characterizes
the complexity of eigenfunctions. We analyze then the infl
ence of the color screening on the level mixing. For t
purpose, we take thes-wave eigenfunctions of thecc̄ system
at temperature zerouk& ~J/c, c8, c9, . . . , m50.06 GeV,
equivalent toT50! as a basis and expand the eigenfunctio
at a finite temperatureu i & in this basis as

u i &5(
k

ck
i uk& , ~7!

with (k(ck
i )251.

In order to measure the level mixing and delocalization
eigenfunctions at a finite temperature, we define the follo
ing probability:

P~c2!5
DN~c2!

Ntd
, ~8!

where c2 is the probability for the eigenfunctions at ze
temperature to appear.DN(c2) is the number having the
probability betweenc2 and c21d with d being a small in-
terval of c2. Nt is the total number of the eigenstates i
volved ~at presentNt5200). For theJ/c state~the ground
state! at a finite temperature, theP(c2) versusc2 for a few
values ofm are shown in Fig. 2. It is evident that, whenm is
small, for example 0.10 GeV, the components with nonz
probabilities are limited within the lowest states. This mea
that the components with small probabilities prevail and
distribution width ofP(c2) is rather small. In other words
the level mixing is localized. With the increase ofm, the
number of the components with nonzero probabilities g
up. This leads to the increase ofP(c2) in the region of large
probabilities~see the casem50.20 GeV!. As m approaches to
mc , the components with nonzero probability emerge o
03521
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large scale and become rather random~as shown by the case
m50.60, 0.90 GeV!. Then, a wide distribution ofP(c2) ap-
pears and the level mixing is strong and delocalized. Re
ring to Fig. 1, one can find that the quantum chaotic mot
occurs when a strong level mixing emerges. It can also
found that, for higher eigenstates at a finite temperature,
level mixing changes withm in a similar way asJ/c state.
Furthermore the strong level mixing appears for these eig
states even ifm takes a smaller value.

The feature of the effect of the level mixing induced b
the variance ofm is that the probability for theJ/c state at
zero temperature to appear in theJ/c state at a finite tem-
perature descends with the increasing ofm. Present result
shows that atm50.10, 0.20, the probability is about 90, 70%
respectively. Asm increases, the probability decreases d
tinctly. For instance, whenm50.60 GeV, the probability
goes down to 10%. Referring to Eq.~7! one can know that
the neighboring levels~e.g.,c8, c9, . . . ) at afinite tempera-
ture will also contribute to theJ/c at zero temperature. How
ever, their production probability is much smaller than th
of J/c at a finite temperature~e.g., in p-p collisions, the
ratio of c8 to J/c is about 1/7@21#, and in Pb-Pb collision it
is predicted to be 4%@22#!. Then their contribution to the
J/c at zero temperature should be very small. One can he
easily recognize that the production ofJ/c at zero tempera-
ture, which means in fact the probability for the charmoniu
states at a finite temperature to include theJ/c state at zero
temperature, will be suppressed with the growth ofm and a
strong suppression can be expected whenm is large enough.
On the other hand, It has been well known that, in the
confinement scheme, the suppression due to the dissoci
of J/c occurs only ifm reaches or exceeds the critical valu
mc @1#. Present analysis indicates that, the suppression du
the level mixing can take place beforem reaches the critica
value for the dissociation to happen. In addition, we find t
for p-wave energy spectrum of thecc̄ system, the transition
to the chaos and the suppression due to the level mix
occur too. Moreover, the similar behavior can be found
the bb̄ system.
1-4
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To apply the above discussion to an actual physical s
ation, one needs to know the specific dependence of the
bye screening massm on the temperatureT. Even though
several studies on the properties of QCD at finite tempe
tures and densities have been accomplished~see for example
Refs. @23–27#! and the general feature of the temperatu
dependencem(T) has been well established, the explicit e
pressionm(T) has not yet been determined uniquely beca
a temperature-dependent running coupling constant is
volved. Then the density dependence ofm is not clear now.
Any way, it is certain that them(T) increases withT increas-
ing. The above calculated result manifests that, as the st
tical properties of the mass spectrum of thecc̄ system is
taken into account, the critical valuemc for the strong sup-
pression to take place gets lowered obviously from tha
the deconfinement scheme~from 0.9 to 0.6 GeV!. Then the
corresponding critical temperatureTc decreases too. Conse
quently, much stronger suppression than that predicted in
deconfinement scheme can emerge in the same experim
status. The level mixing, or the chaotic motion, due to
. B

.

o,

03521
-
e-

a-

e

e
n-

is-

n

he
tal

e

color screening is then an alternative mechanism to ind
the strongJ/c suppression.

In conclusion, in this paper we have investigated the le
statistics of the charmonium energy spectrum in the fram
work of the BS equation and found that, with the increas
of the color screening mass, the transition from regular
chaotic motion can be induced for thecc̄ system. The level
mixing due to the color screening is then an alternat
mechanism resulting in the strongJ/c suppression, and fur
thermore this kind of suppression can occur beforem reaches
its critical value for the dissociation ofcc̄. This implies that
a strongJ/c suppression is possible in the absence of dis
ciation of theJ/c.
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