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Statistical properties of the charmonium spectrum and a new mechanism al/y suppression
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The statistical properties of the charmonium energy spectrum determined by the Bethe-Salpeter equation are
investigated. It is found that the regular motion of the system can be expected at a small value of color
screening mass but the chaotic motion is expected at a large one. It is shown that the level mixing due to color
screening serves as a new mechanism resulting id/thesuppression. Moreover, this kind of suppression can
occur before the color screening mass reaches its critical valul godissociation. This implies that a strong
J/ suppression is possible in the absence of dissociatial 4af [S0556-28139)03509-9

PACS numbses): 14.40.Gx, 11.10.St, 25.75.Dw, 12.38.Mh

Strongly interacting matter of sufficiently high density is states of thecc system were studied in the nonrelativistic
predicted to undergo a transition to a state of deconfinegormulation [8,9]. However, the motion of a quark and an
quarks and gluons. Deconfinement occurs when coloantiquark in a meson should be relativistic. As pointed out in
screening shields a given quark from the binding potential 0Rkef. [10], the kinetic energy of thec system is about 13%
any other quarks or antiquarks. Bound states of heavyf the total energy and the ratio of relativistic corrections to
quarks, such as thé/¢ or the Y, whose radii are much the quark mass will not decrease with the increase of quark
smaller than those of the usual mesons and nucleons, CaRass. As a result the bound state equationJfgr should be
survive in a deconfined medium until the temperature or denre|ativistic. Since the Bethe-SalpetéBS) equation[11] is
sity becomes so high that color screening prevents theifhe unique effective relativistic equation of two-body bound
tighter binding. It was theoretically predicted that a suppresstates and is consistent with quantum field theory, we take
sion of J/¢ or 4" production due to the dissociation can bethe BS equation to determine the energy spectrum of char-
found in relativistic heavy ion collision, which can serve as amonjum in this paper.
clear signature for the formation of quark-gluon-plagih It is known that the full bound state BS equation, written
Subsequently this suppression was observed by the NA3@ the two-sided notation, readi&?]

Collaboration[2]. However, successive research pointed out

that such suppression could also exist in hadronic matter, (mP+p—my)xp(p)(7P—p+m,)

even though caused by a completely different mechanism _

[3]. Recently, an anomalously strordgs suppression has ! 4, . ,

been observed by the NA50 Collaboratiet} and there have B (277)4j d*p"V(p.p"iP)xe(P"), D
been a number of attemptsee, for example, Reff5—7]) to

explain it. However, the mechanism 4f¢ suppression is where »;=m;/(m;+m,) (i=1,2), xp is the wave function

still a question of debate. for the quark-antiquark system with total four momentBm

It is known that, for a complex system, the statisticalp is the relative four momentunV is the interaction kernel
properties of the quantum spectrum and the complexity othat acts onyp and formal producty yp(p’) take the form
the eigenfunctions reveal frequently new features of the sysvyp(p’)=Vexp(p') + 7,2 ¥*Vyxp(p'), in which Vg and
tem. Because of the complexity of the interaction and they, are the scalar, vector potential, respectively.
temperature and density effect, the heanysystems in hot With the standard reduction and spin-independent treat-
matter can be regarded as complex systems. Nevertheleggent being implemented, the three-dimensional spin-
the spectral statistical properties and the complexity ofndependent reduced Salpeter equation can be written as

eigenfunctions of heavyﬁ systems have not yet been dis- [13],
cussed.

In this paper we study the spectral statistical properties (M—E;—Ez)é(p)
and the complexity of eigenfunctions of tiee system. The d3p’ . o A
influence of color screening on the statistical properties and :f 3 E F3\(p,p )Vi(lp—p'D#(p"), (2
the mixing of eigenfunctions which characterizes the com- (2m)° i=sv

plexity of eigenfunctions will be examined. And an alterna- . 0 0 =t _ _
tive interpretation of the strondf ¢ suppression is proposed. Where¢(p)=/dp°xp(p",p) is the three-dimensional equal-

To investigate the statistical properties of tesystem a  time BS wave functionM is the mass of theq bound state.
reasonable energy spectrum is crucial. Usually the boun&;=(p?+ miz)l’z, i=1,2 represent a quark and an antiquark,
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_ TABLE I. The calculated spin-averaged mass speldtraof the  trum can be investigated. The calculation indicates that the
cc bound states and the comparison with experimental data andritical value of the screening mass il to be dissociated

previous calculations. is aboutu.=0.90 GeV.
As the spectrum has been determined, we study the spec-
Cal. (GeV) tral statistics. To this end we exploit the well-established

random matrix theoryRMT) [14,15. The RMT was ini-

n Exp. (GeV) Ref. [8] Ref. [9] ours tially used to describe the statistical properties of complex

cc 1S J(3.068 3.070 3.070 3.067  nuclear spectra in the early of 195Q054]. In the RMT, the
25 V' (3.663 3.698 3686 3663 matrix of the Hamiltonian of the system, which_ is suffi-
35S ¥/'(4.025 4.170 4.081 4019 Ciently complex anc(or).govgrned by a very complicated or
1p x«(3.525 3.500 3,505 3506  €ven unknown dynamics, is replaced by a random matrix

with well-defined symmetry properties. Any desired quantity
of the system is determined by performing an average over
respectively. The functionsS' and FS' are the transforma- an ensemble of the random matrices of which the elements

tion coefficients of the spin-independent vector, scalar pote are distributed according to a certain probability distribution.

tial, respectively, when the four-dimensional BS equation ir;The distribution is usually taken to be a Gaussian with a

reduced to the three-dimensional spin-independent BS equggrameted,

tion. Their expressions have been given explicitly in Ref.

[13]. P(H)xexp(— Tr{HH "}/2d?), (5)
It is definite that the momentum dependence of the inter-

action is treated exactly in E¢R). Equation(2) gives a well-

. . — and the corresponding random matrix ensemble is called the
defined eigenvalue problem for the masdésof the qq  Ga,ssian ensemble. The underlying space-time symmetries

bound states in the momentum space. To solve(Bg.we  ghaveq by the system impose some important restrictions on
take the color screening potential between the quark and aiae agmissible ensemble. If the Hamiltonian is time-reversal

tiquark[8]. In momentum space the color screening potentiabng rotational invariant, the Hamiltonian matrices can be

IS written as _ _ _ chosen to be real symmetric. The corresponding ensemble is
In our calculation, the reduced BS equation which has.gjled the Gaussian orthogonal ensemb®OE). If the

been described well in Ref$12,13 and a color screened yamiitonian is not time-reversal invariant, irrespective of its

quark-antiquark potentigl13] are implemented. In @ mo- popavior under rotations, the Hamiltonian matrices are com-
mentum space, the potential with the color screening can bfiex Hermitian. The corresponding ensemble is called the
written as Gaussian unitary ensembl(&UE). If the system is time-
reversal invariant but not invariant under rotations, and it has
- gé\g N 1 half-odd-integer total angular momentum, the matrices are
Ve(lp—p'[)= P (p—p") 72 [(P—p )2+ u?]? (3 quaternion real. The corresponding ensemble is called the
Gaussian symplectic ensemileSE).

If the Hamiltonian possesses other invariances, the corre-
sponding ensemble can be the Gaussian unitary ensemble, or
the Gaussian symplectic ensemble. The RMT has been ap-

Vv(|5— 5,|): _ i _ fys , (4) plied_successfully in many areas of physics, such as nuclear

372 [(p—p")%+ u?] physics[16], quantum field theory17], and the physics of
disordered systenj4d8]. The success of the RMT is rooted in

where Vg, V, refer to the scalar, vector potential respec-the fact that there exist so-called universal quantities which
tively, and o is the string tensiong, the effective coupling do not depend on the details of the dynamics but only on the
constant, ang. the Debye screening mass. The parameterginderlying symmetries. This enables one to separate generic
inc|uding the value of thw at zero temperatur@enoted as features from properties that do depend on the details of
o hereafte)‘ are determined by a least square f|tt|ng to thedynamiCS. The universal quantities Usua”y mean the nearest

experimental data of3, 2S, and 3S states of th&c system. n_ei_ghbor level s_pacing distributioR(s) and the spectral ri-
The fixed parameters are=0.22 GeV, 1o=0.06 GeV, gidity A;(L) which are powerful to analyze the spectral sta-

— . I tistical properties of complex systems.
m.=1.474GeV, as(cc)=0.47,which are within the scope | prop A th mp ¢ ¥ is i | and rot
of customary usage. Some of the obtained spin-averaged ep- "' PrésS€nt case thec system 1S ime-reversal and rota-

1 ¢ thece bound tional invariant. It is then a member of the GOE and its
ergy (mas$ [13] spectrum of thecc bound states at zero  gyoqrym should be analyzed by comparing with the predic-
temperature T=0) are listed in Table I. From Table I, one

. tions of the GOE. To make comparison with the universal
can observe that the mass spectrum obtained at present 5y gimensionless results of the RMT, it is necessary to

more consistent with the experiment than the previous oneg,axe a transformation or normalization on the spectrum.
[8,9]. With the parameters,, m;, andag(cc) fixed above, This operation is called the unfolding. The procedure is as
we evaluate the mass spectrum of the bound states for follows. For a spectrunr{E;}, one separates its smoothed

different u, so that the temperature dependence of the spe@verage part from its fluctuating part at first. then counts the

and
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number of the levels belo so that one can define a stair- ™ 008 08 - 7
case functiorN(E) of the spectrum | : ossen
* 0.06
N(E)=NafE) +Npye(E). 06
0 = ol
The unfolded spectrum can be finally obtained with the map- et r ,
Ping 0.20 /o0
~ @ . ) ; /
Ei=N.(E). L L
AN ; /060"
This unfolded levelsE; are obviously dimensionless and K R o G0
have a constant average spacing of 1, but the actual spacing 1 02| g1
exhibit frequently strong fluctuations. The nearest neighbor ' L
level spacings are defined 8s=E; . ;—E;. The distribution
P(s) is defined as thaP(s) ds is the probability thas; lies
within the infinitesimal interval s,s+ds]. 00‘ TR

It has been shown that the nearest neighbor level spacin L
distribution P(s) measures the level repulsigtine tendency
of levels to avoid clusteringand short-range correlations (b)
between levels, which mean that, for a given level, its repul-
sion to the neighbor levels is limited within several level ~FIG. 1. The spacing distributioR(s) and the spectral rigidity
spacings[18,19. For the GOE, the distribution can be ex- A3 of the swave charmonium energy spectrum at different values
pressed explicitly a®(s)= (w/2)exp( =s?/4), which can c_)f color screening massgs measurgd in GeV. Iifa) the Qas_hed_-
be deduced from Eq5) [15]. With the Brody parametas in line for qusson distribution, the sqlld one for the GOE distribution,
the Brody distributionP,(s) = (1+ w)as’exp( asl+w) (a and the histograms for our numerical results.

={T[(2+)/(1+w)]}*"*,I'(x) is the I function), the  invariant subspace is characterized by a specific set of quan-
transition from regularity to chaos can be measured quantiym numbers. The RMT analysis is performed on sets of the
tatively. Itis evident thato=1 corresponds to the GOE dis- ejgenlevels having the same quantum numbers. In view of
tribution, while =0 to the Poisson-type distribution. A the above consideration we take the first 200 levels out of
value 0<w<1 means an interplay between the regular an300 s-wave (spin-weightedl eigenvalues which have the
the chaotic. same quantum numbefs.g.,|=0). We have noticed that
As to the spectral rigidityA(L), it is defined as p-wave eigenvaluegspin-weightedl have the same statistical
1 e properties as those of t.mj:v\{ave ones. The spacing distr!bu—
A3(L)=< min, B_J [N(X)—Ax—BJ2dx), (6) tion P(s) and spectral_ r|g|Q|t3A3 for se_veral color screening
CL) e massesw are shown in Fig. 1. The figure shows obviously
that, whenu is small, for instance 0.06 GeV, both tigs)
whereN(x) is the staircase function of a unfolded spectrumand A display the Poisson-type distribution. This indicates
in the interval — L/2,x]. The minimum is taken with respect that the spectrum is regular and the levels are uncorrelated.
to the parametera andB. The average denoted y--) IS The motion of thecc system is then regular. With the in-
taken over a suitable energy interval ovefThus from this  crease ofy (for example,u=0.20 GeV, the P(s) and A,
definition A5(L) is the local average least square deviationgepart from the Poisson types. Then the spectrum becomes
of the staircase functiohl(x) from the best fitting straight |ess regular and the level correlation and repulsion increase
line. For the GOE the expected value ®§(L) can only be  gradually. Asy is large enough, say=0.60 GeV, both the
evaluated numerically, but it approaches the valugl)  p(s) and theA; appear the GOE behavior. This means that
=1/7*(InL—0.0687) for large.. It has also been shown that the spectrum becomes extreme irregulenactio and the
the spectral rigidityA5(L) signifies the long-range correla- |eyels are strongly correlated. Strong level repulsion can thus
tions of quantum spectfd 8,19 which make it possible that be expected and the motion of the system is chaotic
for a chaotic spectrum very small fluctuation of the staircase Fitting to the Brody distribution, we get the Brody péram—
function around its average can be found in an interval Ofeterw=0.22,0.51,0-89 fopzo_oe,‘o_zo,o_wee\/), respec-

given length(the interval may cover dozef?s of level spac- tively. This also indicates that a transition from regular to
ings). It has been generally accepted that if the spectral sta- —

tistical properties of a quantum system approach to the GOgEnaotic motion can be induced in tioe system by the in-
the motion of the system is chaotic, and if the statisticalc"€aSing of the color screening and the chaotic motion takes

; ; ) _ - place when the hot matter is of high temperature. Recalling
gro(pLe)rgelelsé?ptehaer rr?cs)tiopno:zsr(t)an t;l/p[eB(s) exp(-s) and the idea that theP(s) and A; measures the correlation
3 , gular1s]. .

To perform a meaningful RMT analysis one has to sor?Mongd the level$18,19, one can recognize that the corre-
the spectrum in symmetry sectors corresponding to the symation of thecc resonances can be manifested by ()
metry of the Hamiltonian. Since the symmetry invariant sub-and A;. The calculated result shows thus that tereso-
spaces are orthogonal to one another, each such symmetnginces are strongly correlated at a high temperature. This
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FIG. 2. The probability densit(c?) of J/y
versusc? for various values ofs. The solid his-
togram for ©x=0.90 GeV, the dotted one for
u=0.60 GeV, the dash-dotted one far=0.20
GeV, and the dashed one far=0.10 GeV.

1.2

information may be useful for us to analyze the relevantiarge scale and become rather randasshown by the cases
experiments. 1=0.60, 0.90 GeY. Then, a wide distribution oP(c?) ap-

As a matter of fact, both the level correlation and levelpears and the level mixing is strong and delocalized. Refer-
repulsion stem from level mixing20] which characterizes ring to Fig. 1, one can find that the quantum chaotic motion
the complexity of eigenfunctions. We analyze then the influ-occurs when a strong level mixing emerges. It can also be
ence of the color screening on the level mixing. For thisfound that, for higher eigenstates at a finite temperature, the

purpose, we take thewave eigenfunctions of the?system Ig&’ﬁ:}gm&% ?E:Z%%‘T’q W:L?/Lellnma}x%mlfr Vggysafglr/ E/r’] :stzt(;i on-
at temperature zerdk) (I, ', 4", ..., u=0.06 GeV, 9 g app 9

) o g ; . states even ijx takes a smaller value.
equivalent toT=0) as a basis and expand the eigenfunctions The feature of the effect of the level mixing induced by
at a finite temperaturg) in this basis as

the variance ofu is that the probability for the/ state at
zero temperature to appear in tha) state at a finite tem-
|i>=z chlk) (7) ~ perature descends with the increasinguof Present result

K shows that ax=0.10, 0.20, the probability is about 90, 70%,
respectively. Asu increases, the probability decreases dis-

with 3, (cl)?=1. tinctly. For instance, whernu=0.60 GeV, the probability
In order to measure the level mixing and delocalization ofgoes down to 10%. Referring to E(/) one can know that
eigenfunctions at a finite temperature, we define the followthe neighboring levelée.g.,¢", ", . . .) at afinite tempera-
ing probability: ture will also contribute to thd/ ¢ at zero temperature. How-
ever, their production probability is much smaller than that
) AN(c?) of J/y at a finite temperaturée.g., in p-p collisions, the
P(cH)= NG (8 ratio of ¢ to J/y is about 1/721], and in Pb-Pb collision it

is predicted to be 4%22]). Then their contribution to the

where c2 is the probability for the eigenfunctions at zero le_at zero temperature should be very small. One can hence
temperature to appeaAN(c?) is the number having the easily recognize th_at the productlon_j_ﬁﬂ at zero tempera-
probability betweerc? and c2+ & with & being a small in- ture, which means in fact the probability for the charmonium
terval of c2. N, is the total number of the eigenstates in- states at a finite temperature to include #¢ state at zero
volved (at preseniN,=200). For thed/y state(the ground temperature, W|I_I be suppressed with the_ growthuodnd a
statd at a finite temperature, the(c?) versusc? for a few strong suppression can be expected whea large enough.
values ofu are shown in Fig. 2. It is evident that, whenis On the other hand, It has been well known that, in the de-
small, for example 0.10 GeV, the components \;vith nonzergonfinement scheme, the suppression due to the dissociation
probabilities are limited within the lowest states. This meanf 3/ occurs only ifu reaches or exceeds the critical value
that the components with small probabilities prevail and thetc [Ll- Present analysis indicates that, the suppression due to
distribution width ofP(c?) is rather small. In other words, (he level mixing can take place befogereaches the critical

the level mixing is localized. With the increase pof the value for the dissociation to happen. In addition, we find that
number of the components with nonzero probabilities goe$or p-wave energy spectrum of the system, the transition
up. This leads to the increase Bfc?) in the region of large to the chaos and the suppression due to the level mixing
probabilities(see the casg=0.20 Ge\). As u approaches to Occur too. Moreover, the similar behavior can be found in
M, the components with nonzero probability emerge on ahe bb system.
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To apply the above discussion to an actual physical situeolor screening is then an alternative mechanism to induce
ation, one needs to know the specific dependence of the Deghe strongd/ suppression.
bye screening masg on the temperaturd. Even though In conclusion, in this paper we have investigated the level
several studies on the properties of QCD at finite temperastatistics of the charmonium energy spectrum in the frame-
tures and densities have been accompligised for example work of the BS equation and found that, with the increasing
Refs.[23-27) and the general feature of the temperatureof the color screening mass, the transition from regular to
dependence(T) has been well established, the explicit €x- chaotic motion can be induced for tiee system. The level
pressionu(T) has not yet been determined uniquely becausgnixing due to the color screening is then an alternative
a temperature-dependent running coupling constant is ifechanism resulting in the stroddy suppression, and fur-
volved. Then the density dependence.ofs not clear now.  thermore this kind of suppression can occur beforeaches

Any way, itis certain that the.(T) increases witlT increas- its critical value for the dissociation afc. This implies that

ing. The above calculated result manifests that, as the statis- o o .
) i — } a strongJ/  suppression is possible in the absence of disso-
tical properties of the mass spectrum of the system is

X > ciation of theJ/ .
taken into account, the critical valye, for the strong sup-
pression to take place gets lowered obviously from that in Helpful discussions with Professor Y. Z. Zhuo and Pro-
the deconfinement schenfigom 0.9 to 0.6 GeV. Then the fessor B. Liu are highly appreciated. This work was sup-
corresponding critical temperatulle decreases too. Conse- ported partly by the National Natural Science Foundation of
quently, much stronger suppression than that predicted in th€hina. One of the authors.G) thanks also the China Post-
deconfinement scheme can emerge in the same experimenthictoral Science Foundation for support. Another author

status. The level mixing, or the chaotic motion, due to the(Y.L.) thanks Peking University for support.
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