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New perspective on the scalar meson puzzle, from spontaneous chiral symmetry breaking
beyond BCS

Pedro J. de A. Bicudo
Departamento de Bica and Centro de Bica das Interagoes Fundamentais, Edifio Ciencia, Instituto Superior Tanico,
Avenida Rovisco Pais, 1096 Lisboa, Portugal
(Received 5 February 1998; revised manuscript received 15 January 1999; published 12 August 1999

We introduce coupled channels of ladder Bethe-Salpeter mesons both in the bound state equation for mesons
and in the mass gap equation for chiral symmetry. Consistency is insured by the Ward identities for axial
currents, which preserve the Goldstone boson nature of the pion and prevent a systematic shift of the hadron
spectrum. We study the decay of a scalar meson coupled to a pair of pseudoscalars. We also show that coupled
channels reduce the breaking of chiral symmetry, with the same Feynman diagrams that appear in the coupling
of a scalar meson to a pair of pseudoscalar mesons. Exact calculations are performed in a particular confining
quark model, where we find that the ground stiat0, 3P, qq meson is thef4(980) with a partial decay
width of 40 MeV. We also find a 30% reduction of the chiral condensate due to coupled channels.
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[. INTRODUCTION interaction usually postulates a scalar mesowith a light
M=0.5GeV. In strongly coupled effective meson models
The scalar puzzleThe scalar mesons form perhaps the[4, 5], extra poles appear in tf@matrix when couplings are

most puzzling family in hadronic physics. The first puzzling large. These meson models turn out to be the most successful
fact concerns the experimental errors in the partial decagnodels so far, explaining with complex nonlinear effects not
widths, the decay widths, and even the masses. The lightegply the narroway(980) andf,(980) which are due to the
scalar f,(400- 1200) has a poorly determined mass. TheVicinity of the KK threshold, but also the very wide and light
confidence in the decay widths of tlig(980) anday(980) fo(400-1200). i o
has also decreasé] strongly since 1994. The relevance of chiral symmetry breakir@hiral sym-

The other puzzling argument concerns the matching of thghetry b_reaking is important for the StUdY of scalar mesons
nine observed states with simple @ qq states. One and their decays for several reasons. Unlike the vector, axial,

would expect four different towers of states built upon theand tensor mesons, the scalar and pseudoscalar mesons are

two =0 f, (which are not degenerate, for instance becausémxed by the chiral rotations

the quarks has a clearly larger mass than the quarkd) and

to thel =1a,, and thel =1/2 K§. A short glance at Fig. 1 Yip—cod 0) Yih i SIN(0) s,
is sufficient to discard the single light and extremely broad _ _ _
state, thef ,(400— 1200) as a simple member of this family. hysip— —i sin(6) grip+ cog 6) Prysip, @

Then for the ground states we could ascribe the narrowest
states which are, respectively, the(980), K§(1430), thus scalars and pseudoscalars are particularly sensitive to
f,(980), andf,(1500), and for the radial excited states we the chiral symmetry. The very small mass of the pseudosca-
could, respectively ascribe they(1450), K (1950), lars is usually explained with chiral symmetry breaking.
fo(1370), and ((2200). However, the decay widtlh'sof the
ground state scalars are narrower than expected, when com-| [GeV]
pared with other resonances decaying in the same pseudo- 5
scalar pairs but with higher angular momentum, except for )
the only precisely measured one, K& (1430). Moreover :H:’ [ ]
the breaking of S(B); due to themg>m,=my mass differ- n
ence is nearly double that expected when compared with the [’ : . :
vector meson family and with most baryons. The scalar
SU(3); breaking is only comparable with the splittings in the s
pseudoscalar family. 0. fo.I=0 ag,I=1 K3, I=1/2
The scalar family is also the most interesting place to -
search for the lightestS wave nonq states. There are  giG. 1. we represent with rectangles the experimentally ob-
several theoretical candidates to extra states which may b@yved scalar resonances according to the Review of Particle Prop-
found. The lightest glueball, which is expected from QCD, erties, and mark the unconfirmed ones with a question mark. The
should be a scald2]. The model of Isgur and WeinstejB]  height of each rectangle is equal to the decay widtbf the reso-
suggests that the narrowest scalars are meson-meson maénce. In a naive quark model, tagandK? channels should show
ecules. The one meson exchange potential models fa¥lkhe half of the resonances of ttfg channel.
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FIG. 2. We show the quartic diagrams which may contribute to beyond Gap |

the bound state equation. In the strong coupling BG8,is in- BCS:
cluded in the self-energy ar®) is included in the interaction ker- _ o o o
nel. Diagram(c) which creates or annihilates quark-antiquark pairs ~ FIG. 3. We illustrate the principle which is followed in this
is only used in what we call beyond BCS. paper to include the coupled channels in the mass gap equation.

Bound State

Moreover, since scalars decay essentially in pseudoscala® € EﬁCS masls gag esquation ish nothexact when coupled
the pseudoscalar mass is important for the scalar decay. Th anrr:.esl are mctu % ) kqppose t atl t g" nt]atlﬁs gBanSquua}lon
we expect that not only the pseudoscalar mesons but also ti%r CW:{EOS%/:ELTE driﬁg trﬁg clggp\ll\é?jsc?\%:]/ﬁels the?] a baree\;;ﬁ),n
scalars must contain the signature of the breakllng of ch|ravlvith vanishing bare mass would be found. If the coupled
symmetry. On the other hand, the breaking of chiral symme

. - channels were then includea posteriorij in the bound state
try is generated from the trivial vacuum by scalar condensa,

. ; equation then the pion mass would be the sum of the small
tion, and we also expect that the scalar properties Sho“'ﬁare mass plus a mass shift and thus would have a resulting
affect the breaking of chiral symmetry. , nonvanishing mass, which implies that the pion lost its Gold-
These effects have been studied in phenomenological M&ione boson nature. This result is unavoidable, and can be
son sigma models, see, for instance R&f. At the more proved variationally. Thus the mass gap should be solved
microscopic level of quarks, dynamical spontaneous chirabeyond BCS, especially when scalar mesons are studied.
symmetry breakingxSB) has been worked out in the past  Solving this problem is a cornerstone of our program. It
with several different quark-quark effective interactions, atgmounts to joining the BCS mechanism with the mean field
the same level as Bardeen, Cooper, and SchriéB€S) did  expansion of effective mesons. The logical path of the
for superconductivity{6]. Since Nambu and Jona-Lasinio method we will follow is illustrated in Fig. 3. Self-
(NJL) [7] and until recently[8,9] the mass gap equation in consistency is insured by Ward identities, and the scalar-
chiral physics has been so far of the BCS typg including  pseudoscalar coupling will turn out to be crucial for this
only the first order contribution from the quark-quark inter- development. The reward of solving chiral symmetry break-
action. In this case the quark condensate consists of scalﬁ{g with coupled channels is & with a vanishing positive
*P quark antiquark pairf10]. At the BCS level, which IS mass in the chiral limit complying with all the theorems of
very consistent, it is pOSSible to derive the mass gap equatianAC' and a tower of resonancésduding the scalar me-
in several different but equivalent methods. The pseUdOSon resonancéabove ther with h|gher masses due to ra-
scalar meson properties have been studied in great detail aggh|, angular, or spin excitations. In particular the resonances
the full meson spectrum has been also been calculated in thgso have an imaginary component of the masd'/2 that
|iterature[1l]. However the BCS approach iS not exact in thedescribes the decay width into the Open channels.
case where coupled channels ofmesqns are included. The paperThe aim of this paper is to study at the quark
Coupled channels of mesonic qupirs. In the case of |evel some meson decays which have been studied in the
weak coupled channel effects, it should be acceptable to stafterature without including directly the full microscopic
from bound states obtained at the BCS level and couple ther@uark contributiong4,5]. We specialize in the ground state
with the help of the annihilation diagrams of Fig. 2, without f__, decay. We also study the effect of the meson
changing the mass gap equation. In this sense we starte@upled channels on the quark condensed vacuum.

some years ago to develop a progrgtd] to study coupled The remainder of this paper is organized as follows. In
channel effects in quark models with chiral symmetry breaksec. 11 we review the scalar masses and decays at the BCS
Ing. level. This includes the choice of an effective interaction for

The first result of our program was to reproddd®] at  quarks, the mass gap equation and the Bethe-Salpeter equa-
the BCS level the strong decay of the vector meséand of  tion at the BCS level, the scalar coupling to pseudoscalars,
the ¢). These decays have been studied with other methodgnd the scalar decays width. In Sec. Ill we produce a finite
recently[14]. Later we extended our program to the nucleonextension beyond BCS for a class of confining effective in-
interactions and had good resuli] in the KN swave scat-  teractions, derive the mass gap equation with coupled chan-
tering, theFy .y andFy ., derivative couplings and theN  nels, link it to the scalar-pseudoscalars coupling, and solve
short range interactiofi.3]. the mass gap equation. Results are shown in Sec. IV together

However, there is a recent trend in the literature to re-ith their discussion. We also include four Appendixes.
evaluate coupled channel effects in hadronic phenomena.

Some years ago they were not supposed to account for mote THE BCS LEVEL FOR A PARTICULAR FORMALISM
than 10% of a hadron mass but presently they are supposed
to contribute with a negative mass shift of the order of 50%
of the bare masgl5-17. The quantitative results of this paper will be obtained with
Moreover it is possible to prove that the vacuum solutiona particular chiral invariant strong potential which is an ex-

A. The choice of an effective interaction

035209-2



NEW PERSPECTIVE ON THE SCALAR MESON PUZZLE. . PHYSICAL REVIEW C 60 035209

tended version of the NJL potentiff]. For the study of 0
dynamicalySB it is crucial to have a closed chiral invariant Vik)
model where calculations can be carried until the end, be- -20
cause precise cancellations occur. A result of this constraint i
is that the same interaction must be used in the kernel of the -40
bound state equation and in the creation of quark-antiquark i

pairs. Another result concerns two-body scalar interactions -60
which are ruled out in this scheme because they violate chi- i
ral symmetry.

Recently it has been found that this potential can be
linked to QCD[18]. We first integrate formally the gluons B R e T
from the QCD action, and get an action of Dirac quarks
which interact via cumulants of gluons. Expanding in cumu- FIG. 4. —Ue Ko™V is an example of a potential which tends to
lants we get the Hamiltonian —U+K3r2 in the limit of infinite U. We illustrate this in the case

whereKy=1, U=100.
H= f d3x

-80

P (x)(MeB—id-V)i(x)

teraction, and allows us to work in a framework which is
familiar to Schralinger’s equations.

a
E 2 g4y p,)‘_ Another class of extended NJL interactions is Euclidean,
+59 Y(X) v h(x) ; :
2 2 and, due to the structure of the interaction, usually has no
\b analytic continuation to the Minkowsky space and lacks con-
><<A2(X)A2(y)>lﬁ(y)y”7 Wy)+---. (2)  finement. This class has been extended in many different
directions. For instance, finite size bound states were in-

. _ cluded with the global color model of Rdf27], and a so-
The first cumulant, of two gluons, can be evaluated in thephisticated interaction with a general tensor structure, an al-

modified coordinate gauge, most linear long range, and a pertubative short range is found
in Ref.[28].
(Ai(x)Aﬁ(y))=xky'fldadﬁa”“‘)B”(”) The Fourier transform of the potenti@) is
0 N N
—3N A 3
X(Fiu(%0,@X)FP(yo.8Y)) () Vil ® Q=77 5@ 5 [%® yo(~KoA=U)
as a function of the nonlocal gluon condensate. The calcula- +ayey(—KgAa1(2m)38%(k),  (5)

tion on the latticg 19] of the full nonlocal gluon correlator

lends supporft18] for the picture of a simplified Dirac quark- where we do not display the sum in color and Dirac indices.

quark interaction In Eqg. (5) the operatorg), include both the color Gell-Mann
matrices and the Dirac matrices. The factof simplifies the

) a ) 3 5 ) color contribution for color singlets.
9(ALOOALY)) == 7 Sanduil g, Ko(x—y) "~ U] The y,- v, term in the potential is the limit of a series of
attractive potentials, see Fig. 4, abdis an arbitrarily large
+ag,ik§(x—y)2 8(x°—yO). (4)  infrared constant. The infinitd reappears in the self-energy

and in color singlet channels this cancels the infinitely attrac-

Because the Gell-Mann matrices are traceless there will blive potential. Any colored state will have a mass propor-
no tadpoles in this scheme. This interaction belongs to donal toU and in this sense will be confined, see Appendix
class of extended NJL models, which has the single drawA.
back of using an instantaneous potent&tcept for Lorentz The choice of a harmonic potential is not crucial, a linear
invariant extensionf20] of this clasg. But it has the advan- [22] or funnel potential has also been used, but a quadratic
tage of being confining which allows one to study the wholeform is simpler. In the case of light quarks the current quark
[11,12,21-2% hadron spectrum. For the theoretical founda-massm, is almost vanishing and it essentially affects the
tions of these models, including the connection to both perfamily of the 7 which is a quasi-Goldstone boson.
tubative and nonpertubative QCD, see R&B]. The y-y term improves the Lorentz invariance of the
This particu|ar Simp|e model is in very good agreementvvave function of piOﬂS which must be relativistic in the sca-
with the experiments: hadronic spectroscopy, the decays dar decay. Clearly the wrong result of a simpjgy, instan-
the vector mesong and®, the coupling of ar to aN or A taneous interaction is the constant which is quite small
and theNN short range interactiof12]. Moreover it suggests and is not Lorentz invarianf®+ (" . The hope to curé,,
that chiral symmetry breaking is very stable in the presencavith covariant extensions of the model turned out to fail
of nuclear mattef25]. While confinement is an essential since they merely20] increasedf , by 30%. The value for
physical aspect of the model, the instantaneous approximdhe parametea which renders thé . Lorentz invariant isa
tion simplifies drastically the energy dependence of the in=—0.18, and for most calculationiexcept forf . which is
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increased by 300%, see Sec. )l fhis a yields a result com- 2.0 g ¥ y T
parable to the one we had far=0. The small suggests that 0
the cure off , may be related with a pertubative short range 15 .

[26] quark-quark interaction.

Oncea is fixed, this model has the single scale of the
oscillator parametelK,. The simplest dimensionless units of
Ko=1 will be used from now on in computations. When

comparing with experiments we will rescafg to the value 0.5 -

of Ko=330 MeV which gives the best overall fit of the me-

son spectrum. In the case aF=0 the the full light quark 0.0 ; 1 z k. ; 3
0

meson spectrum was well fitt¢d1] with Ko=290 MeV. In
the case of a finitea the quark-antiquark interaction is

weaker, and a slight rescaling Kk, is needed. FIG. 5. We show the BCS chiral anglg(k) in units of Kq

=1. We also represent with a dotted line the chiral angle that we

obtain going beyond BCS.
B. Chiral symmetry breaking at the BCS level with quarks

and antiquarks gator can be decomposed in a quark propagator and an

At the BCS level and with a color dependent interaction@ntiquark propagator, moving both forward in time.
the Schwinger-Dyson equation for the quark self-energy

(which is also the mass gap equajios Soirad Ko, K) = Tr——
Tl =5t o 1+ (M/E)B+ (K/E)a-k
B KO_E+|€ 2
Sl'=— p-3% (6)

i 1—(m/E)B—(KIE)a-k
B _KO_E+|€ 2

where the full(up to the approximation which is chogen
propagatotS is denoted as usual by an arrowhead on a line. 9
The subindex, is reserved for the free functions. The effec-
tive quark-quark two-body interaction of EqR), a chiral

invariant and color dependent interaction, is represented with
a dotted line. The Bethe-Salpeter equation for the vertex is
related by the Ward identities with E¢p), see Appendix C,

It is convenient to usgl1,1Q the quark energy projectors

1 .
E(1+s,/3'+c|<.5z)=§ usuy,

: 1 -
o = +>.= A"=5(1-88-Ck-&)=3 vovl, (10)
H S
where S=sin(¢)=m/E, C=cos()=kKE and ¢ is a chiral
d4k angle, which in the non condensed case is equal to arctan
I'(p,q) =T +f 4 (K)QS(p + k) (mg/k) (Mg is the current mass of the quaykout is not
2m ) determined from the onset when chiral symmetry breaking
F(p +k,q+ k)S(q + k)Q 7) occurs. In this case the physical quark mass is a variational
?

function m=m(k) which is determined by the mass gap
equation. This is equivalent to using the chiral angle

where the full vertex'* is denoted by a filled circle with two = (k) as the variational function. In Fig. 5 we show ex-
emerging lines. When Ed7) is iterated, we find that it in- @mples of nontrivial solutions for the functiap(k).

cludes the Bethe-Salpeter ladder, which will be represented The energy projectors can be decomposed in the quark
diagrammatically by a box with 4 emerging lines, spinoru(k) and in the antiquark spinar(k):

e[| naliine ® = u(0)—[\/is+,/isi(.*
= 7 + + +... s _\/m s\V)= 2 2 a

where the ladder represents the mesons, see Appendix C. Ig (k)= A~ vi(0) = [1+S [1— aly
this way the quark propagator, the vertices and the mesonss'*™/ — i+ts)2 o 2 s, a
are intertwined. ( )

In this case of an instantaneous interaction, it is conve- =—ioyysul (k). (11

nient to express the Dirac fermions in terms of Weyl fermi-
ons, in order to find the hadron spectrum. The Dirac propaAnd finally the Dirac quark propagator is decomposed as

us(0),

s(0)
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S W.K)=U(K)S, Kut(k)B—vT(k when the quark antiquark pair creation operators are postu-
oirac W) =UCk) Sq(Po. k) (k) B=v (k) lated to vanish in the Hamiltonian, in order to ensure the
XSE(_pOa_IZ)V(k)Ba (120  vacuum stability against spontaneous generation of scalars.
With the present method we project Eg5) with the spinors
where the quark and antiquark Weyl propagators are u'...u andu®...v, and we get directly the quark and anti-
quark energy and the mass gap equation
. . [
Sq(w,K) = Sg(w,k)= W_E®) Tie’ (13 o atio | s f dw' d3k’ e
(k)=us(k){ kk- a+moB— 27 2m)° 1(k=k")

This quark and antiquark formalism is convenient to calcu-
late hadron spectroscopy. With Weyl propagators the BS QAT (K)Q, QA" (k)Y
quatiqn simplifies into thia Salpeter equation,. in a form X W—E(K)+ie —W—E(K)+ie
which is as close as possible to the more intuitive Schro
dinger equation. In the Feynman rules with Weyl propaga-
tors, we choose to redefine the vertices of the effective POy = uf(k (ki( St J dw’' d%’ iV(k—k'
’ =u catmyB— | =— 5—3i -
tential which now include the spinots, u, v, andv. The s(K) atmofs 27 (27)3 ( )
minus sign which affects the antiquark propagator in Eq. o 10,
(12) could also be included in the vertices witi, but we { HA (K )Q_' _ Ak )Q'.
prefer to recover the equivalent rules which are common to w' —E(k')+ie —w'—E(k')+ie
nonrelativistic field theory. This minus sign, together with
the one from the fermion loops will be included in the anti- In the case of an instantaneous interaction, the loop integral
quark vertex and in diagrams with quark exchange or within the energyw removes the pole in the propagator
antiquark exchange. The Dirac vertgy is now replaced by
ufu, u'v, v'u, or —v'v as the vertex is respectively con- dw i 1
necied to a quark, a.pair creatio.n, a pair annihilation, or an J' Py m: 2
antiquark; and the Dirac vertey is, respectively, replaced
by utau, uTav, viau, or —v'av. We choose the graphical

; : and in the case of a quadratic interaction, the loop integral in
notation for the Weyl propagators of quarks and antiquarksfhe momentum is transformed in a Laplacian, see ().

Some useful properties are

us(k),

Vsrr(k). (16)

17

-
w,k

SDirac(w7 'I;) =" D )

Ulusrzlgssr y U;Vs’zo[&'Ri 0-2]55’ ’

U;[))US/:S§SS/ , UlﬁVS/:_C[&'Ri 0'2]331 ,
(14

where the diagrams using the Feynman rules corresponding U@ -kug=Cdsy, uld-kvy=8dkioolss,

to the Dirac fermion propagators will have a subinggin

the remaining of the paper. In the case of the Weyl propaga- ulﬁ&- kug =008y, U;B&' kvg=1[¢ kioy]sy -

tors (which will be used more often the the Dirac propaga- (18)

tors) the quark will be represented with an arrow pointing to

the left while the arrow pointing to the right represents ame get finally for the quark energy,

antiquark(both move forward in the time directipn

1 “ N
C. The BCS mass gap equation and the quark energy E(k)=kC+mg+ §[+SA(S) +Ck-A(kC)]

Here we derive the mass gap equation, and the quark

' i i i i U 1 I
dispersion relation, replacing the propagator of Ek) in " —+a§[—38A(S)—Ck-A(kC)]

the Schwinger-Dyson equation for the quark self-endfjy 2
. U P> C?
1,1 -1t — K —mo =-+kC+myS— - =
U U —v T =0— = 0 2
wk w,k s ) p D 2 2 k
15 SCA i S+ =] p? (19
—a = - '
Another equivalent method is to use the Hamiltonian formal- e 2)?

ism for the quark and antiquark creators and annihilators

[10], and find the Bogoliubov-Valatin transformation which where in color singlets thg/2 term will cancel the- U term
would minimize the vacuum energy density. In that Hamil-from the two-body quark potential. For the mass gap equa-
tonian formalism the mass gap equation is also obtainetion we get
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1 o componentp*. The Schrdinger limit, where only the posi-
kS=moC+ 5[~ CA(S)+Sk AkC)] tive energy component is considered, is therefore acceptable.
A general form for the>P, wave function for the scalar is

0=

[0 ki 0'2]3132

+a%[+3CA(S)—s“k-A(RC)]][&- ki oy]sy

“(K)g.s. =Kpg(k) ——— 22
e ¢ (K, =kps(k) — (22)
=—A¢+2kS-2meC— — 7~ —(2C?+1)A¢
the truncated BS amplitude is then
1 "
+25C\{ ‘.PZ__Z (20) 2k (k) [o-Kioals s
k Xe= A T A U (0) v (0)A 0
The mass gap equation is in general a nonlinear integral
equation, but in this case of a harmonic potential it simplifies At Ba-Koy(k)
to a differential equation. We solve it numerically with the =~ =QA —————0,. (23)
Runge-Kutta and shooting method, see Fig. 5 for the solu-
tion. We get for left-hand side of Eq22),

D. The pseudoscalar and scalar solutions

+ _1l+a L. 1-a N
to the Salpeter equation u'(k) x(k,0)v (k)= 2 A(g™)+ 2 SA(S¢™)

The homogeneous Salpeter equation for a méaarolor
singlet quark-antiquark bound stais, according to Appen- + 3
dix C,

1-3a 1-3a
CA(Co")+ —z—C%",

+M(P)—E(ky) —E(k,) 29

¢"(k,P) . . _
i and the radial Salpeter equation for the scalar in the center of
- mass is
=—iu'(ky) x(k,P)v(ky),
[2E(k) M (d2 2 ¢2+C2 c? il
—M(P)—E(ky)—E(k M-l g 5tz —al —Cha
(P) i( 1)~ E(ky) 6(k.P) dk? k2 2 "k dk
. ~d c? Lo1+2c® N\
=—ivT(kp) x(k,P)u(ky), +25Coq 1z TSCet @ | [k“¢s=0. (25

d3k’ Solvi ) ] .

_ o IN L T olving the bound state equation we find that the solution of
x(k.P) f (2m3 Nk KD[u(k) ¢ (K, PIvi(ke) the equation is very close to a Gaussian,

+v(ky) g (K, P)uT(ky) 10, (22)

o~ K?2al NN

- V3al?

, ag=0.476 (26)
wherek;=k+ P/2, k,=k—P/2, andP is the total momen-

tum of the meson. We use the Bethe-Salpeter amplijudse

an intermediate step to compute the contribution of interacand the mass b1 =2.94K,=970 MeV which is close to the
tion V to the bound state equation. The wave functignis ~ most probable experimental mass of feground state.
and¢~ are equivalent to the Bethe-Salpeter amplitydEor We now study the pseudoscalar ground state in theRow
color singlets the contribution of the infinite infrared con- limit, which was already studied extensively in the literature
stantU are canceled, see Appendix A. The equation is als¢11,12. For vanishingP we find that¢"=—¢~ and both
flavor independent, and we will now concentrate on theare proportional to sirf). This is due to the Goldstone boson
momentun®spin part of the wave functions. We will now nature of ther, see the result of Appendix C. However, this
drop theU term, the color matrices and the color dependenc€omponent of the wave function has zero norm, and it is
from the equations. In this section the matriégswill only ~ necessary to include the next order of the expansidd o
include the Dirac structur®,® Q= y,® yo+a¥- ® 7. With ~ determine the norm. The most general I&wpseudoscalar
the aim of studying thé, decay in a pair ofr, we willnow  wave function is then

solve the bound state equation equation for the sdalan

its center of mass frame and the equation for the pseudo- a1 s 'Vl(':’)f P Kx G iop
scalar ground state in the limit of smallP and in the limit ¢ =Np T Kk 1+'91F' xXo E
of largeP.
Due to the large mass of the scalar medgnin this P B .
model, it turns out that the negative energly component =N st (_)f i kX & 102 2
. L ¢ p k 1 Iglk g ' ( 7)
for the ground state is less than 10% of the positive energy V2
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where the norm is a function of the energy ’n ' T - T
ik bS
(s) AN i
NG=(21)M,  MA(P)=M%(0)+P?\/ 7, [N\
s 1 \\ -1
2mo(yy)  — d’k I A
2 —_ _NTTr — . =D
WO e s e —
o gl /k | TTTreresseeenenneet |
and where in the case of an instantaneous interaction there -1 . L i

0 1 ' 2 ' 3
are[11,17 usually two different and (9,
FIG. 6. We represent the wave functionsS f,/k, andg, /k,

® 3 (= respectively, with solid, dashed, and dotted lines, in the dimension-
= 2 ) dkkf;S, less unitsk=1.

1 (= ) . (k, +k)+igx(k, —k!)
VIR = \/ﬁ fo dk— k2S¢ +4kC(g; + 1/2). ul(ky) @ug (kp) =P sy + 5
(29) (33

Up to first order in 2P the equation for positive and negative

Substituting the wave functions of E(7) in Eq. (21), and energy bound-state functions” (k)i /y; is

expanding the resulting equation up to the first ordd®,ime
get the equations for thig, andg,; components 2 £

2k . . P
0= P+?IM—(1—a)Ak ¢—(k)—2|(l—a)5
N _ 2,2
f1 1+a(282+1)[ kS+(2Ck)f,;+4a(—SCAp—C“k o ) 2 -
. XVie{d,¢7 (K —ald™ (K= 520, ¢ (K)o, .
+S2p2+ ?/2)f,—4aSCp(f,—f1/K)], (30)
(34)
1
gl:m[kCHZkCJr 25%/k?)g, + 2a(S?/K? We find that the wave function has a component with struc-

tureia- Px k. However, this component is smaller than the
—2SCA@—2S%p?)g;—4aSCp(§,—9,/k)]. (31  swave component by a factor of less tha® 1Thus we find
that the momentumspin solution in the limit of largé®, is
It turns out that the parameterhas little effect on most essentially a positive energy Gaussian functigi(k)
functions, except fof, (see Fig. 6. The homogeneous equa- X(io,/v2),
tion for f; has the solutiorag= —0.195 and thug, is pro-

2
portional to 1/6—ay) . This will essentially affect(V, £ (= e K2ag = 2w\, /1—aP
and the pion velocityc. We find fora=—0.18 thatc=1, Pp(k)= N, TP - a, » XpT 2
f=£(5=021K,=69 MeV. This shows a clear improve- (35)
ment of the model, with a correct relativistic pion and a . ) ) )
betterf .. For large momentun we find that¢™ is quite flat ink,

We now discuss the pseudoscalar ground-state in thwhile ¢~ is almost negligible,
other limit of large momentun®. In this case the negative
energy components are suppressed by a factorf The b = iA¢+_ (36)
chiral anglee, depicted in Fig. 5 vanishes completely, and 2P

the spinors are simpler, for instance, ] ] ) ) o )
This result is consistent with relativistic space contraction.

We checked that the components that we neglected here
1tak kb 2i Id yield Il contributi he, d
Us(kl)zTUs(O), k12P+5k¢, (320  would yield a small contribution to thg, decay.

>

E. The coupling of a scalar to a pair of pseudoscalars

where the index. denotes the projectiok—(k-P)P of a The form factorF(P) for the coupling of a scalaf, to a

vectork in the plane perpendicular . The vertices, Up 0 pajr of 7+ can be decomposed in diagrams where a quark
first order in 1P are, for instance, (antiquark line either emits(absorb$ a pseudoscalar or a
scalar. We use the truncated Bethe-Salpeter amplifides

an intermediate step to compute the coupling of a meson to a

1
t AP _ T~ - [
Us(ky)Usr (k) = ey = G aee P (K, —ky), quark lineuTyu. F(P) is represented with a large triangle

[5)
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and the bound state amplitudgsnd ¢ are represented with We now consider the opposite limit of large pion momen-
small triangles, tum P. In this case the negative energy component of the
pion is quite small. We expect that the dominant diagrams

ut are the ones of the first line of E¢35), which include only
4 fb 4 b the positive energy . This is present in either the coupling
b q p of a pion to the quark line, or the coupling ofato an
= + v antiquark line,
u d3k ! !
4» ﬂb& F(P)= [ cpmys @u(KLON= ALK P y(k, Pt
< > & (37
+ v +

+¢p(kup)¢p(k,1_P)ta] ’ (42)
K =k
This includes thayq pair creation or annihilation of Fig. 2.
The same irreducible interaction for quarks which is used i
the bound state equations is a[&9] used for the annihila-
q

ryvheretq andtg are, respectively, the traces in Dirac indices

tion. In Eq.(37) the loop energies are trivial, see for instancet _

—loy | - g2
G- kouT(ky)Qu(k vT(ky)Qu(k
Eq. (A3), and we now compute the moment@ispin contri- e 1) (kz) u( 2)

bution.
We first consider the limit of a coupling to pions of low - IZl (1+8) (1+a- ﬁl)
momentumP. The coupling of the pseudoscalar to the quark =1 3 2 W
is derivative and thus is suppressed. For instance, in the case
of a masslessr in the center of mass, using the wave func- (1+a-k) 1 (148 (1—-a-k)
tion of Eq.(27), we find that X — Vs
V2 V2 2 v2

x=[—(1-3a)V2N, *A(S)]1BYs

+0o(P)=u'(k) x(k,0)u(k)=0(P), (38) X0

v2 v2
which is consistent with the derivative coupling of a pion to
a quark. The dominant contribution includes the coupling o

the 3P, scalar meson to the quat&ntiquarR line. The cou-
pling F(P) to a pair of pions with low momenturR is

ndtg, of the second diagram, with the coupling of the pion
to the antiquark yields the same result. The total coupling is
a functional of the scalar and pseudoscalar wave functions,
which are described in Eq&26), (35) by Gaussians. We now
d3k apply the Laplacian to the functions &f. The dominant
F:trf ——= ¢ T(uTyup + ¢ vixev), (39  term of the expansion in B/comes from the derivatives of
(2m) ¢p. A derivative of ¢pp(k’,P) will be proportional toP/2
. : when the Gaussian integral is performed, while a derivative
where, for instance, we get for the scalar couplifigsu to ) i o .
the quark line of tq or ty which are functions of respectively or k; is
proportional to 1P and will not produce a dominant term.
The traces then simplify to

5
uS (k) Xs(k)usz(k) -

tq tﬂa [1 (ky-k2)2]. (44)
—(1-3a)SA(Ckeg)] (40)

except for the—i factor which goes with any potential in- We now apply the Laplacian ¢, and expand th&1 ky in
sertion according to the Feynman rules. We will discard it ina series of 1. It is convenient to define?=2a2+ a , and

this section. Integrating by parts, E@9) can be simplified we get finally find for the momentugspin contrlbutlon
with the help of the mass gap equation and we get

p —(pl2)?a?
+0 e T,
A3 o2t a2)%3 2

647T3/4 l/2a2 p 2
F(P)= 5

d® Ko .d bt
J( [ kS+<pdk+aSCA (¢~ ") (45)
0 OlJK0 0.052M?(P) 2 where the dominant term is theeterm which is of the order
ZM(P) 0 - (4D 6f 0.43 Ky 2 for P of the order of XK.
The color factor forf, and 7 color singlets is /3. The
This coupling is very sensitive to the pion decay consfant flavor factor for the coupling of a scalar isosinglaiu
and to the energW (P) of the pion. +dd)/\f to a pair of pseudoscalar isovectors, $wy and
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08 —r used in other sections for the vector or axial vertices. The
5@l | :' width I' is a simple function of the imaginary component of
S —— AM,
0.6 P Vel S -1
S ..,
,/' ~~\~ ] A ) T 1 )
o L ,’I :~ P —oo ~\\\~ i Im( M)__IE, F_EPMfO|F(P) |, (48)
] e,
] ~~\~
,l' =~ whereP =3 \/M2f0—4M Z is the momentum of the emitted
02 7 Let us consider the case of a scalar mislsg of the order of
F 0 1 1 GeV, whereP is larger than the scale of the interaction by
o0 =i b)) a factor of 1.4. In this case, it is sensible to use the limit of
0.0 05 L0 1.5 20 25 p 30 large momentun® for F(P), see Eq(45). We finally find a

partial decay width of just 40 MeV foF ,— 7 which lies

within the experimental limits. We expect that a complete

calculation without the larg® approximation would not de-

viate from this by more than a factor of 2.

—du, with a flavor independent quark-antiquark annihilation This result is also compatlble with thg Narrow resonances

i 7i/ﬁ The total coupling is ther- F(P)/\6 fo(1500) anday(980) which are possible ground states.
' ' Concerningk§ (1430), which is wider and has decay prod-

The functionF(P) is very cumbersome to derive in the cts with a larger momenturR, the functionI' (P) of Eq.

case of intermediate momenta. For momenta of the order #48) has the correct qualitative behavior of beind bropor-
Kg, see Fig. 7, matching the high and I&®imits with an q g prop

: : o : L tional to P3 for intermediate momenta. However in this
Interpolating function is a possible approximation. model the exponential decrease is too strong, and the model
needs some improvement in order to reproduce the correct

FIG. 7. We showr(P), in the dimensionless units df,=1.
The dotted and dashed lines correspond, respectively, t&land
high P limits.

F. The f4(980 — 7o decay %(1430).
The decay width of &, in a pair of 7= can be calculated
from the the Breit-Wigner pole in the meson propagator. We Ill. GOING BEYOND BCS
call the bare meson the one obtained from the ladder dia- WITH FINITE COUPLED CHANNEL EFFECTS
grams, see Eqg8), (C1), and(C13. The bare mas# is A. The mass gap equation and the self-energy

real and is a solution of the Bethe-Salpeter equation. When
coupled channels of mesons are included, the bare meson is We find in Appendix D that the minimal extension of the
dressed. The dressed pole is composed by the bareivhass Mass gap equation beyond BCS is achieved with a new tad-
plus the coupled channel contribution which includes a reapole term in the self-energy

mass shift, and an imaginary term in the case where the mass
is above the coupled thresholds. The mass is then

M=M+AM, AM=-—

by
Ne /]
fo\ l/fo >< 46
Efo _ xy T, +
where the subdiagrar® is defined as an intermediate step.

where we only included a loop of bare which is the sim- This amounts to extending the mass gap equation for the

plest contribution to the scalar self-energy. The integral in L
the loop energy provides an extrarRfactor, which implies self-energy of the quarks with simple one meson exchange.

. : . Using the Weyl fermions, and expanding the ladder in meson
that in generaAM includes a real component, and we find poles, we find that the self-energy of the quaaiatiquark

’ (49

that has a diagonal componeity which contributes to the dy-
namical mass of the quarantiquark
d®q [F(a)*/VBI[F(a)/\6]
(2m) My,—2 q?+MZ+ie Y= i+ (50
d "

where the factor of 6 includes the three different flavors of

the isovectorsr, and the factor 2 from the direct and ex- and the energy of 1 quark is identical to the BCS energy of
change diagram of the self-energy in E46). In this section Eq. (19) except for the expected changes of the chiral angle
we usually represent the width of a resonance by which  ¢. In Eq. (50) we only included the nonvanishing diagrams
should not to be confused with the same symbol which isvhich remain from an expansion in powers ofJ1/The free
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Green functions are proportional 10~ 1. The interactions momentumP it is relevant only for the pseudoscalar family
without a pair creation or annihilation are proportional to theof the r. We suppose that the large number of excited states
infinite infrared constant), while the remaining interactions is not sufficient to compensate the smallnesgof and we

are finite. It turns out that the new coupled channel diagramsvill not consider this ultraviolet problem. Thus we will only
vanish. This happens because in the limit of an infiritd include the coupled channel contribution of thdamily. In

the box diagrams in Eq49) which contribute to the quark the case of low momentum, the family has a extremely
energy vanish. This is the case, for instance, of diagr@ns large ¢, however, the coupling to a quatK yu is deriva-

and (b), tive and vanishes. This prompts us to neglect the last line of
Eqg. (53). Finally we can remove, with a functional deriva-
e 0 — 0 —_ _ ™ tive, the generic scalar wave functioﬁo. The result after
I e M ; integrating in all the loop energies can be represented,
(a) (6) (e) (51
We find that the quark enerdy=E,— 2,4 remains the BCS kol X Kk
energy of Eqs(16)—(19), So=1 , ss Fa 4 % P -
S5 85 S§2 k! S2

- 1 d3k’
E(k)=u"(k)a-ku(k)— E[ uT(k)f ka—k')
le[M(k')—A—(k’)mlu(k)]. (52

However, the last diagram of E¢1), which contributes to
the mass gap equation is finite.

The mass gap equation is obtained when we impose tha{here the lines only represent the spinars, u', orvT, the

the anti-diagonal comp_onenﬁa of thg self-e_nergy .must integrals and the traces and no longer include the quark or
cancel. As in Eq(16) this component is obtained with the antiquark propagators. The mass gap equatioﬁspl
projection of the spinora® andv. This produces a function —3_is now a

a

3 4 with the quantum numbers of a scalar, see E28) and
(22). In order to use the results of the preceding section, it is a3k’
convenient to foldX, with a generic scalar wave function (= +U;F (K)é- |ZVS (k)— { ul (k)f ——=V(k—k")Q,
¢f+0. Then the resulting product must vanish for aﬁ@é In ! ° ! (2m)

fact this ensures vacuum stability since this prevents the
vacuum to decay in scalar modes. The diagrams that contrib- +
ute to the antidiagonal component of the self-energy in the
mass gap equation are now

1)
SoSy

d*p
Us,(K')| — —JW¢SZS3(P,k'—P/2)

X s, (PK = PIZ)) ul (k") = v, (k')

tr{ot (k)'S.} =
r{ o } + - X(%_I(3;7:3(bs—zss*r(p,kf_p/z)qgs‘sS4
t

2
4% x(P,k'—Plz))v;(k’)

where the sum over repeated spin indegeis assumed.

I u } B. Model independent effects of the coupled channels
qg»» Q‘.& (53 The dominant effect of coupled channels in E8p) is to
+ v + R multiply the potential term in the mass gap equatib6) by

a factor of
In Eq. (53) we only show the diagrams which are nonvan-
ishing in orders of A4, and in fact they all are finite, of
order U°. The first pair of diagrams are BCS diagrams. It
turns out that the new diagrams are the same diagrams which
contribute to thd ;— 7® 7 coupling, except for the negative This clearly decreases the term which is the source for the
energy wave function of ther and for the integral in ther ~ spontaneous breaking of chiral symmetry. Thus the coupled
momentumP. The negative energy wave functigh™ al-  channel effect is to restore partially the chiral symmetry.
ways vanishes for high momentum and in the case of low This effect is independent of the quark-quark interaction.

n.vss(lo} , (55

+

d*p
1—2f(27)3¢;¢;f. (56)

035209-10



NEW PERSPECTIVE ON THE SCALAR MESON PUZZLE. .

The signs of the new terms in the mass gap equation
deserve a special attention since they determine whether the
coupled channel effect will increase or decrease the chiral
condensation. Because the coupled channel terms introduce
in the mass gap equation a new fermion loop it is natural for
Dirac fermions that the coupled channel terms should be af-
fected with a minus sign.

When the Dirac fermions are translated into Weyl fermi-
ons the quarks divide into the species of quarks and anti-
guarks which have independent field operators and propaga-
tors, and the minus signs are transfered from the propagator
and the loops into the antiquark vertex and the exchangg,;

PHYSICAL REVIEW C 60 035209

——
-
-
e
-

L

-0.06

1
4

-0.12
0 P 6

FIG. 8. We show the integrand &{0), in the dimensionless

ts of Ko=1. The dotted and dashed lines correspond, respec-

diagrams, and Iopps with quarKantiquarks on_I)/. In .this tively, to the cases wherg is obtained in the lowP limit and in the
case we check with Weyl fermions that the minus sign Perhigh P limit.

sists and is due to the quat&ntiquark exchange. Only re-
tardation, which was not included here, might perhaps op-
pose to this negative sign.

This sign can also be understood from the perspective of
the Mexican hat potentiat A o2+ uo? of effective meson
models. In this case the quadratic term spontaneously creates
a scalar condensate, while the quartic term opposes to t d°
condensation and the actual condensate corresponds to the

—2P%¢~ (k+P2) ¢~ (k+P/2)T
(2m)* '

§=f dPdw (57)

m Egs.(27), (35) we get for the integrand of E¢57),

minimum of the energy density where the two terms are p2 f,(ky)]?
balanced. In the present paper there are three terms, a kinetic  P—0, _0'14W[S(k1) —M(P) K ,

term which opposes to the condens@ed has no correspon- (P) 1

dence in the effective meson modela BCS term which

spontaneously breaks chiral symmefityis equivalent to the a2p5/a

quadratic term of effective meson potentjaland a beyond P—o, —1.9———m e*kflaﬁ, (58)
BCS term which is equivalent to the quartic term in effective (1—a)'t*

meson potentials. This corres_pondence, which is supported

by the mean field theory whefe/)= o, confirms the nega- |\ hare the spin factori ¢, /vV2)(—io,/v2) =1 is included.

tiv? sign of the coupled channel term. Thus we may assumepe integral that leads t§ is now evaluated with an inter-
quite generally that coupled channels oppose to the break'rkgolation between the two limits of E458), see Fig. 8. Be-

of chiral symmetry. _ cause this interpolation is arbitrary, we have to include in the
An interesting feedback from chiral symmetry to the nar-.oq it 4 theoretical error.

row width the ground sta.te.occurs. Chiral symmetry breaking \ye obtain the momentusspin coupled channel contri-
can be understood variationally, the solutigifk) of the — p o
mass gap equation also minimizes the energy deésifithe
vacuum.£ is the sum of three terms, the free one, the BCS
one and the beyond BCS one. Only the BCS term is negative
and drivese(k) away from the trivial vanishing solution.
The actual solutionp(k) minimizes the free terrand mini-
mizes the beyonBCS termand at the same token produces Which turns out to have a shape very close to the function
the most negative BCS term. In E(53), we saw that the S=sin(¢) which was evaluated at the BCS level. We esti-
beyond BCS diagrams in the mass gap equation are simildnate that the coupling to the quasi-Goldstone bosons, includ-
to the diagrams of coupling of a scalar to a pair of pseudosing the momentum, spin, color, and flavor contributions
calars(with low to moderate momentumThus we conclude Yields
that this coupling is naturally suppressed and that this sup-

=—(0.3:0.2S, N{=2-3.

&(k)=—(0.4x£0.1)S (59

pression is selective in the sense that it should not occur in
other hadronic couplings. This has an amplified effect in the
scalar width which is a function of the square of this cou-

pling.

1

1
§(k)z—(0.4t0.1)8§<Nf_N_f

(60)

C. Solution of the mass gap equation N; is the number of almost massless quark flavors which

We will now focus on the dominant terms among theempirically is between 2 and 3.
coupled channel contributions. We obtain the The mass gap equation can be solved for a coupled chan-
momentun®spin coupled channel contribution nels contribution equal tg, whené=—1,
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expected. In this sense we agree with the results of Geiger
\ and Isgur[31]. Nevertheless mass splittings between states

with different quantum numbers are still expected from the

bound state equation. Different theoretical problems that

could be reviewed with these new techniques are the contri-

bution of the coupled channels to the hadron spectra, for

oo instance, to the interesting’ mass or to the nucleon mass.
(1+6)+ asmg] o-kioy. We conclude that in general the results of this paper, without
ruling out other perspectives, explain why the naive quark

(61) model is so successful.

—_ntl 2. 1 + -
0=u a.k—EQJV(A —AT)(1+6)Q,

Ao -
=:kS—[1—a(ZCZ+ 1)][7(1+ §+éoe

1
—S%P'Fa 02

1
e

The solutione for £=—0.3Sz¢g is shown in Fig. 5. In this

case and for the same parame{gr, quark condensatg) )
is decreased by a factor of {10.12)°. | am very grateful to Emilio Ribeiro for long discussions
and suggestions since 1989 on the pion mass problem in
relation with the coupled channels, on the BCS mechanism,
and on Ward identities. | also acknowledge George Rupp,
We developed a general formalism to include both theJean-Marc Richard, Jack Paton, Robin Stinchcombe, Nils
effects of chiral symmetry breaking and strong hadron-Torngvist, Vitor Vieira, Pedro Sacramento, and Adam Szc-
hadron interactions in quark models. This is encouraging€epaniak for comments or suggestions. | thank Sid Coon for
since both effects are firmly established in phenomenologya careful reading of the manuscript.
We find new general effects in the scalar meson width, in the
breaking of chiral symmetry and in the mass shifts qf t.heAF,F,ENDIX A: CONEINEMENT WITH INERARED EINITE
hadron sp'ectrum. Quantitative results are computed Wlth!n'a COUPLED CHANNELS
model which belongs to a class of Nambu and Jona-Lasinio
absolutely confining instantaneous interactions, in the case At the BCS level, the bound states are obtained with the
where the coupled pair of mesons are accounted as bare nledder approximation which is equivalent to the Salpeter
sons. equation, and to the Schdimger equatiorisee Appendix ©
We find in this model that the mass and width of the lightIn this case the infinite infrared divergent constanof the
qq scalarf, meson are closgl1] to the experimental mass interaction(4), (5) is extremely convenieri23] to remove
and width of thef,(980), and not to theé,(400—1200) or the colored states, which have masses proportionl toet
thef,(1370). This apparently indicates a possible solution tas consider the dominant terms in orderdJobf the energy
the scalar meson puzzle without meson molecules, glueballef a system oh quarks and antiquarks. The one-body energy
or strongly nonlinear coupled channel effects. In this case th#cludes the self-energyl9) which is calculated with the
attraction which is visible inrr phase shifts and in the in- Schwinger-Dyson equation
termediate rang®IN interactions would need other interpre-
tations[30] than the very wider meson. 3/uU _ N
Compared withySB at the BCS level, a new parameter >, Ej+ >, Vi=7 EZ 5 5 TUx o ?J
has been identified, which leads to the percentage of coupled ' =] =
channel effects in the mass gap equation. We find that R
coupled channels suppresses the breaking of chiral symme- = —ZUA-K, (A1)
try. This results are model independent. With our model we
get a suppression of the quark condensate £y55% when R
the coupled channel effects are included. where A is the Gell-Mann matrix of the total color of the
We find a new interesting feedback mechanism from chisystem. The energyAl) vanishes for color singlets only,
ral symmetry to coupled channels and explain it variation-while colored states have an infinite energy and in this sense
ally. The chiral symmetry restorating contribution to the are confined.
mass gap equation from coupled channels is closely related To include coupled channels in the energy of a color sin-
to the coupling of a scalar to a pair of pseudoscalars. Thelet, for instance, in a meson, we consider the complete se-
feedback enforces that the width of a ground state scalaies of diagrams that contribute to the irreducibje inter-
decaying to a pseudoscalar péawith low or moderate mo- action. One has to include all the possible number of quark
mentun) is reduced when compared to the width of anyloops and all the possible insertions of the microscopic
other resonance. This effect is model independent and comuark-quark interaction. Then this series can be resumed in
tributes to understand the scalar meson puzzle. order to factorize the bare mesonqq) and hadron(qqg)
Concerning real mass shifts we estimate that they are cafadders. According to Appendix C, the ladder needs integrals
celed due to the new terms which are introduced by the Ward(dw/27) in all the external relative energies in order to
identities. This might improve previoyd,12] coupled chan- have a hadron pole. To ensure, in a particular diagram, that
nel calculations where this cancellation was not explicitlythe meson poles are present, it is convenient to decompose
included. A systematic shift of the hadron spectrum is notthe ladder as
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dwdw i

:j]:=:+ el ne: J (2m)? W—E1+ie(_ivl3)

— (A2)

[ [
X ! ! H ! ! H
w' —Ej+ie —w' —E,+ie

where in the right-hand side the ladder is integrated and con- i i i

tains the meson pole, and the first pair of diagrams contrib- X ———— - -
utes to the overlap interactions of hadrons. In order to sim- W' —Ezt+ie W—Egtie —w—E,+ie
plify the calculations it is convenient to truncate eventually — _ ~ V314G Go, Go Go,- (AB)

the series of diagrams. The pertubative parameter is then the

number of considered ladders. This is both straightforward ) )

and also close to the hadronic phenomenology. The fourG, , will be absorbed by the Salpeter amplitudes
We now show how the interactions of color singlet lad-and the remaining factors are

ders can be finite, when they are built from the infrared di-

vergent quark-quark microscopic interactigd), and the i(E;+Ex+E3+Es—Vi3— Vo)) P
quark propagators are divergent as well. When a hadron is )

emitted or absorbed we have quark-antiquark annihilation =i(E1tEpt EgtEst Vgt Vas)Pys
overlaps, for instance, in a three-meson vertex, =Py Ey+Ep+ Vot Eg+EgtVay)

(A3)  where the infinite—U terms cancel in the same way as in
Eq. (A1) because the mesons 32 and 14 in the left and 12 and
34 in the right are color singlets. We find that all the terms

We first intearate the relative eneraies in the first diagram Proportional toU cancel when the complete set of diagrams
qu (A?%) egrate the relative energies € Nrstdiagrams Ofy hich contribute to the interaction between color singlets is

included.
In this framework the masses of bare hadrons and their
dwdw i o i interactions are finite and can be evaluated. Then we com-
f (2m)2 W—E +ie 'V14,3_W/ —Ej+ie pute the masses and widths of dressed hadrons. These are the

final freedom degrees which can be compared with the ex-
i i [ perimental spectrum of hadronic resonances.

"W —Ej+tiew—Eztie —W—E,+tie

. APPENDIX B: THE LIGHT AND WARD IDENTITIES
=—1V133Gg Go, Go , (A4) i
’ a b c

The solution to the pion mass problem is found using
. , . [22,37 the Ward identitieW]I) in order to insure that the
where theG,_ are in fact part of the respective BS ampli- |, state equation for the pion—a Bethe-Salpeter equation
tudes which are untruncated. The remaining factoW 1,43  with coupled channels—is consistent with the non linear
is finite because the term proportional thin the quark- mass gap equation. The WI were first derived for fermion-
antiquark annihilation vertex ig{(k) 53(k—k’")ug (k") =0. gauge field theories, and were initially based on the simple
When the number of hadrons are conserved, this is thebservation that for free fermions with propagatsy(p)
case in elastic scattering, we have quark exchange overlaps,i/(p—my) and a free vector verteR4 = y*,
for instance, in a four-meson vertex

i(pu— P, )S(P)T*(p,p")S(p")=S(p)—S(p"). (BL)

1
. xQEa (— - The diff in the right-hand side of th ti tend
e difference in the right-hand side of the equation extends
2 ”“*‘L ”‘—/\_ the identity to renormalized propagators and vertices. This
identity is then crucial for the conservation of electric charge.
(A5) The WI enforce that the self-energy of the MGE is obtained
(without double countingfrom the BS kernel by closing the
The integrals in the relative energies are fermion line where the vertex is inserted. Inversely, they also
ensure that the BS kernel is obtained if one inserts the vertex
) ) ) ) in all possible propagators of the self-energy. For instance
j dw : : ! ' this mapping is trivial at the BCS level where the mass gap
27 W—E;+ie —~-W—E,+ie w—Ez+ie —W—E,+ie equation(6) is clearly equivalent to the bound state equation

by 4

(7). Let us now consider a more general case, where the

:I(E1+E2+E3+E4)GOaG0bGOCGOd’ fermion self energy include a product of bare propagators
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Saiﬁi(ki+ P). The external momentum B andk; is a loop ~ Which diverges for a vanishing quark masg and shows

momentum. The propagators can be factorized and we getth"’.lt the pole of a massless pseudoscalar meson appears in the
axial vector vertex, with a bound state truncated amplitude of

$(P)=--I1 Sup(kitP). (B2) Bys

x(p—p’:0)=f—, (B9)

o
Then the vertex” can be constructed if we insert a bare

vertex in all possible bare propagators, and we get where f . includes a norm. Incidentally, this identity also
' offers a proof of the Gell-Mann, Oakes, and Renner relation.

If we expand the vertex'® in the neighborhood of ther
[#(Py— P2>=---§ iﬂj Su, 8, (Kin+ P2 v* pole,

i
xigj S5, kit P2). (B3) FS:XWW{X‘S‘(D)FSS(D')}, (B10)

Conversely the original self-energy can be recovered if wevhere we included the integral in the trace. SubstitufiRg

substitute the bare vertex by the difference of propagators in EQ. (B8) and performing a trace witl¥ysS, we find for
small masses

i(Py,—Pp, ) T#="-2 11 S, p,,(Kiat P, BSysS| i BSysS
i< N s f _ M2 r f Ys
: — : . BSysS —
(845K + P~ Sy (ki + P2 TT Sus izt P2) :tr[ e mZS }:_mo ()= — 2m () = MPF2.
=[2(P)—2(Py)], (B4) (B11)
where the products which depend on b&thandP, cancel, In QCD it is necessary to include the axial anomaly, in the
and this removes the double counting. flavor singlet WI which corresponds to thg channel. The

g’here is also a WI identity for the free axial vector vertexflavor octet axial currents remain unchanged, in particular
I'#°=yy> that involves the free pseudoscalar vertéX the m, K, » remain quasi-Goldstone bosons. We will now

=v°, simply assume that the' is heavier[2,7,17,34 than the
. ) 5 usualN?—1 Goldstone bosons, wheN; is the number of
—i(p,=p,)S(P)I*>(p,p")S(p") light quark flavors.
+2imS(p)I°(p,p")S(p")=8(p)y*+¥°S(p’)
(B5) APPENDIX C: THE SALPETER EQUATIONS

IN THE ENERGY-SPIN FORMALISM

which is valid in a renormalization program providing the  When the interaction is instantaneous, a simplification oc-

interaction is chirally invariant. In this case an equationcurs in the Bethe-Salpet&matrix in the ladder approxima-
analogous with Eq(B5) is made up of the axial and pseu- tijon

doscalar vertices and the self-energy.
A key product of the axial WI is the prodf7,33] that a

pseudoscalar Goldstone boson exists when current quark ::.:: =+ :—t: + 65 E

masses vanish and chiral symmetry breaking occurs. The full
propagator is then renormalized and the self-en&dyas a . -
masslike term _+E = E 4 %.é
N E
SHp) =8 (p)=2(p), iX=A(p)—pB(p), (B6)
—— T + - _
o A(P)p—B(p) e = ég B}
SHP)=S (p)—2p)=———— (BY)

i
+-) +- + E
If we substitute this propagator in the WI, we find the solu- T i _E (€Y

tion for the pseudoscalar verteR® with a vanishingp

_ p’ ,
B The S matrix only has four independent submatrices, which
I'S(p=p’)= ﬂys (8g)  have to be calculated iteratively. The other 12 submatrices
Mg are directly computed from the independent four ones. The
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Salpeter equations are obtained when all the relative quarkand the two-quark diagondy and antidiagonaV, poten-

antiquark energies of the systgi@l) are integrated, tials are defined, the solutions can be obtained numerically,
] . either iteratively or variationally, and one finds a whole spec-

f dw ! | trum of solutions with energM >0. WhenM increases, we

27 W+W/2—Eq+ie wtW/2—Egtie find that|¢, | is proportional toM ~%, and in the limit of

large mass we exactly recover Scofimger equation. How-
- (c2)  ever, another class of solutiogig is unavoidable, with a one
W-E,—Egtie to one correspondence with theé,, and where|¢,]|

+

The Salpeter equations can then be written in the compac%"’Sd r

form $i=dy . di=di . Mg=—M,,
S=Gy+GoVS=(Gy - V)S=1=(Wo3—H+i€)S=i,

0 0 (Go ) ( ° ) (C3 <¢u|03|¢u>:1’ <¢d|0'3|¢d>:_1v (C9

thus the spectrum is unbound. Exactly half of the solutions

where o is the Pauli matrix, ; ; ;
have a negative mass and a negative norm. When we include

stt  gt- the infinitesimali e in Eq. (C5), we find that the larger com-
S= s+ 5| ponent of dominates and the eigenvalues are now
. M,—M,—ie
i
- 0
W—-E,—Egtie Myg—Myt+ie=—(M,—ie€). (C9
GOZ . ]
0 : _ The operatordd and o3 are both Hermitian, thus the set
—W-E,—Egtie of solutions|¢) constitute a basis of the Hilbert space, or-
thogonal in the sense that|os|¢’)=0, and the identity
f f element is
Vg
o3l p){ |
1= o - o .
f f Vd 2 <¢| |¢> % 3|d’u><¢u| ; 3|¢d><¢d|
(C10
Eq+ E?Lf Vg f V, Inserting this partition in th& matrix equation(C3), we find
H= (C4 a3l )(¢
_ i=(Wo3—H)S= W H
fva Eq+Eq+de (Wos—H)S=2, (dla |¢>( 7
and it turns out thaH is a Hermitian and positive operator. tie)o 32 3 (4| 03S
The Salpeter wave-functions are the solutions of the homo- <¢| 3l &)

eneous equations, .
J q WM +ie(d|os] )

=2 a3l (¢losS,

MoyH6=04=(4 |, - (#lodl9)
i(¢|os|p)
which is an eigenvalue equation, similar to the Scmger 03$=E o3 d) WM +ie(dlogd) (],

equation, except for the;. This formalism is known as the
energy-spin formalism, whereé* is called the positive en-

i
ergy wave-function andp~ is called the negative energy S= 2 |¢u>m(¢u E |¢d)W(¢d|
wave function. The Salpeter equati¢@5) is equivalent to :

the variational equation (C1y
($|H| ) and the states with negative energy and negative norm can be
S —) =0, (Co) reinterpreted as bound states with positive mass moving for-
(Plos|d) ward in time, where the variabl/= P, in the propagator

which suggests that a normalizing condition of the wavellns out to be negative,

functions might be

i
822 |¢u>m<¢u|+01|¢u>

(dloslg)=16"1?= |47 |?=1. (c7)
Let us study the class of solutionf, where this norm is % (bolo (12
possible, i.e.|¢,|>|¢,|. Once the single quark energiEs —W—M,+ie Ut
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and it suffices to work with thep,. Diagrammatically we We now use the WI prescription of removing the vertex
get, for instance, and closing the respective fermion line to arrive at the mass
gap equation49). To recover the full vertex equation we
' must insert the vertex in all possible propagators of (B§).
dwdw ++ — . . .
(2m)? - :%@: We then arrive at a WI consistent Bethe-Salpeter equation

for the vertex and for the bound state,
* @ 13 NS
o= = [y + ! = +

wherew andw’ are the external energies. The quark anti-
quark BS amplitude is represented by the triangl@and the ?‘“?‘—0*}=
boson propagator of the meson is represented by the double
line =. It is consistent to substitute the; wave functions
and masses in terms of the compone§,#, and the
massesM . In the paper this reinterpretation will be as-
sumed and we will skip the subindgx The practical result

is that we can use the amplitude”™ when the bréket) pre-
cedesgsucceedsthe meson propagator, and we use the am-
plitude ¢~ for the opposite case.

APPENDIX D: THE BETHE-SALPETER EQUATION
WITH COUPLED CHANNELS

We now go beyond BCS including the mesonic coupled
channels both in the MGE and in the bound state equations.
It is convenient to return to the Dirac formalism in order to
reduce the number of diagrams when we apply the WI. We
will extend the BS for thejq bound state of the quarks with
the minimal meson loop of coupled channels

(D1)  where the diagrams are shown in separate lines according to
their properties. Line 1 corresponds to the BS equation at the
BCS level. Without the other lines it would reproduce the
ladder Bethe-Salpeter equation for the vertex. The lines 2, 3,
gnd 5 were separated because they contain all the terms pro-
portional to the infrared divergett, but they cancel in each
line and all lines are finite. The remaining lines 4 and 6
contain the terms that one would expect in coupled channel
equations where a pair of mesons is created and then anni-
=T+ VGl +VGVMI' (D2)  hilated (except for the first diagrams of line 4 and line 6
which vanish. With them we calculate for instance the par-
can be resummed. If we factorize tBamatrix at the ladder tial decay width of a resonance into a channel of two me-
level Sy=(1—GyV) Gy, see Eq(C3), the ladder will ap- sons. The last lines 5 and 6 are only relevant for flavor sin-

o— = Iy + ::J = +

where we follow the approximation of including only three-
legged effective meson vertices in the meson interaction. Wi
will show that this is imposed by the box at the left of the
“beyond BCS” diagram in Eq.(D1). Upon iteration the
equation

pear in the middle of the coupled channel terms, glets because the quark pair in the incoming meson is
annihilated, thus for flavor vectors they are null.
Gol'=So+GoVSVMI, The cancellation of the infrared divergences becomes
clear in the Goldstone-Weyl formalism. Let us consider for
I'=V&I'o+VSVMI. (D3)  instance the diagrams of line 2 in E@®4),

When the ladders,, including the two ones of the meson
loop in M, are expanded in meson poles and wave functions
according to Eq(C13), we recover the meson-meson pair
coupling of Eq.(37). The resulting pole of the vertdxis the
mass of the dressed mesdhy+AM. This procedure is
equivalent to the resonating group method equatj@e$for
coupled channels of one meson with a pair of noninteracting hese three diagrams are infrared divergent but their sum is
mesons. finite, in an analogous way to E¢AS5).
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It is important to remark that in the previous calculationschiral limit. This is ensured by the WI, see E@®8). Con-
in the literature, the extrapolation from the ladder level to thecerning widths, since the new diagrams are real, the results
coupled channel level would only include the diagrams ofof the previous calculations in the literature are correct.
lines 4 and 6. We now find the previous choice arbitraryHowever we find no systematic real mass shift in the meson
since the diagrams of lines 2, 3, and 5 were not consideredpectrum due to coupled channels. This contradicts most of
The role of these diagrams is to cancel any real mass shift dhe real mass shifts of hundreds of MeV which are common
the 7 due to the usual coupled channel diagrams of lines 4n the literature. Only splittings between different levels, due
and 6, in order that ther remains a Goldstone boson in the to neighboring cuts, may be affected by coupled channels.
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