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New perspective on the scalar meson puzzle, from spontaneous chiral symmetry breaking
beyond BCS

Pedro J. de A. Bicudo
Departamento de Fı´sica and Centro de Fı´sica das Interacc¸ões Fundamentais, Edifı´cio Ciência, Instituto Superior Te´cnico,

Avenida Rovisco Pais, 1096 Lisboa, Portugal
~Received 5 February 1998; revised manuscript received 15 January 1999; published 12 August 1999!

We introduce coupled channels of ladder Bethe-Salpeter mesons both in the bound state equation for mesons
and in the mass gap equation for chiral symmetry. Consistency is insured by the Ward identities for axial
currents, which preserve the Goldstone boson nature of the pion and prevent a systematic shift of the hadron
spectrum. We study the decay of a scalar meson coupled to a pair of pseudoscalars. We also show that coupled
channels reduce the breaking of chiral symmetry, with the same Feynman diagrams that appear in the coupling
of a scalar meson to a pair of pseudoscalar mesons. Exact calculations are performed in a particular confining
quark model, where we find that the ground stateI 50, 3P0 qq̄ meson is thef 0(980) with a partial decay
width of 40 MeV. We also find a 30% reduction of the chiral condensate due to coupled channels.
@S0556-2813~99!00809-2#

PACS number~s!: 12.39.Fe, 11.30.Rd, 14.40.Cs, 13.25.Jx
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I. INTRODUCTION

The scalar puzzle. The scalar mesons form perhaps t
most puzzling family in hadronic physics. The first puzzlin
fact concerns the experimental errors in the partial de
widths, the decay widths, and even the masses. The ligh
scalar f 0(40021200) has a poorly determined mass. T
confidence in the decay widths of thef 0(980) anda0(980)
has also decreased@1# strongly since 1994.

The other puzzling argument concerns the matching of
nine observed states with simple SU~3!f qq̄ states. One
would expect four different towers of states built upon t
two I 50 f 0 ~which are not degenerate, for instance beca
the quarkshas a clearly larger mass than the quarksu, d! and
to the I 51a0 , and theI 51/2 K0* . A short glance at Fig. 1
is sufficient to discard the single light and extremely bro
state, thef 0(40021200) as a simple member of this famil
Then for the ground states we could ascribe the narrow
states which are, respectively, thea0(980), K0* (1430),
f 0(980), andf 0(1500), and for the radial excited states w
could, respectively ascribe thea0(1450), K0* (1950),
f 0(1370), andf 0(2200). However, the decay widthsG of the
ground state scalars are narrower than expected, when
pared with other resonances decaying in the same pse
scalar pairs but with higher angular momentum, except
the only precisely measured one, theK0* (1430). Moreover
the breaking of SU~3!f due to thems.mu.md mass differ-
ence is nearly double that expected when compared with
vector meson family and with most baryons. The sca
SU~3!f breaking is only comparable with the splittings in th
pseudoscalar family.

The scalar family is also the most interesting place
search for the lightest~S wave! non-qq̄ states. There are
several theoretical candidates to extra states which ma
found. The lightest glueball, which is expected from QC
should be a scalar@2#. The model of Isgur and Weinstein@3#
suggests that the narrowest scalars are meson-meson
ecules. The one meson exchange potential models for theNN
0556-2813/99/60~3!/035209~17!/$15.00 60 0352
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interaction usually postulates a scalar mesons with a light
M.0.5 GeV. In strongly coupled effective meson mode
@4, 5#, extra poles appear in theSmatrix when couplings are
large. These meson models turn out to be the most succe
models so far, explaining with complex nonlinear effects n
only the narrowa0(980) andf 0(980) which are due to the
vicinity of the KK threshold, but also the very wide and ligh
f 0(40021200).

The relevance of chiral symmetry breaking.Chiral sym-
metry breaking is important for the study of scalar meso
and their decays for several reasons. Unlike the vector, a
and tensor mesons, the scalar and pseudoscalar meson
mixed by the chiral rotations

c̄c˜cos~u!c̄c1 i sin~u!c̄g5c,

c̄g5c˜2 i sin~u!c̄c1cos~u!c̄g5c, ~1!

thus scalars and pseudoscalars are particularly sensitiv
the chiral symmetry. The very small mass of the pseudos
lars is usually explained with chiral symmetry breakin

FIG. 1. We represent with rectangles the experimentally
served scalar resonances according to the Review of Particle P
erties, and mark the unconfirmed ones with a question mark.
height of each rectangle is equal to the decay widthG of the reso-
nance. In a naive quark model, thea0 andK0* channels should show
half of the resonances of thef 0 channel.
©1999 The American Physical Society09-1
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Moreover, since scalars decay essentially in pseudosca
the pseudoscalar mass is important for the scalar decay.
we expect that not only the pseudoscalar mesons but als
scalars must contain the signature of the breaking of ch
symmetry. On the other hand, the breaking of chiral symm
try is generated from the trivial vacuum by scalar conden
tion, and we also expect that the scalar properties sho
affect the breaking of chiral symmetry.

These effects have been studied in phenomenological
son sigma models, see, for instance Ref.@5#. At the more
microscopic level of quarks, dynamical spontaneous ch
symmetry breaking~xSB! has been worked out in the pa
with several different quark-quark effective interactions,
the same level as Bardeen, Cooper, and Schrieffer~BCS! did
for superconductivity@6#. Since Nambu and Jona-Lasin
~NJL! @7# and until recently@8,9# the mass gap equation i
chiral physics has been so far of the BCS type@7#, including
only the first order contribution from the quark-quark inte
action. In this case the quark condensate consists of sc
3P0 quark antiquark pairs@10#. At the BCS level, which is
very consistent, it is possible to derive the mass gap equa
in several different but equivalent methods. The pseu
scalar meson properties have been studied in great detai
the full meson spectrum has been also been calculated in
literature@11#. However the BCS approach is not exact in t
case where coupled channels of mesons are included.

Coupled channels of mesonic qq¯ pairs. In the case of
weak coupled channel effects, it should be acceptable to
from bound states obtained at the BCS level and couple t
with the help of the annihilation diagrams of Fig. 2, witho
changing the mass gap equation. In this sense we sta
some years ago to develop a program@12# to study coupled
channel effects in quark models with chiral symmetry bre
ing.

The first result of our program was to reproduce@12# at
the BCS level the strong decay of the vector mesonr ~and of
the f!. These decays have been studied with other meth
recently@14#. Later we extended our program to the nucle
interactions and had good results@12# in theKN s-wave scat-
tering, theFNpN andFNpD derivative couplings and theNN
short range interaction@13#.

However, there is a recent trend in the literature to
evaluate coupled channel effects in hadronic phenom
Some years ago they were not supposed to account for m
than 10% of a hadron mass but presently they are supp
to contribute with a negative mass shift of the order of 50
of the bare mass@15–17#.

Moreover it is possible to prove that the vacuum solut

FIG. 2. We show the quartic diagrams which may contribute
the bound state equation. In the strong coupling BCS,~a! is in-
cluded in the self-energy and~b! is included in the interaction ker
nel. Diagram~c! which creates or annihilates quark-antiquark pa
is only used in what we call beyond BCS.
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of the BCS mass gap equation is not exact when coup
channels are included. Suppose that the mass gap equ
for chiral symmetry breaking was solved at the BCS lev
i.e., without including the coupled channels, then a bare p
with vanishing bare mass would be found. If the coupl
channels were then included,a posteriori, in the bound state
equation then the pion mass would be the sum of the sm
bare mass plus a mass shift and thus would have a resu
nonvanishing mass, which implies that the pion lost its Go
stone boson nature. This result is unavoidable, and can
proved variationally. Thus the mass gap should be sol
beyond BCS, especially when scalar mesons are studied

Solving this problem is a cornerstone of our program
amounts to joining the BCS mechanism with the mean fi
expansion of effective mesons. The logical path of t
method we will follow is illustrated in Fig. 3. Self-
consistency is insured by Ward identities, and the sca
pseudoscalar coupling will turn out to be crucial for th
development. The reward of solving chiral symmetry brea
ing with coupled channels is ap with a vanishing positive
mass in the chiral limit complying with all the theorems
PCAC, and a tower of resonances~including the scalar me-
son resonances! above thep with higher masses due to ra
dial, angular, or spin excitations. In particular the resonan
also have an imaginary component of the mass2 iG/2 that
describes the decay width into the open channels.

The paper.The aim of this paper is to study at the qua
level some meson decays which have been studied in
literature without including directly the full microscopi
quark contributions@4,5#. We specialize in the ground stat
f 0˜pp decay. We also study the effect of the mes
coupled channels on the quark condensed vacuum.

The remainder of this paper is organized as follows.
Sec. II we review the scalar masses and decays at the
level. This includes the choice of an effective interaction
quarks, the mass gap equation and the Bethe-Salpeter e
tion at the BCS level, the scalar coupling to pseudoscal
and the scalar decays width. In Sec. III we produce a fin
extension beyond BCS for a class of confining effective
teractions, derive the mass gap equation with coupled ch
nels, link it to the scalar-pseudoscalars coupling, and so
the mass gap equation. Results are shown in Sec. IV toge
with their discussion. We also include four Appendixes.

II. THE BCS LEVEL FOR A PARTICULAR FORMALISM

A. The choice of an effective interaction

The quantitative results of this paper will be obtained w
a particular chiral invariant strong potential which is an e

o

FIG. 3. We illustrate the principle which is followed in thi
paper to include the coupled channels in the mass gap equatio
9-2
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tended version of the NJL potential@7#. For the study of
dynamicalxSB it is crucial to have a closed chiral invaria
model where calculations can be carried until the end,
cause precise cancellations occur. A result of this constr
is that the same interaction must be used in the kernel of
bound state equation and in the creation of quark-antiqu
pairs. Another result concerns two-body scalar interacti
which are ruled out in this scheme because they violate
ral symmetry.

Recently it has been found that this potential can
linked to QCD @18#. We first integrate formally the gluon
from the QCD action, and get an action of Dirac quar
which interact via cumulants of gluons. Expanding in cum
lants we get the Hamiltonian

H5E d3xFc†~x!~m0b2 iaW •¹W !c~x!

1
1

2
g2E d4yc̄~x!gm

la

2
c~x!

3^Am
a ~x!An

b~y!&c̄~y!gn
lb

2
c~y!1¯ . ~2!

The first cumulant, of two gluons, can be evaluated in
modified coordinate gauge,

^Am
a ~x!An

b~y!&5xkylE
0

1

dadban~m!bn~n!

3^Fkm
a ~x0 ,ax!Fln

b ~y0 ,by!& ~3!

as a function of the nonlocal gluon condensate. The calc
tion on the lattice@19# of the full nonlocal gluon correlato
lends support@18# for the picture of a simplified Dirac quark
quark interaction

g2^Am
a ~x!An

b~y!&.2
3

4
dabgmn$gm0@K0

3~x2y!22U#

1agm ik0
3~x2y!2%d~x02y0!. ~4!

Because the Gell-Mann matrices are traceless there wil
no tadpoles in this scheme. This interaction belongs t
class of extended NJL models, which has the single dr
back of using an instantaneous potential~except for Lorentz
invariant extensions@20# of this class!. But it has the advan-
tage of being confining which allows one to study the wh
@11,12,21–25# hadron spectrum. For the theoretical found
tions of these models, including the connection to both p
tubative and nonpertubative QCD, see Ref.@26#.

This particular simple model is in very good agreeme
with the experiments: hadronic spectroscopy, the decay
the vector mesonsr andF, the coupling of ap to a N or D
and theNN short range interaction@12#. Moreover it suggests
that chiral symmetry breaking is very stable in the prese
of nuclear matter@25#. While confinement is an essenti
physical aspect of the model, the instantaneous approx
tion simplifies drastically the energy dependence of the
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teraction, and allows us to work in a framework which
familiar to Schro¨dinger’s equations.

Another class of extended NJL interactions is Euclide
and, due to the structure of the interaction, usually has
analytic continuation to the Minkowsky space and lacks c
finement. This class has been extended in many diffe
directions. For instance, finite size bound states were
cluded with the global color model of Ref.@27#, and a so-
phisticated interaction with a general tensor structure, an
most linear long range, and a pertubative short range is fo
in Ref. @28#.

The Fourier transform of the potential~4! is

V lVl~k! ^ V l5
23

4

lW

2
^

lW

2
@g0^ g0~2K0

3Dk2U !

1agW ^ gW ~2K0
3Dk!#~2p!3d3~k!, ~5!

where we do not display the sum in color and Dirac indic
In Eq. ~5! the operatorsV l include both the color Gell-Mann
matrices and the Dirac matrices. The factor23

4 simplifies the
color contribution for color singlets.

The g0•g0 term in the potential is the limit of a series o
attractive potentials, see Fig. 4, andU is an arbitrarily large
infrared constant. The infiniteU reappears in the self-energ
and in color singlet channels this cancels the infinitely attr
tive potential. Any colored state will have a mass prop
tional to U and in this sense will be confined, see Append
A.

The choice of a harmonic potential is not crucial, a line
@22# or funnel potential has also been used, but a quadr
form is simpler. In the case of light quarks the current qua
massm0 is almost vanishing and it essentially affects t
family of the p which is a quasi-Goldstone boson.

The gW •gW term improves the Lorentz invariance of th
wave function of pions which must be relativistic in the sc
lar decay. Clearly the wrong result of a simpleg0g0 instan-
taneous interaction is the constantf p which is quite small
and is not Lorentz invariant,f p

(s)Þ f p
(t) . The hope to curef p

with covariant extensions of the model turned out to f
since they merely@20# increasedf p by 30%. The value for
the parametera which renders thef p Lorentz invariant isa
520.18, and for most calculations~except forf p which is

FIG. 4. 2Ue2K0
3r 2/U is an example of a potential which tends

2U1K0
3r 2 in the limit of infinite U. We illustrate this in the case

whereK051, U5100.
9-3
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increased by 300%, see Sec. II D! this a yields a result com-
parable to the one we had fora50. The smalla suggests tha
the cure off p may be related with a pertubative short ran
@26# quark-quark interaction.

Once a is fixed, this model has the single scale of t
oscillator parameterK0 . The simplest dimensionless units
K051 will be used from now on in computations. Whe
comparing with experiments we will rescaleK0 to the value
of K05330 MeV which gives the best overall fit of the m
son spectrum. In the case ofa50 the the full light quark
meson spectrum was well fitted@11# with K05290 MeV. In
the case of a finitea the quark-antiquark interaction i
weaker, and a slight rescaling ofK0 is needed.

B. Chiral symmetry breaking at the BCS level with quarks
and antiquarks

At the BCS level and with a color dependent interacti
the Schwinger-Dyson equation for the quark self-ene
~which is also the mass gap equation! is

~6!

where the full ~up to the approximation which is chose!
propagatorS is denoted as usual by an arrowhead on a li
The subindex0 is reserved for the free functions. The effe
tive quark-quark two-body interaction of Eq.~2!, a chiral
invariant and color dependent interaction, is represented
a dotted line. The Bethe-Salpeter equation for the verte
related by the Ward identities with Eq.~6!, see Appendix C,

~7!

where the full vertexGm is denoted by a filled circle with two
emerging lines. When Eq.~7! is iterated, we find that it in-
cludes the Bethe-Salpeter ladder, which will be represen
diagrammatically by a box with 4 emerging lines,

~8!

where the ladder represents the mesons, see Appendix
this way the quark propagator, the vertices and the mes
are intertwined.

In this case of an instantaneous interaction, it is con
nient to express the Dirac fermions in terms of Weyl ferm
ons, in order to find the hadron spectrum. The Dirac pro
03520
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gator can be decomposed in a quark propagator and
antiquark propagator, moving both forward in time.

SDirac~K0 ,kW !5
i

k”2m1 i e

5
i

K02E1 i e

11~m/E!b1~k/E!aW • k̂

2
b

2
i

2K02E1 i e

12~m/E!b2~k/E!aW • k̂

2
b.

~9!

It is convenient to use@11,10# the quark energy projectors

L15
1

2
~11Sb1Ck̂•aW !5(

s
usus

† ,

L25
1

2
~12Sb2Ck̂•aW !5(

s
vsvs

† , ~10!

where S5sin(w)5m/E, C5cos(w)5k/E and w is a chiral
angle, which in the non condensed case is equal to ar
(m0 /k) ~m0 is the current mass of the quark!, but is not
determined from the onset when chiral symmetry break
occurs. In this case the physical quark mass is a variatio
function m5m(k) which is determined by the mass ga
equation. This is equivalent to using the chiral anglew
5w(k) as the variational function. In Fig. 5 we show e
amples of nontrivial solutions for the functionw(k).

The energy projectors can be decomposed in the qu
spinoru(k) and in the antiquark spinorv(k):

us~k!5
L2

A~11S!/2
us~0!5FA11S

2
1A12S

2
k̂•aW Gus~0!,

vs~k!5
L2

A~11S!/2
vs~0!5FA11S

2
2A12S

2
k̂•aW Gvs~0!

52 is2g5us* ~k!. ~11!

And finally the Dirac quark propagator is decomposed as

FIG. 5. We show the BCS chiral anglew(k) in units of K0

51. We also represent with a dotted line the chiral angle that
obtain going beyond BCS.
9-4
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SDirac~w,kW !5u~k!Sq~p0 ,kW !u†~k!b2v†~k!

3Sq̄~2p0 ,2kW !v~k!b, ~12!

where the quark and antiquark Weyl propagators are

Sq~w,kW !5Sq̄~w,kW !5
i

w2E~k!1 i e
. ~13!

This quark and antiquark formalism is convenient to cal
late hadron spectroscopy. With Weyl propagators the
equation simplifies into the Salpeter equation, in a fo
which is as close as possible to the more intuitive Sch¨-
dinger equation. In the Feynman rules with Weyl propa
tors, we choose to redefine the vertices of the effective
tential which now include the spinorsu†, u, v† , andv. The
minus sign which affects the antiquark propagator in E
~12! could also be included in the vertices withv†, but we
prefer to recover the equivalent rules which are common
nonrelativistic field theory. This minus sign, together w
the one from the fermion loops will be included in the an
quark vertex and in diagrams with quark exchange or w
antiquark exchange. The Dirac vertexg0 is now replaced by
u†u, u†v, v†u, or 2v†v as the vertex is respectively con
nected to a quark, a pair creation, a pair annihilation, or
antiquark; and the Dirac vertexgW is, respectively, replaced
by u†aW u, u†aW v, v†aW u, or 2v†aW v. We choose the graphica
notation for the Weyl propagators of quarks and antiqua

~14!

where the diagrams using the Feynman rules correspon
to the Dirac fermion propagators will have a subindexD in
the remaining of the paper. In the case of the Weyl propa
tors ~which will be used more often the the Dirac propag
tors! the quark will be represented with an arrow pointing
the left while the arrow pointing to the right represents
antiquark~both move forward in the time direction!.

C. The BCS mass gap equation and the quark energy

Here we derive the mass gap equation, and the qu
dispersion relation, replacing the propagator of Eq.~12! in
the Schwinger-Dyson equation for the quark self-energy~6!,

~15!

Another equivalent method is to use the Hamiltonian form
ism for the quark and antiquark creators and annihilat
@10#, and find the Bogoliubov-Valatin transformation whic
would minimize the vacuum energy density. In that Ham
tonian formalism the mass gap equation is also obtai
03520
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when the quark antiquark pair creation operators are po
lated to vanish in the Hamiltonian, in order to ensure t
vacuum stability against spontaneous generation of sca
With the present method we project Eq.~15! with the spinors
u†...u and u†...v, and we get directly the quark and ant
quark energy and the mass gap equation

E~k!5us
†~k!H kk̂•aW 1m0b2E dw8

2p

d3k8

~2p!3 iVl~k2k8!

3F V lL
1~k8!V l

w82E~k8!1 i e
2

V lL
2~k8!V l

2w82E8~k8!1 i eG J us~k!,

05us
†~k!H kk̂•aW 1m0b2E dw8

2p

d3k8

~2p!3 iV~k2k8!

3F V lL
1~k8!V l

w82E~k8!1 i e
2

V lL
21~k8!V l

2w82E~k8!1 i eG J vs9~k!. ~16!

In the case of an instantaneous interaction, the loop inte
in the energyw removes the pole in the propagator

E dw

2p

i

w2E~k!1 i e
5

1

2
~17!

and in the case of a quadratic interaction, the loop integra
the momentum is transformed in a Laplacian, see Eq.~5!.
Some useful properties are

us
†us851dss8 , us

†vs850@sW • k̂is2#ss8 ,

us
†bus85Sdss8 , us

†bvs852C@sW • k̂is2#ss8 ,

us
†aW • k̂us85Cdss8 , us

†aW • k̂vs85S@sW • k̂is2#ss8 ,

us
†baW • k̂us850dss8 , us

†baW • k̂vs851@sW • k̂is2#ss8 .
~18!

We get finally for the quark energy,

E~k!5kC1m01
1

2
@1SD~S!1Ck̂•D~ k̂C!#

1
U

2
1a

1

2
@23SD~S!2Ck̂•D~ k̂C!#

5
U

2
1kC1m0S2

ẇ2

2
2

C2

k2

2aFSCDw2
C2

k2 2S S21
1

2D ẇ2G , ~19!

where in color singlets theU/2 term will cancel the2U term
from the two-body quark potential. For the mass gap eq
tion we get
9-5
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05H kS2m0C1
1

2
@2CD~S!1Sk̂•D~ k̂C!#

1a
1

2
@13CD~S!2Sk̂•D~ k̂C!#J @sW • k̂is2#ss8

52Dw12kS22m0C2
2SC

k2 2aF2~2C211!Dw

12SCVS ẇ22
1

k2D G . ~20!

The mass gap equation is in general a nonlinear inte
equation, but in this case of a harmonic potential it simplifi
to a differential equation. We solve it numerically with th
Runge-Kutta and shooting method, see Fig. 5 for the s
tion.

D. The pseudoscalar and scalar solutions
to the Salpeter equation

The homogeneous Salpeter equation for a meson~a color
singlet quark-antiquark bound state! is, according to Appen-
dix C,

1M ~P!2E~k1!2E~k2!

i
f1~k,P!

52 iu†~k1!x~k,P!v~k2!,

2M ~P!2E~k1!2E~k2!

i
f2t~k,P!

52 iv†~k1!x~k,P!u~k2!,

x~k,P!5E d3k8

~2p!3 Vl~k2k8!V l@u~k18!f1~k8,P!v†~k28!

1v~k18!f2t~k8,P!u†~k28!#V l , ~21!

wherek15k1P/2, k25k2P/2, andP is the total momen-
tum of the meson. We use the Bethe-Salpeter amplitudex as
an intermediate step to compute the contribution of inter
tion V to the bound state equation. The wave functionsf1

andf2 are equivalent to the Bethe-Salpeter amplitudex. For
color singlets the contribution of the infinite infrared co
stantU are canceled, see Appendix A. The equation is a
flavor independent, and we will now concentrate on
momentum̂ spin part of the wave functions. We will now
drop theU term, the color matrices and the color depende
from the equations. In this section the matricesV l will only
include the Dirac structureV l ^ V l5g0^ g01agW •^ gW . With
the aim of studying thef 0 decay in a pair ofp, we will now
solve the bound state equation equation for the scalarf 0 in
its center of mass frame and the equation for the pseu
scalar ground statep in the limit of smallP and in the limit
of largeP.

Due to the large mass of the scalar mesonf 0 in this
model, it turns out that the negative energyf2 component
for the ground state is less than 10% of the positive ene
03520
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componentf1. The Schro¨dinger limit, where only the posi-
tive energy component is considered, is therefore accepta
A general form for the3P0 wave function for the scalar is

f1~k!s1s2
5kfs~k!

@sW • k̂is2#s1s2

&
~22!

the truncated BS amplitude is then

xs52V lD
2kfs~k!

11S
L1us1

~0!
@sW • k̂is2#s1s2

&
vs2

† ~0!L2V l

5V lD
L1baW •kWfs~k!

&
V l . ~23!

We get for left-hand side of Eq.~21!,

u†~k!x~k,0!v~k!5
11a

2
D~f1!1

12a

2
SD~Sf1!

1
123a

2
CD~Cf1!1

123a

k2 C2f1,

~24!

and the radial Salpeter equation for the scalar in the cente
mass is

F2E~k!2M2S d2

dk22
2

k22
ẇ2

2
1

C2

k2 D2aS 2C2
d2

dk2

12SCẇ
d

dk
2

C2

k2 1SCẅ1
112C2

2
ẇ2D Gk2fs50. ~25!

Solving the bound state equation we find that the solution
the equation is very close to a Gaussian,

fs~k!.
e2k2/2as

2

Ns
, Ns

215
4ApAp

)as
5/2

, as.0.476 ~26!

and the mass isM52.94K05970 MeV which is close to the
most probable experimental mass of thef 0 ground state.

We now study the pseudoscalar ground state in the lowP
limit, which was already studied extensively in the literatu
@11,12#. For vanishingP we find thatf152f2 and both
are proportional to sin(w). This is due to the Goldstone boso
nature of thep, see the result of Appendix C. However, th
component of the wave function has zero norm, and it
necessary to include the next order of the expansion inP to
determine the norm. The most general lowP pseudoscalar
wave function is then

f15N p
21S S1

M ~P!

k
f 11 ig1

PW

k
• k̂3sW D is2

&
,

f25N p
21S 2S1

M ~P!

k
f 12 ig1

PW

k
• k̂3sW D is2

&
, ~27!
9-6
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where the norm is a function of thep energy

N p
25~2 f p

~ t !!2M , M2~P!5M2~0!1P2Af p
~s!

f p
~ t !,

M2~0!52
2m0^c̄c&

f p
~ t !2 , ^c̄c&526E d3k

~2p!3 S ~28!

and where in the case of an instantaneous interaction t
are @11,12# usually two differentf p

(t) and f p
(s) ,

f p
~ t !5A 3

p2 E
0

`

dkk f1S,

Af p
~s! f p

~ t !5A 1

2p2 E
0

`

dk2k2Sẇ14kC~g111/2!.

~29!

Substituting the wave functions of Eq.~27! in Eq. ~21!, and
expanding the resulting equation up to the first order inP, we
get the equations for thef 1 andg1 components

f̈ 15
1

11a~2S211!
@2kS1~2Ck! f 114a~2SCDw2C2k2

1S2ẇ21ẇ2/2! f 124aSCẇ~ ḟ 12 f 1 /k!#, ~30!

g̈15
1

11a~2S221!
@kC1~2kC12S2/k2!g112a~S2/k2

22SCDw22S2ẇ2!g124aSCẇ~ ġ12g1 /k!#. ~31!

It turns out that the parametera has little effect on most
functions, except forf 1 ~see Fig. 6!. The homogeneous equa
tion for f 1 has the solutiona0520.195 and thusf 1 is pro-
portional to 1/(a2a0) . This will essentially affectf p

(t) , f p
(s)

and the pion velocityc. We find for a.20.18 thatc51,
f p

(t)5 f p
(s)50.21K0.69 MeV. This shows a clear improve

ment of the model, with a correct relativistic pion and
better f p .

We now discuss the pseudoscalar ground-state in
other limit of large momentumP. In this case the negativ
energy components are suppressed by a factor of 1/P. The
chiral anglew, depicted in Fig. 5 vanishes completely, a
the spinors are simpler, for instance,

us~k1!.
11aW • k̂1

&
us~0!, k̂1. P̂1

2

P
k̂' , ~32!

where the index' denotes the projectionkW2(kW• P̂) P̂ of a
vectorkW in the plane perpendicular toPW . The vertices, up to
first order in 1/P are, for instance,

us
†~k1!us8~k18!.dss82

1

P
isW ss8P̂3~ k̂'2 k̂'8 !,
03520
re

e

us
†~k1!aW us8~k18!. P̂dss81

~ k̂'1 k̂'8 !1 isW 3~ k̂'2kW'8 !

P
.

~33!

Up to first order in 2/P the equation for positive and negativ
energy bound-state functionsf6(k) is2 /& is

0.S P1
2k2

P
7M2~12a!DkDf6~k!22i ~12a!

P̂

P

3¹W k•$sW ,f6~k!%2aDkf
7~k!2

2

P2 sW '•f7~k!sW' .

~34!

We find that the wave function has a component with str
ture isW • P̂3kW . However, this component is smaller than t
s-wave component by a factor of less than 1/P. Thus we find
that the momentum̂spin solution in the limit of largeP, is
essentially a positive energy Gaussian functionfp(k)
3( is2 /&),

fp~k!.
e2k2/2ap

2

Np
, N p

215S 2Ap

ap
D 3/2

, ap
25A12a

2
P.

~35!

For large momentumP we find thatf1 is quite flat ink,
while f2 is almost negligible,

f2.
a

2P
Df1. ~36!

This result is consistent with relativistic space contractio
We checked that the components that we neglected
would yield a small contribution to thef 0 decay.

E. The coupling of a scalar to a pair of pseudoscalars

The form factorF(P) for the coupling of a scalarf 0 to a
pair of p can be decomposed in diagrams where a qu
~antiquark! line either emits~absorbs! a pseudoscalar or a
scalar. We use the truncated Bethe-Salpeter amplitudex, as
an intermediate step to compute the coupling of a meson
quark lineu†xu. F(P) is represented with a large triang

FIG. 6. We represent thep wave functionsS, f 1 /k, andg1 /k,
respectively, with solid, dashed, and dotted lines, in the dimens
less unitsK051.
9-7
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and the bound state amplitudesx andf are represented with
small triangles,

~37!

This includes theqq̄ pair creation or annihilation of Fig. 2
The same irreducible interaction for quarks which is used
the bound state equations is also@29# used for the annihila-
tion. In Eq.~37! the loop energies are trivial, see for instan
Eq. ~A3!, and we now compute the momentum^spin contri-
bution.

We first consider the limit of a coupling to pions of lo
momentumP. The coupling of the pseudoscalar to the qua
is derivative and thus is suppressed. For instance, in the
of a masslessp in the center of mass, using the wave fun
tion of Eq. ~27!, we find that

x5@2~123a!&Np
21D~S!#bg5

1o~P!⇒u†~k!x~k,0!u~k!5o~P!, ~38!

which is consistent with the derivative coupling of a pion
a quark. The dominant contribution includes the coupling
the 3P0 scalar meson to the quark~antiquark! line. The cou-
pling F(P) to a pair of pions with low momentumP is

F5trE d3k

~2p!3 f2†~u†xsuf11f1v†xsv !, ~39!

where, for instance, we get for the scalar couplingu†xsu to
the quark line

us1
~k!†xs~k!us2

~k!5
ds1s2

2&
@~12a!Ck̂•D~ k̂Skfs!

2~123a!SD~Ckfs!# ~40!

except for the2 i factor which goes with any potential in
sertion according to the Feynman rules. We will discard it
this section. Integrating by parts, Eq.~39! can be simplified
with the help of the mass gap equation and we get

F5E d3

~2p!3

kfs

&
F2kS1ẇ

d

dk
1aSCDG~f2†f1!

5
0.011K0

220.052M2~P!

f p
2 M ~P!

K0
1/2. ~41!

This coupling is very sensitive to the pion decay constantf p

and to the energyM (P) of the pion.
03520
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We now consider the opposite limit of large pion mome
tum P. In this case the negative energy component of
pion is quite small. We expect that the dominant diagra
are the ones of the first line of Eq.~35!, which include only
the positive energyf1. This is present in either the couplin
of a pion to the quark line, or the coupling of ap to an
antiquark line,

F~P!5E d3k

~2p!3 fs~k1,0!~2Dk8!@fp~k8,P!fp~k,2P!tq

1fp~k,P!fp~k8,2P!t q̄#U
k85k

, ~42!

wheretq and t q̄ are, respectively, the traces in Dirac indic

tq5trH 2 is2

&
sW •kW1u†~k1!V lu~k18!

is2

&
v†~k28!V lu~k2!

is2

&
J

5trH sW •kW1

&

~11b!

2

~11aW • k̂1!

&

3V l

~11aW • k̂18!

&

1

&

~11b!

2
g5

~12aW • k̂28!

&

3V l

~11aW • k̂2!

&

1

&
J ~43!

andt q̄ , of the second diagram, with the coupling of the pi
to the antiquark yields the same result. The total coupling
a functional of the scalar and pseudoscalar wave functio
which are described in Eqs.~26!, ~35! by Gaussians. We now
apply the Laplacian to the functions ofk8. The dominant
term of the expansion in 2/P comes from the derivatives o
fP . A derivative offP(k8,P) will be proportional toP/2
when the Gaussian integral is performed, while a derivat
of tq or t q̄ which are functions of respectivelyk̂18 or k̂28 is
proportional to 1/P and will not produce a dominant term
The traces then simplify to

tq5t q̄5a
k1

&
@12~ k̂1• k̂2!2#. ~44!

We now apply the Laplacian tofP , and expand thek̂1• k̂2 in
a series of 1/P. It is convenient to defineaT

252as
21ap

2, and
we get finally find for the momentum̂spin contribution,

F~P!5Fa
264p3/4as

1/2ap
2

31/2~ap
21aT

2!2aT
3

P

2
1oS 2

PD Ge2~p/2!2/aT
2
,

~45!

where the dominant term is thea term which is of the order
of 0.43 K0

21/2 for P of the order of 2K0 .
The color factor forf 0 andp color singlets is 1/). The

flavor factor for the coupling of a scalar isosinglet (uū

1dd̄)/& to a pair of pseudoscalar isovectors, sayud̄, and
9-8



on

e
r

di

he
on
s
ea
a

l i

d

o
x-

i

he
of

y
of

te

ces
s.
d-

or-
is
odel
rect

e
tad-

p.
the
ge.

son

of
gle
s

NEW PERSPECTIVE ON THE SCALAR MESON PUZZLE, . . . PHYSICAL REVIEW C 60 035209
2dū, with a flavor independent quark-antiquark annihilati
is 21/&. The total coupling is then2F(P)/A6.

The functionF(P) is very cumbersome to derive in th
case of intermediate momenta. For momenta of the orde
K0 , see Fig. 7, matching the high and lowP limits with an
interpolating function is a possible approximation.

F. The f 0„980…˜pp decay

The decay width of af 0 in a pair ofp can be calculated
from the the Breit-Wigner pole in the meson propagator. W
call the bare meson the one obtained from the ladder
grams, see Eqs.~8!, ~C1!, and ~C13!. The bare massM0 is
real and is a solution of the Bethe-Salpeter equation. W
coupled channels of mesons are included, the bare mes
dressed. The dressed pole is composed by the bare masM0
plus the coupled channel contribution which includes a r
mass shift, and an imaginary term in the case where the m
is above the coupled thresholds. The mass is then

~46!

where we only included a loop of barep, which is the sim-
plest contribution to the scalar self-energy. The integra
the loop energy provides an extra 2p i factor, which implies
that in generalDM includes a real component, and we fin
that

DM56E d3q

~2p!3

@F~q!* /A6#@F~q!/A6#

M f 0
22Aq21Mp

2 1 i e
, ~47!

where the factor of 6 includes the three different flavors
the isovectorp, and the factor 2 from the direct and e
change diagram of the self-energy in Eq.~46!. In this section
we usually represent the width of a resonance by aG, which
should not to be confused with the same symbol which

FIG. 7. We showF(P), in the dimensionless units ofK051.
The dotted and dashed lines correspond, respectively, to lowP and
high P limits.
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used in other sections for the vector or axial vertices. T
width G is a simple function of the imaginary component
DM ,

Im~DM !52 i
G

2
, G5

1

4p
PMf 0

uF~P!2u, ~48!

whereP5 1
2AM f 0

2 24Mp
2 is the momentum of the emittedp.

Let us consider the case of a scalar massM f 0
of the order of

1 GeV, whereP is larger than the scale of the interaction b
a factor of 1.4. In this case, it is sensible to use the limit
large momentumP for F(P), see Eq.~45!. We finally find a
partial decay width of just 40 MeV forF0˜pp which lies
within the experimental limits. We expect that a comple
calculation without the largeP approximation would not de-
viate from this by more than a factor of 2.

This result is also compatible with the narrow resonan
f 0(1500) anda0(980) which are possible ground state
ConcerningK0* (1430), which is wider and has decay pro
ucts with a larger momentumP, the functionG(P) of Eq.
~48! has the correct qualitative behavior of being prop
tional to P3 for intermediate momenta. However in th
model the exponential decrease is too strong, and the m
needs some improvement in order to reproduce the cor
K0* (1430).

III. GOING BEYOND BCS
WITH FINITE COUPLED CHANNEL EFFECTS

A. The mass gap equation and the self-energy

We find in Appendix D that the minimal extension of th
mass gap equation beyond BCS is achieved with a new
pole term in the self-energy

~49!

where the subdiagramO is defined as an intermediate ste
This amounts to extending the mass gap equation for
self-energy of the quarks with simple one meson exchan
Using the Weyl fermions, and expanding the ladder in me
poles, we find that the self-energy of the quark~antiquark!
has a diagonal componentSd which contributes to the dy-
namical mass of the quark~antiquark!

~50!

and the energy of 1 quark is identical to the BCS energy
Eq. ~19! except for the expected changes of the chiral an
w. In Eq. ~50! we only included the nonvanishing diagram
which remain from an expansion in powers of 1/U. The free
9-9
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Green functions are proportional toU21. The interactions
without a pair creation or annihilation are proportional to t
infinite infrared constantU, while the remaining interaction
are finite. It turns out that the new coupled channel diagra
vanish. This happens because in the limit of an infinite2U
the box diagrams in Eq.~49! which contribute to the quark
energy vanish. This is the case, for instance, of diagrams~a!
and ~b!,

~51!

We find that the quark energyE5E02Sd remains the BCS
energy of Eqs.~16!–~19!,

E~k!5u†~k!aW •kWu~k!2
1

2 H u†~k!E d3k8

~2p!3 V~k2k8!

3V l@L1~k8!2L2~k8!#V lu~k!J . ~52!

However, the last diagram of Eq.~51!, which contributes to
the mass gap equation is finite.

The mass gap equation is obtained when we impose
the anti-diagonal componentsSa of the self-energy mus
cancel. As in Eq.~16! this component is obtained with th
projection of the spinorsu† andv. This produces a function
Sa with the quantum numbers of a scalar, see Eqs.~20! and
~22!. In order to use the results of the preceding section,
convenient to foldSa with a generic scalar wave functio
f f 0

1 . Then the resulting product must vanish for anyf f 0

1 . In

fact this ensures vacuum stability since this prevents
vacuum to decay in scalar modes. The diagrams that con
ute to the antidiagonal component of the self-energy in
mass gap equation are now

~53!

In Eq. ~53! we only show the diagrams which are nonva
ishing in orders of 1/U, and in fact they all are finite, o
order U0. The first pair of diagrams are BCS diagrams.
turns out that the new diagrams are the same diagrams w
contribute to thef 0˜p ^ p coupling, except for the negativ
energy wave function of thep and for the integral in thep
momentumP. The negative energy wave functionf2 al-
ways vanishes for high momentumP, and in the case of low
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momentumP it is relevant only for the pseudoscalar fami
of thep. We suppose that the large number of excited sta
is not sufficient to compensate the smallness off2, and we
will not consider this ultraviolet problem. Thus we will onl
include the coupled channel contribution of thep family. In
the case of low momentum, thep family has a extremely
largef2, however, the coupling to a quarku†xu is deriva-
tive and vanishes. This prompts us to neglect the last line
Eq. ~53!. Finally we can remove, with a functional deriva
tive, the generic scalar wave functionf f 0

1 . The result after

integrating in all the loop energies can be represented,

~54!

where the lines only represent the spinorsu, v, u†, or v†, the
integrals and the traces and no longer include the quar
antiquark propagators. The mass gap equation 05S0

21
a

2Sa is now

051us1

† ~k!aW •kWvs5
~k!2H us1

† ~k!E d3k8

~2p!3 V~k2k8!V l

1Fus2
~k8!S ds2s4

2
2E d3P

~2p!3 fs2s3

2 ~P,k82P/2!

3fs3s4

2 †~P,k82P/2! D us4

† ~k8!2vs2
~k8!

3S ds2s4

2
2E d3P

~2p!3 fs2s3

2 †~P,k82P/2!fs3s4

2

3~P,k82P/2! D vs4

† ~k8!GV lvs5
~k!J , ~55!

where the sum over repeated spin indexessi is assumed.

B. Model independent effects of the coupled channels

The dominant effect of coupled channels in Eq.~55! is to
multiply the potential term in the mass gap equation~16! by
a factor of

122E d3P

~2p!3 fp
2fp

2† . ~56!

This clearly decreases the term which is the source for
spontaneous breaking of chiral symmetry. Thus the coup
channel effect is to restore partially the chiral symmet
This effect is independent of the quark-quark interaction.
9-10
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The signs of the new terms in the mass gap equa
deserve a special attention since they determine whethe
coupled channel effect will increase or decrease the ch
condensation. Because the coupled channel terms intro
in the mass gap equation a new fermion loop it is natural
Dirac fermions that the coupled channel terms should be
fected with a minus sign.

When the Dirac fermions are translated into Weyl ferm
ons the quarks divide into the species of quarks and a
quarks which have independent field operators and prop
tors, and the minus signs are transfered from the propag
and the loops into the antiquark vertex and the excha
diagrams, and loops with quarks~antiquarks only!. In this
case we check with Weyl fermions that the minus sign p
sists and is due to the quark~antiquark! exchange. Only re-
tardation, which was not included here, might perhaps
pose to this negative sign.

This sign can also be understood from the perspectiv
the Mexican hat potential2ls21ms4 of effective meson
models. In this case the quadratic term spontaneously cre
a scalar condensate, while the quartic term opposes to
condensation and the actual condensate corresponds t
minimum of the energy density where the two terms
balanced. In the present paper there are three terms, a ki
term which opposes to the condensate~and has no correspon
dence in the effective meson models!, a BCS term which
spontaneously breaks chiral symmetry~it is equivalent to the
quadratic term of effective meson potentials!, and a beyond
BCS term which is equivalent to the quartic term in effecti
meson potentials. This correspondence, which is suppo
by the mean field theory where^c̄c&.s, confirms the nega-
tive sign of the coupled channel term. Thus we may assu
quite generally that coupled channels oppose to the brea
of chiral symmetry.

An interesting feedback from chiral symmetry to the n
row width the ground state occurs. Chiral symmetry break
can be understood variationally, the solutionw(k) of the
mass gap equation also minimizes the energy densityE of the
vacuum.E is the sum of three terms, the free one, the B
one and the beyond BCS one. Only the BCS term is nega
and drivesw(k) away from the trivial vanishing solution
The actual solutionw(k) minimizes the free termand mini-
mizes the beyondBCS term and at the same token produc
the most negative BCS term. In Eq.~53!, we saw that the
beyond BCS diagrams in the mass gap equation are sim
to the diagrams of coupling of a scalar to a pair of pseud
calars~with low to moderate momentum!. Thus we conclude
that this coupling is naturally suppressed and that this s
pression is selective in the sense that it should not occu
other hadronic couplings. This has an amplified effect in
scalar width which is a function of the square of this co
pling.

C. Solution of the mass gap equation

We will now focus on the dominant terms among t
coupled channel contributions. We obtain t
momentum̂ spin coupled channel contribution
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j5E dPdw
22P2f2~k1P/2!f2~k1P/2!†

~2p!2 . ~57!

From Eqs.~27!, ~35! we get for the integrand of Eq.~57!,

P˜0, 20.14
P2

M ~P! FS~k1!2M ~P!
f 1~k1!

k1
G2

,

P˜`, 21.9
a2P5/4

~12a!11/4e2k1
2/ap

2
, ~58!

where the spin factor (is2 /&)(2 is2 /&)5 1
2 is included.

The integral that leads toj is now evaluated with an inter
polation between the two limits of Eq.~58!, see Fig. 8. Be-
cause this interpolation is arbitrary, we have to include in
result a theoretical error.

We obtain the momentum̂spin coupled channel contri
bution

j~k!52~0.460.1!S ~59!

which turns out to have a shape very close to the funct
S5sin(w) which was evaluated at the BCS level. We es
mate that the coupling to the quasi-Goldstone bosons, inc
ing the momentum, spin, color, and flavor contributio
yields

j~k!.2~0.460.1!S
1

3 S Nf2
1

Nf
D

.2~0.360.2!S, Nf52˜3. ~60!

Nf is the number of almost massless quark flavors wh
empirically is between 2 and 3.

The mass gap equation can be solved for a coupled c
nels contribution equal toj, whenj>21,

FIG. 8. We show the integrand ofj~0!, in the dimensionless
units of K051. The dotted and dashed lines correspond, resp
tively, to the cases wheref is obtained in the lowP limit and in the
high P limit.
9-11
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05u†FaW •kW2
1

2
V lE V~L12L2!~11j!V l Gv

5H kS2@12a~2C211!#FDw

2
~11j!1 j̇ ẇ G

2SCF 1

k2 1aS ẇ22
1

k2D G~11j!1aSCDjJ sW • k̂is2 .

~61!

The solutionw for j520.3SBCS is shown in Fig. 5. In this
case and for the same parameterK0 , quark condensatêc̄c&
is decreased by a factor of (120.12)3.

IV. RESULTS AND CONCLUSION

We developed a general formalism to include both
effects of chiral symmetry breaking and strong hadro
hadron interactions in quark models. This is encourag
since both effects are firmly established in phenomenolo
We find new general effects in the scalar meson width, in
breaking of chiral symmetry and in the mass shifts of
hadron spectrum. Quantitative results are computed with
model which belongs to a class of Nambu and Jona-Las
absolutely confining instantaneous interactions, in the c
where the coupled pair of mesons are accounted as bare
sons.

We find in this model that the mass and width of the lig
qq̄ scalarf 0 meson are close@11# to the experimental mas
and width of thef 0(980), and not to thef 0(400– 1200) or
the f 0(1370). This apparently indicates a possible solution
the scalar meson puzzle without meson molecules, glueb
or strongly nonlinear coupled channel effects. In this case
attraction which is visible inpp phase shifts and in the in
termediate rangeNN interactions would need other interpr
tations@30# than the very wides meson.

Compared withxSB at the BCS level, a new paramet
has been identified, which leads to the percentage of cou
channel effects in the mass gap equation. We find
coupled channels suppresses the breaking of chiral sym
try. This results are model independent. With our model
get a suppression of the quark condensate by 5˜55% when
the coupled channel effects are included.

We find a new interesting feedback mechanism from c
ral symmetry to coupled channels and explain it variatio
ally. The chiral symmetry restorating contribution to th
mass gap equation from coupled channels is closely rel
to the coupling of a scalar to a pair of pseudoscalars.
feedback enforces that the width of a ground state sc
decaying to a pseudoscalar pair~with low or moderate mo-
mentum! is reduced when compared to the width of a
other resonance. This effect is model independent and
tributes to understand the scalar meson puzzle.

Concerning real mass shifts we estimate that they are
celed due to the new terms which are introduced by the W
identities. This might improve previous@4,12# coupled chan-
nel calculations where this cancellation was not explic
included. A systematic shift of the hadron spectrum is
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expected. In this sense we agree with the results of Ge
and Isgur@31#. Nevertheless mass splittings between sta
with different quantum numbers are still expected from t
bound state equation. Different theoretical problems t
could be reviewed with these new techniques are the co
bution of the coupled channels to the hadron spectra,
instance, to the interestingh8 mass or to the nucleon mas
We conclude that in general the results of this paper, with
ruling out other perspectives, explain why the naive qu
model is so successful.
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APPENDIX A: CONFINEMENT WITH INFRARED FINITE
COUPLED CHANNELS

At the BCS level, the bound states are obtained with
ladder approximation which is equivalent to the Salpe
equation, and to the Schro¨dinger equation~see Appendix C!.
In this case the infinite infrared divergent constantU of the
interaction~4!, ~5! is extremely convenient@23# to remove
the colored states, which have masses proportional toU. Let
us consider the dominant terms in orders ofU of the energy
of a system ofn quarks and antiquarks. The one-body ener
includes the self-energy~19! which is calculated with the
Schwinger-Dyson equation

(
i

Ei1(
i , j

Vi j .
3

4 S U

2 (
i

lW i

2
•

lW i

2
1U(

i , j

lW i

2
•

lW j

2 D
.

3

32
ULW •LW , ~A1!

whereLW is the Gell-Mann matrix of the total color of th
system. The energy~A1! vanishes for color singlets only
while colored states have an infinite energy and in this se
are confined.

To include coupled channels in the energy of a color s
glet, for instance, in a meson, we consider the complete
ries of diagrams that contribute to the irreducibleqq̄ inter-
action. One has to include all the possible number of qu
loops and all the possible insertions of the microsco
quark-quark interaction. Then this series can be resume
order to factorize the bare meson (qq̄) and hadron~qqq!
ladders. According to Appendix C, the ladder needs integ
*(dw/2p) in all the external relative energies in order
have a hadron pole. To ensure, in a particular diagram,
the meson poles are present, it is convenient to decomp
the ladder as
9-12
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~A2!

where in the right-hand side the ladder is integrated and c
tains the meson pole, and the first pair of diagrams cont
utes to the overlap interactions of hadrons. In order to s
plify the calculations it is convenient to truncate eventua
the series of diagrams. The pertubative parameter is then
number of considered ladders. This is both straightforw
and also close to the hadronic phenomenology.

We now show how the interactions of color singlet la
ders can be finite, when they are built from the infrared
vergent quark-quark microscopic interaction~5!, and the
quark propagators are divergent as well. When a hadro
emitted or absorbed we have quark-antiquark annihila
overlaps, for instance, in a three-meson vertex,

~A3!

We first integrate the relative energies in the first diagram
Eq. ~A3!,

E dwdw8

~2p!2

i

w2E11 i e
iV14̄,3

i

2w82E481 i e

5
i

w82E381 i e

i

w2E31 i e

i

2w2E21 i e

52 iV14̄,3G0a
G0b

G0c
, ~A4!

where theG0n
are in fact part of the respective BS amp

tudes which are untruncated. The remaining factor2 iV14̄,3
is finite because the term proportional toU in the quark-
antiquark annihilation vertex isvs

†(k)d3(k2k8)us8(k8)50.
When the number of hadrons are conserved, this is

case in elastic scattering, we have quark exchange over
for instance, in a four-meson vertex

~A5!

The integrals in the relative energies are

E dw

2p

i

w2E11 i e

i

2w2E41 i e

i

w2E31 i e

i

2w2E21 i e

5 i ~E11E21E31E4!G0a
G0b

G0c
G0d

,
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E dwdw8

~2p!2

i

w2E11 i e
~2 iV13!

3
i

w82E181 i e

i

2w82E481 i e

3
i

w82E381 i e

i

w2E31 i e

i

2w2E21 i e

52 iV13G0a
G0b

G0c
G0d

. ~A6!

The four G0n
, will be absorbed by the Salpeter amplitud

and the remaining factors are

i ~E11E21E31E42V132V24!P13

5 i ~E11E21E31E41V141V23!P13

5 iP13~E11E21V121E31E41V34!

5 iP13~0U1¯ !, ~A7!

where the infinite2U terms cancel in the same way as
Eq. ~A1! because the mesons 32 and 14 in the left and 12
34 in the right are color singlets. We find that all the term
proportional toU cancel when the complete set of diagram
which contribute to the interaction between color singlets
included.

In this framework the masses of bare hadrons and t
interactions are finite and can be evaluated. Then we c
pute the masses and widths of dressed hadrons. These a
final freedom degrees which can be compared with the
perimental spectrum of hadronic resonances.

APPENDIX B: THE LIGHT p AND WARD IDENTITIES

The solution to the pion mass problem is found usi
@22,32# the Ward identities~WI! in order to insure that the
bound state equation for the pion—a Bethe-Salpeter equa
with coupled channels—is consistent with the non line
mass gap equation. The WI were first derived for fermio
gauge field theories, and were initially based on the sim
observation that for free fermions with propagatorS0(p)
5 i /(p”2m0) and a free vector vertexG0

m5gm,

i ~pm2pm8 !S~p!Gm~p,p8!S~p8!5S~p!2S~p8!. ~B1!

The difference in the right-hand side of the equation exte
the identity to renormalized propagators and vertices. T
identity is then crucial for the conservation of electric charg
The WI enforce that the self-energy of the MGE is obtain
~without double counting! from the BS kernel by closing the
fermion line where the vertex is inserted. Inversely, they a
ensure that the BS kernel is obtained if one inserts the ve
in all possible propagators of the self-energy. For insta
this mapping is trivial at the BCS level where the mass g
equation~6! is clearly equivalent to the bound state equati
~7!. Let us now consider a more general case, where
fermion self energy include a product of bare propagat
9-13
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Sa ib i
(ki1P). The external momentum isP andki is a loop

momentum. The propagators can be factorized and we g

S~P!5¯)
i

Sa ib i
~ki1P!. ~B2!

Then the vertexG can be constructed if we insert a ba
vertex in all possible bare propagators, and we get

Gm~P12P2!5¯(
j

)
i1< j

Sa i1b i1
~ki11P1!gm

3 )
i2> j

Sa i2b i2
~ki21P2!. ~B3!

Conversely the original self-energy can be recovered if
substitute the bare vertex by the difference of propagato

i ~P1m2P2m!Gm5¯(
j

)
i1, j

Sa i1b i1
~ki11P1!,

@Sa jb j
~kj1P1!2Sa jb j

~kj1P2!# )
i2. j

Sa i2b i2
~ki21P2!

5@S~P1!2S~P2!#, ~B4!

where the products which depend on bothP1 andP2 cancel,
and this removes the double counting.

There is also a WI identity for the free axial vector vert
G f

m55gmg5 that involves the free pseudoscalar vertexG f
5

5g5,

2 i ~pm2pm8 !S~p!Gm5~p,p8!S~p8!

12 imS~p!G5~p,p8!S~p8!5S~p!g51g5S~p8!

~B5!

which is valid in a renormalization program providing th
interaction is chirally invariant. In this case an equati
analogous with Eq.~B5! is made up of the axial and pseu
doscalar vertices and the self-energy.

A key product of the axial WI is the proof@7,33# that a
pseudoscalar Goldstone boson exists when current q
masses vanish and chiral symmetry breaking occurs. The
propagator is then renormalized and the self-energyS has a
masslike term

S21~p!5S0
21~p!2S~p!, iS5A~p!2p”B~p!, ~B6!

S21~p!5S0
21~p!2S~p!5

A~p!p”2B~p!

i
. ~B7!

If we substitute this propagator in the WI, we find the so
tion for the pseudoscalar vertexG5 with a vanishing p
2p8,

G5~p5p8!5
B~p!

m0
g5 ~B8!
03520
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which diverges for a vanishing quark massm0 and shows
that the pole of a massless pseudoscalar meson appears
axial vector vertex, with a bound state truncated amplitude

x~p2p8.0!5
Bg5

f p
, ~B9!

where f p includes a norm. Incidentally, this identity als
offers a proof of the Gell-Mann, Oakes, and Renner relati
If we expand the vertexG5 in the neighborhood of thep
pole,

G55x
i

~p2p8!22M2 tr$xS~p!G0
5S~p8!%, ~B10!

where we included the integral in the trace. SubstitutingG5
in Eq. ~B8! and performing a trace withSg5S, we find for
small masses

trH g5

BSg5S
f p

J i

2M2 trH BSg5S
f p

g5J
5trH g5

BSg5S
m0

J ⇒2m0 tr$S%522m0^c̄c&5M2f p
2 .

~B11!

In QCD it is necessary to include the axial anomaly, in t
flavor singlet WI which corresponds to theh8 channel. The
flavor octet axial currents remain unchanged, in particu
the p, K, h remain quasi-Goldstone bosons. We will no
simply assume that theh8 is heavier@2,7,17,34# than the
usualNf

221 Goldstone bosons, whereNf is the number of
light quark flavors.

APPENDIX C: THE SALPETER EQUATIONS
IN THE ENERGY-SPIN FORMALISM

When the interaction is instantaneous, a simplification
curs in the Bethe-SalpeterS matrix in the ladder approxima
tion

~C1!

The S matrix only has four independent submatrices, wh
have to be calculated iteratively. The other 12 submatri
are directly computed from the independent four ones. T
9-14
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Salpeter equations are obtained when all the relative qu
antiquark energies of the system~C1! are integrated,

E dw

2p

i

w1W/22Eq1 i e

i

w1W/22Eq̄1 i e

5
i

W2Eq2Eq̄1 i e
. ~C2!

The Salpeter equations can then be written in the com
form

S5G01G0VS⇒~G0
212V!S51⇒~Ws32H1 i e!S5 i ,

~C3!

wheres3 is the Pauli matrix,

S5FS11 S12

S21 S22G ,

G05F i

W2Eq2Eq̄1 i e
0

0
i

2W2Eq2Eq̄1 i e

G ,

V52 iF E Vd E Va

E Va E Vd

G ,

H5F Eq1Eq̄1E Vd E Va

E Va Eq1Eq̄1E Vd

G ~C4!

and it turns out thatH is a Hermitian and positive operato
The Salpeter wave-functions are the solutions of the ho
geneous equations,

~Ms32H !f50,f5S f1

f2 D , ~C5!

which is an eigenvalue equation, similar to the Schro¨dinger
equation, except for thes3 . This formalism is known as the
energy-spin formalism, wheref1 is called the positive en
ergy wave-function andf2 is called the negative energ
wave function. The Salpeter equation~C5! is equivalent to
the variational equation

dS ^fuHuf&

^fus3uf& D50, ~C6!

which suggests that a normalizing condition of the wa
functions might be

^fus3uf&5uf1u22uf2u251. ~C7!

Let us study the class of solutionsfu where this norm is
possible, i.e.,ufu

1u.ufu
2u. Once the single quark energiesE
03520
k-

ct

o-

e

and the two-quark diagonalVd and antidiagonalVa poten-
tials are defined, the solutions can be obtained numerica
either iteratively or variationally, and one finds a whole spe
trum of solutions with energyM.0. WhenM increases, we
find that ufu

2u is proportional toM 21, and in the limit of
large mass we exactly recover Schro¨dinger equation. How-
ever, another class of solutionsfd is unavoidable, with a one
to one correspondence with thefu , and where ufd

2u
.ufd

1u,

fd
15fu

2 , fd
25fu

1 , Md52Mu ,

^fuus3ufu&51, ^fdus3ufd&521, ~C8!

thus the spectrum is unbound. Exactly half of the solutio
have a negative mass and a negative norm. When we inc
the infinitesimali e in Eq. ~C5!, we find that the larger com
ponent off dominates and the eigenvalues are now

Mu˜Mu2 i e,

Md˜Md1 i e52~Mu2 i e!. ~C9!

The operatorsH ands3 are both Hermitian, thus the se
of solutions uf& constitute a basis of the Hilbert space, o
thogonal in the sense that^fus3uf8&50, and the identity
element is

15(
s3uf&^fu
^fus3uf&

5(
u

s3ufu&^fuu2(
d

s3ufd&^fdu.

~C10!

Inserting this partition in theSmatrix equation~C3!, we find

i 5~Ws32H !S5(
s3uf&^fu
^fus3uf&

~Ws32H

1 i e!s3(
s3uf^fu

^fus3uf&
s3S

5( s3uf
W2M1 i e^fus3uf&

^fus3uf&
^fus3S,

s3S5( s3uf&
i ^fus3uf&

W2M1 i e^fus3uf&
^fu,

S5(
u

ufu&
i

W2Mu1 i e
^fuu2(

d
ufd&

i

W2Md2 i e
^fdu

~C11!

and the states with negative energy and negative norm ca
reinterpreted as bound states with positive mass moving
ward in time, where the variableW5P0 in the propagator
turns out to be negative,

S5(
u

ufu&
i

W2Mu1 i e
^fuu1s1ufu&

3
i

2W2Mu1 i e
^fuus1 ~C12!
9-15
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and it suffices to work with thefu . Diagrammatically we
get, for instance,

~C13!

wherew and w8 are the external energies. The quark an
quark BS amplitude is represented by the triangle⇒ and the
boson propagator of the meson is represented by the do
line v. It is consistent to substitute thed wave functions
and masses in terms of the componentsfu

1 ,fu
2 and the

massesMu . In the paper this reinterpretation will be a
sumed and we will skip the subindexu . The practical result
is that we can use the amplitudef1 when the bra~ket! pre-
cedes~succeeds! the meson propagator, and we use the a
plitude f2 for the opposite case.

APPENDIX D: THE BETHE-SALPETER EQUATION
WITH COUPLED CHANNELS

We now go beyond BCS including the mesonic coup
channels both in the MGE and in the bound state equati
It is convenient to return to the Dirac formalism in order
reduce the number of diagrams when we apply the WI.
will extend the BS for theqq̄ bound state of the quarks wit
the minimal meson loop of coupled channels

~D1!

where we follow the approximation of including only thre
legged effective meson vertices in the meson interaction.
will show that this is imposed by the box at the left of th
‘‘beyond BCS’’ diagram in Eq.~D1!. Upon iteration the
equation

G5G01VG0G1VG0VMG ~D2!

can be resummed. If we factorize theS matrix at the ladder
level S05(12G0V)21G0 , see Eq.~C3!, the ladder will ap-
pear in the middle of the coupled channel terms,

G0G5S0G01G0VS0VMG,

G.VS0G01VS0VMG. ~D3!

When the laddersS0 , including the two ones of the meso
loop in M, are expanded in meson poles and wave functi
according to Eq.~C13!, we recover the meson-meson pa
coupling of Eq.~37!. The resulting pole of the vertexG is the
mass of the dressed mesonM01DM . This procedure is
equivalent to the resonating group method equations@29# for
coupled channels of one meson with a pair of noninterac
mesons.
03520
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ble
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e

s

g

We now use the WI prescription of removing the vert
and closing the respective fermion line to arrive at the m
gap equation~49!. To recover the full vertex equation w
must insert the vertex in all possible propagators of Eq.~49!.
We then arrive at a WI consistent Bethe-Salpeter equa
for the vertex and for the bound state,

~D4!

where the diagrams are shown in separate lines accordin
their properties. Line 1 corresponds to the BS equation at
BCS level. Without the other lines it would reproduce t
ladder Bethe-Salpeter equation for the vertex. The lines 2
and 5 were separated because they contain all the terms
portional to the infrared divergentU, but they cancel in each
line and all lines are finite. The remaining lines 4 and
contain the terms that one would expect in coupled chan
equations where a pair of mesons is created and then a
hilated ~except for the first diagrams of line 4 and line
which vanish!. With them we calculate for instance the pa
tial decay width of a resonance into a channel of two m
sons. The last lines 5 and 6 are only relevant for flavor s
glets because the quark pair in the incoming meson
annihilated, thus for flavor vectors they are null.

The cancellation of the infrared divergences becom
clear in the Goldstone-Weyl formalism. Let us consider
instance the diagrams of line 2 in Eq.~D4!,

~D5!

These three diagrams are infrared divergent but their sum
finite, in an analogous way to Eq.~A5!.
9-16
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It is important to remark that in the previous calculatio
in the literature, the extrapolation from the ladder level to
coupled channel level would only include the diagrams
lines 4 and 6. We now find the previous choice arbitra
since the diagrams of lines 2, 3, and 5 were not conside
The role of these diagrams is to cancel any real mass shi
the p due to the usual coupled channel diagrams of line
and 6, in order that thep remains a Goldstone boson in th
hy

.

.

9

a

03520
e
f
y
d.
of
4

chiral limit. This is ensured by the WI, see Eq.~B8!. Con-
cerning widths, since the new diagrams are real, the res
of the previous calculations in the literature are corre
However we find no systematic real mass shift in the me
spectrum due to coupled channels. This contradicts mos
the real mass shifts of hundreds of MeV which are comm
in the literature. Only splittings between different levels, d
to neighboring cuts, may be affected by coupled channe
rd,
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