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Infinite nuclear matter on the light front: Nucleon-nucleon correlations
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A relativistic light-front formulation of nuclear dynamics is developed and applied to treating infinite nuclear
matter in a method which includes the correlations of pairs of nucleons: this is light-front Brueckner theory.
We start with a hadronic meson-baryon Lagrangian that is consistent with chiral symmetry. This is used to
obtain a light-front version of a one-boson-exchange nucleon-nucleon potential~OBEP!. The accuracy of our
description of the nucleon-nucleon (NN) data is good, and similar to that of other relativistic OBEP models.
We derive, within the light-front formalism, the Hartree-Fock and Brueckner-Hartree-Fock equations. Apply-
ing our light front OBEP, the nuclear matter saturation properties are reasonably well reproduced. We obtain
a value of the compressibility 180 MeV that is smaller than that of alternative relativistic approaches to nuclear
matter in which the compressibility usually comes out too large. Because the derivation starts from a meson-
baryon Lagrangian, we are able to show that replacing the meson degrees of freedom by aNN interaction is a
consistent approximation, and the formalism allows one to calculate corrections to this approximation in a
well-organized manner. The simplicity of the vacuum in our light-front approach is an important feature in
allowing the derivations to proceed. The mesonic Fock space components of the nuclear wave function are
obtained also, and aspects of the meson and nucleon plus-momentum distribution functions are computed. We
find that there are about 0.05 excess pions per nucleon.@S0556-2813~99!05108-0#

PACS number~s!: 21.65.1f, 11.80.2m, 13.75.Cs, 21.30.2x
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I. INTRODUCTION

We introduce a light-front formalism for infinite nuclea
matter, in which the effects of correlations are taken in
account. This is a light-front Brueckner theory of nucle
matter. While the ultimate goal of this and related studies
to provide a fully relativistic treatment of nuclei which in
cludes all previous knowledge about nuclear dynamics,
present work represents one step beyond the previous l
front mean-field calculation@1,2# of the properties of infinite
nuclear matter.

Understanding an important class of experiments seem
require that light-front dynamics and the related light co
variables be used. Consider the lepton-nucleus deep inel
scattering experiments@3# which showed that there is a sig
nificant difference between the parton distributions of fr
nucleons and nucleons in a nucleus. This difference can
terpreted as a small~;10%! shift in the momentum distribu
tion of valence quarks towards smaller values of the Bjork
variable xB j . The Bjorken variable is a ratio of the plus
momentumk15k01k3 of a quark to that of the target. I
one regards the nucleus as a collection of nucleons,xB j
5p1/k1, where k1 is the plus momentum of a nucleo
bound in the nucleus. If one usesk01k3 as a momentum
variable the corresponding canonical spatial variable isx2

5x02x3 and the time variable isx01x3 @4#. This is the
light-front ~LF! approach of Dirac@5#; see the recent review
@6,7# for more information.

Deep inelastic scattering depends on the light-front m
mentum distribution which is the probabilityf (k1) that a
bound nucleon has a momentumk1. Other nuclear reactions
such as (e, e8) and (p, 2p) depend also on this very sam
0556-2813/99/60~3!/035202~23!/$15.00 60 0352
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probability @8–10#. The quantityf (k1) is simply related to
the square of the ground state wave function, computed
ing light-front dynamics. The usual equal time approach
nuclear dynamics is very successful, and it is natural to
this information to calculate the distributionf (k1). How-
ever, in the standard equal time formulation this quantity i
response function and depends on matrix elements betw
the ground and all excited states, and therefore can be m
difficult to compute.

The use of light-front variables is convenient for interpre
ing certain experiments, but does not allow one to avoid
necessary task of handling nuclear dynamics. Thus on
faced with the task of computing the ground state nucl
wave function usingx15x01x3 as a time variable. The
present effort is a simplification in that the nucleus is tak
to be infinite nuclear matter. However, the detailed effects
the interactions between two nucleons are included, so
we are concerned with the relativistic dynamics of a stron
interacting many body system.

Light-front techniques have previously been applied
systems of two hadrons@6,8,9,11–15#. Our emphasis here is
in large nuclear systems. The light-front quantization pro
dure necessary to treat nucleon interactions with scalar
vector mesons was derived by Soper@16#, and by Yan and
collaborators@17,18#.

We next outline our procedure. The necessary Lagra
ian, which respects chiral symmetry, and its light-fro
Hamiltonian is described in Sec. II. Its application
nucleon-nucleon scattering in the one-boson exchange
proximation is carried out in Sec. III. A new feature is th
the effects of isovector mesons such as ther andd, and the
r-nucleon tensor interaction are included. TheNN potential
©1999 The American Physical Society02-1
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is generated using the one-boson exchange approxima
The Weinberg-type integral equation, which maintains u
tarity and boost invariance in one direction, is solved and
results are compared with phase shift data. Section IV
concerned with the many-nucleon problem. Two sepa
perturbation series are involved. The first step is to elimin
temporarily the meson degrees of freedom in favor of
two nucleon potential. Thus one first proceeds using o
nucleon degrees of freedom. The light-front formalism
obtain the nucleonic interacting ground state wave funct
uF& in terms of a series in which a BruecknerG matrix acts
on a best Slater determinantuf& is developed. The
independent-pair approximation is used. One must find
eigenstate of theP2 operator for which the expectation valu
of P1 is equal to the eigenvalue ofP2. This formalism is
applied and the results are discussed in Sec. V. The
nuclear wave functionuC&, including the meson degrees o
freedom, is discussed in Sec. VI. The objectuC& is related to
uF& by a second series involving the difference between
nucleon-nucleon interaction and the meson-nucleon inte
tions. One finds that the expression for the nuclear m
evaluated in Sec. V, is valid within our approximation. Fu
thermore, expressions for the meson and nucleon distribu
functions are obtained. We derive a sum rule for obtain
the total number of~nonvector! mesons in the nucleus. A
brief discussion of the implications of our results for lepto
nucleus deep inelastic scattering and the nuclear Drell-
process is presented in Sec. VII. A brief summary of o
results is contained in Sec. VIII. Some of the necessary
tation is discussed in an appendix. Some of the presen
sults, but none of the details of the derivation or of our tw
nucleon potential have appeared in Ref.@19#.

II. LIGHT-FRONT QUANTIZATION: LAGRANGIAN,
FIELD EQUATIONS, AND LIGHT-FRONT

HAMILTONIAN

The light-front approach is a three-dimensional formali
involving a Hamiltonian which is aP2 operator. One starts
with a Lagrangian and derives field equations which all
one to eliminate the appearance of dependent degree
freedom in the Hamiltonian. Our starting point is a nonline
chiral model in which the nuclear constituents are nucleonc
~or c8!, pionsp, scalar mesonsf @20#, and vector mesons
Vm. The LagrangianL is given by

L5
1

2
~]mf]mf2ms

2f2!2
1

4
VmnVmn1

mv
2

2
VmVm

1
1

4
f 2 Tr~]m U ]m U†!1

1

4
mp

2 f 2 Tr~U1U†22!

1c̄8FgmS i

2
]Jm2gv VmD2U~M1gsf!Gc8, ~2.1!

where the bare masses of the nucleon, scalar and vector
sons are given byM, ms , mv , andVmn5]mVn2]nVm. The
unitary matrixU can be chosen from amongst three form
Ui ,
03520
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U1[eig5t–p/ f , U2[
11 ig5t–p/2f

12 ig5t–p/2f
,

U35A12p2/ f 21 ig5t–p/ f , ~2.2!

which correspond to different definitions of the fields. Th
Lagrangian, based on the linear representations of ch
symmetry used by Gursey@21#, is discussed in Ref.@2#. It is
approximately (mpÞ0) invariant under the chiral transfor
mation

c8˜eig5t–ac8, U˜e2 ig5t–aU e2 ig5t–a. ~2.3!

This invariance shows that our scalar mesonf is not a chiral
partner of the pion. Note the presence of the termU(M
1gsf) which was incorrectly given asMU1gsf in Refs.
@1,2#.

The constantM / f plays the role of the bare pion-nucleo
coupling constant. Iff is chosen to be the pion decay co
stant, the Goldberger-Trieman relation says that the a
vector coupling constantgA51. This is not really a problem
because loop effects can make up the needed 25% ef
Corrections of that size are typical of order (M / f )3 effects
found in the cloudy bag model@22# for many observables
including gA . We also note that theD is not treated as an
explicit degree of freedom in the above Lagrangian.

The present Lagrangian may be thought of as a low
ergy effective theory for nuclei under normal conditions.
more sophisticated Lagrangian is reviewed in Ref.@23# and
used in Ref.@24#; the present one is used to show that ligh
front techniques can be applied to hadronic theories relev
for nuclear physics. This hadronic model, when evaluated
mean field approximation, gives@25# at least a qualitatively
good description of many~but not all! nuclear properties and
reactions. There are a variety of problems occurring wh
higher order terms are included@23#. The aim here is to use
a reasonably sophisticated Lagrangian to study the eff
that one might obtain by using a light-front formulation.

Reference@2# contains the details of the quantization pr
cedure; we re-state the relevant results here. An esse
feature is the quantization of spin-1/2 fermions. Althou
described by four-component spinors, these fields have o
two independent degrees of freedom. The light-front form
ism allows a convenient separation of dependent and in
pendent variables via the projection operatorsL6[g0g6/2
@16#, with c68 [L6c68 . The independent Fermion degree
freedom is chosen to bec18 . The properties of the projection
operators are discussed in the Appendix. One gets cou
equations forc68 :

~ i ]22gvV2!c18 5@a'•~p'2gvV'!1bU~M1gsf!#c28 ,

~ i ]12gvV1!c28 5@a'•~p'2gvV'!1bU~M1gsf!#c18 .
~2.4!

The relation betweenc28 andc18 is very complicated unless
one may set the plus component of the vector field to z
2-2
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@6#. This is immediately obtained in QED and QCD b
choosing an appropriate gauge in which the plus-compon
of the vector potential vanishes. Here the nonzero mas
the vector meson prevents such a choice. Instead, one
plifies the equation forc28 by @16,18# transforming the Fer-
mion field according to

c85e2 igvL~x!c ~2.5!

with ]1L5V1. This transformation leads to the result@2#

~ i ]22gvV̄2!c15@a'•~p'2gvV̄'!1bU~M1gsf!#c2 ,

i ]1c25@a'•~p'2gvV̄'!1bU~M1gsf!#c1 ,

~2.6!

where

]1V̄m5]1Vm2]mV15V1m. ~2.7!

The fieldsVm enter the meson field equations, but the fie
V̄m enter the fermion field equations. The eigenmode exp
sion for V̄m is given by

V̄m~x!5E d2k'dk1u~k1!

~2p!3/2A2k1 (
v51,3

ēm~k, v!@a~k, v!e2 ik•x

1a†~k, v!eik•x#, ~2.8!

where the polarization vectorsēm(k, v) are given by@18#

ēm~k, v!5em~k, v!2
km

k1 e1~k, v!, ~2.9!

with the properties

kmēm~k, v!52
mv

2

k1 e1~k, v!,

(
v51,3

ēm~k, v!ēn~k, v!52S gmn2g1m
kn

k12g1n
km

k1 D .

~2.10!

The use of the Fermion field equation allows one to obt
the light-front Hamiltonian density

T125“'f•“'f1mf
2 f21

1

4
~V12!21

1

2
VklVkl1mv

2VkVk

1~“'p!21
@~1/2! “'p2#2

p2 S 12
f 2

p2 sin2
p

f D
1mp

2 f 2 sin2
p

f
12c1

† S i
1

2
]J22gvV̄2Dc1 . ~2.11!
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The expression~2.11! is useful for situations, such as i
the mean field approximation, for which a simple express
for c1 is known. This is not always the case, so it is wort
while to use the Dirac equation to expressT12 in an alter-
nate form:

T125“'f•“'f1mf
2 f21

1

4
~V12!21

1

2
VklVkl1mv

2VkVk

1~“'p!21
@~1/2! “'p2#2

p2 S 12
f 2

p2 sin2
p

f D
1mp

2 f 2 sin2
p

f
1c̄@g'•~p'2gvV̄'!

1U~M1gsf!#c. ~2.12!

The relationship betweenc and j ~j2 contains no interac-
tions! is discussed in Ref.@2#, but we explain it briefly here
for the sake of completeness. We follow Refs.@16,26# in
expressingc2 as a sum of terms, onej2 whose relation with
c1 is free of interactions, the otherh2 containing the inter-
actions. That is, rewrite the second of Eq.~2.6! as @27#

j25
1

i ]1 ~a'•p'1bM !c1

h25
1

i ]1 @2ta'•gvV̄'1b~Ugsf1~U21!M !#c1 .

~2.13!

Furthermore, definej1(x)[c1(x), so that

c~x!5j~x!1h2~x!, ~2.14!

where j(x)[j2(x)1j1(x). This separates the depende
and independent parts ofc.

It is j that is expanded in creation and destruction ope
tors according to

j~x!5E d2k'dk1u~k1!

~2p!3/2A2k1 (
l51,2

@u~k,l!e2 ik•xb~k,l!

1v~k,l!e1 ik•xd†~k,l!#. ~2.15!

The spinorsu(k,l) are the usual equal time Dirac spinors,
normalizationūu52M . It is legitimate to use these becau
one is free to choose the representation of the solutions o
Dirac equation in an infinite number of ways. In particula
the correct fermionic anticommutation relation forj1 is ob-
tained with these spinors@17#.

The Hamiltonian is a sum of a freeP0
2(N) and interacting

termsPI
2(N):

P0
2~N!5

1

2 E d2x'dx2j̄~g'•p1M !j, ~2.16!
2-3
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PI
25v11v21v3 , ~2.17!

with

v15E d2x'dx2j̄~gvg•V̄1M ~U21!1gsfU !j,

~2.18!

v25E d2x'dx2j̄~2gvg•V̄1M ~U21!1gsfU !

3
g1

2p1 ~2gvg•V̄1M ~U21!1gsfU !j, ~2.19!

and

v35
gv

2

32E d2x'dx2E dy1
2j̄~x' ,y1

2!g1j~x' ,y1
2!

3e~x22y1
2!E dy2

2e~x22y2
2!

3 j̄~x' ,y2
2!g1j~x' ,y2

2!. ~2.20!

The termv1 accounts for the emission or absorption o
single vector or scalar meson, as well as the emission
absorption of any number of pions through the operatorU
21. The termv2 includes contact terms in which there
propagation of an instantaneous fermion. The termv3 ac-
counts for the propagation of an instantaneous vector me

The component that is related to the plus momentum
T11. The necessary expression is given by

T115VikVik1mv
2V1V11c̄g1i ]1c1]1f]1f

1]1p•]1p1p•]1p
p•]1p

p2 S 12
f 2

p2 sin2
p

f D .

~2.21!

III. NUCLEON-NUCLEON SCATTERING
VIA ONE-BOSON EXCHANGE

POTENTIALS

The correlations between nucleons are caused by
nucleon-nucleon interaction. Thus a necessary first step
wards a light-front theory of nuclear correlations is the de
vation of a light-front theory of the nucleon-nucleon intera
tion. Previous work@1,2# showed that the light-front versio
of the Lippmann-Schwinger equation, the Weinberg eq
tion, can be transformed~with one difference remaining
@28#! into the Blankenbecler-Sugar equation. Kinematic
variance under boosts in the three-direction is maintain
and we shall obtain a one-boson exchange potential whic
in reasonably good agreement with theNN phase shifts.
03520
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A. General formalism

It is worthwhile to begin by reviewing how using th
light-front Hamiltonian of Eqs.~2.16!–~2.20! leads to the
one-boson exchange potential. This derivation is usefu
understanding how the full nuclear wave function discus
in Sec. VI is related to the nucleonic truncation of Sec. I
Consider the scattering process 112˜314. The use of
second-order perturbation theory shows that the lowest-o
contribution to the nucleon-nucleon scattering amplitude
given by

^3,4uKu1,2&5^3,4uv1g~Pi j
2!v11v3u1,2&, ~3.1!

with

g0~Pi j
2![

1

Pi j
22P0

2 , ~3.2!

where Pi j
2 is the negative component of the total initial o

final momentum which are the same. In constructing theNN
potential one uses conservation of four-momentum betw
the initial and finalNN states in constructing theNN poten-
tial. The expression~3.1! yields a one-boson exchange a
proximation to the nucleon-nucleon potential.

It is worthwhile to discuss the energy denominatorPi j
2

2P0
2 in more detail. To be specific, suppose thatk1

1.k3
1 .

Then the emitted meson of massm has momentumk with
k15k1

12k3
1 ,k'5k1'2k3' andk25(k'

2 1m2)/k1. Then

Pi j
22P0

25P12
2 2P0

25P34
2 2P0

25~k1
22k3

2!2
k'

2 1m2

k1
12k3

1 .

~3.3!

The interactionK also contains a factor ofk1 in the denomi-
nator, so that the relevant denominator isD[k1(Pi j

22P0
2)

5(k1
12k3

1)(k1
22k3

2)2k'
2 2m25q22m2. This last familiar

form involves the four-momentum transfer between nucle
1 and 3 (q[k12k3) and leads to the usual Yukawa-typ
potentials. It is also useful to explore the form of the ener
denominator using light-front variables by first defining t
plus componentP1 of the initial and final total momentum
We may also definek1

15xP1 and k3
15x8P1 in which x

andx8(x.x8), as ratios of plus momenta, are invariant u
der Lorentz transformations in the three direction. Then
ing Eq. ~3.3!, we find

D5S k1'
2 1M2

x
2

k3'
2 1M2

x8
D ~x2x8!2k'

2 2m2. ~3.4!

This quantity is also invariant under Lorentz transformatio
in the three direction. This expression is to be used only
k1

1.k3
1 . If k3

1.k1
1 , then use a version of expression~2.15!

in which x andx8 are interchanged.
2-4



al
fa
ha

o

-
n

ls
li

ex
rd

rs

o
i

ic
le
-
fi

-
m

,

r-

te-
n
els

INFINITE NUCLEAR MATTER ON THE LIGHT FRONT: . . . PHYSICAL REVIEW C 60 035202
A straightforward evaluation of Eq.~3.1! using Eqs.
~2.18!–~2.20! leads to the result

^3,4uKu1,2&52^3,4uVu1,2&
M2d (2,1)~Pi2Pf !

Ak1
1k2

1k3
1k4

1
, ~3.5!

whered (2,1)(Pi2Pf)[d (2)(Pi'2Pf')d(Pi
12Pf

1) andV is
the standard expression for the sum of thep, f and vector
meson exchange potentials:

^3,4uVu1,2&5^3,4uV~f!1V~p!1V~V!u1,2&. ~3.6!

The operatorK is twice the usual two-nucleon potenti
times a factor which includes the light-front phase space
tor and a momentum-conserving delta function. Note t
dk1/k15dk3/E(k) for free nucleons wherek15E(k)
1k3.

For the exchange of scalar and pseudoscalar mesons,
the termv1g0(Pi

2)v1 enters, and one finds

^3,4uV~f,p!u1,2&5
ū~4!Gu~2!ū~3!Gu~1!

4M2~2p!3~q22m2!
, ~3.7!

in which the momentum transferq is given by

q[k32k1 . ~3.8!

The notation is thatu( i ) is the Dirac-spinor for a free
nucleon of quantum numbersi , andG is either of the formgs
or igpg5t. The derivation of the contribution of vector me
son exchange proceeds by including the meson excha
v1g0(Pi

2)v1 plus the meson instantaneous termv3 , and the
result takes the familiar form

^3,4uV~V!u1,2&52gv
2 ū~4!gmu~2!ū~3!gmu~1!

4M2~2p!3~q22mv
2!

.

~3.9!

The expressions~3.7! and ~3.9! represent the usual@29–33#
expressions for the chosen one-boson exchange potentia
no form factor effects are included. The sum of the amp
tudes arising from each of the individual one-boson
change terms gives the invariant amplitude to second o
in each of the coupling constants. The factors 1/4M2 in Eqs.
~3.7! and~3.9! can be thought of as renormalizing the spino
so thatūu51, and the factorsAM /k1 of Eq. ~3.5! serve to
further change the normalization tou†u51

These amplitudes are strong, so computing the nucle
nucleon scattering amplitude and phase shifts requires
cluding higher order terms. One may include a sum wh
gives unitarity by including all iterations of the two partic
irreducible scattering operatorK through intermediate two
nucleon states. One first removes kinematic factors by de
ing a T matrix T using
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M[2T
M2d (2,1)~Pi2Pf !

Ak1
1k2

1k3
1k4

1
, ~3.10!

to find that

^3,4uTu1,2&5^3,4uVu1,2&1 (
l5 ,l6

E ^3,4uVu5,6&

3
2M2

p5
1p6

1

d2p5'dp5
1

Pi
22~p5

21p6
2!1 i e

^5,6uTu1,2&.

~3.11!

One realizes that Eq.~3.11! is of the form of the Wein-
berg equation@34# ~see Ref.@8#! by expressing the plus
momentum variable in terms of a light-front momentu
fraction a such that

p5
15aPi

1 , ~3.12!

and using the relative and total momentum variables

p'[~12a!p5'2ap6' ,

Pi'5p5'1p6' . ~3.13!

Then,

^3,4uTu1,2&5^3,4uVu1,2&1E (
l5 ,l6

^3,4uVu5,6&

3
2M2

a~12a!

d2p'da

Pi
22 ~p'

2 1M2!/a~12a!1 i e

3^5,6uTu1,2&, ~3.14!

where Pi
2 is the square of the total initial four-momentum

otherwise known as the invariant energys and (p'
2

1M2)/a(12a) is the corresponding quantity for the inte
mediate state. Because the kernelV is itself invariant under
Lorentz transformations in the three direction and the in
gral involvesp' anda the procedure of solving this equatio
givesT with the same invariance. Note that we use the lab
pi to designate momenta in the intermediate state, andki for
the initial and final states.

Equation~3.14! can in turn be reexpressed~in the center
of mass frame! as the Blankenbecler-Sugar~BbS! equation
@35# by using the variable transformation@36#:

a5
E~p!1p3

2E~p!
, ~3.15!

with E(p)[Ap–p1M2 and Pi
254(p–p1M2). The result

is
2-5
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^3,4uTu1,2&5^3,4uVu1,2&1E (
l5 ,l6

^3,4uVu5,6&

3
M2

E~p!

d3p

pi
22p21 i e

^5,6uTu1,2&, ~3.16!

which is the desired equation. Rotational invariance is ma
festly obeyed. The three-dimensional propagator is exa
that of the BbS equation. There is, one difference betw
Eq. ~3.16! and the standard BbS equation. Our one-bo
exchange potentials depend on the square of the four
mentumq2 transferred when a meson is absorbed or emi
by a nucleon. Thus the energy difference between the in
and final on-shell nucleons is included andq0Þ0. This non-
zero value is a consequence of the invariance ofD of Eq.
~3.4! under Lorentz transformations in the three directio
The usual derivation of the BbS equation from the Bet
Salpeter equation specifies thatq050 is used in the meson
propagator. Includingq0Þ0 instead ofq050 increases the
range of the potential relative to the usual treatment, and
consequences are explored below. One can convert
~3.16! into the Lippman-Schwinger equation of nonrelativ
tic scattering theory by removing the factorM /E(p) with a
simple transformation@37#.

B. Generation of a realistic one-boson exchange potential

The present results are that one can use the light-f
technique to derive nucleon-nucleon potentials in the o
boson exchange~OBE! approximation and use these in a
appropriate wave equation. Our purpose here is to show
the present procedure yields potentials essentially identic
the Bonn OBEP potentials@30,31# and these potentials lea
to a good description of theNN data.

The Bonn one-boson exchange potentials employ six
ferent mesons, namely,p,h,v,r,s, and the~isovector scalar!
d/a0 meson. The present formalism can account for
p,h,v, and s in an approximately chiral invariant manne
We wish to add in couplingsc̄t•dc and c̄t•rmgmc in a
chiral invariant manner. Simply adding such terms to
Lagrangian of Eq.~2.1! would lead to a violation of the
approximate symmetry of Eq.~2.3!. However, one can rede
fine the operatorU so that the symmetry remains. We repla
the operatorc̄8Uc8 in the Lagrangian~2.1! by c̄8Ũc8:

Ũ[e~ i /2f r!t•rmgme~ i /2f d!t•dUe~ i /2f d!t•de~ i /2f r!t•rmgm.
~3.17!

Then the new Lagrangian is invariant under the transform
tion

c8˜eig5t•ac8, Ũ˜e2 ig5t•aUe2 ig5t•a. ~3.18!

In the present application we expand the exponential to
order in the meson fields.
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The final term we need to include is the tensorsmnqn part
of the r-nucleon interaction. The presence of such a ten
interaction makes it difficult to write the equation forc2 as
c251/p1

¯c1 . This is a possible problem because t
standard value of the ratio of the tensor to vectorr-nucleon
coupling f r /gr is 6.1, based upon Ref.@38#. Reproducing the
observed values of«1 and P-wave wave phase shifts re
quires a large valuef r /gr ; see Ref.@39#. However our La-
grangian compensates for its lack of ar-N interaction with
tensor coupling by generating such a term via vertex corr
tion diagrams~which are the origin of the anomalous ma
netic moment of the electron in QED!. Such diagrams migh
not generate the phenomenologically required values of
coupling constants, but all that is needed here is that term
the correct form be produced. This is because the stan
procedure is to choose the values of the coupling const
so as to yield a good description of theNN scattering data.
Thus we simply add in the necessary tensor terms.

This brings us to the treatment of divergent terms in o
procedure. The definition of any effective Lagrangian
quires the specification of such a procedure. For the pres
it is sufficient to say that we introduce form factors,Fa(q2)
which reduce the strength of thea meson-nucleon coupling
for large values of2q2. This is also the procedure of Ref
@30–32#. In principle, calculating the higher order terms u
ing the correct Lagrangian can lead to consistent calculat
of these form factors. We use a more phenomenological
proach here.

The net result is that the one-boson exchange treatme
the nucleon-nucleon potential and theT-matrix resulting
from its use in the BbS equation is essentially the same
the one-boson exchange procedure of Refs.@29–32#. The
only difference is the keeping of the retardation effects—
square of the four-vector momentum transfer enters in
potentials.

C. Specific one-boson-exchange amplitudes

The above formalism yields a one-boson-exchange po
tial ~OBEP! which is a sum of one-particle-exchange amp
tudes of certain bosons with given mass and coupling. O
explicit expressions are presented here. As noted above
use the six non-strange bosons with masses below 1 GeVc2.
Thus,

VOBEP5 (
a5p,h,r,v,a0 ,s

Va
OBE ~3.19!

with p andh pseudoscalar~ps!, s anda0 /d scalar~s!, andr
andv vector ~v! particles.

The OBE amplitudes~which are the contributions toV of
our formalism! in the two-nucleon center-of-mass~c.m.!
frame are given by
2-6
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^k8l3l4uVps
OBEukl1l2&52

gps
2

~2p!34M2 ū~k8,l3!g5u~k,l1!ū~2k8,l4!g5u~2k,l2!@q22mps
2 #21, ~3.20!

^k8l3l4uVs
OBEukl1l2&5

gs
2

~2p!34M2 ū~k8,l3!u~k,l1!ū~2k8,l4!u~2k,l2!@q22ms
2#21, ~3.21!

^k8l3l4uVv
OBEukl1l2&52

1

~2p!34M2 H gvū~k8,l3!gmu~k,l1!1
f v

2M
ū~k8,l3!smni ~k32k1!nu~k,l1!J

3H gvū~2k8,l4!gmu~2k,l2!1
f v

2M
ū~2k8,l4!smni ~k42k2!nu~2k,l2!J @q22mv

2#21

52
1

~2p!34M2 H ~gv1 f v!ū~k8,l3!gmu~k,l1!2
f v

2M
ū~k8,l3!~k31k1!mu~k,l1!J

3H ~gv1 f v!ū~2k8,l4!gmu~2k,l2!2
f v

2M
ū~2k8,l4!~k41k2!mu~2k,l2!J @q22mv

2#21.

~3.22!
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Our notation in the c.m. frame is such that in-comi
nucleon 1 carries helicityl1 and four-momentumk15k
5(E,k) with E[AM21k2, and in-coming nucleon 2 carrie
helicity l2 and four-momentumk25(E,2k); the out-going
nucleons havel3 , k35k85(E8,k8) with E8[AM21k82,
and l4 , k45(E8,2k8). The square of the four-momentum
transfer between the two nucleons isq25(k32k1)25(k8
2k)25(E82E)22(k82k)2. The Gordon identity@40# is
used in the evaluation of the tensor coupling@41,42#. For the
isospin-vector bosonsp, a0 , and r, the above amplitudes
must be multiplied byt1–t2.

With an eye on the nuclear matter calculations to be c
ducted later in this paper, we note that in the factorf v/2M of
the tensor coupling the nucleon massM is used as a scaling
mass to make the coupling constantf v dimensionless. This
scaling mass could be anything. Therefore, thisM is not to
be replaced byM* in the nuclear medium.

In this subsection, we use Dirac spinors~in helicity rep-
resentation! given by

u~k,l1!5AE1MS 1
2l1uku
E1M

D ul1&, ~3.23!

u~2k,l2!5AE1MS 1
2l2uku
E1M

D ul2&, ~3.24!

with

ul1&5xl1
, ul2&5x2l2

, ~3.25!

wherex denotes the conventional Pauli spinor. The norm
ization is ū(k,l)u(k,l)52M .
03520
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At each meson-nucleon vertex, a form factor is appl
which has the analytic form

Fa~q2!5S La
22ma

2

La
22q2 D na

, ~3.26!

with ma the mass of the meson involved andLa the so-
called cutoff mass;na51 for pseudoscalar and scalar m
sons andna52 for vector mesons. Thus, the OBE amp
tudes Eqs.~3.20!–~3.22! are all multiplied byFa

2 .

D. Two-nucleon scattering

In the two-nucleon c.m. frame, the scattering amplitudeT
is the solution of the integral equation

T~k8,k!5V~k8,k!1E d3pV~k8,p!
M2

Ep

1

k22p21 i e
T~p,k!,

~3.27!

where k, p, and k8 are the initial, intermediate and fina
relative momenta, respectively, of the two interacting nuc
ons andEp[AM21p2. This is Eq.~3.16! with the spin in-
dices suppressed for the purpose of simplicity. The co
sponding equation for theK matrix ~which we denote byR!
is

R~k8,k!5V~k8,k!1PE d3pV~k8,p!
M2

Ep

1

k22p2 R~p,k!,

~3.28!

whereP denotes the principal value integral.
Using standard techniques@31,41#, the potential and the

scattering equation are decomposed into partial waves.
merical solutions are obtained by the matrix inversi
method@31,43#. For an uncoupled partial wave, phase shi
are then derived from the on-shellK matrix by
2-7
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TABLE I. Potential parameters and predictions for the deuteron and low-energynp scattering. For the deuteron, the binding energyBd ,
the D-state probabilityPD , the quardrupole momentQd , and the asymptoticD-state overS-state ratioD/S are given. Low-energynp
scattering is paramertized in terms ofanp andr np in 1S0 andat andr t in 3S1, wherea denotes the scattering length andr the effective range.
The nucleon mass isM5938.919 Mev.

Light-front OBEP Thompson OBEPa Empiricalb

Meson parameters
ma ~Mev! ga

2/4p@ f /g# La ~GeV! ga
2/4p@ f /g# La ~GeV! ga

2/4p@ f /g#

p 138.04 14.0 1.2 14.6 1.2 13.5 - 14.6
h 547.5 3 1.5 5 1.5 < 5
r 769 0.9@6.1# 1.85 0.95@6.1# 1.3 0.6~1! @6.661.0#
v 782 24.5@0.0# 1.85 20.0@0.0# 1.5 246567
a0 983 2.0723 2.0 3.1155 1.5
s 550 8.9602 2.0 8.0769 2.0

Deuteron

Bd~Mev! 2.2245 2.2247 2.2245745~9!

PD ~%! 4.53 5.10
Qd ~fm2! 0.270c 0.278c 0.2860~15!

D/S 0.0250 0.0257 0.0256~4!

Low-energynp scattering

anp ~fm! 223.745 223.747 223.748~10!

r np ~fm! 2.671 2.664 2.75~5!

at ~fm! 5.494 5.475 5.424~4!

r t ~fm! 1.856 1.828 1.759~5!

aPotentialB of Brockmann and Machleidt@32#.
bFor more comprehensive information on the empirical data and references, note see Tables 4.1 and 4.2 of Ref@30#.
cMeson-exchange current contributions not included.
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E
RJ~ uku,uku! ~3.29!

with Tlab52k2/M andJ the total angular momentum of th
partial-wave state. For coupled partial waves and other te
nical details, see Ref.@31#.

E. Results for the two-nucleon system

Following established procedures@30,31#, the coupling
constants and cutoff masses of the six OBE amplitudes
varied within reasonable limits such as to reproduce the t
nucleon bound state~deuteron! and the two-nucleon scatte
ing data below the inelastic threshold~about 300 MeV labo-
ratory kinetic energy!. In Table I, we show the meso
parameters for our newly constructed light-front~LF! OBEP
together with the predictions for the deuteron as well as lo
energy neutron-proton~np! scattering. For comparison, w
also give the parameters from an OBEP that was previo
constructed and applied in the Dirac-Brueckner approac
nuclear matter@30,32#. The latter uses the Thompson forma
ism @44# which is very similar to the BbS formalism—th
propagator in Eq.~3.27! contains an extra factor ofM /Ep .
Note that the Thompson OBEP usesna51 also for vector
meson form factors, which explains the differences in
vector meson cutoff masses between the two OBEP.

Phase shifts fornp scattering are shown in Fig. 1 for a
partial waves withJ<2. Over all, the reproduction of th
03520
h-

re
-

-

ly
to

e

NN data by our LF OBEP is quite satisfactory and certain
as good as by OBEP constructed within alternative relativ
tic frameworks. Based upon these results, we feel confid
in applying this OBEP to the relativistic nuclear many-bo
problem.

IV. NUCLEONIC TRUNCATION FOR THE MANY-BODY
PROBLEM

Now that the light-front treatment of nucleon-nucleo
scattering is in hand, we may proceed to the problem
computing the properties of infinite nuclear matter. We d
rive a light-front Brueckner theory from first principles star
ing with the field-theoretic light-front Hamiltonian.

The nuclear wave function for the ground state of infin
nuclear matter at rest is defined asuC&, and we wish to solve
the equation

P2uC&5MAuC&, ~4.1!

in which P2 is the light front Hamiltonian of Eqs.~2.11!–
~2.20!. For a nuclear system at rest we must have also
result that

P1uC&5MAuC&. ~4.2!

It is necessary to discuss the light-front Hamiltonian, and
find good approximate solutions of the above equations.

We recall that
2-8
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FIG. 1. Phase shiftsd and mixing parameterse of neutron-proton scattering for partial waves withJ<2 and laboratory kinetic energie
Tlab<300 MeV. The solid line is the prediction by the LF OBEP presented in Sec. III and the dotted line the one by Potentia
Brockmann and Machleidt@32#. The open circles represent the multi-energynp analysis by the Nijmegen group@45# and the solid dots are
the VPI analysis SM97@46#.
.
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P25P0
2~N!1J ~4.3!

in which P0
2(N) is the kinetic contribution to theP2 opera-

tor, giving (p'
2 1m2)/p1 for the minus-momentum of free

fermions. The operatorJ is the sum of three terms of Eqs
~2.18!–~2.20!:

J[v11v21v3 . ~4.4!
03520
The operatorv1 gives all of the single meson-nucleon verte
functions. The operatorv2 accounts for instantaneous fe
mion exchanges: meson emission followed by instantane
fermion propagation~propagator isg1/2p1! followed by an-
other meson emission. The operatorv3 accounts for the in-
stantaneous propagation of vector mesons.

We shall proceed towards an approximate solution of
~4.1!, in two stages. We shall first consider the nucleons o
part of the Hilbert space. This involves the assumption t
2-9
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FIG. 1 ~Continued!.
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using a nucleon-nucleon interactionK accounts for the
meson-nucleon dynamics. This assumption in relaxed in S
VI, which displays the formalism necessary to construct
best possible potential and how to include meson degree
freedom in the wave function. Our Hamiltonian (P2) con-
tains no terms in which the vacuum can spontaneously e
particles. This simplifying feature causes the derivations
look very similar to those of nonrelativistic theory, eve
though the treatment is relativistic.

A. Introducing the two-nucleon force

At present all of the interactions are expressed in term
the meson-nucleon vertex functions and contact terms re
sented by the operatorJ. We shall follow the traditional path
03520
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of using a two-nucleon potential and temporarily elimina
the meson degrees of freedom. One way to accomplish th
to add and subtract the two-nucleon potential to the Ham
tonian and treat terms involving the difference betweenJ and
the two-nucleon potential as a perturbation. The use of lig
front dynamics mandates that we perform this operation
the Lagrangian because the construction of the Hamilton
uses the field equations to identify the dynamical degree
freedom, such asc1 .Therefore we need to study the effe
tive Lagrangian

LV[c̄~ ig•]2M !c2
K
2

~4.5!

which removes the meson-nucleon interaction termJ from
2-10
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the Lagrangian and replaces it with the densityK for the
two-nucleon interactionK of the previous section. This
means that

K5
1

2 E d2x'dx2K, ~4.6!

where K is given in Eq. ~3.5! and is twice the nucleon
nucleon potential times a kinematic factor. We recall th
one must eliminate, using Eq.~2.5!, any components of in-
teractionK that connectc2 to c2 .

Given the new LagrangianLV we may construct the cor
respondingP6 operators using the canonical definition

TV
mn52gmnLV1(

r

]LV
]~]mf r !

]nf r , ~4.7!

in which the degrees of freedomc̄ andc are labeled byf r .
The termV involves only nucleon fields, not their deriva
tives, so the second term of the energy-momentum tenso
not enter in computingTV

mn . The elementmn512(g12

52) is needed to construct the relevantP-minus operator
and we find

TV
12522c̄~ ig•]2M !c1K12c1

† i ]2c1 . ~4.8!

The origin of the factor12 that multipliesK in the Lagrangian
~4.5! is thatK enters here inTV

12 . It is worthwhile to define
the P-minus operator obtained by usingLV asP0

2 with

P0
25

1

2 E dx2d2x'TV
12[P0

2~N!1K. ~4.9!

The completeP-minus operator is given by

P25P0
21H1 , ~4.10!

with

H1[J2K1P0
2~m!, ~4.11!

whereP0
2(m) accounts for the noninteracting mesonic co

tribution to P2. The formal problem of choosing the bestK
by minimizing the effects ofH15J2K is discussed in the
Sec. VI. We shall assume here that the present OBEP
reasonably satisfactory version of the best interaction,
we shall ignore the influence of the termH1 in calculations
of the energy.

The purely nucleonic part of the full wave function
defined asuF&, and is the solution of the light-front Schro
dinger equation

P0
2uF&5~P0

2~N!1K !uF&5M0uF&. ~4.12!

The eigenvalue problem stated above is considerably sim
than the initial one, but does contain the full complications
the nuclear many-body problem. We shall next discuss
light-front Hartree-Fock and Brueckner-Hartree-Fock@47#
approximations.
03520
t

do

-

a
d

ler
f
e

B. Light front Hartree-Fock approximation

Equation~4.12! represents a difficult many-body problem
But the similarity between the light-front and equal-time r
sults obtained for the nucleon-nucleon potential indicate t
the same physical concepts are relevant, independent o
dynamical scheme. Therefore we use a scheme analogo
that of traditional Brueckner theory. The first step is to intr
duce a mean-field~MF! potential

Û5
1

2 E d2x'dx2c̄~x!@US~x!1g•ŪV~x!#c~x!

5
1

2 E d2x'dx2c̄~x!S US~x!1
g1

2
UV

2~x! Dc~x!,

~4.13!

a single-nucleon operator, with the second equation true
infinite nuclear matter in which the only nonvanishing com
ponent ofUV

m is UV
05UV

25UV
15ŪV

2 . All quantities in the
integral of Eq.~4.13! are evaluated at the same value ofx1,
chosen to be 0. The operatorÛ is to be determined ulti-
mately by the light-frontG-matrix defined below. The idea i
that Û can be chosen so as to provide a good representa
of the effects of the two-nucleon interactionK. The mean
field LagrangianLMF is defined by removing the effects ofK

and replacing these by the effects ofÛ. Therefore we may
specify

LMF[c̄~ igm]m2M !c2c̄~x!S US~x!1
g1

2
UV

2~x! Dc~x!.

~4.14!

This Lagrangian leads to the nucleon field equation

~ i ]22UV
2!c15@a'•p'1b~M1US!#c2 ,

i ]1c25@a'•p'1b~M1US!#c1 , ~4.15!

in which we have made the mean-field version of the tra
formation ~2.5! with

]1gvLMF5UV
1~x!. ~4.16!

The light-front Hamiltonian densityTV
12 can now be ob-

tained from Eq.~4.8! using the field equation~4.15! as

TV
1252c̄1i ]2c122c̄S g1

2
UV

21USDc1K. ~4.17!

It is also worthwhile to obtain the plus-momentum dens
TV

11 which is

TV
1152c̄1i ]1c1 . ~4.18!

The purpose of introducing the mean field approximat
is that the eigenvalues and eigenvectors of light-front m
field HamiltonianPMF

2 are easy to obtain and can be chos
so as best approximate the effects of the two-nucleon in
2-11
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action. The mean field light front Hamiltonian densityTMF
12

is obtained from Eq.~4.7! using Eq.~4.14! @or by settingK
to zero in Eq.~4.17!# as

TMF
1252c̄1i ]2c122c̄S g1

2
UV

21USDc, ~4.19!

and its volume integral isPMF
2 :

PMF
2 5

1

2 E d2x'dx2TMF
12 , ~4.20!

a single-nucleon operator. SettingK to zero in Eq.~4.17! and
using Eq.~4.9! shows that

PMF
2 5P0

2~N!. ~4.21!

The ground state eigenvector of this operator is a Slater
terminant denoted asuf&:

PMF
2 uf&5P0

2~N!uf&5m0uf&. ~4.22!

We shall use both the Hartree-Fock and Bruckner Har
Fock approximations to obtain expressions forÛ. For now
we pursue the question: Given aÛ, how do we proceed? Th
first step is to expand the field operatorc in terms of the
eigenfunctions of i ]2 in the light-front Dirac equation
~4.15!. The nucleon field operator is constructed as f
lows:

c~x!5E d2k'dk1u~k1!

~2p!3/2A2k1 (
l

u~k,l!e2 ik•x, ~4.23!

where k•x5 1
2 (k2x11k1x2)2k'•x' . We keep only the

nucleon part ofc(x) as the antinucleon degrees of freedo
are not needed here. These spinorsu(k,l) are the eigenfunc-
tions of Eq. ~4.15!, with normalization ū(k,l)g1u(k,l)
52k1. For the present treatment of the translationally
variant infinite nuclear matter system, the mean-field pot
tials US and UV

2 are independent of the spatial positio
x' ,x2. The eigenvalues of Eq.~4.15! are given by@1,2#

k25UV
21

k'
2 1~M1US!2

k1 , ~4.24!

in which US andUV depend uponk' andk1.
The next step is to better define the Slater determin

uf&. The occupied states are to fill up a Fermi sea, which
usually defined in terms of a Fermi momentumkF that is the
magnitude of a three vector. This three vector is defined@48#
as

k15A~M1US!21k•k1k3, ~4.25!

which implicitly definesk3. Using Eq.~4.25! allows one to
maintain the equivalence between energies computed in
light-front and equal time formulations of scalar field the
ries @49# and to restore manifest rotational invariance
light-front QED @50#.
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The computation of the energy and plus momentum d
tribution proceeds from taking the appropriate expectat
values of the energy momentum tensorTV

mn .

PV
m5

1

2 E d2x'dx2^fuTV
1muf&. ~4.26!

We are concerned with the light-front energyP2 and mo-
mentumP1. The relevant components ofTV

mn are presented
in Eqs. ~4.17! and ~4.18!. Taking the nuclear matter expec
tation value ofTV

12 and TV
11 and performing the spatia

integral of Eq.~4.26! leads to the result

PV
2

V
5

4

~2p!3 E
F
d2k'dk1H k'

2 1~M1US!2

k1

22
1

2 (
l

ū~k,l!

A2k1
US

u~k,l!

A2k1 J 1^fuKuf&,

~4.27!

PV
1

V
5

4

~2p!3 E
F
d2k'dk1k1, ~4.28!

whereV is the volume of the systemV[ 1
2 *d2x'dx2. The

subscriptF denotes thatukW u,kF with k3 defined by the rela-
tion ~4.25!. The integral involvingū(k,l)USu(k,l) may
also be expressed as

^fuUSuf&[
4

~2p!3 E
F
d2k'dk1

1

2 (
l

ū~k,l!

A2k1
US

u~k,l!

A2k1
.

~4.29!

Equations~4.27! and~4.28! along with the expression fo
k1, Eq. ~4.25!, allow an evaluation ofP2 andP1. We shall
obtain the massM0 of the A-nucleon system asM0

5 1
2 (PV

11PV
2) and then minimizingM0 per nucleon. For a

nuclear system at rest, the exact eigenvalues of the plus
minus momentum operators must be the same. In light-fr
work this is usually achieved by constraining each com
nent of the Fock space to have the same value. This ca
be done for our infinite system. But minimizing12 (PV

1

1PV
2) is the same as minimizingPV

2 , subject to the con-
straint thatPV

15PV
2 @2#. Using standard Lagrange multiplie

techniques for the constrained minimization justifies this p
cedure. Consider the quantityPV

22l(PV
21PV

15(1
2l)MA

2/PV
11PV

1 . Setting the derivative with respect t
PV

1 to zero gives 2l5MA
2/(PV

1)25PV
2/PV

151, so that
l51/2 and one is minimizing12 (PV

11PV
2).

Summing equations~4.27! and ~4.28! and dividing by a
factor of 2 leads to

M0

V
5

4

~2p!3

1

2 EF
d2k'dk1S k'

2 1~M1US!2

k1 1k1D
2^fuUSuf&1 K fU K Uf L . ~4.30!
2

2-12
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Then replace the integration overk1 by one overk3 using
Eq. ~4.25! and the definition

Ek* [Ak–k1~M1US!2, ~4.31!

so that Eq.~4.30! takes the form

M0

V
5

4

~2p!3 E d3ku~kF2k!Ek* 2^fuUSuf&1 K fU K

2 Uf L
~4.32!

with

^fuUSuf&5
4

~2p!3 E d3ku~kF2k!
1

2

3(
l

ū~k,l!

A2Ek*
US

u~k,l!

A2Ek*

5
4

~2p!3 E d3ku~kF2k!
2~M1US!

2Ek*
US .

~4.33!

One obtains a formalism that looks more conventional
using a discrete representation of the single nucleon sta
We define a set of spinorsua&, with a representing the quan
tum numbersk andl such that

^xua&[
e2 ik•x

AV
u~k,l!A 1

2Ek*
, ^āu[^aug0,

15
1

2 E d2x'dx2^aux&^xua&. ~4.34!

The difference between̂xua& and a usual equal time~ET!
spinor ^xua&ET of the same quantum numbers, energye(k)
5Ek* 1UV

0 , and normalization can be determined by cons
ering the phase factor, using Eq.~4.24!:

k•x5
k2x1

2
1

k1x2

2
2k'•x'

5S UV
21

k'
2 1~M1Us!

2

k1 D ~ t1z!

2
1k1

~ t2z!

2
2k'•x'

5e~k!t2kW•rW2 i
UV

0x2

2
. ~4.35!

The last factor is the consequence of using the barred form
the vector potential according to Eq.~4.16!. The only differ-
ence between the light-front spinors and those of the eq
time form is due to this phase factor. The consequence
this phase factor for computations of the light-front mome
tum density are that nucleons carry only 65% of the nucl
plus momentum in the mean field calculation@1,2#. A similar
result is to be found below. Furthermore this phase factor
the desirable feature of suppressing the number of nuc
antinucleons@51#.
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For now, we consider the effects of using light-fro
spinors on the calculation of the energy. We express
energyM0 of Eq. ~4.32! in terms of the spinorsua& of Eq.
~4.34! as

M05 (
a,F

Ea2 (
a,F

^āuUSua&1
1

2 (
a,b,F

^āb̄uVuab&a ,

~4.36!

in which uab&a[uab&2uba&. In this notation

Ea5ea2^āug0UV
0 ua&, ~4.37!

so that we obtain

M05 (
a,F

ea2 (
a,F

^āuUS1g0UV
0 ua&

1
1

2 (
a,b,F

^āb̄uVuab&a . ~4.38!

This result gives the value of the nuclear energy in terms
the eigenvalues of the light-front Dirac equation and in ter
of light-front spinors. The termK/2 has been replaced byV
according to Eq.~3.5! and using the normalization of Eq
~4.34!.

It is necessary, however, to consider the effects of
phase factor2 i (UV

0x2/2) of Eq. ~4.35! which accounts for
the difference between light-front and equal time spino
This factor and its complex conjugate multiply to unity in th
calculation of the matrix elementŝāuUS1g0UV

0 ua& and in

the matrix element̂ āb̄uVua,b&. We need to consider als
the matrix element̂ āb̄uVuba& for which the effects of the
phase factor do not automatically cancel. In principle,UV

0 is
a function of the momentum denoted by the quantum nu
bers a,b. In practice, this dependence is weak and can
ignored in calculations of the energy, provided one evalua
the potential at a reasonably chosen average value. Fur
more, in evaluating the matrix element^āb̄uVuba& both of
the statesba are below the Fermi sea and have a moment
separated by an amount small compared to the scale o
momentum dependence. Thus the phase factor does not
in present calculations of the energy~but does in the evalu-
ation of the plus-momentum distribution!. Our calculations
of the energy in the light-front and equal time formulatio
yield the same results. However calculations of the pl
momentum distributions can only be done using the lig
front formalism.

Let us determine the mean field, and the correspond
value of M0 in terms of V. The light-front Hartree-Fock
~HF! approximation is defined by taking the mean field to
calculated from the average potential according to

^āu~US1g0UV
0 !HFua&[U~a!5 (

b,F
^āb̄uVuab&a .

~4.39!

Summing over the occupied orbitals gives
2-13
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(
a,F

U~a!52^fuVuf&. ~4.40!

In this case, the use of the above equation in the expres
~4.38! for M0 , leads to the HF approximation for the nucle
energy:

M0
HF5 (

a,F
ea2

1

2 (
a,b,F

^āb̄uVuab&a , ~4.41!

which has the same form as the expression for the energ
the usual equal time Hartree-Fock expression.

We shall also need to obtainm0 , the eigenvalue ofPMF
2 .

This expression will be used in obtaining the Brueckn
Hartree-Fock approximation. According to Eqs.~4.17! and
~4.22!, the difference betweenM0 andm0 is the expectation
value of the potentialV. Thus

m05 (
a,F

ea2 (
a,F

^āuUS1g0UV
0 ua&. ~4.42!

C. Light front Brueckner-Hartree-Fock approximation

The interactionK between two nucleons is strong and t
scattering amplitude is obtained, as discussed in Sec. III
solving the Weinberg equation—the light-front version
the Lippmann-Schwinger equation. Thus we need to go
yond the Hartree-Fock approximation. This shall be acco
plished by treating the interaction between two nucleons
all orders inK.

The idea is that we wish to find the Slater determin
uf&, recall Eq.~4.22!, that leads to the best approximatio
for the energyM0 of the full nucleonic wave functionuF&,
recall Eq.~4.12!. Both of the statesuf& and uF& are eigen-
states of aP-minus operator, and both are eigenstates of
operatorP0

1(N). We shall use standard techniques to der
a perturbation theory inK to obtain an expression for th
stateuF& in terms ofuf&. Thus we write

uF&5uf&1LuF& ~4.43!

with

L[12uf&^fu. ~4.44!

Then use Eq.~4.43! in Eq. ~4.12! and multiply the result on
the left byL to obtain

LuF&5
1

M02L~P0
2~N!1K !L

LKuf&, ~4.45!

so that

uF&5uf&1
1

M02L~P0
2~N!1K !L

LKuf&. ~4.46!

We can obtain a useful expression forM0 by acting with the
operator̂ fu@P0

2(N)1K# on the left of Eq.~4.46! and using
the result^fuF&51, which follows from Eq.~4.46!. Then
we find
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M05^fuP0
21Kuf&

1^fuKL
1

M02L@P0
2~N!1K#L

LKuf&.

~4.47!

Using Eq.~4.22! in Eq. ~4.47! leads to

M02m05^fuKuf&

1^fuKL
1

M02L@P0
2~N!1K#L

LKuf&,

~4.48!

which can be restated as

M02m05^fuXuf&, ~4.49!

where

X5K1KL
1

M02LP0
2~N!L

LX. ~4.50!

The operatorX is a many-body operator acting on all nucl
ons via the iterations of the two-nucleon interactionK. We
shall make the independent pair approximation of includ
only pair-wise interactions. Thus we approximate

^fuXuf&'K fU12(i , j G i , j~Pi j
2!UfL [^fuGuf&, ~4.51!

whereG i , j is a two-nucleon operator which is a solution
the integral equation

G i , j~Pi j
2!5Ki j 1Ki j

L

Pi j
22LP0

2~N!L
G i , j~Pi j

2!.

~4.52!

The notationi , j refers to a pair of particles. The releva
matrix element is expressed using the eigenstates of
~4.15! as

^3,4uG~P1,2
2 !u1,2&5^3,4uKu1,2&

1 (
l5 ,l6

E ^3,4uKu5,6&
2M* 2

p5
1p6

1

3
d2p5dp5

1Q

P1,2
2 2~p5

21p6
2!1 i e

^5,6uGu1,2&,

~4.53!

in which we define

M * 5M1Us . ~4.54!

The operatorQ, to be specified below, is the two-body ve
sion of L and projects the momentap5 and p6 above the
Fermi sea. The factorM* 2d2,1))(Pi2Pf)/Ak1

1k2
1k3

1k4
1 ap-
2-14
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pears in each of the terms of Eq.~4.53!, so it is worthwhile to
define a BruecknerG-matrix G using

G52G
M* 2d~2,1 !~Pi2Pf !

Ak1
1k2

1k3
1k4

1
. ~4.55!

To follow the steps of Sec. III in converting Eq.~4.53!
into one of a more familiar form, in which rotational invar
ance is manifest, one needs to know the values of

P1,2
2 5k1

21k2
2 , ~4.56!

which for the case of relevance here in computing
nuclear expectation value in the independent pair approxi
tion, is the same asp5

21p6
2 . The single-particle minus

momentum eigenvalues are given according to Eq.~4.24! as

ki
25

k i'
2 1~M1US!2

ki
1 1UV . ~4.57!

Our approximation is thatUV is independent of orbitali.
Thus this potential cancels out in computing the differen
Pi

22(p5
21p6

2) and the energy denominator is as in the fr
space considerations of Sec. III, except that the mass o
nucleon is replaced byM1US . Thus the previous derivation
of an equivalent three-dimensional integral equation tha
manifestly covariant and rotationally invariant proceeds
before.

One expresses the plus-momentum variable in terms
light-front momentum fractiona of Eqs.~3.15! and~3.13! so
that one obtains

^3,4uGu1,2&5^3,4uVu1,2&1E (
l5 ,l6

^3,4uVu5,6&

3
2M* 2

a~12a!

d2p'daQ

Pi
22 ~p'

2 1M* 2!/a~12a!

3^5,6uGu1,2&, ~4.58!

wherePi
2 is square of the total initial four-momentum, com

puted usingM1US for the nucleon mass. Equation~4.58!
can in turn be reexpressed as a medium-modi
Blankenbecler-Sugar~BbS! equation @35# by using the
medium-modified version of the variable transformati
@36#:

a5
Ep* 1p3

2Ep*
, ~4.59!

with Ep* given in Eq.~4.31!. The result is

^3,4uGu1,2&5^3,4uVu1,2&1E (
l5 ,l6

^3,4uVu5,6&

3
M* 2

Ep*
d3pQ

pi
22p2 ^5,6uGu1,2&, ~4.60!
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which is the desired equation~with Dirac spinors normalized
as in Sec. III!.

The Brueckner light front Hartree-Fock~BHF! approxi-
mation is defined by taking the mean field to be calcula
from the averageG matrix according to

U~a!5^āu~US1g0UV
0 !BHFua&5 (

b,F
^āb̄uGuab&a ,

~4.61!

where Dirac spinors are normalized as in Eq.~4.34!. The
sum over occupied orbitals gives

(
a,F

U~a!52^fuGuf&. ~4.62!

We use this BHF mean field to determine the value ofm0 via
Eq. ~4.42!. Then the use of Eq.~4.51! in Eq. ~4.49! deter-
mines the value ofM0 as the eigenvalue ofPV

2 . But M0 is
also the eigenvalue~or in this case the expectation value! of
PV

1 . The minimization ofPV
2 subject to the constraint tha

the expectation value ofPV
1 is the value ofPV

2 leads to the
BHF version of Eqs.~4.27! and ~4.28!:

PV
2

V
5

4

~2p!3 E
F
d2k'dk1H k'

2 1~M1US!2

k1

22
1

2 (
l

ū~k,l!

A2k1
US

u~k,l!

A2k1 J 1^fuGuf&,

~4.63!

PV
1

V
5

4

~2p!3 E
F
d2k'dk1k1. ~4.64!

Note that the quantityk1 is defined in Eq.~4.25!.
Taking the average of equations~4.63! and ~4.64!, and

using the basis of Eq.~4.34! leads to our result for the BHF
version of the nuclear mass

M05 (
a,F

ea2
1

2 (
a,b,F

^āb̄uGuab&a . ~4.65!

This is equivalent to the usual expression of Refs.@30,32#,
see Eqs.~5.10! and ~5.11! below.

V. LIGHT-FRONT BRUECKNER THEORY
OF NUCLEAR MATTER

A. Summary

The formalism of the previous section can be summari
using the notation of Refs.@30,32#. In that work, single-
nucleon motion in nuclear matter is described by the Di
equation

~k”2M2U !u* ~k,s!50 ~5.1!

or in Hamiltonian form
2-15
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~a–k1bM1bU !u* ~k,s!5eku* ~k,s! ~5.2!

with

U5US1g0UV
0, ~5.3!

where we use the usual notation@40# b[g0 and a[g0g.
The solution of Eq.~5.1! is

u* ~k,s!5AEk* 1M*

2Ek*
S 1

s–k

Ek* 1M*
D xs ~5.4!

with M* defined in Eq.~4.54!. Ek* given by Eq.~4.31!, and
xs a Pauli spinor. The normalization isū* (k,s)u* (k,s)
5 Ek* /M* andu* †(k,s)u* (k,s)51, as in Eq.~4.34!. Notice
that the in-medium Dirac spinor Eq.~5.4! is obtained from
the free Dirac spinor by simply replacingM by M* . The
difference between the equal time spinors used in R
@30,32# and light-front spinors is the phase factor discuss
above in Sec. IV C. As noted, this factor cancels out of
matrix elements when using the approximation that the v
tor potential is independent of momentum.

The nuclear matterG matrix is the solution of the integra
equation~4.60! without the explicit spin indices

G~k8,k;uPu,kF!5V* ~k8,k!1E d3p

~2p!3 V* ~k8,p!

3
M* 2

E~1/2!P1p*
Q̄~ upu,uPu,kF!

k22p21 i e
G~p,k;uPu,kF!,

~5.5!

whereP is the total three-momentum of the two nucleons
the nuclear matter rest frame andk, p, andk8 are the initial,
intermediate, and final relative momenta, respectively, of
two nucleons interacting in nuclear matter. Note that
third components of the various momenta are obtained
using the appropriate versions of Eq.~4.25!. kF denotes the
magnitude of the Fermi momentum corresponding to
nuclear matter density under consideration. The Pauli op
tor Q, for which we use the angle averageQ̄ @43#, projects
onto unoccupied states. In the derivation, we have used

angle averages (1
2 P6k)2' 1

4 P21k2 and (1
2 P6p)2' 1

4 P2

1p2. The latter impliesE(1/2)P1p* 'AM* 21 1
4 P21p2.

The essential difference with standard Brueckner theor
the use of the potentialV* in Eq. ~5.5!. As indicated by the
asterix, the OBE potential of Eqs.~3.20!–~3.22! is evaluated
by using the in-medium spinors Eq.~5.4! instead of the free
ones.

It is necessary to discuss a technical point concerning
retardation effects in the form factors Eq.~3.26! that enter in
evaluatingV* . Consider the matrix element ofV* for which
our formalism says to use

q05Ea* 2Eb* 5@Ea* 1UV~a!#2@Eb* 1UV~a!#. ~5.6!
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We have consistently ignored the state dependence ofUV .
This is a good approximation for energy differences go
erned by the Fermi energy. However, the relevant ene
scale in the form factors are the parametersL of Table I,
which are on the order of a GeV or more. Thus for the
terms it would be better to use

q05@Ea* 1UV~a!#2@Eb* 1UV~b!#. ~5.7!

The quantityEa* 1UV(a) for occupied orbitalsa is close to
the nucleon mass. For high energy orbitalsb, U(b) is small.
Thus the use of Eq.~5.7! is numerically very similar to ig-
noring the effects of the medium modifications in evaluati
the retardation effects in the form factors, which is what
do.

The single-particle potential for nucleons in nuclear m
ter is

U~a!5^āuUua&5^āuUS1g0UV
0 ua&5

M*

Ea*
US1UV

0;

~5.8!

which is calculated from theG matrix by

U~a!5Re (
b,F

^āb̄uGuab&a , ~5.9!

wherea denotes a state below or above the Fermi surf
~continuous choice!.

Using the notation of the previous section, we define ‘‘t
energy per nucleon in nuclear matter’’ by

E
A

5
M0

A
2M , ~5.10!

which can also be written as

E
A

5
1

A (
a,F

^āug•ka1M ua&1
1

2A (
a,b,F

^āb̄uGuab&a2M .

~5.11!

Note that this equation depends on the Fermi momentumkF
and, thus, on the density of nuclear matter. It is useful
have the following summary of formulas concerning t
single particle energyea :

ea5^āug•ka1M1Uua& ~5.12!

5^āug•ka1M ua&1U~a!
~5.13!

5
MM* 1ka

2

Ea*
1

M*

Ea*
US1UV

0

~5.14!

5Ea* 1UV
0 , ~5.15!

with Ea* [AM* 21ka
2 andM* 5M1US .

The calculation of the nuclear matterG matrix involves a
self-consistency, since the solution of Eq.~5.5! for G re-
2-16
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quires knowledge ofM* which, in turn, is determined from
G via Eqs.~5.8! and~5.9!. In practice, one starts out with a
educated guess forM* , solves Eq.~5.5! for G and uses this
G to calculate a newM* from Eqs. ~5.8! and ~5.9!. The
procedure is then repeated starting with the newM* . This is
reiterated until the calculatedM* reproduces accurately th
startingM* .

B. Results

The formalism of the previous section is used to calcul
the energy per nucleon in nuclear matter as a function
density, Eq.~5.11!. Our result is plotted in Fig. 2 by the soli
line. The curve saturates atE/A5214.71 MeV and kF
51.37 fm21, and predicts an incompressibility ofK
5180 MeV at the minimum. These predictions agree w
with the empirical valuesE/A521661 MeV, kF51.35
60.05 fm21, andK5210630 MeV @52#.

To get a better idea of the quality of our predictions, it
useful to compare with the results from alternative relativ
tic approaches. Brockmann and Machleidt@32# predictE/A
5213.6 MeV, kF51.37 fm21, andK5250 MeV at satura-
tion, using the equal-time formalism and their ‘‘Potent
B.’’ The greatest difference occurs for the incompressibil
which is predicted smaller by the LF Brueckner theory i
plying a softer equation of state. This can be partially attr
uted to the medium effect that comes from the meson pro
gators in the LF approach and that is absent in the equal
~ET! approach. Recall that in the LF formalism the mome
tum transfer between two nucleons exchanging a meson

q5~q0 ,q!5~E82E,k82k!, ~5.16!

whereE and E8 are nucleon on-mass-shell energies@more
explanations can be found below Eq~3.22!#, implying the
meson propagators

FIG. 2. Energy per nucleon in nuclear matterE/A ~in units of
MeV!, as a function of density expressed by the Fermi momen
kF ~in units of fm21!. The solid line is our prediction using light
front Brueckner theory. The dotted curve is obtained when the
dium effect on meson propagation is omitted. The dashed line is
result from conventional~nonrelativistic! Brueckner theory. The
box describes the area in which nuclear saturation is expecte
occur empirically.
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i

q22ma
2 5

i

~E82E!22~k82k!22ma
2 , ~5.17!

while in the ET formalism no energy is transfered, thus,

q5~0,q!5~0,k82k!, ~5.18!

and the propagators are

i

2q22ma
2 5

i

2~k82k!22ma
2 . ~5.19!

In nuclear matter, the free-space LF meson propagators
~5.17! are replaced by

i

~E8* 2E* !22~k82k!22ma
2 , ~5.20!

while the ET propagators undergo no changes. The med
effect on the LF meson propagators enhances them off-s
which leads to more binding energy. This is demonstrated
Fig. 2 where the difference between the dotted and s
curve is generated by the medium effect on the meson pro
gators.

There is another difference that arises from a techn
issue in the solution of the transcendental equation for thG
matrix. We obtain new values of the mean fieldsM* (kF)
5MN1US5718 MeV andUV5165 MeV. The mean field
potentials obtained here from theG matrix are considerably
smaller than those of mean field theory in which the poten
is used. We discuss the implications for nuclear deep ine
tic scattering in Sec. VII.

The most important medium effect in relativistic a
proaches to nuclear matter comes from the use of in-med
Dirac spinors representing the nucleons in nuclear ma
~‘‘Dirac effect’’ !. This effect~and the medium effect on me
son propagators! is absent in the conventional~nonrelativis-
tic! Brueckner calculation which yields the dashed curve
Fig. 2. Characteristic for all predictions using convention
Brueckner theory is that the saturation density is predic
too high and, thus, they all fail to explain nuclear saturat
correctly.

The effect that is generated by the in-medium Dir
spinors is strongly density dependent~due to the density de
pendence ofM* ! shifting the saturation curve towards lowe
densities such that nuclear saturation is predicted at the
rect density~solid and dotted curves in Fig. 2!. The effect
from the in-medium Dirac spinors is, of course, largest fos
andv exchange for which the LF and ET formalisms pred
essentially the same. However,p andr also contribute to the
medium effect and, here, we have differences between
and ET. The general underlying reason for this difference
that for derivative coupling, implying a momentum depe
dence of the meson-nucleon vertex, the difference in the
mentum transfer~5meson momentum! between LF and ET
@Eqs. ~5.16! and ~5.18!, above# creates a difference in th
vertices~and OBE amplitudes!—besides the one in the me
son propagators. Ther includes the tensor coupling
i ( f r/2M ) smnqn and the LF OBE amplitude is given in Eq

m

e-
e

to
2-17



ly

ce
m

a

n-

m
Eq

i
r-

er
op
w
m

n
e
e

er

-

ay

re-
ar
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~3.22!. However, in the ET formalism, ther amplitude con-
sists of Eq.~3.22! plus additional terms that contribute on
off-shell, as discussed@41#. In nuclear matter, the medium
effect generated by these off-shell terms essentially can
the medium effect that comes from the main part of the a
plitude, Eq. ~3.22!. Therefore, ETr exchange produces
much weaker medium effect than LF.

Concerning the pion, the pseudovector (pv) coupling~or
gradient coupling! i ( f pNN /mp) g5gmqm has been generally
used, in the ET formalism@32#. The resulting one-pion-
exchange~OPE! amplitude can be cast into a form that co
sists of the amplitude Eq.~3.20! plus off-shell terms@53,54#.
In the LF formalism, no matter if thepv or ps coupling is
used, the OPE amplitude always comes out to be Eq.~3.20!,
and there are no additional terms@54#. In nuclear matter, the
medium effect from the off-shell terms of the ET formalis
damp the medium effect from the main OPE amplitude,
~3.20!, similar to what happens with ther. Therefore, LFp
exchange produces a stronger~more repulsive! medium ef-
fect than ET.

In summary, the Dirac effect comes out more repulsive
the LF formalism as compared to ET due to off-shell diffe
ences in thep and r exchange amplitudes. On the oth
hand, the LF formalism generates an attractive meson pr
gator effect that is absent in ET. As it turns out, these t
effects cancel to a large extent, leading to a nontrivial si
larity between the LF and ET results.

VI. FULL WAVE FUNCTION C

AND MESON DEGREES
OF FREEDOM

The nucleonic wave functionuF& has been determined i
Eq. ~4.46!. This gives us the purely nucleonic part of th
Fock space, in which the effects of the mesons have b
replaced by the two-nucleon interactionK. However, the full
wave function isuC& of Eq. ~4.1!. We need to assess wheth
uF& is a good approximation touC& and we also need to
determine the mesonic plus-momentum distributions.

We recall the relation between the fullP2 operator and
the one of Eq.~4.12! @P0

25P0
2(N)1K# corresponding to

the nucleonic wave functionuF&:

P25P0
21J2K1P0

2~m!. ~6.1!

Using this in Eqs.~4.1! and ~4.12! allows us to obtain

uC&5uF&1
1

MA2LFP2LF
LF~J2K !uF&, ~6.2!

whereLF512uF&^Fu.
An expression for the nuclear massMA can be obtained

by multiplying Eq.~6.2! by ^FuP2 using ^FuC&51 to ob-
tain the result

MA5^FuP2uF&1^Fu~J2K !LF

1

MA2LFP2LF

3LF~J2K !uF&. ~6.3!
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For the purely nucleonic wave functionuF& we have

^FuP2uF&5M01^FuJ2KuF&, ~6.4!

so that

MA5M01^FuJ2KuF&1^Fu~J2K !

3LF

1

MA2LFP2LF
LF~J2K !uF&. ~6.5!

The difference betweenMA andM0 is the expectation value
of the operatorO:

O[J2K1~J2K !LF

3
1

MA2LFP0
2LF2LF~J2K !LF

LF~J2K !,

~6.6!

and a bit of algebra shows thatO satisfies the integral equa
tion

O5J2K1~J2K !LFG0~MA!LFO, ~6.7!

where

G0~MA![LF

1

MA2LFP0
2LF

LF . ~6.8!

The lowest relevant order of Eq.~6.7! is given by

O'J2K1~J2K !LFG0~MA!~J2K !.

The one-boson exchange interactionK is given by Eq.
~3.1! ~which now includes also the effects of Sec. III B! and
we may determine if the expectation value^FuOuF& is rea-
sonably small. If this is true, the quantityM0 would be a
good approximation to the true eigenvalue of theP2 opera-
tor MA . In the one-boson exchange approximation

^FuOuF&'^Fuv32KuF&1^FuJG0~MA!JuF& ~6.9!

5^Fuv32KuF&1^Fuv1G0~MA!v1uF&.

~6.10!

The use of Eq.~3.1! yields

^FuOuF&'^Fuv1@G0~MA!2g0~Pi j
2!#v1uF&, ~6.11!

where the termPi , j
2 is specified in Eqs.~4.53!–~4.57!. But

within the independent pair approximation@in which one in-
cludes only the energy~minus-momentum! differences for a
chosen pair of nucleons#

G0~MA![g0~Pi j
2!, ~6.12!

and the expectation value ofO vanishes.
Thus within our approximations, it is consistent to s

that the exact nuclear massMA is well approximated byM0 .
This means that we have shown that it is acceptable to
move the explicit mesons for calculations of the nucle
2-18
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mass. One could evaluate the presumably small correct
by going beyond the independent pair approximation. T
simplicity of the derivation of this result is made possible
the dynamical simplicity of the vacuum, which is one of t
defining features of light-front field theory.

A. Momentum distributions

We can now compute the1 components of momentum
Look at T11 as given by Eq.~2.21! The plus momentum
carried by the scalar meson is given by

P1~f!5E d2k'dk1k1a†~k!a~k!, ~6.13!

while that of the pion is given by

P1~p!5E d2k'dk1k1a†~k!•a~k!, ~6.14!

and that of the vector meson is given by

P1~v!5 (
v51,3

E d2k'dk1k1a†~k,v!a~k,v!.

~6.15!

We shall handle the scalar term first. The evaluation
Eq. ~6.13! using Eq.~6.2! leads to

P1~f!5E d2k'dk1k1^Fu j ~k!
1

~MA2LP2L!2 j ~k!uF&

'E d2k'dk1k1^Fu j ~k!
1

~MA2LP0
2L!2 j ~k!uF&,

~6.16!

in which the approximation is motivated by the near equa
of MA andM0 and the universal expectation that the impu
approximation evaluation of the meson exchange potenti
valid. The termj (k) is defined via the contribution of th
scalar mesons tov1 :

v1~f!5E d2k'dk1@ j ~k!a~k!1H.c.#, ~6.17!

in which j (k) can be obtained from Eq.~2.18! and is a nucle-
onic operator that depends onk' andk1.

The operator to be evaluated in the above equation
one and two body pieces. The one-body terms are relate
a shift in the self energy of the nucleon caused by the m
dium. In infinite nuclear matter the ratio of pairs to sing
nucleons is infinite so that the number density is well a
proximated by the two nucleon terms of Eq.~6.16!. The
evaluation is simplified by the use of Eq.~6.12! and noting
that the relevant matrix element is the same as occurin
the one-boson exchange operatorK except that the denomi
nator is squared. Thus the momentum densitynf(k), defined
by
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P1~f![E d2k'dk1k1nf~k!, ~6.18!

is given as a derivative of the scalar-meson exchange co
bution to the nucleon-nucleon potential

nf~k!'22^Fu
]Vf~Pi j

2 ,k!

]Pi j
2 uF& ~6.19!

with

]Vf~Pi j
2 ,k!

]Pi j
2 [F j i~k!

1

~MA2LP2L!2 j j~k!G ~6.20!

in which the notationi , j specifies that only two-nucleon con
tributions are included. Note thatuF& is the correlated
ground state. Note that the expectation value is taken u
the single particle basis specified by Eq.~4.34!. We recall
Eqs.~3.1! and ~3.2!, and use@2#

k1~Pi j
22P0

2!5q22mf
2 . ~6.21!

Note that the momentum of the exchanged meson isk, and

k15q1,k'5q' ,k25
k'

2 1mf
2

k1 , ~6.22!

whereq is the nucleon momentum transfer. Thus one m
obtain the result that

2
]

]Pi j
2

1

~Pi j
22P0

2!
5

k1

~q22mf
2 !2 . ~6.23!

This means that evaluating the plus-momentum distribut
for scalar mesons is the same as evaluating the expressio
the scalar meson contribution to the nuclear potential ene
except that the potentialVf(k) ~the dependence onPi , j

2 is
supressed! is multiplied by the factor2k1/(q22mf

2 ). The
net result is that

nf~k!5 (
a,b,F

^abuVab
† Vf~k!

~2k1!

~q22mf
2 !

Vabuab&a ,

~6.24!

whereVa,b is the Moeller scattering operator for the two
nucleon stateab. One finds a similiar expression for th
pionic density with

np~k!5 (
a,b,F

^abuVab
† Vp~k!

~2k1!

~q22mp
2 !

Vabuab&a .

~6.25!

The evaluation of the vector meson densitynv(k) re-
quires more steps because the meson-exchange potentia
a contribution from the instantaneous meson exchange t
v3 . This instantaneous term does not lead to a meson ‘‘in
air’’ and therefore does not contribute tonv(k). One finds
that
2-19
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nv~k!5 (
a,b,F

^abuVab
† Ṽv~k!

~2k1!

~q22mv
2 !

Vabuab&a ,

~6.26!

where

Ṽv~k!5gv
2 /~2p!3

Fv
2 ~q2!

~q22mv
2!

Fk'
2 1mv

2

k12 G . ~6.27!

It is also necessary to discuss the nucleonic pl
momentum distribution. This is determined in Ref.@2#. Here
the nucleon-nucleon correlations cause the momentum
sity to have contributions from above the Fermi sea. W
have

PN
1

A
5

4

rB~2p!3 E d2k'dk1k1N~k' ,k1!, ~6.28!

whererB is the nuclear baryon density andN(k' ,k1) is the
occupation number for a nucleon of momentum (k' ,k1).
Recall that the variablek1 is defined in Eq.~4.25!. Since the
integral gives the total plus-momentum carried by nucleo
the integrand~overk1) which multiplies the factork1 is the
probability f (k1) that a nucleon has momentumk1 distribu-
tion. Thus:

PN
1

A
5E dk1k1 f ~k1!, ~6.29!

where

f ~k1!5
4

rB~2p!3 E d2k'N~k' ,k1!. ~6.30!

A function f (y) can be obtained by replacingk1 by the
dimensionless variabley using y[ k1/M̄ with M̄[M
214.71 MeV.

The relation to experiments is obtained by recalling t
the nuclear structure functionF2A can be obtained from the
light front distribution functionf (y) ~which gives the prob-
ability for a nucleon to have a plus momentum fractiony!
and the nucleon structure functionF2N using the relation
@55#.

F2A~x!

A
5E dy f~y!F2N~x/y!, ~6.31!

where y is A times the fraction of the nuclear plus
momentum carried by the nucleon, andx is the Bjorken vari-
able computed using the nuclear mass minus the bind
energy. This formula is the expression of the usual convo
tion model, with validity determined by a number of assum
tions. Our formalism enables us to calculate the funct
f (y) from the integrand of Eq.~4.28!.
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B. Computing the total number of mesons

We can get the total number of each kind of meson~ex-
cept thev! using a sum rule. Consider the schematic form
the equation for theG matrix

G~Pi j
2!5V~Pi j

2!1V~Pi j
2!

Q

DE
G~Pi j

2!, ~6.32!

whereQ/DE is a schematic representation of the propaga
of Eq. ~4.53!. Differentiating with respect toPi j

2 yields the
result

]G~Pi j
2!

]Pi j
2 5S 11G

Q

DED ]V~Pi j
2!

]Pi j
2 S 11

Q

DE
GD .

~6.33!

The Moeller operators appear to the right and left of t
derivative of the potential. Furthermore, in our one bos
exchange approximation, the total nucleon-nucleon poten
is the sum of the contributions due to individual boson
Thus we may define

]Gm~Pi j
2!

]Pi j
2 [S 11G

Q

DED ]Vm~Pi j
2!

]Pi j
2 S 11

Q

DE
GD ,

~6.34!

in which the labelm refers to the type of meson. But th
potential Vm appearing in Eq.~6.32! is simply the Fourier
transform of the potentialVm(q). Thus an examination o
Eqs. ~6.25! and ~6.24! shows that, considering the pion fo
example,

Np[E d3qnp~q!5 (
a,b,F

^a,bu
]Gp~Pi j

2!

]Pi j
2 ua,b&A .

~6.35!

Numerical evaluation of Eq.~6.35! leads to the result tha
Np /A50.05. This is smaller than the 18% of Frimanet al.
@56# because we use scalar mesons instead of intermediaD
states to provide the bulk of the attractive force. The expr
sion for the density of vector mesons involves the remova
the effects of the instantaneous exchange and one mus
explicit light-front variables.

VII. IMPLICATIONS FOR LEPTON-NUCLEUS DEEP
INELASTIC SCATTERING AND THE NUCLEAR

DRELL-YAN PROCESS

The values ofUS , UV
2 , and Np allow us to assess th

deep inelastic scattering of leptons from our version of
ground state of nuclear matter. UsingM* (kF)5744 MeV
@57# and neglecting the influence of two-particle-two-ho
states to approximatef (k1) @1,2,58# shows that nucleons
carry 81%~as opposed to the 65% of mean field theory@1#!
of the nuclear plus momentum. This represents a vast
provement in the description of nuclear deep inelastic s
tering. The minimum value of the ratioF2A /F2N , obtained
from the convolution formula~6.31! is increased by a facto
of 20 towards the data as extrapolated in Ref.@59#. But this
2-20
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calculation provides only a lower limit of the nucleon co
tribution because of the neglect of effects of the two-partic
two hole states@60#.

Turn now to the experimental information about t
nuclear pionic content. The Drell-Yan experiment on nucl
targets@61# showed no enhancement of nuclear pions wit
an error of about 5–10 % for their heaviest target. No s
stantial pionic enhancement is found in (p,n) reactions@62#.
Understanding this result is an important challenge to
understanding of nuclear dynamics@63#. Here we have a
good description of nuclear dynamics, and our 5% enhan
ment is consistent@64#, within errors, with the Drell-Yan
data.

VIII. SUMMARY AND DISCUSSION

This paper contains a new relativistic light-front theory
nuclear matter. Light-front quantization is used to obtain
nucleon-nucleon potential which yields phase shifts in go
agreement with data. We use this as input in a light-fr
many body theory. A straightforward derivation leads to
theory in which the effective interaction is the light-frontG
matrix. We obtain a good description of the binding ener
density, and incompressibility of nuclear matter. The bind
energy per nucleon is 14.7 MeV andkF51.37 fm21. The
compressibility is 180 MeV.

The use of a meson-nucleon Lagrangian enables us to
compute the mesonic content of the wave function usin
consistent approach represented by Eqs.~4.1!, ~4.12!, and
~6.2!. The results are not in conflict with extrapolations
deep inelastic scattering and Drell-Yan data to nuclear m
ter.

The omega and rho mesonic content are still to be ev
ated. We believe that the possible nuclear enhancemen
vector mesons is a promising avenue for future theoret
and experimental research.
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APPENDIX: NOTATION, CONVENTIONS,
AND USEFUL RELATIONS

This is patterned after the review of Harindranath@7#. The
light-front variables are defined by

x15x01x3, x25x02x3, ~A1!
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so the four-vectorxm is denoted

xm5~x1,x2,x'!. ~A2!

With this notation the scalar product is denoted by

x•y5
1

2
x1y21

1

2
x2y12x'

•y'. ~A3!

The metric tensorgmn with m5(1,2,1,2) is obtained from
the usual one by using Eq.~A1! ~i.e., g0m5g0m1g3m!. Then
g125g2152, gi j 521, with the other elements vanishing
The termgmn is obtained from the condition thatgabgbg
5dag . Its elements are the same as those ofgmn except for
g215g1251/2. Thus

x25
1

2
x1, x15

1

2
x2, ~A4!

and the partial derivatives are similarly given by

]152]252
]

]x2 , ]252]152
]

]x1 . ~A5!

The Bjorken and Drell@40# convention for gamma matri
ces is used and

g6[g06g3. ~A6!

The relations

g6g650, g1g2g154g1, g2g1g254g2 ~A7!

can be used to simplify various computations. The Hermit
projection operatorsL6 are given by

L65
1

4
g7g65

1

2
g0g65

1

2
~ I 6a3! ~A8!

and obey the following relations:

~L6!25L6 , g'L65L6g', ~A9!

g0L65L7g0, a'L65L7a', ~A10!

g5L65L6g5, g752L6g05g7L7 , ~A11!

g iL75
1

2
g i6 i

1

2
e i j g jg5, ~A12!

a jg iL15
i

2
e i j g1g5 ~A13!
-
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