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Infinite nuclear matter on the light front: Nucleon-nucleon correlations
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A relativistic light-front formulation of nuclear dynamics is developed and applied to treating infinite nuclear
matter in a method which includes the correlations of pairs of nucleons: this is light-front Brueckner theory.
We start with a hadronic meson-baryon Lagrangian that is consistent with chiral symmetry. This is used to
obtain a light-front version of a one-boson-exchange nucleon-nucleon pot@iE&P. The accuracy of our
description of the nucleon-nucleoiN ) data is good, and similar to that of other relativistic OBEP models.

We derive, within the light-front formalism, the Hartree-Fock and Brueckner-Hartree-Fock equations. Apply-
ing our light front OBEP, the nuclear matter saturation properties are reasonably well reproduced. We obtain
a value of the compressibility 180 MeV that is smaller than that of alternative relativistic approaches to nuclear
matter in which the compressibility usually comes out too large. Because the derivation starts from a meson-
baryon Lagrangian, we are able to show that replacing the meson degrees of freeddiiNbgtaraction is a
consistent approximation, and the formalism allows one to calculate corrections to this approximation in a
well-organized manner. The simplicity of the vacuum in our light-front approach is an important feature in
allowing the derivations to proceed. The mesonic Fock space components of the nuclear wave function are
obtained also, and aspects of the meson and nucleon plus-momentum distribution functions are computed. We
find that there are about 0.05 excess pions per nuc|[&f%56-28139)05108-7

PACS numbgs): 21.65:+f, 11.80—m, 13.75.Cs, 21.36:x

I. INTRODUCTION probability [8—10]. The quantityf(k™) is simply related to
the square of the ground state wave function, computed us-

We introduce a light-front formalism for infinite nuclear ing light-front dynamics. The usual equal time approach to
matter, in which the effects of correlations are taken intonuclear dynamics is very successful, and it is natural to use
account. This is a light-front Brueckner theory of nuclearthis information to calculate the distributiof(k*). How-
matter. While the ultimate goal of this and related studies isver, in the standard equal time formulation this quantity is a
to provide a fully relativistic treatment of nuclei which in- response function and depends on matrix elements between
cludes all previous knowledge about nuclear dynamics, théhe ground and all excited states, and therefore can be more
present work represents one step beyond the previous lighgifficult to compute.
front mean-field calculatiofil,2] of the properties of infinite The use of light-front variables is convenient for interpret-
nuclear matter. ing certain experiments, but does not allow one to avoid the

Understanding an important class of experiments seems fgecessary task of handling nuclear dynamics. Thus one is
require that light-front dynamics and the related light conefaced with the task of computing the ground state nuclear
variables be used. Consider the lepton-nucleus deep inelastigave function usingxt=x°+x3 as a time variable. The
scattering experimen{$] which showed that there is a sig- present effort is a simplification in that the nucleus is taken
nificant difference between the parton distributions of freeto be infinite nuclear matter. However, the detailed effects of
nucleons and nucleons in a nucleus. This difference can inhe interactions between two nucleons are included, so that
terpreted as a smalt~10%) shift in the momentum distribu-  we are concerned with the relativistic dynamics of a strongly
tion of valence quarks towards smaller values of the Bjorkennteracting many body system.
variable xg;. The Bjorken variable is a ratio of the plus-  Light-front techniques have previously been applied to
momentumk* =k%+k* of a quark to that of the target. If systems of two hadror{$,8,9,11-15% Our emphasis here is
one regards the nucleus as a collection of nucleag$, in large nuclear systems. The light-front quantization proce-
=p*/k*, wherek™ is the plus momentum of a nucleon dure necessary to treat nucleon interactions with scalar and
bound in the nucleus. If one us&S$+k® as a momentum vector mesons was derived by Sop#6], and by Yan and
variable the corresponding canonical spatial variable is collaboratord17,18|.

=x%—x3 and the time variable ix®+x® [4]. This is the We next outline our procedure. The necessary Lagrang-
light-front (LF) approach of Dira¢5]; see the recent reviews ian, which respects chiral symmetry, and its light-front
[6,7] for more information. Hamiltonian is described in Sec. Il. Its application to

Deep inelastic scattering depends on the light-front monucleon-nucleon scattering in the one-boson exchange ap-
mentum distribution which is the probabiliti{k™) that a  proximation is carried out in Sec. lll. A new feature is that
bound nucleon has a momentln. Other nuclear reactions, the effects of isovector mesons such asgrend 8, and the
such as €, e’) and (p, 2p) depend also on this very same p-nucleon tensor interaction are included. T potential
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is generated using the one-boson exchange approximation. ) 1+iygr ml2f
The Weinberg-type integral equation, which maintains uni- U=e7"" U,
tarity and boost invariance in one direction, is solved and the

results are compared with phase shift data. Section IV is

concerned with the many-nucleon problem. Two separate Us=V1— 7 f2+iysrmlf, (2.2
perturbation series are involved. The first step is to eliminate

temporarily the meson degrees of freedom in favor of oumhich correspond to different definitions of the fields. This
two nucleon potential. Thus one first proceeds using onlj-agrangian, based on the linear representations of chiral
nucleon degrees of freedom. The light-front formalism toSymmetry used by Gursd®1], is discussed in Ref2]. It is
obtain the nucleonic interacting ground state wave functior@pproximately (n,#0) invariant under the chiral transfor-
|®) in terms of a series in which a Brueckn®matrix acts ~mation

on a best Slater determinarip) is developed. The

independent-pair approximation is used. One must find an ' —e 75Ty U—e 1757y e 757 2.3
eigenstate of th® ™ operator for which the expectation value

of P is equal to the eigenvalue & . This formalism is  This invariance shows that our scalar mesois not a chiral
applied and the results are discussed in Sec. V. The fulpartner of the pion. Note the presence of the tdurfiv
nuclear wave functiof¥), including the meson degrees of +g.¢) which was incorrectly given aMU +g.¢ in Refs.
freedom, is discussed in Sec. VI. The objek is related to  [1,2].

|®@) by a second series involving the difference between the The constanM/f plays the role of the bare pion-nucleon
nucleon-nucleon interaction and the meson-nucleon interacoupling constant. If is chosen to be the pion decay con-
tions. One finds that the expression for the nuclear masstant, the Goldberger-Trieman relation says that the axial
evaluated in Sec. V, is valid within our approximation. Fur- vector coupling constarg,= 1. This is not really a problem
thermore, expressions for the meson and nucleon distributiobecause loop effects can make up the needed 25% effect.
functions are obtained. We derive a sum rule for obtainingCorrections of that size are typical of ordevi(f)? effects

the total number ofnonvectoy mesons in the nucleus. A found in the cloudy bag mod¢R2] for many observables,
brief discussion of the implications of our results for lepton-including g5. We also note that tha is not treated as an
nucleus deep inelastic scattering and the nuclear Drell-Yagxplicit degree of freedom in the above Lagrangian.
process is presented in Sec. VII. A brief summary of our The present Lagrangian may be thought of as a low en-
results is contained in Sec. VIII. Some of the necessary noergy effective theory for nuclei under normal conditions. A
tation is discussed in an appendix. Some of the present regnore sophisticated Lagrangian is reviewed in R28] and
sults, but none of the details of the derivation or of our two-used in Ref[24]; the present one is used to show that light-

1—-iys7r@/2f’

nucleon potential have appeared in R&0]. front techniques can be applied to hadronic theories relevant
for nuclear physics. This hadronic model, when evaluated in
Il. LIGHT-FRONT QUANTIZATION: LAGRANGIAN, mean field approximation, givd®5] at least a qualitatively
FIELD EQUATIONS, AND LIGHT-FRONT good description of mangbut not al) nuclear properties and
HAMILTONIAN reactions. There are a variety of problems occurring when

] ) ) ] _higher order terms are includ¢d3]. The aim here is to use

~ The light-front approach is a three-dimensional formalism, ‘reasonably sophisticated Lagrangian to study the effects

involving a Hamiltonian which is &~ operator. One starts nat one might obtain by using a light-front formulation.

with a Lagrangian and derives field equations which allow Referencd?2] contains the details of the quantization pro-

one to eliminate the appearance of dependent degrees @dure; we re-state the relevant results here. An essential

freedom in the Hamiltonian. Our starting point is a nonlinearfeature is the guantization of spin-1/2 fermions. Although

chiral model in which the nuclear constituents are nuclepns Jescribed by four-component spinors, these fields have only

(or ¢'), pions a7, scalar mesong [20], and vector mesons g independent degrees of freedom. The light-front formal-

V#. The LagrangiarC is given by ism allows a convenient separation of dependent and inde-
pendent variables via the projection operatars=y°y~/2

m?2 [16], with ¢, =A . ¢, . The independent Fermion degree of

2 VAV, freedom is chosen to h&'. . The properties of the projection
operators are discussed in the Appendix. One gets coupled

equations fory’, :

1 " 242 1 1%
L= 50,0t d—m2gD) = VIV, +

1 1
+7 f2Tr(a,U o#UT) + 7 m2f2TrU+UT-2)

(10" =gV )¢ =[a, - (p. =9,V )+ BUM+gsh) ¢,

_ io
+y' y"(zaﬂ—gvvﬂ —UM+gsd) |4, (2.1

(10" =gV )y  =[a - (p.—gV.)+BUM+gsd) ¥, .
where the bare masses of the nucleon, scalar and vector me- (2.9
sons are given b, mg, m,, andV*#"=g*V’—3"V¥. The
unitary matrixU can be chosen from amongst three formsThe relation betweery” and ¢, is very complicated unless
U, one may set the plus component of the vector field to zero
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[6]. This is immediately obtained in QED and QCD by The expressiori2.11) is useful for situations, such as in
choosing an appropriate gauge in which the plus-componerihe mean field approximation, for which a simple expression
of the vector potential vanishes. Here the nonzero mass dbr ¢, is known. This is not always the case, so it is worth-
the vector meson prevents such a choice. Instead, one simvhile to use the Dirac equation to exprégs~ in an alter-
plifies the equation fogy” by [16,1§ transforming the Fer- nate form:

mion field according to

1 1
P =Ny, 25 T =V, 4V, prmie+ Z(v+—)2+ Evk'vk'+ NAVAVA
with 9" A=V*. This transformation leads to the res{2j [(1/2)V, w22 2 g
+(V, @)%+ — 1—?S|n2?

(i0” =gV ) =[a, - (p,—9,V,)+BUM+gsd) v, _
. +m§rf23in2T+E[’yL'(pL_gv\7i)
ig* Y_=[a - (pp =09,V )+ BUM+g.d) ], ,
(2.6

TUM+gs¢) 4. (2.12

The relationship betweery and £ (¢_ contains no interac-
tions) is discussed in Ref2], but we explain it briefly here
- for the sake of completeness. We follow Reff$6,26 in
ITVH=9TVH— g,V T =VTH, (2.7 expressingy_ as a sum of terms, ore. whose relation with
. ) . ~ ¢, is free of interactions, the other_ containing the inter-
Ihe fieldsV# enter the meson field equations, but the fieldsactions. That is, rewrite the second of E9.6) as[27]
V# enter the fermion field equations. The eigenmode expan-

sion for V# is given by ; 1 ( M)
= . + 1)[/
g L P +

where

— [ d%kdktakh) e
VM(x)—me_zl’g?‘(k, w)ak, w)e

1 J—
7-=rrl-ta gV +BUGsd+(U-1)M) ]y .

+a'(k, w)e* "], 2.8
(k, w)e™”] (2.9 (2.13
where the polarization vectord‘(k, w) are given by 18] ]
Furthermore, defing  (x)=¢, (x), so that
Kk~
€k, w)=e*(k, w)—k—+e+(k, w), (2.9 P(X)=EX)+ 7_(X), (2.14
with the properties where §(x)=¢_(x) +£..(x). This separates the dependent
and independent parts gf
m2 It is ¢ that is expanded in creation and destruction opera-
ke, (K, @)= — k_+ve+(k, ), tors according to
d?k, dk* (k™) .
k” k# X :J— u(k,\)e ®Xp(k,\
3, @k ek o) =—| ¢ -g g | 600= | Gy 22 ke b0
| +v(k etk xdT(ko\)]. 2.1
(2.10 (k,\) (k,N)] (2.19

The use of the Fermion field equation allows one to obtainThe sp!norgj(h,)\) are thg usua.tliequal time Dirac spinors, of
the light-front Hamiltonian density normalizationuu=2M. It is legitimate to use these because

one is free to choose the representation of the solutions of the
Dirac equation in an infinite number of ways. In particular,
the correct fermionic anticommutation relation r is ob-
tained with these spinofd.7].

The Hamiltonian is a sum of a fré&, (N) and interacting

1 1
T+_:VJ_¢'VJ_¢+ m(zb(ﬁz_;’_ Z(V+—)2+ EV|(|vk|_,’_rn\zlvkvk

272 2
+(V, 7%+ %(1_%9#; termsP; (N):
l(—’ \/- —
+ma2f2 sin2;+21/11(i§(9—gvv>l//+. (2.11 Po(N):%JdZXLdXf('yl-p-FM)g, 2.16
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(2.17

Pr:V1+V2+V3,

with

v1=f d2x, dx"&(g,y-V+M(U—1)+gspU)E,
(2.18

v2=J A2, dX"E(— gy vV M(U—1)+gsgU)

+

Xpgr(~0y VEMU-1+gul), (219

and

2
g = :
v3=—§fd2dex fdyl Xy y Ex YD)

><e<x*—y;)fdy;e<x*—y;>

XEX,Y7) YT E(X Y5 ) (2.20

PHYSICAL REVIEW C 60 035202

A. General formalism

It is worthwhile to begin by reviewing how using the
light-front Hamiltonian of Eqs.(2.16—(2.20 leads to the
one-boson exchange potential. This derivation is useful in
understanding how the full nuclear wave function discussed
in Sec. VI is related to the nucleonic truncation of Sec. IV.
Consider the scattering processt2—3+4. The use of
second-order perturbation theory shows that the lowest-order
contribution to the nucleon-nucleon scattering amplitude is
given by

(34K[1,2=(34v.g(Pj)vi+vs1,2, (3.1

with

1

-, (3.2

9o(Pij)=

where Pj; is the negative component of the total initial or
final momentum which are the same. In constructingNiie
potential one uses conservation of four-momentum between
the initial and finaINN states in constructing tH¢N poten-

tial. The expressior3.1) yields a one-boson exchange ap-
proximation to the nucleon-nucleon potential.

It is worthwhile to discuss the energy denominaRy
P, in more detail. To be specific, suppose that>k; .
%hen the emitted meson of magshas momentunk with
k*=kj —kg ,k, =kq, —kg, andk™=(k?+ u?)/k". Then

The termv, accounts for the emission or absorption of a _
single vector or scalar meson, as well as the emission
absorption of any number of pions through the operéator
—1. The termv, includes contact terms in which there is
propagation of an instantaneous fermion. The termnac-
counts for the propagation of an instantaneous vector meson.

. K k2+ 2
The component that is related to the plus momentum is PP =P P-=Pi—P:=(ki —ko)— — K
T**. The necessary expression is given by i~ Po =P12mPo =Pas—Po =k —ks) ki —k3
3.3

The interactiorK also contains a factor & in the denomi-
nator, so that the relevant denominatoDis= k+(Pi] -Py)

= (ki —k3)(k; —k3)—k?— u?=q?— u?. This last familiar
form involves the four-momentum transfer between nucleons
1 and 3 g=k;—ks3) and leads to the usual Yukawa-type
potentials. It is also useful to explore the form of the energy
denominator using light-front variables by first defining the
plus componenP™* of the initial and final total momentum.
We may also defing; =xP* andk; =x'P* in which x
andx’(x>x'"), as ratios of plus momenta, are invariant un-

. der Lorentz transformations in the three direction. Then us-
The correlations between nucleons are caused by the '
ing Eq. (3.3), we find

nucleon-nucleon interaction. Thus a necessary first step to-
wards a light-front theory of nuclear correlations is the deri-
vation of a light-front theory of the nucleon-nucleon interac-
tion. Previous worK1,2] showed that the light-front version

of the Lippmann-Schwinger equation, the Weinberg equa- X X
tion, can be transformedwith one difference remaining

[28)) into the Blankenbecler-Sugar equation. Kinematic in-This quantity is also invariant under Lorentz transformations
variance under boosts in the three-direction is maintainedp the three direction. This expression is to be used only if
and we shall obtain a one-boson exchange potential which is; >k; . If k3 >k; , then use a version of expressi¢h15

in reasonably good agreement with tR&l phase shifts. in which x andx’ are interchanged.

TH =VRVK e m2V IV + gy ot ot pat é

it
+d"m ot atm it >
™

f2
1- ?SIHZ;) .
(2.21

III. NUCLEON-NUCLEON SCATTERING
VIA ONE-BOSON EXCHANGE
POTENTIALS

k2 +M? k3 +M?
D=| =—— 2 |(x—x) K2~ u2 (3.9
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A straightforward evaluation of Eq(3.1) using Egs. M252H)(P,—P;)
(2.189—(2.20 leads to the result M=2T —, (3.10
\/kl ko kg kg
M2525)(P, — P;) to find that
3,4K|1,2=2(3,4V|1,2 ' , (3.
<44|><44|>¢k1+k2+k;kz (3.5
wherea®)(P,— Py = 50(P, —Py,)8(P —P7) andvis  (34TI12=(34VI12+ % | (34VI56
the standard expression for the sum of the¢ and vector
meson exchange potentials: 2m2 d’ps, dps
X s———————(56T[1,2.
PsPg Pi —(Ps +pg)tie
(3,4V|1,2=(3,4V($)+V(m+V(V)|1,2. (3.6 (3.1

The operatorK is twice the usual two-nucleon potential ~ One realizes that Eq3.11) is of the form of the Wein-
times a factor which includes the light-front phase space facberg equation/34] (see Ref.[8]) by expressing the plus-
tor and a momentum-conserving delta function. Note thaffomentum variable in terms of a light-front momentum
dk*/k*=dk3/E(k) for free nucleons wherek®=E(k)  fraction a such that

+k3.
For the excha_mge of scalar and pse_udoscalar mesons, only Dl —aP’ (3.12
the termv,go(P; )v, enters, and one finds 5 e ’

and using the relative and total momentum variables

BAV(,mI12- S SBIETUD 3
AM“(2m)*(q°— u°) P, =(1—a)ps, —aps, ,
in which the momentum transfeyis given by
Pi.=Ps. * Pe. - (3.13
g=Kkz—Kjy. (3.8 Then,

The notation is thatu(i) is the Dirac-spinor for a free

nucleon of quantum numbersandT is either of the forngg

orig.ys7 The derivation of the contribution of vector me-  (3.4T|1,2=(3,4V[1,2+ AEX (3,4V[5,6)
son exchange proceeds by including the meson exchange e

v10o(P; )V, plus the meson instantaneous terg) and the " 2M? d’p,da
result takes the familiar form a(l—a) P2~ (p?+M)/a(1—a)+tie
x(5,6T|1,2), (3.14

u(4)y,u(2)u(3) y*u(1)
(34V(V)|1,2=~¢; 4M2l227-r)3(q2—m2) : where P? is the square of the total initial four-momentum,
Y (3.9  otherwise known as the invariant energy and ®?
+M?)/a(1—a) is the corresponding quantity for the inter-
The expression§3.7) and (3.9) represent the usu§29-33 mediate state. Because the kerkeis itself invariant under
expressions for the chosen one-boson exchange potentials Librentz transformations in the three direction and the inte-
no form factor effects are included. The sum of the ampli-gral involvesp, and« the procedure of solving this equation
tudes arising from each of the individual one-boson ex-givesT with the same invariance. Note that we use the labels
change terms gives the invariant amplitude to second ordes; to designate momenta in the intermediate state, karfior
in each of the coupling constants. The factorsM#4n Egs.  the initial and final states.
(3.7) and(3.9) can be thought of as renormalizing the spinors  Equation(3.14) can in turn be reexpresséih the center
so thatuu=1, and the factors/M/k* of Eq. (3.5 serve to  of mass framgas the Blankenbecler-SugéBbS) equation
further change the normalization tdu=1 [35] by using the variable transformati¢86]:
These amplitudes are strong, so computing the nucleon-
nucleon scattering amplitude and phase shifts requires in-
cluding higher order terms. One may include a sum which _ E(p)+p® 31
gives unitarity by including all iterations of the two particle a= 2E(p) ’ (319
irreducible scattering operatét through intermediate two-
nucleon states. One first removes kinematic factors by definwith E(p)=p-p+ M?Z and Pi2=4(p-p+ M?). The result
ing aT matrix T using is
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The final term we need to include is the tensgyr,q” part

(34T[1,2=(34V|1,2+ XEK (3.4V[5,6 of the p-nucleon interaction. The presence of such a tensor

e interaction makes it difficult to write the equation fgr as
y_=1/p*---, . This is a possible problem because the
standard value of the ratio of the tensor to vegiarucleon
couplingf /g, is 6.1, based upon RdB8]. Reproducing the
which is the desired equation. Rotational invariance is maniobserved values of, and P-wave wave phase shifts re-
festly obeyed. The three-dimensional propagator is exactlyuires a large valué,/g,; see Ref[39]. However our La-
that of the BbS equation. There is, one difference betwee@rangian compensates for its lack obm interaction with
Eqg. (3.16 and the standard BbS equation. Our one-bosoRensor coupling by generating such a term via vertex correc-
exchange2 potentials depend on the square of the four M@ diagrams(which are the origin of the anomalous mag-
mentumq“ transferred when a meson is absorbed or em't.t?‘ij\etic moment of the electron in QEDSuch diagrams might
by & nucleon. Thus the energy difference between the initigl,o; generate the phenomenologically required values of the
and final on-shell nucleons is included agti* 0. This non- coupling constants, but all that is needed here is that terms of

(zserAf)) Vi';er 'i ? %?Qs‘t?qu:i‘n(r:ﬁl 9[': t:e ilr?vt?wna?hcr@m;i:zq'ti N the correct form be produced. This is because the standard
- under Lorentz transtormations in the three directio ‘procedure is to choose the values of the coupling constants
The usual derivation of the BbS equation from the Bethe- . . .
. o P . S0 as to yield a good description of theN scattering data.
Salpeter equation specifies thgft=0 is used in the meson Thus we simplv add in the necessary tensor terms
propagator. Including®#0 instead ofq°=0 increases the This bri Py to the treat t fyd. f1 -
range of the potential relative to the usual treatment, and its IS brings us fo the treaiment of divergent terms in our

consequences are explored below. One can convert EBlrocedure. The definition of any effective Lagrangian re-

(3.1 into the Lippman-Schwinger equation of nonrelativis- _qqires the_ specification of su_ch a procedure. For the gresent,
tic scattering theory by removing the factet/E(p) witha  't1S sufficient to say that we introduce form factoFs,(q<)

M? dp

B e (®aTIt2. 316

simple transformatiofi37]. which reduce the strength of themeson-nucleon coupling
for large values of- 2. This is also the procedure of Refs.
B. Generation of a realistic one-boson exchange potential ~ [30—32- In principle, calculating the higher order terms us-

ing the correct Lagrangian can lead to consistent calculations

The present results are that one can use the light-fronf¢yhase form factors. We use a more phenomenological ap-
technique to derive nucleon-nucleon potentials in the Onebroach here

boson gxchangéOBE) approximation and use_these N &N "~ The net result is that the one-boson exchange treatment of
appropriate wave equation. Our purpose here. IS 1o ShO\.N th?ﬁe nucleon-nucleon potential and tAematrix resulting
the present procedure yields potentials essentially identical t dom its use in the BbS equation is essentially the same as
the Bonn OBEP potentials80,31] and these potentials lead d y

the one-boson exchange procedure of REZ9-32. The

to a good description of theN data. . . . ;
The Bonn one-boson exchange potentials employ six gifonly difference is the keeping of the retardation effects—the

ferent mesons, namelys, 7,w,p,0, and the(isovector scalar ~ Sduare of the four-vector momentum transfer enters in our
sla, meson. The present formalism can account for théPotentials.

,mw, and o in an approximately chiral invariant manner.
We wish to add in couplinggy7 6y and ¢s7- p*y,¢ in a
chiral invariant manner. Simply adding such terms to the
Lagrangian of Eq.(2.1) would lead to a violation of the
approximate symmetry of E¢2.3). However, one can rede-
fine the operatod so that the symmetry remains. We replace

C. Specific one-boson-exchange amplitudes

The above formalism yields a one-boson-exchange poten-
tial (OBEP which is a sum of one-particle-exchange ampli-
tudes of certain bosons with given mass and coupling. Our

the operatory’ Uy’ in the Lagrangian(2.1) by ¢'Uy": explicit expressions are presented here. As noted above, we
use the six non-strange bosons with masses below 1 &eV/
Thus,
DEe(i/pr)T'PMV;Le(i/Zfz?)T' 5U e(i/2f5)1-- 5e(i/2fp)r-p"yﬂ_
(3.17
Voper= > VooE (3.19
Then the new Lagrangian is invariant under the transforma- a=mp 80,0

tion

Y —elrsmay  JoeinsmayeTivsma (318 Wwith mand 5 pseudoscalaips), o andag/ 6 scalar(s), andp
and o vector (v) particles.
The OBE amplitude$which are the contributions t@ of
In the present application we expand the exponential to firsbur formalism in the two-nucleon center-of-madg.m.)
order in the meson fields. frame are given by
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2

Yps

(k' N\l VR ) = = Sz Uk Aa) YUk A U= Aa)yu(—k ) [@P=mig] ™ (320
g2

(K" NaNg| VSPHKN N ) = o UK AUk AT K A a)u(— KA g2 = m2] 7, (3.2

1 f, ,
(k' NgN g VOPFIKN 1N ) = W[gv (k",N3) y,u(k, STV U(k' 3)0M|(k3—k1)yu(k,>\1)]

f,
X[QVU( Ng) yHu(— k)\z)+ U( K'\Ng)o*"i(kg—kp) u(— k}\z)][q_ mZ] !

fy
~ G an? (gy+f Uk’ Ng)yu(k,\y)— u(k’ 3)(kfpukl)ﬂu(k,)\l)}

f
X[(gﬁfv)i(—k' Na) YHu(=Khp) = 5 ru( =k, 4)(k4+k2)“u(—k,)\2)][qz—mS]‘l.

(3.22

Our notation in the c.m. frame is such that in-coming At each meson-nucleon vertex, a form factor is applied
nucleon 1 carries helicit\; and four-momentunk;=k  which has the analytic form
=(E,k) with E=M?+k?, and in-coming nucleon 2 carries 5 20 n,
helicity N, and four-momentunk,= (E, —Kk); the out-going F.(q%) = Ag—mg
nucleons haves, ks=k’=(E’ k') with E'=M?+k'?, * Aaz q?)
and\,, ks=(E',—k’). The square of the four-momentum
transfer between the two nuc'eons q%:(ks_kl)zz(k’ with ma, the mass of the meson involved aIACL the so-
—k)2=(E’ —E)2— (k' —k)2. The Gordon identity{40] is called cutoff massn,=1 for pseudoscalar and scalar me-
used in the evaluation of the tensor coupljdg,42. For the ~Sons andn,=2 for vector mesons. Thus, the OBE ampli-
isospin-vector bosons:, a,, and p, the above amplitudes tudes Eqs(3.20—(3.22 are all multiplied byF? .
must be multiplied byr; - 7.

With an eye on the nuclear matter calculations to be con- D. Two-nucleon scattering
ducted later in this paper, we note that in the fadtgeM of
the tensor coupling the nucleon madsis used as a scaling
mass to make the coupling constdptdimensionless. This

(3.26

In the two-nucleon c.m. frame, the scattering amplitiide
is the solution of the integral equation

scaling mass could be anything. Therefore, tliss not to . M2 1
be replaced byM* in the nuclear medium. T(k'-k)=V(k',k)+J d*pV(k',p) =— E, KK—p’tie T(p,k),
In this subsection, we use Dirac spindis helicity rep- (3.27

resentationgiven by
where k, p, and k'’ are the initial, intermediate and final

1 relative momenta, respectively, of the two interacting nucle-
u(k,)\l):\/m 2\ q|K| N, (3.23 ons andEpE\/M2+ pz. This is Eq.(3.16 with the spin in-
E+M dices suppressed for the purpose of simplicity. The corre-
sponding equation for thié matrix (which we denote by)
is
1
_ —JE+ M| 27,k M2 1
U( k17\2) E+M E+|NI| |)\2>a (324} R(k’, ) V(k/ k)+7)j d3pv(kr p) E k2 2R(p k)

(3.28

with o :

whereP denotes the principal value integral.

Using standard techniqug81,41], the potential and the
|)‘1>:XM' |)\2>:X_>\2’ (3.29 scattering equation are decomposed into partial waves. Nu-

merical solutions are obtained by the matrix inversion
where y denotes the conventional Pauli spinor. The normal-method[31,43. For an uncoupled partial wave, phase shifts
ization isu(k,\)u(k,\)=2M. are then derived from the on-sh&lmatrix by
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TABLE I. Potential parameters and predictions for the deuteron and low-enersgattering. For the deuteron, the binding eneBgy
the D-state probabilityPp, the quardrupole momer®,, and the asymptoti®-state overSstate ratioD/S are given. Low-energyp
scattering is paramertized in termsagf, andr ,, in s, anda, andr, in ®S;, wherea denotes the scattering length anithe effective range.
The nucleon mass il =938.919 Mev.

Light-front OBEP Thompson OBEP EmpiricaP
Meson parameters

m, (Mev) g%/4x(tig] A, (GeV) g2/4ax[flg] A, (GeV) g’/an[flg]
T 138.04 14.0 1.2 14.6 1.2 13.5-14.6
n 547.5 3 15 5 1.5 <5
p 769 0.9[6.1] 1.85 0.95[6.1] 1.3 0.61) [6.6=1.0]
) 782 24.5[0.0] 1.85 20.0[0.0] 1.5 24+5+7
ag 983 2.0723 2.0 3.1155 15
o 550 8.9602 2.0 8.0769 2.0

Deuteron
By(Mev) 2.2245 2.2247 2.224576%
Pp (%) 4.53 5.10
Qq (fm?) 0.270 0.278 0.286Q15)
D/S 0.0250 0.0257 0.02%8)
Low-energynp scattering

ayp (fm) —23.745 —23.747 —23.74810)
I'np (fM) 2.671 2.664 2.71%)
a, (fm) 5.494 5.475 5.424)
re (fm) 1.856 1.828 1.75%)

3PotentialB of Brockmann and MachleidB2].
®For more comprehensive information on the empirical data and references, note see Tables 4.1 and 430bf Ref
‘Meson-exchange current contributions not included.

T M? NN data by our LF OBEP is quite satisfactory and certainly
tan &’ (Tjap) = — 5 || ERJ(M k) (329  as good as by OBEP constructed within alternative relativis-
tic frameworks. Based upon these results, we feel confident
in applying this OBEP to the relativistic nuclear many-body

; — 2
with T,,=2k“/M andJ the total angular momentum of the ﬁ)roblem.

partial-wave state. For coupled partial waves and other tec

nical details, see Ref31].
[ ] IV. NUCLEONIC TRUNCATION FOR THE MANY-BODY

PROBLEM
E. Results for the two-nucleon system
. . . Now that the light-front treatment of nucleon-nucleon
Following established procedur¢80,31, the coupling  geattering is in hand, we may proceed to the problem of

cor!stdant_sh{;\nd cutoff tr)rra?se.s of thﬁ six OBE acrj'npllturc]ies a'€omputing the properties of infinite nuclear matter. We de-
varied within reasonable limits such as to reproduce the tWogjye 5 |ight-front Brueckner theory from first principles start-

nucleon bound statédeuterop and the two-nucleon scatter- ing with the field-theoretic light-front Hamiltonian.

ing data below the inelastic threshdfabout 300 MeV labo- The nuclear wave function for the ground state of infinite

ratory kinetic energy In Table |, we show the meson , ear matter at rest is defined|d8, and we wish to solve
parameters for our newly constructed light-fr¢hE) OBEP the equation

together with the predictions for the deuteron as well as low-
energy neutron-protofnp) scattering. For comparison, we P|W)=Mp W), (4.2
also give the parameters from an OBEP that was previously

constructed and applied in the Dirac-Brueckner approach tgh which P~ is the light front Hamiltonian of Eqs(2.11)—

nuclear mattef30,32. The latter uses the Thompson formal- (2.20. For a nuclear system at rest we must have also the
ism [44] which is very similar to the BbS formalism—the result that

propagator in Eq(3.27) contains an extra factor ofl/E, .

Note that the Thompson OBEP uses=1 also for vector PTW)=M,| ). (4.2
meson form factors, which explains the differences in the
vector meson cutoff masses between the two OBEP. It is necessary to discuss the light-front Hamiltonian, and to

Phase shifts fonp scattering are shown in Fig. 1 for all find good approximate solutions of the above equations.
partial waves withJ<2. Over all, the reproduction of the We recall that
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FIG. 1. Phase shift§ and mixing parameters of neutron-proton scattering for partial waves witks 2 and laboratory kinetic energies
T.b=300MeV. The solid line is the prediction by the LF OBEP presented in Sec. lll and the dotted line the one by Potential B of
Brockmann and MachleidB2]. The open circles represent the multi-enengyanalysis by the Nijmegen grodg5] and the solid dots are
the VPI analysis SM9T46].

P =P, (N)+J (4.3  The operator, gives all of the single meson-nucleon vertex
functions. The operatov, accounts for instantaneous fer-
. . _ . L _ _ mion exchanges: meson emission followed by instantaneous
in which Py ('2') 1S ;he Iimetlc contribution to th®™ opera- ¢ i propagatiofipropagator isy*/2p™) followed by an-
tor, gving (i +m9)/p .for the minus-momentum of free other meson emission. The operataraccounts for the in-
fermions. The operatal is the sum of three terms of Egs. stantaneous propagation of vector mesons.
(2.18~(2.20: We shall proceed towards an approximate solution of Eq.
(4.2), in two stages. We shall first consider the nucleons only
J=v;+votvs. (4.4 part of the Hilbert space. This involves the assumption that

035202-9



G. A. MILLER AND R. MACHLEIDT PHYSICAL REVIEW C 60 035202

10 € .

€ (deg)
o
6 (deg)

0
L ] 1 ] L 1 0 L 1 L ] L |
0 100 200 300 0 100 200 300
@) T} (MeV) ) Ty (MeV)
20 T T T T T 3 T T T T T T
2
“ap “ap
[ ]
) ! :
© © FIG. 1 (Continued.
0
1 | ) ] ) 1 —1 ) | L ] L ]
0 100 200 300 0 100 200 300
(h) Tyop, (MeV) (k) Ty, (MeV)
T T i T ' T T T i | i
“ap o
] [}
Z 2
“«© w
—4 |- -
0 1 ] L ] L ! L | L | L |
0 100 200 300 0 100 200 300
(i) T)op (MeV) () Ty, (MeV)

using a nucleon-nucleon interactiod accounts for the of using a two-nucleon potential and temporarily eliminate
meson-nucleon dynamics. This assumption in relaxed in Sethe meson degrees of freedom. One way to accomplish this is
VI, which displays the formalism necessary to construct théo add and subtract the two-nucleon potential to the Hamil-
best possible potential and how to include meson degrees adnian and treat terms involving the difference betwéamd
freedom in the wave function. Our Hamiltonia®P{) con-  the two-nucleon potential as a perturbation. The use of light-
tains no terms in which the vacuum can spontaneously emitont dynamics mandates that we perform this operation on
particles. This simplifying feature causes the derivations tdhe Lagrangian because the construction of the Hamiltonian
look very similar to those of nonrelativistic theory, even uses the field equations to identify the dynamical degrees of
though the treatment is relativistic. freedom, such ag, .Therefore we need to study the effec-
tive Lagrangian

A. Introducing the two-nucleon force

At present all of the interactions are expressed in terms of Ly=iliy-i-M)y— = (4.9
the meson-nucleon vertex functions and contact terms repre-
sented by the operatdr We shall follow the traditional path which removes the meson-nucleon interaction terifinom
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the Lagrangian and replaces it with the dengityfor the B. Light front Hartree-Fock approximation
two-nucleon interactionK of the previous section. This

Equation(4.12 represents a difficult many-body problem.
means that g (4.12 rep y yp

But the similarity between the light-front and equal-time re-
1 sults obtained for the nucleon-nucleon potential indicate that
K= _f d?x, dx” K, (4.6)  the same physical concepts are relevant, independent of the
2 dynamical scheme. Therefore we use a scheme analogous to

L . . . that of traditional Brueckner theory. The first step is to intro-
where K is given in Eq.(3.5 and is twice the nucleon- duce a mean-fieldMIF) potential

nucleon potential times a kinematic factor. We recall that

one must eliminate, using EqR.5), any components of in- .1 _ _

teractionC that connecty_ to ¢_ . U= zf d?x, dx” ()[Us(X) + y- Uy(x) 19h(X)
Given the new Lagrangialy we may construct the cor-

respondingP* operators using the canonical definition *

1 _
-5/ dledx-wx)(us(xw%uwx) wx),

aL
=gl X s e (4D (4.13

a single-nucleon operator, with the second equation true for
infinite nuclear matter in which the only nonvanishing com-
Jonent ofU{ is U9=Uy=U{=U, . All quantities in the
integral of Eq.(4.13 are evaluated at the same valuexof,
chosen to be 0. The operat@t is to be determined ulti-
mately by the light-fronG-matrix defined below. The idea is
thatU can be chosen so as to provide a good representation
TS ==2¢(iy-a—M)y+ K+ 20T 00 g, . (4.8 qf the effects_, of thg two-_nucleon interactidt The mean
field LagrangianCy is defined by removing the effects Kf
The origin of the factos that multiplieskC in the Lagrangian  and replacing these by the effects @f Therefore we may
(4.5 is thatKC enters here iy, . It is worthwhile to define  specify
the P-minus operator obtained by usiny, asP, with

in which the degrees of freedoghand ¢ are labeled byp, .
The termV involves only nucleon fields, not their deriva-
tives, so the second term of the energy-momentum tensor
not enter in computingry”. The elementuv=+—(g*~
=2) is needed to construct the relevdPiminus operator
and we find

+

L= 907,04 = M) = (x| Us(x)+ %Uv(X)> v(x).

Pg%f dx d*, Ty, =Py (N)+K. (4.9 (4.14
The completeP-minus operator is given by This Lagrangian leads to the nucleon field equation
P =Py +H,, (4.10 (0" =Uy) gy =[a, -p, +B(M+Ug) ]y,
with 10"y =[a, -p +BM+Ug) ]y, (4.15
H,=J—K+Pg(m), (4.1  in which we have made the mean-field version of the trans-

formation (2.5) with

wherePy (m) accounts for the noninteracting mesonic con-
tribution to P~. The formal problem of choosing the béét
by minimizing the effects oH;=J—K is discussed in the ) o o
Sec. VI. We shall assume here that the present OBEP is a_1he light-front Hamiltonian density'y, - can now be ob-
reasonably satisfactory version of the best interaction, antfined from Eq(4.8) using the field equatiot4.19 as
we shall ignore the influence of the tedy in calculations ”*
of the energy. to o i 2 u-

The purgl);/ nucleonic part of the full wave function is Tv =249, ZJ( 2 Uvrls

defined ag®), and is the solution of the light-front Schro- ) ) )
dinger equation It is also worthwhile to obtain the plus-momentum density

Ty, " which is

9" gyAye=Uy (x). (4.16

g+, (417

Po|®)=(Pg (N)+K)|®)=Mg|D). (4.12 _
TS T =24,00" g, . (4.18
The eigenvalue problem stated above is considerably simpler
than the initial one, but does contain the full complications of The purpose of introducing the mean field approximation
the nuclear many-body problem. We shall next discuss thés that the eigenvalues and eigenvectors of light-front mean
light-front Hartree-Fock and Brueckner-Hartree-Fdek7/]  field HamiltonianP,,- are easy to obtain and can be chosen
approximations. so as best approximate the effects of the two-nucleon inter-
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action. The mean field light front Hamiltonian density,- _The computation of the energy and plus momentum dis-
is obtained from Eq(4.7) using Eq.(4.14) [or by settinglc ~ tribution proceeds from taking the appropriate expectation
to zero in Eq.(4.17)] as values of the energy momentum tenddf”.

— y* 1

Toe =200~ ¢+—2J(7u;+us) o, (4.19 PL= Ef d2x, dx (| T % ). (4.26
and its volume integral i We are concerned with the light-front energ§y and mo-
1 mentumP*. The relevant components @f;" are presented
p(ﬂFZEI d?x, dx T (4.20  in Egs.(4.17) and(4.18. Taking the nuclear matter expec-

tation value of T;” and T,," and performing the spatial
integral of Eq.(4.26) leads to the result

P, 4 k?+(M+Ug)?
v J'dzklkor[ 1 ( S)
F

a single-nucleon operator. Settikgto zero in Eq(4.17) and
using Eq.(4.9) shows that

Pur=Po (N). (4.21 0 (2?3 k*
The ground state eigenvector of this operator is a Slater de- 1 2 TkN)  u(k\)
terminant denoted as): 2= U — (K| B,
d > 2 = W S \/T <¢)| |¢>
Puel )= Pg (N)] ) =mg| ¢). (4.22 427
We shall use both the Hartree-Fock and Bruckner Hartree N
- : e Py, 4

Fock approximations to obtain expressions fbr For now g —3f d?k, dk* k™, (4.28
we pursue the question: Giverlg how do we proceed? The @ (2m7Je

first step is to expand the field operatgrin terms of the
eigenfunctions ofig~ in the light-front Dirac equation where( is the volume of the systefd= 3 [d?x, dx~. The

(4.15. The nucleon field operator is constructed as fol-sypscripte denotes thalk| <kg with k?® defined by the rela-
lows: tion (4.25. The integral involvingu(k,A\)Ugu(k,\) may
&k, dk* o(k*) also be expressed as
PO = | =2 u(k e KK (4.23
(277)3/2 2kt X

_ A (o et Ukd) ukoN)
<¢|us|¢>—(2W)3de ke 5 3, U UEA)

wherek-x= 1 (k" x"+k*x")—k, -x, . We keep only the 4.29
nucleon part ofys(x) as the antinucleon degrees of freedom
are not needed here. These sping(ls,\) are the eigenfunc- Equations(4.27 and(4.28 along with the expression for

tions of Eq.(4.19, with normalizationu(k,\)y"u(k,\) ~ k* Eq.(4.25, allow an evaluation oP~ andP™. We shall
=2k*. For the present treatment of the translationally iN-optain  the massM, of the A-nucleon system aM,
\{arlant infinite rluclear'matter system, the meaq—fleld p'o'ten—:%(p]tJr P,,) and then minimizingVl, per nucleon. For a
tials Us and Uy, are independent of the spatial position y,clear system at rest, the exact eigenvalues of the plus and
X, ,x". The eigenvalues of Eq4.15 are given by{1,2] minus momentum operators must be the same. In light-front
K2 4 (M + U2 work this is usually achieved by constraining each compo-
1t s nent of the Fock space to have the same value. This cannot
+ 1 (424> . .. . « . +
k be done for our infinite system. But minimizing (P,
+P,) is the same as minimizin&,,, subject to the con-
%trainF thatP,; = P;, [2]. Us_ing sta_n(_jar_d L_agrgngg_ muIti_pIier
echniques for the constrained minimization justifies this pro-
cedure. Consider the quantityP,, —\(Py,+P)=(1

k™=Uy+

in which Ug andU,, depend upork, andk*.

The next step is to better define the Slater determina
|$). The occupied states are to fill up a Fermi sea, which i
usually defined in terms of a Fermi momentim that is the

magnitude of a three vector. This three vector is def{d&ll  — i\) MZ/Py; + p; ' Settmgz the +d2er|vaflve +W'th respect to

as P, to zero gives 2=My/(P,,)*=P,,/P,,=1, so that
A=1/2 and one is minimizing (P, + Py,).

kF=J(M+Ug)?+k-k+k®, (4.25 Summing equation$4.27) and (4.28 and dividing by a

factor of 2 leads to

which implicitly definesk®. Using Eq.(4.25 allows one to M, 4 1 k?+(M+Ug)?

maintain the equivalence between energies computed in the o 27 Ef d?k, dk* k—*+k+)

light-front and equal time formulations of scalar field theo- F

ries [49] and to restore manifest rotational invariance in K

light-front QED [50]. —(¢|Ug )+ < qS’ Z ¢>. (4.30
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Then replace the integration ovkf by one overk® using
Eq. (4.295 and the definition

k=Vk-k+(M+Ug)?, (4.3
so that Eq.(4.30 takes the form
Mo_ 4 3 . K
ﬁ_(ZT)Sf d*ko(ke— KB —(4|Uslp) +{ ¢ 5| ¢
(4.32
with
4 1
<¢|Us|¢>zwf d*ko(ke—K) 5
u(k,\) u(k,N)
x; V2EF T°\2EL
4 2(M+Uyg)
_ 3 _ s
—(277)3fd Kolke—k) =5 Us.
(4.33

PHYSICAL REVIEW C 60 035202

For now, we consider the effects of using light-front
spinors on the calculation of the energy. We express the
energyM, of Eq. (4.32 in terms of the spinor$e) of Eq.
(4.39 as

1 —
Mo= 2 E,~ 2 (alUda)+3 X (ap|V|aB)a,
a<F a<F a,B<F

(4.36
in which |aB),=|aB)—|Ba). In this notation
E.=ea—(a]y°Uj] ), (4.37)
so that we obtain
Mo= 2 e,— 2 (alUsty°UY|)
a<F a<F
1 L
+5 2 (aBlV|ap)a. (4.38
a,B<F

This result gives the value of the nuclear energy in terms of
the eigenvalues of the light-front Dirac equation and in terms

One obtains a formalism that looks more conventional byof light-front spinors. The terniK/2 has been replaced by
using a discrete representation of the single nucleon stateaccording to Eq(3.5 and using the normalization of Eg.
We define a set of spinof&), with « representing the quan- (4.34.

tum numbersk and\ such that
—ik-x

(Hle)= ==

u(k,\) (al=(al",

1
2EF
1
1=§f d?x, dx (a|x)(x|a). (4.34

The difference betweeftx|«) and a usual equal timeT)
spinor(x|a)gr of the same quantum numbers, enekgk)

It is necessary, however, to consider the effects of the
phase factor-i (U9x~/2) of Eq.(4.35 which accounts for
the difference between light-front and equal time spinors.
This factor and its complex conjugate multiply to unity in the
calculation of the matrix elementgr]Us+ y°UY| @) and in
the matrix elemen{aB|V|a,B). We need to consider also
the matrix elemen{aB|V|Ba) for which the effects of the
phase factor do not automatically cancel. In princi[bjé, is

a function of the momentum denoted by the quantum num-
bers «,B. In practice, this dependence is weak and can be

=E} +UY, and normalization can be determined by consid-ignored in calculations of the energy, provided one evaluates

ering the phase factor, using Ed.24):

k™ xt  k*x~
k-x= 5 ﬂLT—ki-xL
k?2+(M+Ug?\ (t+2) (t—2)
= Uy + i > 5 * 3 -k, -x,

0 —
=e(K)t—k-F—i

v
> (4.39

the potential at a reasonably chosen average value. Further-

more, in evaluating the matrix elemef®3|V|Ba) both of

the state®Ba are below the Fermi sea and have a momentum
separated by an amount small compared to the scale of the
momentum dependence. Thus the phase factor does not enter
in present calculations of the ener¢yut does in the evalu-
ation of the plus-momentum distributipnOur calculations

of the energy in the light-front and equal time formulations
yield the same results. However calculations of the plus-
momentum distributions can only be done using the light-
front formalism.

The last factor is the consequence of using the barred form of Let us determine the mean field, and the corresponding
the vector potential according to E@.16). The only differ-  value of My in terms of V. The light-front Hartree-Fock
ence between the light-front spinors and those of the equaHF) approximation is defined by taking the mean field to be
time form is due to this phase factor. The consequences afalculated from the average potential according to

this phase factor for computations of the light-front momen-
tum density are that nucleons carry only 65% of the nuclear
plus momentum in the mean field calculatidn2]. A similar
result is to be found below. Furthermore this phase factor has
the desirable feature of suppressing the number of nuclear
antinucleong51]. Summing over the occupied orbitals gives

(@l(Ust°U)Ma)=U(@)= 2, (aBlV]ah)a.
(4.39
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Mo=(¢|Pg +K|&)

2, U(@)=2(g|V]®). (4.40
+(p|KA = AK| ).
In this case, the use of the above equation in the expression (4l Mo—A[Pg (N)+K]JA ¢)
(4.38 for My, leads to the HF approximation for the nuclear (4.47)
energy: '

Using Eq.(4.22 in Eq. (4.47) leads to

1 o
ME=3 cm3 2 (@BVIaBl,  @ad

a<F
which has the same form as the expression for the energy in
the usual equal time Hartree-Fock expression.
We shall also need to obtaing, the eigenvalue oP-.

+(p|KA AK| ),

Mo—A[Py (N)+K]JA

This expression will be used in obtaining the Brueckner- (4.48
Hartree—Foc.k approximation. According to Edd.17) and which can be restated as
(4.22), the difference betweel ; andm, is the expectation
value of the potential/. Thus Mo— mo={(|X| ), (4.49
M= €~ 2, (@lUs+y°We). (442 WNere
a<F a<F 1
X=K+KA —————AX. (4.50

C. Light front Brueckner-Hartree-Fock approximation Mo— APy (N)A

The interactiork between two nucleons is strong and the The operatoiX is a many-body operator acting on all nucle-
scattering amplitude is obtained, as discussed in Sec. lll, byns via the iterations of the two-nucleon interactiénWe
solving the Weinberg equation—the light-front version of sha|l make the independent pair approximation of including

the Lippmann-Schwinger equation. Thus we need to go begnly pair-wise interactions. Thus we approximate
yond the Hartree-Fock approximation. This shall be accom-

plished by treating the interaction between two nucleons to

all orders inK. <¢|X|¢)~< ¢
The idea is that we wish to find the Slater determinant

| ), recall Eq.(4.22), that leads to the best approximation

for the energyM,, of the full nucleonic wave functiohd),

recall Eq.(4.12. Both of the state$p) and|®) are eigen-

states of @P-minus operator, and both are eigenstates of the

1 :
iiEjri,J(Pi,-)

¢>E<¢|F|¢>, (4.5D

whereT’; ; is a two-nucleon operator which is a solution of
the integral equation

operatorP (N). We shall use standard techniques to derive L (P =Kjj+Kij 5= 5=+ I'ij(P).
a perturbation theory K to obtain an expression for the Pij —APo (N)A
state|®) in terms of|¢). Thus we write (4.5
|D)y=|p)+A|D) (4.43 The notationi,j refers to a pair of particles. The relevant
matrix element is expressed using the eigenstates of Eq.
with (4.15 as
A=1—|p){¢|. (4.44 (3,4 (P »)]1,2)=(3,4/K|1,2)
Then use Eq(4.43 in Eq. (4.12 and multiply the result on *2
the left by A to obtain + > | (3,4K|5,6) ——
A5 .\g Ps Pe
2 +
Ald)= - AK|¢),  (4.45 d“psdps Q
Mo—A(Py (N)+K)A X — ——— (5,6|I'|1,2),
0= AP (N)+K) |:’1,2_(F)5+F36)+'E< T2
so that (4.53
in which we define
=|¢)+ . .
M =M+Ug. (4.59

We can obtain a useful expression fdy by acting with the

operator ¢|[ Po (N) +K] on the left of Eq.(4.46 and using The operatoiQ, to be specified below, is the two-body ver-
the result(¢|®)=1, which follows from Eq.(4.46. Then sion of A and projects the momentas and pg above the
we find Fermi sea. The factavi*26%7))(P;— P;)/\k, ks k3 k, ap-
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pears in each of the terms of B¢.53), so it is worthwhile to  which is the desired equatidwith Dirac spinors normalized

define a BrueckneG-matrix G using as in Sec. ll].
The Brueckner light front Hartree-FodiBHF) approxi-
M*2524)(P,—Py) mation is defined by taking the mean field to be calculated
I'=2G6 : (455  from the averag& matrix according to
VK1 ks k3 ky
To follow the steps of Sec. Ill in converting E¢4.53 U(a)=(al(Us+y°Uy)®" a>:;F (aB|Glap)a,

into one of a more familiar form, in which rotational invari-
ance is manifest, one needs to know the values of

(4.6))

where Dirac spinors are normalized as in E4.34. The

P~k tky , (456 sum over occupied orbitals gives

which for the case of relevance here in computing the
nuclear expectation value in the independent pair approxima- ZF U(a)=2(¢|G|¢). (4.62
tion, is the same aps +pg . The single-particle minus- “

momentum eigenvalues are given according to@®4 as  \ye yse this BHF mean field to determine the valuengvia

Eq. (4.42. Then the use of Eq4.5) in Eq. (4.49 deter-
- kifﬂM +Uy)? mines the value oM as the ei lue d?,, i
K = +U.. (4.57) . o as the eigenvalue d?, . But Mg is
' k" v aIso the eigenvaluéor in this case the expectation va)us
. The minimization ofP; subject to the constraint that
Our approximation is thally is independent of orbitai. the expectation value d?;; is the value ofP;, leads to the
Thus this potential cancels out in computing the differenceBHFE version of Eqs(4. 27) and (4.29:
—(ps tpg) and the energy denominator is as in the free
space considerations of Sec. I, except that the mass of the P, ) . k2 +(M+Ug)?
nucleon is replaced byl + Us. Thus the previous derivation 0 (2n )3f d%k, dk™) —— 7
of an equivalent three-dimensional integral equation that is

manifestly covariant and rotationally invariant proceeds as
u(k )\)

before. —2= 2 +<¢|r|¢>

One expresses the plus-momentum variable in terms of a V2 \/
light-front momentum fractior of Egs.(3.195 and(3.13 so (4.63
that one obtains '

P—; fdzk dktk™. (4.64
(346G[1,2=(34V[1,2+ | > (34V[56 a @ '
)\5,)\6
2M*?2 d?p, daQ Note that the quantitk* is defined in Eq(4.25.

Taking the average of equatiori4.63 and (4.64), and
using the basis of Eq4.34) leads to our result for the BHF
x(5,6G|1,2), (4.58 version of the nuclear mass

Xa(l—a) P?— (p°+M*?)/a(1— a)

whereP? is square of the total initial four-momentum, com-
puted usingM + Ug for the nucleon mass. Equatiqrd.58

can in turn be reexpressed as a medium-modified
Blankenbecler-SugarBbS) equation [35] by using the This is equivalent to the usual expression of R¢8&,32,
medium-modified version of the variable transformationsee Eqgs(5.10 and(5.11) below.

[36]:

1 _
Mo=2> €.~ > > (aB|GlaB),.  (4.69
a<F 2a,B<F

V. LIGHT-FRONT BRUECKNER THEORY

LBt p 459 OF NUCLEAR MATTER
*x .
2Ep A. Summary
with E} given in Eq.(4.31). The result is The formalism of the previous section can be summarized
using the notation of Refd.30,32. In that work, single-
nucleon motion in nuclear matter is described by the Dirac
<3,4{G|1,2}=<3,4|V|1,2>+J’AEA (3,4V|5,6) equation
5:16
M — * —
M*2 d%pQ (k=M —-U)u*(k,s)=0 (5.
— —2—<56|G|1 2), (4.60 _ L
Ep b or in Hamiltonian form
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(a-k+ BM + BU)U* (k,s) = e,u* (k,s) (5.2 We have consistently ignored the state dependendé,of
This is a good approximation for energy differences gov-
with erned by the Fermi energy. However, the relevant energy
scale in the form factors are the parametar®f Table I,
U=Ug+y°UY, (5.3  Which are on the order of a GeV or more. Thus for these
terms it would be better to use

where we use the usual notatip0] S=y° and a=y°y. 0 rex -
The solution of Eq(5.1) is " =[E,tUv(a)]-[Ep+Uv(B)]. (5.7

1 The quantityE” +U,(«) for occupied orbitalsy is close to
Ef +M* the nucleon mass. For high energy orbitgldJ(8) is small.
u*(k,s)= 1/ oEr ok xs (5.4 Thus the use of Eq5.7) is numerically very similar to ig-
k Ef +M* noring the effects of the medium modifications in evaluating
the retardation effects in the form factors, which is what we
with M* defined in Eq(4.54). E} given by Eq.(4.31), and  do.
Xs a Pauli spinor. The normalization i8* (k,s)u* (k,s) The single-particle potential for nucleons in nuclear mat-
= Ef/M* andu*T(k,s)u* (k,s)=1, as in Eq(4.34). Notice  teris
that the in-medium Dirac spinor E5.4) is obtained from M*
the free Dirac spinor by simply replacirig by M*. The U(a)=(a]U|a)=(alUs+ y°U9a)= —Ug+UY;
difference between the equal time spinors used in Refs. S
[30,32 and light-front spinors is the phase factor discussed (5.8
above in Sec. IV C. As noted, this factor cancels out of the , . . .
matrix elements when using the approximation that the vec:WhICh is calculated from th& matrix by
tor potential is independent of momentum. o
The nuclear matte® matrix is the solution of the integral U(a)=Re >, (ap|Glap)a, (5.9
equation(4.60 without the explicit spin indices B<F

&p where « denotes a state below or above the Fermi surface
G(k’,k;|P|,kF)=V*(k’,k)+f sV*(k',p) (cont|_nuous ch0|c)_e _ _ _
(2m) Using the notation of the previous section, we define “the
— energy per nucleon in nuclear matter” by
M*2Q(|pl,|Pl ke)

k’—p’+ie

G(p,k;|Pl.kg),
*
E(l/2)P+p ;Z%_M, (51@
(5.9

. ._which can also be written as
whereP is the total three-momentum of the two nucleons in
the nuclear matter rest frame akdp, andk’ are the initial, ¢ 1 1 L
intermediate, and final relative momenta, respectively, of they = & > (@ly-k,+Mla)+ oA > (apBlGlaB)a—M.

. . . a<F a,B<F

two nucleons interacting in nuclear matter. Note that the (5.1
third components of the various momenta are obtained by '

using the appropriate versions of H4.25. ke denotes the Note that this equation depends on the Fermi momerkgm
magnitude of the Fermi momentum corresponding to thgyng, thus, on the density of nuclear matter. It is useful to
nuclear matter density under considerati@. The Pauli opergsave the following summary of formulas concerning the
tor Q, for which we use the angle avera@e[43], projects  single particle energy,,:

onto unoccupied states. In the derivation, we have used the

angle averages :P+k)?~%P?+k? and (P=p)?~31ip? .= (aly-k,*M+Ula) (5.12
+p?. The latter impliesEfy pp, ;= VM* 2+ ;P?+p. =(a]y-k,+M|a)+U(a)
The essential difference with standard Brueckner theory is (5.13
the use of the potential* in Eq. (5.5). As indicated by the
asterix, the OBE potential of Eq3.20—(3.22 is evaluated MM* + ki M* o
by using the in-medium spinors E(.4) instead of the free :E—*+ E—*US+ Uy
ones. | N . ) ) (5.14
It is necessary to discuss a technical point concerning the
retardation effects in the form factors E.26) that enter in =E*+U0°, (5.15
evaluatingv*. Consider the matrix element ®* for which “
our formalism says to use with E* =M*Z+kZ andM* =M + Us.

0k . . . The calculation of the nuclear matt€rmatrix involves a
o =E,—Ep=[EL+Uu(a)]-[Ez+Uy(a)]. (5.6  self-consistency, since the solution of E&.5) for G re-
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0 L i [
A L e AR
- while in the ET formalism no energy is transfered, thus,
v —10 . E
= .. . _ _ r_
S’ Celae” q_(oaq)_(oyk k)v (518)
N s \-/ ;]
> EI\ 7 and the propagators are
-20 n i i
, | | A e A
1 1.5 2
1 In nuclear matter, the free-space LF meson propagators Eq.
kp (fm™") (5.17) are replaced by

FIG. 2. Energy per nucleon in nuclear matéA (in units of i
MeV), as a function of density expressed by the Fermi momentum (E* —E ) — (k' —K)P—m?’ (5.20
ke (in units of fm%). The solid line is our prediction using light- @
front Brueckner theory. The dotted curve is obtained when the me: Lile the ET propagators undergo no changes. The medium

dium effect on meson propagation is omitted. The dashed line is thgffect on the LE meson propadators enhances them off-shell
result from conventionalnonrelativistig Brueckner theory. The propag

box describes the area in which nuclear saturation is expected t ,h'Ch leads to more_ binding energy. This is demonstrated !n
occur empirically. ig. 2. where the difference petween the dotted and solid

curve is generated by the medium effect on the meson propa-
gators.

There is another difference that arises from a technical
issue in the solution of the transcendental equation foGhe
matrix. We obtain new values of the mean fiels' (kg)
=My+Ug=718 MeV andU,=165MeV. The mean field
potentials obtained here from tii& matrix are considerably
smaller than those of mean field theory in which the potential
is used. We discuss the implications for nuclear deep inelas-
tic scattering in Sec. VII.

B. Results The most important medium effect in relativistic ap-
The formalism of the previous section is used to calculatgroaches to nuclear matter comes from the use of in-medium

the energy per nucleon in nuclear matter as a function oPirac spinors representing the nucleons in nuclear matter
density, Eq(5.11). Our result is plotted in Fig. 2 by the solid (“Dirac effect”). This effect(and the medium effect on me-
line. The curve saturates af/A=-—14.71MeV andkg son propagatojss absent in the conventionahonrelativis-
=1.37fm %, and predicts an incompressibility oK tic) Brueckner calculation which yields the dashed curve in
=180MeV at the minimum. These predictions agree wellFig. 2. Characteristic for all predictions using conventional
with the empirical values€/A=—16+1MeV, k-=1.35 Brueckner theory is that the saturation density is predicted
+0.05fm !, andK =210+ 30 MeV [52]. too high and, thus, they all fail to explain nuclear saturation

To get a better idea of the quality of our predictions, it is correctly. _ _ _ _
useful to compare with the results from alternative relativis- The effect that is generated by the in-medium Dirac

tic approaches. Brockmann and Machldi@g] predict&/A  spinors is strongly density dependédtie to the density de-
=—13.6MeV, ke=1.37fm %, andK =250 MeV at satura- Pendence oM™ ) shifting the saturation curve towards lower

tion, using the equal-time formalism and their “Potential densities such that nuclear saturation is predicted at the cor-

B.” The greatest difference occurs for the incompressibilityrect density(solid and dotted curves in Fig).2The effect
which is predicted smaller by the LF Brueckner theory im-from the in-medium Dirac spinors is, of course, largestdor
plying a softer equation of state. This can be partially attrib-2nd« exchange for which the LF and ET formalisms predict
uted to the medium effect that comes from the meson propegssentially the same. Howeverandp also contribute to the
gators in the LF approach and that is absent in the equal tim@edium effect and, here, we have differences between LF
(ET) approach. Recall that in the LF formalism the momen-and ET. The general underlying reason for this difference is

tum transfer between two nucleons exchanging a meson isthat for derivative coupling, implying a momentum depen-
dence of the meson-nucleon vertex, the difference in the mo-

g=(de,9)=(E'—E k' —k), (5.16 mentum transfef=meson momentujrbetween LF and ET

[Egs. (5.16 and (5.18), abovg creates a difference in the
whereE andE’ are nucleon on-mass-shell energiesore  vertices(and OBE amplitudes—besides the one in the me-
explanations can be found below E8.22], implying the son propagators. The includes the tensor coupling
meson propagators i(f,/2M) o,,,9" and the LF OBE amplitude is given in Eq.

quires knowledge oM* which, in turn, is determined from
G via Egs.(5.8) and(5.9). In practice, one starts out with an
educated guess fon*, solves Eq(5.5) for G and uses this
G to calculate a newM* from Egs.(5.8) and (5.9. The
procedure is then repeated starting with the métv. This is
reiterated until the calculated * reproduces accurately the
startingM*.
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(3.22. However, in the ET formalism, the amplitude con-  For the purely nucleonic wave functid®) we have
sists of Eq.(3.22 plus additional terms that contribute only

off-shell, as discussef1]. In nuclear matter, the medium (PP [@)=Mo+(P[I-K|D), (6.9
effect generated by these off-shell terms essentially cancels
the medium effect that comes from the main part of the am>° that

plitude, Eq.(3.22. Therefore, ETp exchange produces a Ma=Mo+(D|I—K|D)+(P|(I-K)
much weaker medium effect than LF.

Concerning the pion, the pseudovectpr§ coupling (or
gradient couplingi(f, yn/m;) ¥sv,9* has been generally
used, in the ET formalisni32]. The resulting one-pion-
exchanggOPE amplitude can be cast into a form that con- The difference betweel , andMg is the expectation value
sists of the amplitude Eq3.20 plus off-shell term¢$53,54.  of the operatolO:

In the LF formalism, no matter if thev or ps coupling is

used, the OPE amplitude always comes out to be(EQ0), O0=J-K+({J-K)Ag

and there are no additional terf®4]. In nuclear matter, the 1

medium effect from the off-shell terms of the ET formalism X —

damp the medium effect from the main OPE amplitude, Eq. Ma=AePo A= Aep(I=K)Ag
(3.20, similar to what happens with the Therefore, LFxr (6.6)
exchange produces a strongarore repulsive medium ef-

fect than ET. and a bit of algebra shows th@ satisfies the integral equa-

In summary, the Dirac effect comes out more repulsive intion
the LF formalism as compared to ET due to off-shell differ-
ences in ther and p exchange amplitudes. On the other O0=J-K+(I=K)ApGo(Ma) A0, 6.7
hand, the LF formalism generates an attractive meson ProP@inere
gator effect that is absent in ET. As it turns out, these two

X Ag Ap(I—K)|®). (6.5

1

Agp(I=K),

effects cancel to a large extent, leading to a nontrivial simi- 1
larity between the LF and ET results. GO(MA)EA¢mA¢. (6.8
A oY
VI. FULL WAVE FUNCTION W The lowest relevant order of E¢6.7) is given by
AND MESON DEGREES
OF FREEDOM O0~J—-K+(J=K)A4Go(Ma)(J=K).

The nucleonic wave functiofib) has been determined in ~ The one-boson exchange interactikinis given by Eq.
Eq. (4.46. This gives us the purely nucleonic part of the (3.1) (which now includes also the effects of Sec. 1)l &d
Fock space, in which the effects of the mesons have beewe may determine if the expectation val(®|O|®) is rea-
replaced by the two-nucleon interactign However, the full ~ sonably small. If this is true, the quantii¥, would be a
wave function i§ W) of Eq. (4.1). We need to assess whether good approximation to the true eigenvalue of #e opera-
|®) is a good approximation t¢¥) and we also need to tor M,. In the one-boson exchange approximation
determine the mesonic plus-momentum distributions.

We recall the relation between the fl#l~ operator and (P[O|®)~(P|va—K[P)+(P[IG(M)I[P) (6.9

(4. = +
o o o 31418 (7 <60 )] consponang b (Ol G001
(6.10

P~ =P, +J—K+Py(m). (6.1)
The use of Eq(3.1) yields

Using this in Eqs(4.1) and(4.12 allows us to obtain _
J asiay 412 <q)|o|q)>%<q)|vl[GO(MA)_go(Pij)]Vl|q)>1 (6.11

| W) =|d)+ ;AQD(\]_K”Q)% (6.2  Wwhere the ternP;; is specified in Eqs(4.53—(4.57). But
Ma—AgP Ay within the independent pair approximatifin which one in-
cludes only the energgminus-momentumdifferences for a
whereAq=1—[®)(d]. _ chosen pair of nucleois
An expression for the nuclear mabk, can be obtained
by multiplying Eq.(6.2) by (®|P~ using(®|¥)=1 to ob- Go(Ma)=0o(Pij), (6.12

tain the result
and the expectation value @ vanishes.
Thus within our approximations, it is consistent to say

Ma=(@[P~[®)+(P|(I-K)Agr—5=— that the exact nuclear mabs, is well approximated by, .
Ma—AgP Ag : L
This means that we have shown that it is acceptable to re-
X Ap(I—K)|D). (6.3 move the explicit mesons for calculations of the nuclear
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mass. One could evaluate the presumably small corrections

by going beyond the independent pair approximation. The P+(¢>)EJ d?k, dk*k*n,(k), (6.18
simplicity of the derivation of this result is made possible by

the dynamical simplicity of the vacuum, which is one of thejs given as a derivative of the scalar-meson exchange contri-

dEfining features of Iight-front field theory. bution to the nucleon-nucleon potentia|
A. Momentum distributions IV (P ,K)
ny(k)~—2(d| ———1"—|®) (6.19
We can now compute the: components of momentum. IP;;
Look at T*" as given by Eq(2.21) The plus momentum
carried by the scalar meson is given by with
p* —szk dk*k*af(k)a(k (6.13 NP 1) _ *(k);'-(k) (6.20
(d))_ L a( )a( )1 . &PJ =1l (MA_AP—A)ZJJ .
while that of the pion is given by in which the notation,j specifies that only two-nucleon con-

tributions are included. Note thgtb) is the correlated
N B 5 L4t ground state. Note that the expectation value is taken using
P (”)_f d*k dk k™ a'(k)-a(k), (6.149  the single particle basis specified by Hé.34. We recall
Egs.(3.1) and(3.2), and usd2]
and that of the vector meson is given by

k*(P;; —Pg)=0°~mj. (6.20)

P (w)= :213 d%k, dk"k*a'(k,w)a(k, o). Note that the momentum of the exchanged mesdq &nd
(6.19 L. _ kPmg

k :q ikL:qL!k = k+ 1 (623

We shall handle the scalar term first. The evaluation of

Eq. (6.13 using Eq.(6.2) leads to whereq is the nucleon momentum transfer. Thus one may

obtain the result that

1
P9 [ kL dk (@0 5 (1) . o
- — = . 6.2
_ 1 _ dPj; (Pij —Pg) (qz_mi)z 6239
~ [ @k @i i),
(MaA=APg A) This means that evaluating the plus-momentum distribution

(6.16  forscalar mesons is the same as evaluating the expression for
the scalar meson contribution to the nuclear potential energy,
in which the approximation is motivated by the near equalityexcept that the potentiaf 4(k) (the dependence oﬁI iis
of M, andM,, and the universal expectation that the impulsesupressexis multiplied by the factor—k*/(g%— m¢) The
approximation evaluation of the meson exchange potential iset result is that
valid. The termj(k) is defined via the contribution of the "
lar meson :

scalar mesons to; S0 = 2 (apl0! ﬁv¢(k)((2 ) Quslab)a,

v1(¢)=f %k, dk*[j(k)a(k)+H.cl,  (6.17 (6.24
where (), ; is the Moeller scattering operator for the two-

in which j (k) can be obtained from E¢2.18 and is a nucle- nucleon statex8. One finds a similiar expression for the
onic operator that depends én andk™. pionic density with

The operator to be evaluated in the above equation has o
one and two body pieces. The one-body terms are related to (k)= 2 (a,B|Q V_(K) —y——re (— ) )
a shift in the self energy of the nucleon caused by the me- BEm (g2 — Qap a
dium. In infinite nuclear matter the ratio of pairs to single (6.25
nucleons is infinite so that the number density is well ap-
proximated by the two nucleon terms of E@.16. The The evaluation of the vector meson density(k) re-
evaluation is simplified by the use of E@.12 and noting quires more steps because the meson-exchange potential has
that the relevant matrix element is the same as occuring ia contribution from the instantaneous meson exchange term
the one-boson exchange operatoexcept that the denomi- v5. This instantaneous term does not lead to a meson “in the
nator is squared. Thus the momentum densjjfk), defined  air” and therefore does not contribute to,(k). One finds
by that

035202-19



G. A. MILLER AND R. MACHLEIDT PHYSICAL REVIEW C 60 035202

- (—k*) B. Computing the total number of mesons
nw(k)=aﬁ2<F (@Bl QapV (k) (P—m2) QoglaB)a, We can get the total number of each kind of mesex-

(6.26  cept thew) using a sum rule. Consider the schematic form of
the equation for th& matrix

where Q
G(P;;)=V(P;)+V(P;) —=G(P;;), (6.32
F2(q?) [ +m? ij ij i) AE ij
- o m
V(0 =g22mi— SN 629) | | |
¢ (g=—mj)| k whereQ/AE is a schematic representation of the propagator

of Eq. (4.53. Differentiating with respect t&;; yields the

It is also necessary to discuss the nucleonic plusfesult
momentum distribution. This is determined in Re]. Here

the nucleon-nucleon correlations cause the momentum den- JG(Pjj) :( g) ‘7V(Pij)( EG)
sity to have contributions from above the Fermi sea. We e AE] Py AE
have (6.33
p+ 4 The Moeller operators appear to the right and left of the
N

fdszdk+k+N(kL k), (6.28 derivative of the potential. Furthermore, in our one boson
exchange approximation, the total nucleon-nucleon potential
is the sum of the contributions due to individual bosons.
wherepg is the nuclear baryon density ait{k, ,k*) isthe  Thus we may define
occupation number for a nucleon of momentuky (k™).

A PB(27T)3

Recall that the variablk™ is defined in Eq(4.25. Since the JG"(Pj;) —[14 g IV(Pyj) 1+ EG

integral gives the total plus-momentum carried by nucleons, Py - AE Py AE ~ )’

the integrandoverk™) which multiplies the factok* is the (6.34
probability f (k) that a nucleon has momentua distribu-

tion. Thus: in which the labelm refers to the type of meson. But the

potential V™ appearing in Eq(6.32) is simply the Fourier
transform of the potential/™(q). Thus an examination of

n
P_N:f dk*k*f(k*), (6.29 Egs. (6.25 and (6.24 shows that, considering the pion for
A example,
where IG™(P;)
Nwzf d*any()= X (a.fl—5=—|a.B)a.
a,B<F (9P|]
(6.39

f(k+):%J d?k, N(k, ,k™). (6.30

pe(27) Numerical evaluation of Eq(6.35 leads to the result that

N, /A=0.05. This is smaller than the 18% of Frimanal.

A function f(y) can be obtained by replacing” by the  [56] because we use scalar mesons instead of intermetiiate

dimensionless variabley using y=k*/M with M=M states to provide the bulk of the attractive force. The expres-

—14.71 MeV. sion for the density of vector mesons involves the removal of
The relation to experiments is obtained by recalling thathe effects of the instantaneous exchange and one must use

the nuclear structure functidf,, can be obtained from the explicit light-front variables.

light front distribution functionf(y) (which gives the prob-

ability for a nucleon to have a plus momentum fractign VII. IMPLICATIONS FOR LEPTON-NUCLEUS DEEP
and the nucleon structure functidf,y using the relation INELASTIC SCATTERING AND THE NUCLEAR
[55]. DRELL-YAN PROCESS

The values ofUg, U,,, andN, allow us to assess the

Foa(X) ; : ; .

:f dy f(y)Fon(X/y), (6.3)  deep inelastic scattering of leptons from our version of the
A ground state of nuclear matter. Using* (k) =744 MeV

[57] and neglecting the influence of two-particle-two-hole

where y is A times the fraction of the nuclear plus- states to approximaté(k™) [1,2,58 shows that nucleons
momentum carried by the nucleon, axi$ the Bjorken vari-  carry 81%(as opposed to the 65% of mean field thef])
able computed using the nuclear mass minus the bindingf the nuclear plus momentum. This represents a vast im-
energy. This formula is the expression of the usual convoluprovement in the description of nuclear deep inelastic scat-
tion model, with validity determined by a number of assump-tering. The minimum value of the rati®,,/F,y, obtained
tions. Our formalism enables us to calculate the functiorfrom the convolution formuld6.31) is increased by a factor
f(y) from the integrand of Eq4.28). of 20 towards the data as extrapolated in RB8]. But this
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calculation provides only a lower limit of the nucleon con- so the four-vectox” is denoted

tribution because of the neglect of effects of the two-particle- .o

two hole state$60]. XH=(XT,XT,X0). (A2)
Turn now to the experimental |nf0rma}t|on about the \Vith this notation the scalar product is denoted by

nuclear pionic content. The Drell-Yan experiment on nuclear

targets 61] showed no enhancement of nuclear pions within 1 1

an error of about 5-10% for their heaviest target. No sub- X-y= §X+y_+ EX_er—Xl Y. (A3)

stantial pionic enhancement is found ip,§) reactiongd62].

Understanding this result is an important challenge to therhe metric tensog”” with uw=(+,—,1,2) is obtained from

understanding of nuclear dynami¢€3]. Here we have a the usual one by using E¢AL) (i.e., g% = g%+ g®*). Then

good description of nuclear dynamics, and our 5% enhancey*~=g~*=2, gi= — 1, with the other elements vanishing.
ment is consistenf64], within errors, with the Drell-Yan The term g, is obtained from the condition thay*’g.,
data. =0d,,. Its elements are the same as thosg/tf except for

g_,=0,_=1/2. Thus
VIIl. SUMMARY AND DISCUSSION

This paper contains a new relativistic light-front theory of X_=5X", Xpz=5X, (A4)
nuclear matter. Light-front quantization is used to obtain a
nucleon-nucleon potential which yields phase shifts in goodind the partial derivatives are similarly given by
agreement with data. We use this as input in a light-front
many body theory. A straightforward derivation leads to a . d _
theory in which the effective interaction is the light-fro@t J"=20-=2—=, 9" =25,=2
matrix. We obtain a good description of the binding energy,
density, and incompressibility of nuclear matter. The binding The Bjorken and Drel[40] convention for gamma matri-
energy per nucleon is 14.7 MeV ang=1.37fm 1. The ces is used and
compressibility is 180 MeV.

ﬂX—Jr . (AS)

*_ .0 3
The use of a meson-nucleon Lagrangian enables us to also YVEYEY (AB)
compute the mesonic content of the wave function using e relations
consistent approach represented by Hgsl), (4.12), and
(6.2). The results are not in conflict with extrapolations of YTy =0, Yy y vy =4y", y yTy =4y~ (A7)
deep inelastic scattering and Drell-Yan data to nuclear mat- o _ _ -~
ter. can be used to simplify various computations. The Hermitian

The omega and rho mesonic content are still to be evaluProjection operatord .. are given by
ated. We believe that the possible nuclear enhancement of 1 1 1
vector mesons is a promising avenue for future theoretical A==y y =20y =2 (1*ad) (A8)
and experimental research. -4 2 2

and obey the following relations:

2_ —
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