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Multiplicity dependence of identical particle correlations in the quantum optical approach
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Identical particle correlations at fixed multiplicity are considered in the presence of chaotic and coherent
fields. The multiplicity distribution, one-particle momentum density, and two-particle correlation function are
obtained based on the diagrammatic representation for cumulants in semi-inclusive events. Our formulation is
applied to the analysis of the experimental data on the multiplicity dependence of correlation functions reported
by the UAL and the OPAL Collaborationss0556-28189)07008-9

PACS numbegs): 25.75.Gz, 05.30.Jp

[. INTRODUCTION The n-particle momentum density in semi-inclusive events is
defined by
In high energy hadron-hadron collisions, Bose-Einstein
correlations of the identical particles are considered as one of 1 A" oinel
the possible measures for the space-time domain where iden- Pn(P1y-ePn) = ——Eq- 'EnW
tical particles are produced. One of the theoretical ap- nel Pi---0Pn
proaches to the Bose-Einstein correlations is made on the =|(0la(py)- - -a(pn)| $)|?,

analogy of the quantum optickl], where two types of

sources, chaotic and coherent, are introduced. A diagranwhich is reduced to

matical method, based on the Glauber-Lachs foriljahas

been proposef?] to find the higher order Bose-Einstein cor- _ ) ’ 2d3p
relation (BEC) functions in the quantum opticdQO) ap- pn(P1.--Pn) =[F(p1)|* - -|f(pn)| “ex _J [f(p)] E |’

proach. In Ref[3], the generating functiondlGF) for mo- 2
mentum densities is derived in the QO approach, and a
diagrammatic representation for cumulants is proposed. In the QO approach, the functidiip) is divided into two

Up to the present, identical particle correlations in fixedparts:
multiplicity events have been investigated in the case of
purely chaotic fields. Two-particle correlations are analyzed M
in Ref.[4] by using Monte Carlo methods. The multiplicity f(p)=2 a¢i(p)+fc(p), €
dependence of one-particle distributions is discussed in Ref. =t

ga,dair:qdégﬁéf two- or three-particle correlations is consid-Where #:(p) and f(p) are amplitudes of théth chaotic

. . . source and a coherent source, ands a random complex
In Ref.[7], an outline of our formulation on particle cor-

relations at fixed multiplicity in the QO approach has beennumber attachgd to thigh chaotic source. In additio!M Is
briefly reported. General features of multiplicity distribu- the number of independent chaotic sourf&ls which is re-

tions, one-particle distributions, and two-particle correIationsrgnagggjdr;%gggirtmri]r']tethlg gggesfg];&gﬁ)g'deflmergcge mo-
at fixed multiplicity have been also shown. In the present y P y

paper, identical particle correlations at fixed mutiplicity in
the QO approach are considered in detail. The diagrammatic pn(P1,-. . Pp) = < If(py)|?- - | f(pn)|?
representation for cumulants is used to obtain the formulas in
semi-inclusive events in an analogous way to that in inclu- d3p
sive events[3]. Furthermore, our formulas are applied to xex;{—f |f(p)|2?
analyses of the experimental data pp collisions by the
UA1 Collaboration[8] and ine*e™ collisions by the OPAL
Collaboration[9].

At first, we consider the case when there are no correla®

|

In Eq. (4), the angular bracketd~), denote an average &f
ver the random numbex; with a Gaussian weigHtL]:

tions among produced patrticles in the final states. Then par- M 1 lay)?
ticles in the final states are given by a coherent state, _ _f _ G g2
(F)a I1;[1 (W)\i exp d?a; |F. (5)
— 1 f ngp f T 3p 0
|#)=ex _Ef (Pl ?Jrf (p)a (p)? 0). It should be noticed that the classidgdion) fields are

(1) randomized in our approach. On the other hand, each mode
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of light is randomized in the quantum optifs]. After the S"Z[h(p)]
average is taken over the random numéen Eq. (5), terms Pn(P1s---P2) =Eq-- 'Enm
composed ofla* ™ in the functionF vanish ifl #m. ' " Ih(p)=0
The generating functional for momentum densities in =co{|f(py)-- - F(Pn)]Da- (10)

semi-inclusive events is defined by the following equation:
The GFGg,{ h(p)] for cumulants is defined by the equa-

1 tion
an[h(p)]:ngl mf T J Pn(P1,---:Pn)
Gsnl h(p)]=InZg,{h(p)], (11)

d°p;  d’p,

Xh(py).-n(pn)—g—---—g—-  (6)  and thenth order cumulant is given by
1 n

n
From Egs.(4) and(6), the GF is written formally as 9n(P1,- - P =E;- - -E, 9"Genl ()] )

(12)

.
>a From Egs.(10), (11), and(12), we have iteration relations
for momentum densities,

d3
zsrr[h<p>]=<epr () 2L(p) 11 2

On the right hand side of Eq6), an additional constant
Z h(p)=0], which does not affect to the momentum den- p1(P1)=Co91(p1),
sities, is added. Inversely, threparticle momentum density

in the semi-inclusive events is given from the GF as Pn(P1se ) =G1(PD)Pr-1(P2s- - 1P

( g, O Zalh(P)] N2
Pn(P1s---:Pn 1 néh(pl) R 5h(pn) h(p)=0' +i=21 2 gi+1(p1,pj11---1pji)
From the sum rule between semi-inclusive and inclusive Xpn-i-1(Pj;, oe-Pj )

cross section$ll], the GFZ[h(p)] for inclusive events is 13
connected to that for semi-inclusive events: +CoOn(P1,---.Pn)- (13
d%p The second summation on the right hand side of (E8)
Z[h(p)]Zan[h(p)+l]=<exl{J’ |f(p)|2h(p)—}> ) indicates that all possible combinations df; {...,j;) and
Ell. (Jis1s---»Jn_1) are taken from (2,3,.,n). Equation (13

(8)  shows that ther-particle momentum densitg,(p;,....Pn)
o ) o (n=1,2,..) can beevaluated if the cumulard,(p4,---.p;i)
The n-particle inclusive momentum density is given by (i=1,2,..,n) is obtained.
The semi-inclusive one-particle and two-particle cumu-
lants are given from Eq12), respectively, as

) 5Z[h(p)]
Pin(Pur- P =Er e Bn g 5 o)

h(p)=0 91(p1) ={f(P1))a=r(P1,P1) +C(P1,P1),

The explicit form of the GF, E(8), is shown in Ref[3],
and the higher order BEC functions in inclusive events are 92(P1.P2)=(f(P1)f(p2))a— (f(P1))a(f(P2))a
obtained from it. In the following section, we would like to

show that we can obtain higher order momentum densities in =|r(ps1,p2)|?+2Rdr(py,p2)c(P2,P1)],
semi-inclusive events by analogy with a derivation in inclu-
sive events. where r(p4,p,) is a correlation caused by the chaotic

sources and(p;,p,) is a correlation by the coherent source.

Il. GENERATING FUNCTIONAL AND CUMULANT Those are given by

In the following, we slightly change the definition of the M .
GF from Eq.(7) to r(p,P2)= 2, Nidi(PD) ] (P2,
d°p _ *
Zalh(p)=cof e [ 10D L) . @ Clps P2 = TPy T (P 14)

As the GF, Eq(9), in semi-inclusive events is the same
where the exponential damping factor in E@) is replaced with the GF, Eq.(8), in inclusive events except for the nor-
by a normalization constait. Then, then-particle momen- malization factorc,, the cumulants of semi-inclusive events
tum density in the QO approach is given by are also calculated from the same diagrammatic presentation
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rp,p) ® > . I1l. BASIC FORMULAS AT FIXED MULTIPLICITY

(a) BB 9
o) * _ N In order to calculate momentum densities at fixed multi-
CRB) 9 plicity, the k-particle momentum density arkth order cu-

mulant atn-particle eventsK<n) are defined by the follow-
ing equations, respectively:

(k)(pl="'vpk) n k J' Jpn pli"'7pk pk+l7"'vpn)

d Pk+1 dspn
Ek+1 By

1
9Py, P k)=mf---f On(P1-- PicsPics1:--Pn)

ngpm d®p,

. (15
(d) k < J k < ] k - ] Ek+1 En
] A+ Y A + ¥ i The GF for multiplicity distributionP(n) is given from Eq.
(9) if the functionh(p) is independent of momentum

T i e i T i F{ 2d3p
Zi(h)=cql ex J f —h|) . 16
K L ol ) o< fp)I 2 > (16)

+ v A+ Y A The multiplicity distribution is given from Eq(16):

- > 1 9"Zs(h 1
T i T i P(n)=—+ S—m() =—p{P. (17)

Jh" heo ¢

g4(p1’ 2’pa B, )

FIG. 1. Diagrammatic representation for cumulants in semi-1h€ normalization of thek-particle momentum density at
inclusive events(a) Contribution from the chaotic field,(p,,p,),  N-particle events is given by
is shown by the solid line with arrow orienting from point 1 to 2. 3 D d3p nl
That of the coherent field;(p,,p,), is shown by dotted line with f f (k) (P1,- . PK) 1. k_ i P(n).
arrow from 1 to 2.(b) Diagram forg,(p;,p»). (c) Diagram for Ex (n—k)!

ds(p1.pP2.p3). All permutations of(2,3) should be taken fori(j). . . . .
(d) Diagram forg,(py,....pa). Those of(2,3,4 should be taken for T1hen the normalizedk-particle momentum density in
@i,i k). n-particle events is defined as

(k) (n k) E‘lk)(pll" '!pk)
as those of inclusive evenf8]. A diagrammatic representa- (P1se- P = i P(n)
tion for them up to fourth order is shown in Fig. 1.

The nth order cumulant is made up of connected terms of In general, the inclusivé&-particle momentum density is
the correlations; of chaotic fields and those; of the co-  given from the semi-inclusive momentum densities as
herent field. Ifn= 3, thenth order cumulang,(p1,....p,) iS
simply expressed by using ttregon. Thenth order cumu- pPp1,...p0=> p®(P1...PW),
lant consists of two types of terms: one is made only of the n=
correlations of the chaotic fields, and the other contains the
correlations both of the chaotic fields and of the coherenfynich satisfies
field. One of the terms belonging to the former type is given
BY 12l 23+ T (n—1)nlna- It can be expressed by the circular d®p;  dpy n!
permutation (12--n) started from 1. Other terms can be Pin’(P1. Pk B &c(n—k)!
made from (12--n) by any permutation. Therefore, there
are (h—1)! different terms in the former type. If any one of It should be noted that if thith order inclusive momentum
the correlationsr;; of the chaotic fields, belonging to the density is integrated over all of the momenta, it becomes the
former type, is replaced by the correlatiof of the coherent  kth order factorial moment.
field, terms of the latter type are made. Therefore, there are From Egs.(13), (15), and(17), the multiplicity distribu-

n! different terms in the latter type. It should be noted thattion and particle densities in semi-inclusive events up to third
half of the terms in thenth order cumulant are complex order can be expressed by the following recurrence equa-
conjugates to the other half. tions:

(18

P(n).
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n—-2

P(n)=— E jg{¥P(n (19) <3>(p1,p2,p3>—2 9P (p)p'?,(p2,p3)

n—1
+E {92(p1,p2) P2, (Pa)

PP (p1)= E gP(p)P(n-}), (20
+9'2)(p1ap3)Pn—j(P2)}
n—1
(2)(p1,p2)—2 9P (Pt (p2) +2 9(3)(p1,p2,p3)P(n—j), (22)

n
+ 2 gfz)(pl,pz)P(n—j ), (21) v_vh_er_eP(O)=co. _On the othe_r hand, cumulants at fixed mul-
=2 tiplicity are obtained from Fig. 1 as

0P =AP+AP,

n-2
ggO)— AR+ 2AO +2 AD ], n=23,., (23

9{(p1)=r(p1,p1)+c(p1,pa),
n—-2
gﬁl)(p1)=Rn(pl,p1)+28n_1(p1,p1)+j21 Tin-j-1(P1,pP1), Nn=23,.., (24
n-1 n-2
gg2)(plvp2):jzl Rj(pl:pz)Rnfj(pz=p1)+20(p1,p2)Rn71(p2:p1)"‘2;1 1Si(p1,P2)Rn—j-1(P2,P1)

n-3n-—j-2
+Rn—j—l(plip2)sj(p21pl)}+;1 21 {T1.1(P1,P2)Rn—j-1-1(P2,P1) + R j—1-1(P1,P2) T} (P2, P1)},

(25
n-2n-j-1
9(p1.p2, ps)—E 2, {Ri(PLP2IRI(P2,P2)Ry--1(P3,P1) + Ri(P1,Pa)RI(P3,P) Ry -1(P2,P1)}

n-2

+2j21 {e(p1,P2)Rj(P2,P3)Rn—j-1(P3.,P1) +¢(P1,P3)Rj(P3,P2) Ra—j-1(P2.P1)
n-3 n-j—-2

+C(pzvps)Rn—j—1(p3-p1)Rj(p1:p2)}+J_Zl ;1 1Si(pP1,P2)Ri(P2,P3)Rn—j—i1-1(P3,P1)
+S;(P1,P3)RI(P3:P2)Rr—j—1-1(P2,P1) + Rj(P1,P2) Si(P2,P3)Rn—j—i1-1(P3,P1)
+Rj(P1,P3)S(P3:P2)Ra—j—1-1(P2,P1) + Rj(P1,P2)Rn—j—1-1(P2,P3) S(P3,P1)
+Rj(P1,P3)Ry—j-1-1(P3,P2)S(P2,P1)}

n-4n-j-3n-j—1-2
+J_21 241 mE:1 {T5.1(P1,P2) Rm(P2,P3)Ra—j—1-m-1(P3.P1)
+T.1(P1,P3)Rm(P3,P2)Rn—j -1 -m-1(P2,P1) T Rm(P1,P2) T} 1(P2,P3)Rn—j -1 - m-1(P3,P1)
+ Rn(P1:P3) Tj,1(P3:P2)Rn—j -1 —m-1(P2,P1) + Rm(P1,P2)Rn—j -1 —m-1(P2,P3) Tj 1(P3,P1)
+Rn(P1:P3)Rn—j-1-m-1(P3.P2) T}, 1(P2,P1)}, (26)
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where

Ri(P1,P2)=r(p1,P2),

d3k
Rn(plva):fr(pluk)Rn—l(kapz)T: n=23,..,

So(P1,P2)=c(P1,P2),

d3k
S\(P1p2)= | P RRAK P =12,

a3k, d,
Tj,l(plap2):f J Rj(pl-kl)C(klikZ)Rl(kLpZ)w__,
1 W2
(27)
d3k
AP = f Rn(k,k) —,
d3k
ASFEJ Sy (k,k) —,

PHYSICAL REVIEW C 60 034903

M ok
Aj,| = TJ’I(k'k)T (28)

In the following, variables are changed from( ,p;i7) to
(y1,p17), With rapidity y,=tanh %(py /E;). Both correla-
tions r(p1,p2) and c(py,p,) are assumed to be real and
parametrized as

r(y1,P17:Y2,P21)=PVp(Y1,P17)p(Y2,Por)  (AY,ApPs7),

C(Y1,P11:Y2,P21) =(1— p)\/P(yl P17) P (Y2,P21),
I 2 2
p(Y1,P11)=(No) ;EGXF{_ ayi—Bpirl

[(Ay,Apr)=exd — y.(Ay)?— yr(Apr)?], (29

wherep=r(p;,p;i)/p(p;) is called the chaoticity parameter,
Ay=y,—y,, and Apr=por—pi7.- Functions defined by
Egs.(27), (28), and(29) are expressed as

Ri(Y1,P17.Y2,Par) = Njexf — Aj(yi+Yy3)+2Cy1y,]exi — U (pir+ p3r) + 2W;pyr- parl,

(1-p)(noya*?p 4 a, (a ay,
xR 5y

S' ] 1 ’ =
i(Y1,P17,Y2,P21) W(Uj+5/2)

(1-p)(noym*?a'?p

Tii(Y1,P11.Y2,P21) =

ayL
Ai+a/2

>+

a
Xexp —

o
yf—(§+

where

o
A1:§+ Y, Ci=w,

2
Y 7.C;

A=A ————, =
T OA A LA A

B
Ui=5+yr, Wi=or,

2
YT Wi

BT T W = ]
U;+U; T1U 4+ Uy

Uj+1=U;

al/ZB
Ni=p{nNg)——==,
1 p< 0> 71_3/2

ayL

NN,
V(A + al2)(Aj+ al2)(U;+ BI2)(U;+ B2)

B B Byr
Tt )2 =2 (E, F7T )2
2 " Atan)? eXp[ 2 Pir (2+Aj+3/2 Par .
B Byt B Byt
2 _ | = 2 _ | = _ Pl K2
% exr{ 2 " AR/ (2+Aj+/3/2 Par .
(30)
[
n 1/2
p(no)a B (31)

N'+1: N
A AU +UY)

IV. ANALYSES OF EXPERIMENTAL DATA

Our formulas are applied to analyses of negatively
charged particles, or like-sign particles. Recently, prelimi-
nary data of identical two-particle correlations in semi-

inclusive events irpp collisions at/s=900 GeV within the
pseudorapidity interval from-3.0 to 3.0 have been reported
by the UA1 Collaboratiof8]. As can be seen from EQ1),

the multiplicity distribution and one-particle densities are in-
cluded in the formula of the two-particle density; at least the
multiplicity distribution of the same data sample is required
to analyze the two-particle correlation. The multiplicity dis-
tribution aty/s=900 GeV is also reported by the UA1 group
[12]. However, the data are taken within the pseudorapidity
interval from—2.5 to 2.5. In the present analysis, those data
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T T 0.6
10_1 L | - T T T :
E o8, e UA1(900 GeV) S - o n=5 ]
T s Saq o WD ] Py C ]
< . ey ] S _ 05 e n=10 -
a k 959 p=0.8 R at [ | o o n=20 i
102 | 989. 71394 . r es, © _ ]
£ c>.s E 0.4 N ..I:l p—O. 8 7
" ] [ ooo, eo 7=1.394
L ) ) N o_®
;i L C‘oE 1
10° & L 4 0.3 og 7
C ioO E o B
5 % 3 Oa ]
} cco 1 0.2 r go ]
[ IR o Yeo 1
10 ° . C Deo ]
t : i aec, ]
] 0.1 Hoe% -
4 - D..Oo -
4 0.94%0 k
Uu‘gogoo 1
10_6? = L \ il I ..|...|.?‘?‘§ﬁ..'
: ] 0
[ ] -0.5 0 0.5 1 1.5 2 2.5 3
T T N N T B L IR | L y
0 10 20 30 40 0 . . o i
n FIG. 3. Normalized one-particle rapidity distributions at fixed

_ multiplicity calculated withp=0.8, (nq)=2.584, andy, =1.394.
FIG. 2. Multiplicity distribution observed ipp collisions[14]
is analyzed by our formula. Parameters are determined by the min

mum chi-squared methogi=0.8, (ng) = 2.584, andy, = 1.394. Eor the sake of comparison, we also fit the data by the nega-

tive binomial distribution, which results iny2,/NDF
are used to adjust the parameters included in our formula= 465-0/33. . , . o
The normalized one-particle rapidity distribution at

tion. ; ; .
The parameter is determined from the parametrization "Particle events is defined by

of one-particle rapidity distribution of Landau’s hydrody-
namical mode[13], and g is taken from the inclusive trans- _ _
verse momentum distribution. In the present analysis, we pﬁl)(y)=f pM(y,pr)d?py, (33)
neglect the correlation in transverse momentum space; in
other words,y+ is taken to be zero, and the calculated value
is compared with the data after being integrated over thend calculated results for=5, 10, and 20 are shown in Fig.
transverse momentum. Therefore, the parametrizatio of 3. The peak height increases and the width of the distribution
does not affect the calculated results. Those values are tak&@comes narrower, as the multiplicityincreases.
as In Fig. 4, the normalized two-particle rapidity distribu-
tions given by
a=0.25, B=5.556, y;=0.

The multiplicity distribution is normalized to satisfy 0.5 P
3 =
> P(n)=1, (32 g 0af o n=20
n=1 £ [ 0o ]

Q I 'oEn p=0.8 b

r Oo a - 7

wheren .= 42 is the maximum multiplicity of the observed 03 [ °:-‘:D %=1.394 4
negatively charged patrticles. - ° a0 E
Other parameters are adjusted to fit the multiplicity distri- i °:3n ]
bution[12] from n=1 to n=235 in the following way. The o2 [ 0®3 b
chaoticity parametep is changed fronp=0 to p=1.0 by Tt °°3‘2 -
the step 0.1, and other parametérg) and y, are deter- i °Egu ]
mined by the minimum chi-squared method. The best fit is o1 b ﬂgg b
given by §5§§‘.’go ]
0p® J

p=0.8, (ng)=2.584, v =1.394, N T T TP T T

with y2,/NDF=372.4/32. As can be seen from E§9), if s 0 05 1152 Ay 28 3

we keep the relations that/ vy, =const and3/ yr=const, we
get the same minimum chi-squared value. The calculated FIG. 4. Normalized two-particle rapidity distributions at fixed
multiplicity distribution is compared with the data in Fig. 2. multiplicity calculated withp=0.8, {ny)=2.584, andy, =1.394.
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1.5 L B e B B L IO 2.0 [ L L
= 4L o n= ] - L e UAI(G=0.1)
oA %, e n=10 Y 1s8r °  Ay=0 4
> L < o n=20 1 > o Ay=1.5 ]
3 3¢ o ] g [ y=1. ]
T S p=0.8 1 ~ 1.6 -
= - *e © = ] e i } ]
o 120 .. =1.904 - _ ]

L .O 4 14 = o E —
L bog o ] r b
1.1 B5©° 4 F ] J
F . 1 - <] 4
: “og ] 1.2 - .
r ] L o ]
1 C BD ] : :
: HE 1 1.0 [ .
0.9 n O..DDDDDDDDDDDDE — i o ]
L °o'o.,....--380 b L o ]
- Oooooooooo R 0.8 = ]
0.8 - — -e L 4
0.7i...\\....\\...\\...I.\..I\\..I\.\.i PN S A AN I S A L]

-0.5 0 0.5 1 1.5 2 2.5

[
o
(4]

10 15 20 25 30

FIG. 5. Normalized two-particle correlation functions at fixed  FIG. 6. Multiplicity dependence of normalized two-particle cor-
multiplicity calculated withp=0.8 andy, =1.394. relations. Solid circles show the data@&0.1 GeV inpp colli-
sions [8]. Open circles and open squares are calculated with
=0.8 andy,=1.394.

~(2)A :J' f f~(2)
pr(AY) P (Y1.PaT Y1 also becomes higher and its width becomes narrower, as the
2 2 multiplicity nincreases. However, the increasing rate is gen-
+AyY,par)dy;d*pird oy (34 {ler than that of the one-particle density.
The normalized two-particle correlation function
are shown ah=5, 10, and 20. The peak of the distribution C,(f’)(Ay) at n-particle events is defined as

fff;gz)(ylapn:y1+Ayyp2T)dY1d2p1Td2p2T
C@)(Ay)= -1. (39

jjfE%l)(h,plT)zgl)(yl"‘AyapzT)dyldzplezpzT

The calculated results 082 )(Ay) atn=5, 10, and 20 are =0 GeV, which is estimated from the data wi@=0.05

shown in Fig. 5. The multiplicity dependences@f (Ay) GeV, is directly analyzed by our formula. We can fairly well

at Ay=0 and 1.5 are shown in Fig. 6, where the preliminaryreproduce then dependence of the data with,,,=27, «

experimental data reported by the UA1 CollaboratiorQat =0.125, p=0.55, andy, =10.0 if the minimum values of

=0.1 GeV are also showh. our calculated results o&?)(0)+1 are renormalized to 1.
In e*e” collisions, the OPAL Collaboration published The result is shown in Fig. 7.

data on the multiplicity distribution$14] and multiplicity

dependence of two-particle Bose-Einstein correlati®jsat

91 GeV. Ho_vvgyer, qsir!g the parameters adjusted to t.he ob- V. SUMMARY AND DISCUSSION
served multiplicity distribution, which is close to a Poisson
distribution, calculated results o’.aff_)(Ay=0) are almost Analytical formulas of the multiplicity distribution and

constant and do not show tmedependence. Next, the mul- particle densities in semi-inclusive events are derived from

tiplicity dependence of the Bose-Einstein correlation®at the generating functional GF in the presence of the chaotic
and coherent fields. The formulas are applied to the analysis
of the multiplicity dependence of two-particle correlations

The data on the two-particle correlation are given by the variablé2Mong identical particles ipp_ (_:oIIisions by the UAL Col-
four-momentum transfer square@=— (p;— p,)? GeV. Q=0 laboration[8] and ine™e™ collisions by the OPAL Collabo-
corresponds tdy=0. Therefore we compare our calculated resultsration[9]. In the formula of the two-particle correlation, the
at Ay=0 with the data at the smalle§ value (Q=0.1) reported Mmultiplicity distribution and one-particle densities in semi-
by the UAL Collaboration. inclusive events are contained. Therefore, to fix the param-
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L8 T particle correlation atQ=Q.,, GeV observed in the
E e OPAL(G=0) ] experiment using the constant chaqticity parameter.
¥ 1.8 o Ay=0 . Calculated results on the normalized two-particle correla-
S C _ ] tion in semi-inclusive events show that the peak of the dis-
i C p=0. 55 i - o :
s> 1.75 | o ~ . tribution becomes lower as the multiplicity increases, even if
~ r } =100 ] the chaoticity parametqris constant. This behavior is simi-
S . Lk { - lar to the data of two-particle correlationspp collisions by
© r { °§ ] the UAL Collaboration and ie" e~ collisions by the OPAL
1.65 f § { - Collaboration.
. ° } ] In this paper, we analyze the data with the same values of
1.60 & ] chaoticity parametep and correlation lengthy, in rapidity
o space. Our present analyses indicate that the coherent com-
1.55 [ b ponent is not negligible; in other words, the values of chao-
r ] ticity parameters are smaller than 1. One possible candidate
1 50 N T for the coherent component is a contribution from the decay
o 5 10 15 20 25 products of long-lived resonancé$5]. Another possibility

n to reduce the value of chaoticity parameter is contamination
o ) . [16,3]. For example, about 20% of like-sign particles are not
F_IG. 7. ML_JItlp_IlClty d_ep(_endence of normalized two-par_tlcle cor- pions in the OPAL Collaboration dafa].

relations. Solid C|_rcles indicate the_ val+ue:ﬁt=0_ Qev, estimated When the colliding energy of incident particles increases
from the data withQ=0.05 GeV ine"e" collisions [9]. Open g iy the forthcoming RHIC experiment, thousands of iden-
circles are obtained from our calculation &y =0. tical particles can be produced in an event. Then, the produc-
tion domain of those particles can be analyzed precisely
event by event. In general, the values of parameters will

change according to the multiplicity. If the fitted values of
chaoticity parameter or correlation length change suddenly at

&ome multiplicity, it will be a possible signature that the
threshold of a new phenomenon will open at that multiplic-

eters in our formulas, at least the observed multiplicity dis
tribution is necessary.

In pp collisions, we adjusted the parameters using th
multiplicity distribution taken from a different data sample
from those of the two-particle correlation. Our calculated;
results with the constant chaoticity parameter reproduce we"y'
the gross features of the multiplicity dependence of the data,
in spite of the values o€(?)(0) being smaller than the data
at Q=0.1 GeV by about 20%. Some part of the deviation
will be attributed to the fact that the parameters are deter- M.B. was partially supported by a Japanese Grant-in-Aid
mined by fitting the multiplicity distribution within a differ- for Scientific Research from the Ministry of Education, Sci-
ent pseudorapidity interval. ence and CulturéNo. 09440108 and (No. 08304024 N.S.

In ee” collisions, we analyze the data of the two- thanks A. Bartl, B. Buschbeck, and H. Eggers for valuable
particle correlation without fitting the multiplicity distribu- discussions. N.S. also thanks Matsusho Gakuen Junior Col-
tion. We can explain the multiplicity dependence of the two-lege for financial support.
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