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Multiplicity dependence of identical particle correlations in the quantum optical approach
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Identical particle correlations at fixed multiplicity are considered in the presence of chaotic and coherent
fields. The multiplicity distribution, one-particle momentum density, and two-particle correlation function are
obtained based on the diagrammatic representation for cumulants in semi-inclusive events. Our formulation is
applied to the analysis of the experimental data on the multiplicity dependence of correlation functions reported
by the UA1 and the OPAL Collaborations.@S0556-2813~99!07008-9#
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I. INTRODUCTION

In high energy hadron-hadron collisions, Bose-Einst
correlations of the identical particles are considered as on
the possible measures for the space-time domain where i
tical particles are produced. One of the theoretical
proaches to the Bose-Einstein correlations is made on
analogy of the quantum optics@1#, where two types of
sources, chaotic and coherent, are introduced. A diagr
matical method, based on the Glauber-Lachs formula@1#, has
been proposed@2# to find the higher order Bose-Einstein co
relation ~BEC! functions in the quantum optical~QO! ap-
proach. In Ref.@3#, the generating functional~GF! for mo-
mentum densities is derived in the QO approach, an
diagrammatic representation for cumulants is proposed.

Up to the present, identical particle correlations in fix
multiplicity events have been investigated in the case
purely chaotic fields. Two-particle correlations are analyz
in Ref. @4# by using Monte Carlo methods. The multiplicit
dependence of one-particle distributions is discussed in
@5#, and that of two- or three-particle correlations is cons
ered in Ref.@6#.

In Ref. @7#, an outline of our formulation on particle cor
relations at fixed multiplicity in the QO approach has be
briefly reported. General features of multiplicity distrib
tions, one-particle distributions, and two-particle correlatio
at fixed multiplicity have been also shown. In the pres
paper, identical particle correlations at fixed mutiplicity
the QO approach are considered in detail. The diagramm
representation for cumulants is used to obtain the formula
semi-inclusive events in an analogous way to that in inc
sive events@3#. Furthermore, our formulas are applied
analyses of the experimental data inpp̄ collisions by the
UA1 Collaboration@8# and ine1e2 collisions by the OPAL
Collaboration@9#.

At first, we consider the case when there are no corr
tions among produced particles in the final states. Then
ticles in the final states are given by a coherent state,

uf&5expF2
1

2E u f ~p!u2
d3p

E
1E f ~p! a†~p!

d3p

E G u0&.

~1!
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Then-particle momentum density in semi-inclusive events
defined by

rn~p1 ,...,pn!5
1

s inel
E1•••En

d3ns inel

d3p1•••d3pn

5u^0ua~p1!•••a~pn!uf&u2,

which is reduced to

rn~p1 ,...,pn!5u f ~p1!u2
•••u f ~pn!u2expF2E u f ~p!u2

d3p

E G .
~2!

In the QO approach, the functionf (p) is divided into two
parts:

f ~p!5(
i 51

M

aif i~p!1 f c~p!, ~3!

where f i(p) and f c(p) are amplitudes of thei th chaotic
source and a coherent source, andai is a random complex
number attached to thei th chaotic source. In addition,M is
the number of independent chaotic sources@3#, which is re-
garded to be infinite in the present paper. Then-particle mo-
mentum density in the QO approach@10# is defined by

rn~p1 ,...,pn!5 K u f ~p1!u2•••u f ~pn!u2

3expF2E u f ~p!u2
d3p

E G L
a

. ~4!

In Eq. ~4!, the angular bracketŝF&a denote an average ofF
over the random numberai with a Gaussian weight@1#:

^F&a5)
i 51

M S 1

pl i
E expF2

uai u2

l i
Gd2ai DF. ~5!

It should be noticed that the classical~pion! fields are
randomized in our approach. On the other hand, each m
©1999 The American Physical Society03-1
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of light is randomized in the quantum optics@1#. After the
average is taken over the random numberai in Eq. ~5!, terms
composed ofai

lai*
m in the functionF vanish if lÞm.

The generating functional for momentum densities
semi-inclusive events is defined by the following equatio

Zsm@h~p!#5 (
n51

`
1

n! E •••E rn~p1 ,...,pn!

3h~p1!...h~pn!
d3p1

E1
•••

d3pn

En
. ~6!

From Eqs.~4! and ~6!, the GF is written formally as

Zsm@h~p!#5 K expF E u f ~p!u2@h~p!21#
d3p

E G L
a

. ~7!

On the right hand side of Eq.~6!, an additional constan
Zsm@h(p)50#, which does not affect to the momentum de
sities, is added. Inversely, then-particle momentum density
in the semi-inclusive events is given from the GF as

rn~p1 ,...,pn!5E1•••En

dnZsm@h~p!#

dh~p1!•••dh~pn!
U

h(p)50

.

From the sum rule between semi-inclusive and inclus
cross sections@11#, the GFZ@h(p)# for inclusive events is
connected to that for semi-inclusive events:

Z@h~p!#5Zsm@h~p!11#5 K expF E u f ~p!u2h~p!
d3p

E G L
a

.

~8!

The n-particle inclusive momentum density is given by

r in~p1 ,...,pn!5E1•••En

dnZ@h~p!#

dh~p1!•••d~pn!
U

h(p)50

.

The explicit form of the GF, Eq.~8!, is shown in Ref.@3#,
and the higher order BEC functions in inclusive events
obtained from it. In the following section, we would like t
show that we can obtain higher order momentum densitie
semi-inclusive events by analogy with a derivation in inc
sive events.

II. GENERATING FUNCTIONAL AND CUMULANT

In the following, we slightly change the definition of th
GF from Eq.~7! to

Zsm@h~p!#5c0K expF E u f ~p!u2h~p!
d3p

E G L
a

, ~9!

where the exponential damping factor in Eq.~7! is replaced
by a normalization constantc0. Then, then-particle momen-
tum density in the QO approach is given by
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rn~p1 ,...,p2!5E1•••En

dnZ@h~p!#

dh~p1!•••d~pn!
U

h(p)50

5c0^u f ~p1!••• f ~pn!u2&a . ~10!

The GFGsm@h(p)# for cumulants is defined by the equa
tion

Gsm@h~p!#[ lnZsm@h~p!#, ~11!

and thenth order cumulant is given by

gn~p1 ,•••,pn!5E1•••En

dnGsm@h~p!#

dh~p1!•••dh~pn!
U

h(p)50

.

~12!

From Eqs.~10!, ~11!, and ~12!, we have iteration relations
for momentum densities,

r1~p1!5c0g1~p1!,

rn~p1 ,...,pn!5g1~p1!rn21~p2 ,•••,pn!

1 (
i 51

n22

( gi 11~p1 ,pj 1
,...,pj i

!

3rn2 i 21~pj i 11
,...,pj n21

!

1c0gn~p1 ,...,pn!. ~13!

The second summation on the right hand side of Eq.~13!
indicates that all possible combinations of (j 1 ,...,j i) and
( j i 11 ,...,j n21) are taken from (2,3,...,n). Equation ~13!
shows that then-particle momentum densityrn(p1 ,...,pn)
(n51,2,...) can beevaluated if the cumulantgn(p1 ,...,pi)
( i 51,2,...,n) is obtained.

The semi-inclusive one-particle and two-particle cum
lants are given from Eq.~12!, respectively, as

g1~p1!5^ f ~p1!&a5r ~p1 ,p1!1c~p1 ,p1!,

g2~p1 ,p2!5^ f ~p1! f ~p2!&a2^ f ~p1!&a^ f ~p2!&a

5ur ~p1 ,p2!u212Re@r ~p1 ,p2!c~p2 ,p1!#,

where r (p1 ,p2) is a correlation caused by the chaot
sources andc(p1 ,p2) is a correlation by the coherent sourc
Those are given by

r ~p1 ,p2!5(
i 51

M

l if i~p1!f i* ~p2!,

c~p1 ,p2!5 f c~p1! f c* ~p2!. ~14!

As the GF, Eq.~9!, in semi-inclusive events is the sam
with the GF, Eq.~8!, in inclusive events except for the no
malization factorc0, the cumulants of semi-inclusive even
are also calculated from the same diagrammatic presenta
3-2
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as those of inclusive events@3#. A diagrammatic representa
tion for them up to fourth order is shown in Fig. 1.

Thenth order cumulant is made up of connected terms
the correlationsr i j of chaotic fields and thoseci j of the co-
herent field. Ifn>3, thenth order cumulantgn(p1 ,...,pn) is
simply expressed by using then-gon. Thenth order cumu-
lant consists of two types of terms: one is made only of
correlations of the chaotic fields, and the other contains
correlations both of the chaotic fields and of the coher
field. One of the terms belonging to the former type is giv
by r 12r 23•••r (n21)nr n1. It can be expressed by the circula
permutation (12•••n) started from 1. Other terms can b
made from (12•••n) by any permutation. Therefore, ther
are (n21)! different terms in the former type. If any one o
the correlationsr i j of the chaotic fields, belonging to th
former type, is replaced by the correlationci j of the coherent
field, terms of the latter type are made. Therefore, there
n! different terms in the latter type. It should be noted th
half of the terms in thenth order cumulant are comple
conjugates to the other half.

FIG. 1. Diagrammatic representation for cumulants in sem
inclusive events.~a! Contribution from the chaotic field,r (p1 ,p2),
is shown by the solid line with arrow orienting from point 1 to 2
That of the coherent field,c(p1 ,p2), is shown by dotted line with
arrow from 1 to 2.~b! Diagram for g2(p1 ,p2). ~c! Diagram for
g3(p1 ,p2 ,p3). All permutations of~2,3! should be taken for (i , j ).
~d! Diagram forg4(p1 ,...,p4). Those of~2,3,4! should be taken for
( i , j ,k).
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III. BASIC FORMULAS AT FIXED MULTIPLICITY

In order to calculate momentum densities at fixed mu
plicity, the k-particle momentum density andkth order cu-
mulant atn-particle events (k<n) are defined by the follow-
ing equations, respectively:

rn
(k)~p1 ,...,pk!5

1

~n2k!! E ...E rn~p1 ,...,pk ,pk11 ,...,pn!

3
d3pk11

Ek11
...

d3pn

En
,

gn
(k)~p1 ,...,pk!5

1

~n2k!! E ...E gn~p1 ,...,pk ,pk11 ,...,pn!

3
d3pk11

Ek11
...

d3pn

En
. ~15!

The GF for multiplicity distributionP(n) is given from Eq.
~9! if the functionh(p) is independent of momentump:

Zsm~h!5c0K expF E u f ~p!u2
d3p

E
hG L

a

. ~16!

The multiplicity distribution is given from Eq.~16!:

P~n!5
1

n!

]nZsm~h!

]hn U
h50

5
1

n!
rn

(0) . ~17!

The normalization of thek-particle momentum density a
n-particle events is given by

E ...E rn
(k)~p1 ,•••,pk!

d3p1

E1
•••

d3pk

Ek
5

n!

~n2k!!
P~n!.

Then the normalizedk-particle momentum density in
n-particle events is defined as

r̃n
(k)~p1 ,...,pk!5

~n2k!!

n!

rn
(k)~p1 ,•••,pk!

P~n!
. ~18!

In general, the inclusivek-particle momentum density is
given from the semi-inclusive momentum densities as

r in
(k)~p1 ,...,pk!5 (

n5k
rn

(k)~p1 ,...,pk!,

which satisfies

E ...E r in
(k)~p1 ,•••,pk!

d3p1

E1
•••

d3pk

Ek
5 (

n5k

n!

~n2k!!
P~n!.

It should be noted that if thekth order inclusive momentum
density is integrated over all of the momenta, it becomes
kth order factorial moment.

From Eqs.~13!, ~15!, and ~17!, the multiplicity distribu-
tion and particle densities in semi-inclusive events up to th
order can be expressed by the following recurrence eq
tions:

i-
3-3
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P~n!5
1

n (
j 51

n

jg j
(0)P~n2 j !, ~19!

rn
(1)~p1!5(

j 51

n

gj
(1)~p1!P~n2 j !, ~20!

rn
(2)~p1 ,p2!5 (

j 51

n21

gj
(1)~p1!rn2 j

(1) ~p2!

1(
j 52

n

gj
(2)~p1 ,p2!P~n2 j !, ~21!
03490
rn
(3)~p1 ,p2 ,p3!5 (

j 51

n22

gj
(1)~p1!rn2 j

(2) ~p2 ,p3!

1 (
j 52

n21

$gj
(2)~p1 ,p2!rn2 j

(1) ~p3!

1gj
(2)~p1 ,p3!rn2 j

(1) ~p2!%

1(
j 53

n

gj
(3)~p1 ,p2 ,p3!P~n2 j !, ~22!

whereP(0)5c0. On the other hand, cumulants at fixed mu
tiplicity are obtained from Fig. 1 as
g1
(0)5D1

(R)1D0
(S) ,

gn
(0)5

1

n FDn
(R)12Dn21

(S) 1 (
j 51

n22

D j ,n2 j 21
(T) G , n52,3,..., ~23!

g1
(1)~p1!5r ~p1 ,p1!1c~p1 ,p1!,

gn
(1)~p1!5Rn~p1 ,p1!12Sn21~p1 ,p1!1 (

j 51

n22

Tj ,n2 j 21~p1 ,p1!, n52,3,..., ~24!

gn
(2)~p1 ,p2!5 (

j 51

n21

Rj~p1 ,p2!Rn2 j~p2 ,p1!12c~p1 ,p2!Rn21~p2 ,p1!12(
j 51

n22

$Sj~p1 ,p2!Rn2 j 21~p2 ,p1!

1Rn2 j 21~p1 ,p2!Sj~p2 ,p1!%1 (
j 51

n23

(
l 51

n2 j 22

$Tj ,l~p1 ,p2!Rn2 j 2 l 21~p2 ,p1!1Rn2 j 2 l 21~p1 ,p2!Tj ,l~p2 ,p1!%,

~25!

gn
(3)~p1 ,p2 ,p3!5 (

j 51

n22

(
l 51

n2 j 21

$Rj~p1 ,p2!Rl~p2 ,p3!Rn2 j 2 l~p3 ,p1!1Rj~p1 ,p3!Rl~p3 ,p2!Rn2 j 2 l~p2 ,p1!%

12(
j 51

n22

$c~p1 ,p2!Rj~p2 ,p3!Rn2 j 21~p3 ,p1!1c~p1 ,p3!Rj~p3 ,p2!Rn2 j 21~p2 ,p1!

1c~p2 ,p3!Rn2 j 21~p3 ,p1!Rj~p1 ,p2!%1 (
j 51

n23

(
l 51

n2 j 22

$Sj~p1 ,p2!Rl~p2 ,p3!Rn2 j 2 l 21~p3 ,p1!

1Sj~p1 ,p3!Rl~p3 ,p2!Rn2 j 2 l 21~p2 ,p1!1Rj~p1 ,p2!Sl~p2 ,p3!Rn2 j 2 l 21~p3 ,p1!

1Rj~p1 ,p3!Sl~p3 ,p2!Rn2 j 2 l 21~p2 ,p1!1Rj~p1 ,p2!Rn2 j 2 l 21~p2 ,p3!Sl~p3 ,p1!

1Rj~p1 ,p3!Rn2 j 2 l 21~p3 ,p2!Sl~p2 ,p1!%

1 (
j 51

n24

(
l 51

n2 j 23

(
m51

n2 j 2 l 22

$Tj ,l~p1 ,p2!Rm~p2 ,p3!Rn2 j 2 l 2m21~p3 ,p1!

1Tj ,l~p1 ,p3!Rm~p3 ,p2!Rn2 j 2 l 2m21~p2 ,p1!1Rm~p1 ,p2!Tj ,l~p2 ,p3!Rn2 j 2 l 2m21~p3 ,p1!

1Rm~p1 ,p3!Tj ,l~p3 ,p2!Rn2 j 2 l 2m21~p2 ,p1!1Rm~p1 ,p2!Rn2 j 2 l 2m21~p2 ,p3!Tj ,l~p3 ,p1!

1Rm~p1 ,p3!Rn2 j 2 l 2m21~p3 ,p2!Tj ,l~p2 ,p1!%, ~26!
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where

R1~p1 ,p2!5r ~p1 ,p2!,

Rn~p1 ,p2!5E r ~p1 ,k!Rn21~k,p2!
d3k

v
, n52,3,...,

S0~p1 ,p2!5c~p1 ,p2!,

Sn~p1 ,p2!5E c~p1 ,k!Rn~k,p2!
d3k

v
, n51,2,...,

Tj ,l~p1 ,p2!5E E Rj~p1 ,k1!c~k1 ,k2!Rl~k2 ,p2!
d3k1

v1

d3k2

v2
,

~27!

Dn
(R)5E Rn~k,k!

d3k

v
,

Dn
(S)5E Sn~k,k!

d3k

v
,

03490
D j ,l
(T)5E Tj ,l~k,k!

d3k

v
. ~28!

In the following, variables are changed from (p1L ,p1T) to
(y1 ,p1T), with rapidity y15tanh21(p1L /E1). Both correla-
tions r (p1 ,p2) and c(p1 ,p2) are assumed to be real an
parametrized as

r ~y1 ,p1T ;y2 ,p2T!5pAr~y1 ,p1T!r~y2 ,p2T!I ~Dy,Dp1T!,

c~y1 ,p1T ;y2 ,p2T!5~12p!Ar~y1 ,p1T!r~y2 ,p2T!,

r~y1 ,p1T!5^n0&Ap

a

p

b
exp@2a y1

22b p1T
2 #,

I ~Dy,DpT!5exp@2gL~Dy!22gT~DpT!2#, ~29!

wherep5r (pi ,pi)/r(pi) is called the chaoticity paramete
Dy5y22y1, and DpT5p2T2p1T . Functions defined by
Eqs.~27!, ~28!, and~29! are expressed as
Rj~y1 ,p1T ,y2 ,p2T!5Njexp@2Aj~y1
21y2

2!12Cjy1y2#exp@2U j~p1T
2 1p2T

2 !12Wjp1T•p2T#,

Sj~y1 ,p1T ,y2 ,p2T!5
~12p!^n0&a

1/2b

AAj1a/2~U j1b/2!
NjexpF2

a

2
y1

22S a

2
1

agL

Aj1a/2D y2
2GexpF2

b

2
p1T

2 2S b

2
1

bgT

Aj1b/2Dp2T
2 G ,

Ti , j~y1 ,p1T ,y2 ,p2T!5
~12p!^n0&p

3/2a1/2b

A~Ai1a/2!~Aj1a/2!~Ui1b/2!~U j1b/2!
NiNj

3expF2S a

2
1

agL

Ai1a/2D y1
22S a

2
1

agL

Aj1a/2D y2
2GexpF2S b

2
1

bgT

Ai1b/2Dp1T
2 2S b

2
1

bgT

Aj1b/2Dp2T
2 G ,

~30!
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where

A15
a

2
1gL , C15gL ,

Aj 115A12
gL

2

Aj1A1
, Cj 115

gLCj

Aj1A1
,

U15
b

2
1gT , W15gT ,

U j 115U12
gT

2

U j1U1
, Wj 115

gTWj

U j1U1
,

N15p^n0&
a1/2b

p3/2
,

Nj 115
p^n0&a

1/2b

AAj1A1~U j1U1!
Nj . ~31!

IV. ANALYSES OF EXPERIMENTAL DATA

Our formulas are applied to analyses of negativ
charged particles, or like-sign particles. Recently, prelim
nary data of identical two-particle correlations in sem
inclusive events inpp̄ collisions atAs5900 GeV within the
pseudorapidity interval from23.0 to 3.0 have been reporte
by the UA1 Collaboration@8#. As can be seen from Eq.~21!,
the multiplicity distribution and one-particle densities are
cluded in the formula of the two-particle density; at least t
multiplicity distribution of the same data sample is requir
to analyze the two-particle correlation. The multiplicity di
tribution atAs5900 GeV is also reported by the UA1 grou
@12#. However, the data are taken within the pseudorapid
interval from22.5 to 2.5. In the present analysis, those d
3-5
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are used to adjust the parameters included in our form
tion.

The parametera is determined from the parametrizatio
of one-particle rapidity distribution of Landau’s hydrod
namical model@13#, andb is taken from the inclusive trans
verse momentum distribution. In the present analysis,
neglect the correlation in transverse momentum space
other words,gT is taken to be zero, and the calculated va
is compared with the data after being integrated over
transverse momentum. Therefore, the parametrization ob
does not affect the calculated results. Those values are t
as

a50.25, b55.556, gT50.

The multiplicity distribution is normalized to satisfy

(
n51

nmax

P~n!51, ~32!

wherenmax542 is the maximum multiplicity of the observe
negatively charged particles.

Other parameters are adjusted to fit the multiplicity dis
bution @12# from n51 to n535 in the following way. The
chaoticity parameterp is changed fromp50 to p51.0 by
the step 0.1, and other parameters^n0& and gL are deter-
mined by the minimum chi-squared method. The best fi
given by

p50.8, ^n0&52.584, gL51.394,

with xmin
2 /NDF5372.4/32. As can be seen from Eq.~29!, if

we keep the relations thata/gL5const andb/gT5const, we
get the same minimum chi-squared value. The calcula
multiplicity distribution is compared with the data in Fig.

FIG. 2. Multiplicity distribution observed inpp̄ collisions @14#
is analyzed by our formula. Parameters are determined by the m
mum chi-squared method:p50.8, ^n0&52.584, andgL51.394.
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For the sake of comparison, we also fit the data by the ne
tive binomial distribution, which results inxmin

2 /NDF
5465.0/33.

The normalized one-particle rapidity distribution
n-particle events is defined by

r̃n
(1)~y!5E r̃n

(1)~y,pT!d2pT , ~33!

and calculated results forn55, 10, and 20 are shown in Fig
3. The peak height increases and the width of the distribu
becomes narrower, as the multiplicityn increases.

In Fig. 4, the normalized two-particle rapidity distribu
tions given by

i-

FIG. 3. Normalized one-particle rapidity distributions at fixe
multiplicity calculated withp50.8, ^n0&52.584, andgL51.394.

FIG. 4. Normalized two-particle rapidity distributions at fixe
multiplicity calculated withp50.8, ^n0&52.584, andgL51.394.
3-6
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r̃n
(2)~Dy!5E E E r̃n

(2)~y1 ,p1T ,y1

1Dy,p2T!dy1d2p1Td2p2T ~34!

are shown atn55, 10, and 20. The peak of the distributio

FIG. 5. Normalized two-particle correlation functions at fixe
multiplicity calculated withp50.8 andgL51.394.
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03490
also becomes higher and its width becomes narrower, as
multiplicity n increases. However, the increasing rate is g
tler than that of the one-particle density.

The normalized two-particle correlation functio
Cn

(22)(Dy) at n-particle events is defined as

FIG. 6. Multiplicity dependence of normalized two-particle co

relations. Solid circles show the data atQ50.1 GeV in pp̄ colli-
sions @8#. Open circles and open squares are calculated withp
50.8 andgL51.394.
Cn
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E E E r̃n
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21. ~35!
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The calculated results onCn
(22)(Dy) at n55, 10, and 20 are

shown in Fig. 5. The multiplicity dependences ofCn
(22)(Dy)

at Dy50 and 1.5 are shown in Fig. 6, where the prelimina
experimental data reported by the UA1 Collaboration atQ
50.1 GeV are also shown.1

In e1e2 collisions, the OPAL Collaboration publishe
data on the multiplicity distributions@14# and multiplicity
dependence of two-particle Bose-Einstein correlations@9# at
91 GeV. However, using the parameters adjusted to the
served multiplicity distribution, which is close to a Poiss
distribution, calculated results onCn

(22)(Dy50) are almost
constant and do not show then dependence. Next, the mu
tiplicity dependence of the Bose-Einstein correlations atQ

1The data on the two-particle correlation are given by the varia
four-momentum transfer squared,Q5A2(p12p2)2 GeV. Q50
corresponds toDy50. Therefore we compare our calculated resu
at Dy50 with the data at the smallestQ value (Q50.1) reported
by the UA1 Collaboration.
b-

50 GeV, which is estimated from the data withQ>0.05
GeV, is directly analyzed by our formula. We can fairly we
reproduce then dependence of the data withnmax527, a
50.125, p50.55, andgL510.0 if the minimum values of
our calculated results onCn

(22)(0)11 are renormalized to 1
The result is shown in Fig. 7.

V. SUMMARY AND DISCUSSION

Analytical formulas of the multiplicity distribution and
particle densities in semi-inclusive events are derived fr
the generating functional GF in the presence of the cha
and coherent fields. The formulas are applied to the anal
of the multiplicity dependence of two-particle correlatio
among identical particles inpp̄ collisions by the UA1 Col-
laboration@8# and ine1e2 collisions by the OPAL Collabo-
ration @9#. In the formula of the two-particle correlation, th
multiplicity distribution and one-particle densities in sem
inclusive events are contained. Therefore, to fix the para

le
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eters in our formulas, at least the observed multiplicity d
tribution is necessary.

In pp̄ collisions, we adjusted the parameters using
multiplicity distribution taken from a different data samp
from those of the two-particle correlation. Our calculat
results with the constant chaoticity parameter reproduce
the gross features of the multiplicity dependence of the d
in spite of the values ofCn

(2)(0) being smaller than the dat
at Q50.1 GeV by about 20%. Some part of the deviati
will be attributed to the fact that the parameters are de
mined by fitting the multiplicity distribution within a differ-
ent pseudorapidity interval.

In e1e2 collisions, we analyze the data of the tw
particle correlation without fitting the multiplicity distribu
tion. We can explain the multiplicity dependence of the tw

FIG. 7. Multiplicity dependence of normalized two-particle co
relations. Solid circles indicate the values atQ50 GeV, estimated
from the data withQ>0.05 GeV in e1e2 collisions @9#. Open
circles are obtained from our calculation atDy50.
ic

-

s.

-

03490
-

e

ll
a,

r-

-

particle correlation atQ5Qmin GeV observed in the
experiment using the constant chaoticity parameter.

Calculated results on the normalized two-particle corre
tion in semi-inclusive events show that the peak of the d
tribution becomes lower as the multiplicity increases, eve
the chaoticity parameterp is constant. This behavior is simi
lar to the data of two-particle correlations inpp̄ collisions by
the UA1 Collaboration and ine1e2 collisions by the OPAL
Collaboration.

In this paper, we analyze the data with the same value
chaoticity parameterp and correlation lengthgL in rapidity
space. Our present analyses indicate that the coherent
ponent is not negligible; in other words, the values of cha
ticity parameters are smaller than 1. One possible candi
for the coherent component is a contribution from the de
products of long-lived resonances@15#. Another possibility
to reduce the value of chaoticity parameter is contamina
@16,3#. For example, about 20% of like-sign particles are n
pions in the OPAL Collaboration data@9#.

When the colliding energy of incident particles increas
as in the forthcoming RHIC experiment, thousands of ide
tical particles can be produced in an event. Then, the prod
tion domain of those particles can be analyzed precis
event by event. In general, the values of parameters
change according to the multiplicity. If the fitted values
chaoticity parameter or correlation length change suddenl
some multiplicity, it will be a possible signature that th
threshold of a new phenomenon will open at that multipl
ity.
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