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Analyzing power formula and application to low energy nuclear reactions
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General formulas of analyzing powers in nuclear reactions are derived in a model-independent way, decom-
posing the analyzing powers by the rank of tensors in the spin space by the invariant-amplitude method. The

validity of the formulas is examined in low energy reactions, the3He(dW ,p)4He reaction at the 430-keV

resonance and1H(dW ,g)3He reactions at energies below 80 keV, for which the formulas reproduce experimental
data very well. The analyses clarify the following. The former reaction occurs mainly due to tensor interactions
with incidentS waves whileP wave corrections by spin-orbit interactions have indispensable contributions to
the analyzing powers. The data of the latter reaction are explained by the vector transition amplitudes in the
spin space. The formulas predict the angular distribution of the analyzing powerTkq (k5even) to be similar to
Pk

q(cosu) for incidentS waves whenQ values are finite.@S0556-2813~99!05908-7#

PACS number~s!: 24.70.1s, 24.10.2i, 24.30.2v, 25.10.1s
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I. INTRODUCTION

Investigations of polarization observables in nucle
reactions—for example, of analyzing powers for polariz
beams—provide substantial information on nuclear sp
dependent interactions as well as underlying reaction me
nisms. In practice, possible spin-dependent interactions
part together in a reaction and their effects are mixed up w
each other in the observables, resulting in difficulties in fin
ing of the contributions of each spin-dependent interacti
To identify the effect of a particular spin-dependent inter
tion on the observable, it will be useful to decompose re
tion amplitudes into spin-space tensors, because s
dependent interactions—for example, spin-orbit interactio
so-called tensor ones, etc.—are classified, according to
tensorial character in the spin space, as the vector,
second-rank tensor, and so on, and thus in such decom
tion each component of the amplitude is tagged by the c
responding spin-dependent interaction. When the observ
is calculated by the tagged amplitudes, one will find the
fect of the relevant spin-dependent interaction on the obs
able in an easy way. The decomposition of the amplitu
has been performed earlier@1,2# with success to clarify the
role of the individual spin-dependent interaction in the re
tion mechanism@1–9#.

To perform such kinds of analyses more efficiently, it w
be worthwhile to decompose the polarization observable
self by the tensor rank in the spin space, taking a step
ward from the amplitude decomposition. This will allow u
to extract directly the contribution of a particular spi
dependent interaction from the observable. For that purp
we will derive the formula for each component of the o
servable in such decomposition—for example, for analyz
powers. The extension to other observables is quite easy.
theory is developed by the invariant-amplitude method@1#,
where the geometrical parts of theT-matrix elements are
simply calculated due to the decomposition and the phys
0556-2813/99/60~3!/034607~12!/$15.00 60 0346
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parts are described by the invariant amplitudes which
designated by the tensor rank. More details of the method
given later. The formulas are model independent, altho
the final state is restricted to two-body ones, and thus will
widely applicable.

In the next section, we will derive the formulas of th
cross section and the analyzing powers. They are genera
are inconvenient to handle. For practical convenience,
will give their explicit forms, specializing the analyzin
power to the vector one and the tensor ones, and limiting
tensor rank to 1 and 2. The validity of the present formula
not limited by the incident energy of the reaction. Howev
the application is very simple in low energy reactions b
cause of a small number of the effective partial waves. Si
the explicit forms are different between parity-unchanged
actions and parity-changed ones, we will choose example

the application, by one for each case, i.e., the3He(dW ,p)4He
reaction at the 430-keV resonance for the former a
1H(dW ,g)3He reactions at the center-of-mass energies be
80 keV for the latter, where the photon is treated as a2

particle. The former reaction is well known to give a me
sure of the polarization of the deuteron and is employed
experiments as an analyzer@10#. This requires refined mea
surements and analyses of the analyzing powers. Also,
role of the spin-dependent interactions has not been clarifi
The latter reaction has recently gained attention becaus
astrophysical interests and one needs detailed informatio
the reaction mechanism@11#.

II. DERIVATION OF FORMULAS OF THE CROSS
SECTION AND ANALYZING POWERS

Let us consider a reactiona1A˜b1B. The analyzing
powerTkq for the polarized projectilea is given in Ref.@12#
as
©1999 The American Physical Society07-1
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Tkq5
1

NR
Tr~MtkqM

†!, ~2.1!

with

NR5Tr~MM†!, ~2.2!

whereM is theT matrix of the reaction andtkq is the spin
operator of the projectile with the rankk and thez compo-
nentq. The matrix element oftkq is given by

^sana8utkqusana&5 k̂~saknaqusana8!, ~2.3!

wheres(n) denotes the spin (z component!.
First we will introduce the decomposition of the reacti

amplitude into the spin-space tensors, by which we will co
struct the formula of analyzing power using Eq.~2.1!. Ex-
pandM into the spin-space tensorSKk , whereK(k) is the
rank (z component! of the tensor,

M5(
K

MK , ~2.4!
03460
-

with

MK5(
k

~2 !kSK2kRKk , ~2.5!

whereRKk is the tensor in coordinate space. The matrix
ement of MK describes the reaction amplitude due to t
interaction of the rankK in the spin space, which include
higher order terms of any interaction as long as they have
tensorial property of rankK. Effects ofD states of the inter-
nal motions of the related nuclei are included in the amp
tude ofK52. Using Eq.~2.4!,

Tr~MtkqM
†!5 (

KK8
Tr~MK8tkqMK

† !. ~2.6!

The matrix element ofMK is given by the invariant-
amplitude method@1#,
ion. The
or

te

e

^nbnB ;kf uMKunanA ;ki&5(
sisf

~sasAnanAusin i !~sbsBnbnBusfn f !~2 !sf2n f~sisfn i2n f uKk!

3 (
l i5K̄2K

K

@Cl i
~ k̂i ! ^ Cl f5K̄2 l i

~ k̂f !#k
KF~sisfKl i ;cosu!, ~2.7!

whereki (kf) denotes thea-A (b-B) relative momentum in the incident~outgoing! channel,u is the relative angle betweenki

and kf , and Clm is related toYlm as usual. The quantityK̄ is K for K5even andK11 for K5odd when the parity is
unchanged by the reaction,p(a)p(A)5p(b)p(B), and K̄ is K11 for K5even andK for K5odd whenp(a)p(A)
Þp(b)p(B), as shown in the Appendix of Ref.@1#. In the derivation of Eq.~2.7!, the matrix element ofSK2k is calculated
by the Wigner-Eckart theorem, where the geometrical part is given by the Clebsch-Gordan coefficients in the equat
geometrical part of the matrix element ofRKk will be represented by@Cl i

( k̂i) ^ Cl f
( k̂f)#k

K since the matrix element is a tens

constructed of ordinary-space vectors and we have only two such vectors,ki andkf , after the integration over the coordina
variables. The physical parts of both matrix elements are included in the amplitudeF(sisfKl i ;cosu), which is designated by
the relevant tensor rankK and is a function of the center-of-mass energy. We callF(sisfKl i ;cosu) the invariant amplitude
because it is invariant under rotations of the coordinate axes. The quantityl i ( l f) gives the orbital angular momentum in th
incident ~outgoing! channel when theu dependence ofF(sisfKl i ;cosu) is neglected. As will be discussed later, theu
dependence yields additional angular momenta.

After some Racah-algebraic calculations, Eq.~2.7! gives

Tr~MK8tkqMK
† !5~2 !kk̂ (

sisi8sf

ŝi ŝi8ŝaW~si8sAksa ;sasi !W~ksiK8sf ;si8K !K̂(
k

~kKqkuK8k8!(
l i

@Cl i
~ k̂i !

^ Cl f
~ k̂f !#k

K* (
l i8

@Cl
i8
~ k̂i ! ^ Cl

f8
~ k̂f !#k8

K8F* ~sisfKl i ;cosu!F~si8sfK8l i8 ;cosu!, ~2.8!

which satisfies

Tr~MKtkqMK8
†

!5~2 !k Tr~MK8tkqMK
† !* . ~2.9!

To transformCl( k̂) andCl 8( k̂) in Eq. ~2.8! into singleCL( k̂), we will use the following relations:
7-2
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(
k

~kKqkuK8k8!@Cl i
~ k̂i ! ^ Cl f

~ k̂f !#k
K* @Cl

i8
~ k̂i ! ^ Cl

f8
~ k̂f !#k8

K85~2 !K̄K̂8k̂21
†@Cl i

~ k̂i ! ^ Cl f
~ k̂f !#

K
^ @Cl

i8
~ k̂i ! ^ Cl

f8
~ k̂f !#

K8
‡q
k

~2.10!

and

†@Cl i
~ k̂i ! ^ Cl f

~ k̂f !#
K

^ @Cl
i8
~ k̂i ! ^ Cl

f8
~ k̂f !#

K8
‡q
k

5K̂K̂8(
LiL f

L̂ i L̂ fUS l i l f K

l i8 l f8 K8

Li L f k
D †@Cl i

~ k̂i ! ^ Cl
i8
~ k̂i !#

Li ^ @Cl f
~ k̂f ! ^ Cl

f8
~ k̂f !#

L f
‡q
k . ~2.11!

Defining Tkq(K,K8),

Tkq~K,K8![
22dKK8

2

1

NR
$Tr~MK8tkqMK

† !1Tr~MKtkqMK8
†

!%, ~2.12!

and using Eqs.~2.8!–~2.11!, we getTkq(K,K8) in the coordinate system,yiki3kf andziki ,

Tkq~K,K8!5~2 !k1DP
22dK8K

NR
S Re
i ImD (

sisi8sf

ŝi ŝi8ŝaW~si8sAksa ;sasi !W~ksiK8sf ;si8K !K̂2K̂82

3 (
l i5K̄2K

K

(
l i85K̄82K8

K8

(
LiL f

L̂ i L̂ f~ l i l i800uLi0!~ l f l f800uL f0!~LiL f0qukq!

3CL fq
~u,f50!US l i l f K

l i8 l f8 K8

Li L f k
D F* ~sisfKl i ;cosu!F~si8sfK8l i8 ;cosu!, ~2.13!
en

t
e

e

be

en-
, or
m-
ap-
eg-
where DP50 ~1! for the no ~yes! parity change and Re
( i Im) in the large parentheses is fork5even ~odd!. The
quantityTkq(K,K8) is invariant under the exchange betwe
K andK8 and the factor (22dK8K) avoids double counting
for K85K when employed in Eq.~2.6!. From Eqs.~2.6! and
~2.12!, the decomposition ofTkq is described as

Tkq5 (
K<K8

Tkq~K,K8!, ~2.14!

whereK and K8 are restricted byusi2sf u<K(K8)<si1sf
due to Eq.~2.7!, and Eq. ~2.13! provides the componen
Tkq(K,K8), which is the analyzing power induced by th
rank K amplitude and the rankK8 one in the spin space.

The quantityNR is decomposed in a similar way. Th
(K,K8) component is given by settingk5q50 in the nu-
merator of Eq.~2.13!,

NR~K,K8!5dK8K~2 !DP1KK̂2 (
l i5K̄2K

K

(
l i85K̄82K8

K8

(
L

3~ l i l i800uL0!~ l f l f800uL0!

3~2 ! l i1 l f8W~ l i l f l i8l f8 ;KL !CL0~u,f50!
03460
(
sisf

Re@F* ~sisfKl i ;cosu!F~sisfKl i8 ;cosu!#,

~2.15!

andNR is given by

NR5(
K

NR~K,K !. ~2.16!

The cross sections is proportional toNR and the propor-
tional factor depends on the reaction type and then will
given for each example in the following sections.

Since the present formulas are exact and model indep
dent, in numerical analyses one can treat the amplitudes
quantities composed of the amplitudes, as flexible para
eters like phase shifts in elastic scattering. In such an
proach, it is convenient to expand the amplitude by the L
endre polynomials for describing theu dependence,

F~sisfKl i ;cosu!5F0~sisfKl i !

3S 11(
l 51

g l~sisfKl i !Pl~cosu! D ,

~2.17!
7-3
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whereF0(sisfKl i) andg l(sisfKl i) are treated as adjustab
parameters. For deuteron elastic scattering by spinless
gets, it has been shown@5,7# that Eq.~2.7! is equivalent to
the usual partial-wave expansion of scattering amplitu
when Eq.~2.17! is applied. Thus, at low energies, only fe
terms of smalll are important in the expansion~2.17!. Re-
membering

Pl~cosu!5(
m

Clm* ~ k̂i !Clm~ k̂f !, ~2.18!

one will see that theu dependence ofF(sisfKl i ;cosu) yields
additional orbital angular momenta both in the incident a
outgoing channels.

Equation ~2.13! includes important information on th
analyzing powers at very low energies. At such energies,
dominant partial wave is theS wave. For theS wave, l i

5 l i85Li50 and theu dependence ofF(sisfKl i ;cosu) is
negligible. Then, we get, fork5even,

Tkq~K,K8!}Pk
q~cosu!, ~2.19!

wherePk
q(cosu) is normalized with the phase as usual. E

lier, a similar feature ofTkq was found by the approximatio
where the spin-dependent amplitude is treated in first o
@7#. However, Eq.~2.13! shows that Eq.~2.19! holds without
the limitation due to this approximation and is more gene
In comparison with experimental data, some observedT2q

exhibit this characteristic; for example, in the2H(dW ,p)3H
and 2H(dW ,n)3He reactions at Ed530 keV and the
3He(dW ,g)5Li one atEd5800 keV, the measured angular di
tribution of T2q is approximately described byP2

q(cosu)
@5,7,8#. The feature of the analyzing power by Eq.~2.19! is
expected to be observed when theQ value of the reaction is
finite and thus the effectivel f is sufficiently large to getL f

TABLE I. Q00,l i l i8
for K51 and 2 in the cases ofDP50 and

DPÞ0.

Zl i l i8
(K,K8) Q00,l i l i8

for DP50 Q00,l i l i8
for DPÞ0

Z00(K,K) dK,even dK,odd

Z01(1,1) 0 2 cosu

Z11(1,1)
1

2
sin2 u 1

Z01(2,2)
2&

)
cosu 0

Z11(2,2)
1

6
~cos2 u13!

1

2
sin2 u

Z02(2,2) 3 cos2 u21 0

Z12(2,2)
2&

)
cosu cosu sin2 u

Z22(2,2) 1
1

2
sin2 u
03460
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5k(even). In the application in the following sections, w
will discuss this feature in other reactions.

Using Eqs.~2.13! and ~2.15!, NR(K,K8), iT11(K,K8),
and T2q(K,K8) are provided in more convenient forms fo
practical use. Define

Xl i l i8
~K,K8!5 (

sisi8sf

ŝi ŝi8ŝaW~si8sA2sa ;sasi !W

3~2siK8sf ;si8K !Re$F* ~sisfKl i ;cosu!F

3~si8sfK8l i8 ;cosu!%, ~2.20!

Yl i l i8
~K,K8!5 (

sisi8sf

ŝi ŝi8ŝaW~si8sA1sa ;sasi !W

3~1siK8sf ;si8K !Im$F* ~sisfKl i ;cosu!F

3~si8sfK8l i8 ;cosu!%, ~2.21!

which satisfy, forK85K,

Xl i l i8
~K,K !5Xl

i8 l i
~K,K !, Yl i l i8

~K,K !52Yl
i8 l i

~K,K !

~2.22!

and

Zl i l i8
~K,K !5(

sisf

Re$F* ~sisfKl i ;cosu!F~sisfKl i8 ;cosu!%.

~2.23!

Using these quantities

T2q~K,K8!5
1

NR
(

l i5K̄2K

K

(
l i85K̄82K8

K8

Q2q,l i l i8

3~K,K8!Xl i l i8
~K,K8!, ~2.24!

iT11~K,K8!5
1

NR
(

l i5K̄2K

K

(
l i85K̄82K8

K8

Q11,l i l i8

3~K,K8!Yl i l i8
~K,K8!, ~2.25!

and

TABLE II. Q11,l i l i8
for K,K8<2 in the case ofDP50.

K K8 Yl i l i8
(K,K8) Q11,l i l i8

(K,K8)

1 2 Y10(1,2) A 3
2 sinu

Y11(1,2) cosu sinu
Y12(1,2) A 3

2 sinu
2 2 Y10(2,2) 2A 15

2 sinu
Y20(2,2) 3A5cosu sinu
7-4
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TABLE III. Q20,l i l i8
, Q21,l i l i8

, andQ22,l i l i8
for K,K8<2 in the case ofDP50.

K K8 Xl i l i8
(K,K8) Q20,l i l i8

(K,K8) Q21,l i l i8
(K,K8) Q22,l i l i8

(K,K8)

1 1 X11(1,1)
)

2&
sin2 u 0 3

4
sin2 u

1 2 X10(1,2) 3A5 cosu sin2 u A 15
2 (2 cos2 u21)sinu 2A 15

2 cosu sin2 u
X11(1,2) A 15

2 sin2 u A5 cosu sinu
2

A5
2

sin2 u
X12(1,2) 0 A 15

2 sinu 0

2 2 X00(2,2) 2
5

A14
~3 cos2 u21!

5)

A7
cosu sinu 2

5
2A 3

7 sin2 u

X01(2,2) 2
5

A21
cosu~3 cos2 u11!

5

A14
~2 cos2 u11!sinu 2

5

A14
cosu sin2 u

X02(2,2) 2
10

A14
~3 cos2 u21!

5)

A7
cosu sinu

5)

A7
sin2 u

X11(2,2) 2
5

6A14
~5 cos2 u13!

5

A21
cosu sinu 2

5)

4A7
sin2 u

X12(2,2) 2
20

A21
cosu

5

A14
sinu 0

X22(2,2)
2

5&
7

0 0
e,
cor-

dre-

e
ll

,
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f

ion
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s

NR~K,K !5 (
l i5K̄2K

K

(
l i85K̄82K8

K8

Q00,l i l i8
~K,K !Zl i l i8

~K,K !,

~2.26!

whereQ’s for K,K8<2 are given in Tables I–V. TheseQ’s
are different between the casesDP50 andDPÞ0 because

of the difference in the availablel i due to the differentK̄.
ThenQ’s are described forDP50 andDPÞ0, separately.

TABLE IV. Q11,l i l i8
for K,K8<2 in the case ofDPÞ0.

K K8 Yl i l i8
(K,K8) Q11,l i l i8

(K,K8)

1 1 Y01(1,1) 3 sinu

1 2 Y01(1,2)
3

&
sinu

Y02(1,2)
3

&
cosu sinu

Y11(1,2)
3

&
cosu sinu

Y12(1,2)
3

&
sinu

2 2 Y12(2,2)
A5

2
sin3 u
03460
III. APPLICATION TO THE 3He„d¢ ,p…4He REACTION
AT THE 430-keV RESONANCE

In the 3He(dW ,p)4He reaction at the 430-keV resonanc
the vector and tensor analyzing powers and some spin
relation coefficients were measured earlier@13# and the cross
section data have been reported quite recently@14#. These
experimental data have been analyzed by the Legen
polynomial fit. The analyses have claimedP-wave and
D-wave contributions to be important, in addition to th
S-wave one which is dominant. In the following, we wi
reanalyze the data by using Eqs.~2.13!–~2.17! and discuss
the origin of theP-wave effect.

In the reaction, the possiblesi is 1/2 and 3/2. However
experimental evidence—for example, phase shifts ofp-a
scattering—shows the 430-keV resonance to be the 31

state by 99%@15#. Then we will assume the contribution o
si51/2 to be negligible. First, we will consider theS wave
for the incident channel and later investigate the contribut
of the P waves. For theS wave, because ofsi53/2 andsf

51/2, the reaction takes place by tensor interactions wh
include effects of theD states of the internal motions of th
deuteron,3He and4He. Because of theS-wave restriction,
the vector analyzing power vanishes. The tensor analyz
powers from the tensor interaction are given byX00(2,2)
multiplied byQ2q00(2,2) in Table III. The Racah coefficient
in X00(2,2) are evaluated with the specifications,sa51 and

sA51/2 and the factoruF( 3
2

1
2 20;cosu)u2 is canceled by the

denominatorNR which isZ00(2,2) becauseQ0000(2,2)51 as
in Table I. Finally we get
7-5
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TABLE V. Q20,l i l i8
, Q21,l i l i8

, andQ22,l i l i8
for K,K8<2 in the case ofDPÞ0.

K K8 Xl i l i8
(K,K8) Q20,l i l i8

(K,K8) Q21,l i l i8
(K,K8) Q22,l i l i8

(K,K8)

1 1 X00(1,1) 2A 3
2 (3 cos2 u21) 3 cosu sinu 2

3
2 sin2 u

X01(1,1) 22A6 cosu 3 sinu 0
X11(1,1) 2A6 0 0

1 2 X01(1,2) A15 cosu sin2 u A 5
2 (2 cos2 u21)sinu 2A 5

2 cosu sin2 u
X02(1,2) A15 sin2 u A 5

2 cosu sinu A 5
2 sin2 u

X11(1,2) 0 A 5
2 cosu sinu 2A10 sin2 u

X12(1,2) 0 A 5
2 sinu 0

2 2 X11(2,2) 2
5

2A14
~3 cos2 u22!sin2 u

15

2A21
cosu sin3 u

15

4A21
cos2 u sin2 u

X12(2,2) 2
5

A14
cosu sin2 u

15

2A21
sin3 u

15

2A21
cosu sin2 u

X22(2,2) 2
5

2A14
sin2 u 0

15

4A21
sin2 u
r

w

i-
-

-
he
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by
the
m-

r-

in-
T2q52
1

A5
P2

q~cosu! for q50,1,2. ~3.1!

This exhibits what we predicted by Eq.~2.19! and is also
equivalent to the result in Ref.@10#. The analyzing-power
data are in Ref.@13#, where the twice analyzing powers a
given except forT20 @16#. We will follow this scale. Figure 1
shows the comparison between the calculated by Eq.~3.1!
and the experimental data, where the calculation gives c
siderably good agreement with the data ofT20, T21, and
T22, both in magnitude and angular shape. This indica
that the contribution of the transition from theS wave by the
tensor interaction is dominant. However, small but syste
atic differences are observed between the calculation and
experiment. To describe the differences more clearly, we
defineDT2q as
2

0346
e

on-

tes

m-
the
ill

DT2q5T2q1
1

A5
P2

q~cosu!, ~3.2!

which we will study by including corrections due to trans
tions from theP wave, allowing the admixture of negative
parity states—for example, a 3/22 one @17#—at 430 keV.

For theP-wave effect, we will take account of contribu
tions of the vector amplitudes in addition to those of t
tensor ones. Since the reaction occurs dominantly by the
sor interaction, the vector amplitude is considered only
the interference term with the tensor amplitudes. Then,
P-wave contributions are given by the terms of tensor a
plitudes, X01(2,2) and X11(2,2), and those of the tenso
vector interference,X10(1,2) andX11(1,2), for which Q’s
are given in Table III. Calculate the Racah coefficients
cluded and define the relative magnitudes of theP-wave am-
plitudes to theS-wave one by
S pT

qT
D5S Re

ImD FF* S 3

2

1

2
20;cosu DFS 3

2

1

2
21;cosu D G Y NR~S!, ~3.3!

pT85UFS 3

2

1

2
21;cosu D U2Y NR~S!, ~3.4!

S pV

qV
D5S Re

ImD FF* S 3

2

1

2
11;cosu DFS 3

2

1

2
20;cosu D G Y NR~S!, ~3.5!

S pV8

qV8
D 5S Re

ImD FF* S 3

2

1

2
11;cosu DFS 3

2

1

2
21;cosu D G Y NR~S!, ~3.6!

with

NR~S![UFS 3 1
20;cosu D U2

, ~3.7!

2
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wherep’s are for the cross section and the tensor analyzing powers andq’s for the vector analyzing power. We get the tens
analyzing powers as

T205
1

N̄R

H 2
1

2&
~3 cos2 u21!2

1

2)
pT cosu~3 cos2 u11!2

1

12&
pT8~5 cos2 u13!2

3

2
pV cosu sin2 u2

3

2A6
pV8 sin2 uJ ,

~3.8!

T215
1

N̄R

H)
2

cosu sinu1
1

2&
pT~2 cos2 u11!sinu1

1

2)
pT8 cosu sinu2

)

2&
pV~2 cos2 u21!sinu2

1

2
pV8 cosu sinuJ ,

~3.9!

T225
1

N̄R

H 2
)

4
sin2 u2

1

2&
pT cosu sin2 u2

)

8
pT8 sin2 u1

)

2&
pV cosu sin2 u1

1

4
pV8 sin2 uJ , ~3.10!

with

N̄R511
2&

3
pT cosu1

1

6
pT8~cos2 u13!, ~3.11!
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which are obtained by the terms ofZ00(2,2), Z01(2,2), and
Z11(2,2) with the relatedQ’s in Table I. The first term of
eachT2q in Eqs.~3.8!–~3.10! describes theS wave contribu-

tion by the tensor interaction, Eq.~3.1!, whenN̄R51. TheP-
wave corrections due to the tensor amplitudes are denote
the coefficientspT and pT8 , and those due to the tenso
vector interference terms are bypV andpV8 . Since thesep’s
are expected to have small magnitudes, we will neglect
correction by theu dependence of the amplitudes and tre
p’s as theu-independent parameters. In Figs. 2 and 3,
tensorP-wave contributions and the tensor-vector interf
ence P-wave ones, which are calculated by Eqs.~3.8!–
~3.11!, are compared with the empiricalDT2q which are ob-
tained by using the observedT2q on the right-hand side
~RHS! of Eq. ~3.2!. The order of magnitude ofp’s is as-
sumed to be 0.1 as in Table VI, considering theP-wave
effects to be small corrections compared to theS-wave con-
tribution. In Fig. 2, thepT terms withpT50.1 almost fit the
data ofDT20 but fail to reproduce those of 2DT21 at large
angles and give too small 2DT22 compared to the data exce
those at angles aroundu590°. Such unsuccessful results a
not improved by varying the magnitude and/or changing
sign ofpT . That is, thepT term cannot reproduce all ofDT2q
simultaneously. As seen in the figure, a similar considera
excludes the possibility of explaining theDT2q data by the
pT8 effects or a combination of thepT andpT8 effects. On the
other hand, as is shown in Fig. 3, thepV effects with pV
50.07 reproduce the global features ofDT2q data for q
50, 1, and 2 simultaneously although several data point
for example, two data points of 2DT21 around
u590°—deviate from the calculated curves. The contrib
tions of thepV8 terms withpV8520.05 seem to improve the
agreement with the data but the improvement is not q
sure. The agreement with the data of 2DT21 becomes worse
by including the pV8 terms aroundu5120°. From these
03460
by

e
t
e
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e
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e

analyses, it will be concluded that the data ofDT2q are ex-
plained by theP-wave effects, which are mainly produce
by the interference between theS-wave amplitude by the
tensor interactions and theP-wave one by the vector inter
actions. In the present reaction, the vector interaction will
interpreted as spin-orbit interactions. Because of the v
low incident energy, the spin-orbit interaction will be ve
weak in the incident channel. On the other hand, the la
p2a kinetic energy due to the highQ value in the outgoing
channel produces a strongp-a spin-orbit interaction, which
will be responsible for suchP-wave effects.

The cross sections is given by

s5
m im fkf

24p2ki
UFS 3

2

1

2
20;cosu D U2

N̄R , ~3.12!

wherem i (m f) is the reduced mass in the incident~outgoing!
channel andN̄R is given by Eq.~3.11!. From the analyses o
DT2q stated above, one can choosepT5pT850 and then

N̄R51. We will apply the Legendre-polynomial expansio

~2.17! to F( 3
2

1
2 20;cosu) up to l 51 and get

s5s0~11g1 cosu!2, ~3.13!

where

s05
m im fkf

24p2ki
UF0S 3

2

1

2
20D U2

. ~3.14!

In Fig. 4~a!, Eq. ~3.13! is compared to the experimental da
@14# with s0562.0 mb/sr andg150.018 ~see Table VII!.
The calculation reproduces most of the data. However, s
eral data points, particularly at forward angles, deviate fr
the theoretical curve. When this discrepancy is assume
be unimportant, the anisotropy of the cross section will
explained as the contribution of theg1 term which describes
7-7



a

n

ta
f

,

ion.
e

y of
arce
he
ive.
ha-
kes
ro-
e-

his

n sor

-

e
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the P-wave effect due to the tensor interaction. Such a sm
magnitude ofg1 will justify the neglect of theu dependence
of p’s in the analyses of the tensor analyzing powers.

The vector analyzing poweriT11 is given by the terms of
Y10(2,2), Y10(1,2), andY11(1,2) with the relatedQ’s in
Table II. Calculating the Racah coefficients, we get

iT115
bd13He

11g1 cosu
sinu1

bd13He
8

~11g1 cosu!2 cosu sinu,

~3.15!

with

bd13He5
3

2&
qT2

1

2A6
qV , bd13He

8 52
1

6
qV8 ,

~3.16!

where theu dependence of the invariant amplitudes is co

sidered only for the main amplitudeF( 3
2

1
2 20;cosu). In Fig.

4~b!, the vector analyzing powers calculated withqV
520.09 andqT50 are compared with the experimental da
@13#, choosingqV850, 0.09, and 0.14. The contribution o
finite qV8 shifts the maximum ofiT11 toward larger angles

FIG. 1. Tensor analyzing powers in the3He(dW ,p)4He reaction at
the 430-keV resonance. The solid lines represent the calculatio
the S-wave assumption,T2q5(21/A5)P2

q(cosu) with q50,1,2.
The experimental data are taken from Ref.@13#. The quantitiesT21

andT22 are given in the double scale.
03460
ll
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reproducing the feature of the observed angular distribut
Then the spin-orbit interaction will be important to fit th
data of the vector analyzing power.

IV. APPLICATION TO 1H„d¢ ,g…

3He REACTIONS
BELOW 80 keV

Since the spin parity of a photon is 12, 1H(dW ,g)3He re-
actions are typical examples of the case where the parit
the system is changed by the reaction. Because of sc
experimental data at very low energies, we will treat t
simple case where only the vector amplitudes are effect
This treatment takes account of the most important mec
nism of the reaction, since the emission of the photon ta
place essentially due to the vector interaction which is p
portional to the polarization vector of the photon. More d
tails of the interaction will be discussed at the end of t
section.

by FIG. 2. P-wave corrections due to tensor interactions to ten

analyzing powers in the3He(dW ,p)4He reaction at the 430-keV reso
nance. The solid lines are calculated by setA in Table VI and
describe the contribution of the interference terms between thS
wave andP wave. The dashed lines calculated by setB are for the
pure P-wave contributions. The data ofDT2q are obtained by
DT2q5T2q(measured)1(1/A5)P2

q(cosu). DT21 and DT22 are
given in the double scale. The measuredT2q are taken from Ref.
@13#.
7-8
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ANALYZING POWER FORMULA AND APPLICATION TO . . . PHYSICAL REVIEW C60 034607
For the vector amplitudes, the cross section is given
NR(1,1) which consists of the terms ofZ00(1,1), Z01(1,1),
andZ11(1,1) with the correspondingQ’s in Table I,

s5
m ikf

2

24p2cki
NR~1,1!, ~4.1!

where

NR~1,1!5(
sisf

$uF~sisf10;cosu!u21uF~sisf11;cosu!u2

12 cosu Re@F* ~sisf10;cosu!F~sisf11;cosu!#%.

~4.2!

Experimental data are given by a kind of average over
incident energies below 80 keV and then the quality of

FIG. 3. P-wave corrections due to interference between the v
tor amplitude and the tensor one to tensor analyzing powers in
3He(dW ,p)4He reaction at the 430-keV resonance. The dashed l
are calculated by the parameter setC in Table VI and represent the
contribution of the interference terms between theS-wave transition
due to tensor interactions and theP-wave one due to vector inter
actions. The solid lines calculated by setD include the additional
contributions from the interference between theP-wave transition
due to tensor interactions and theP-wave one due to vector inter
actions. The definition and scale ofDT2q are the same as those
Fig. 2. The data are taken from Ref.@13#.
03460
y

e
e

theoretical parameters obtained by fitting the data will n
essarily be approximate. From this viewpoint, we will co
sider theu dependence of the amplitudes only for the in
dent S waves for simplicity, and theu dependence is
assumed to be independent ofsi andsf . Taking the expan-
sion ~2.17! up to l 52,

F~sisf10;cosu!5F0~sisf10! f ~u!, ~4.3!

with

f ~u!511g1P1~cosu!1g2P2~cosu!,

-
he

s

FIG. 4. Cross section and vector analyzing power in
3He(dW ,p)4He reaction at the 430-keV resonance.~a! The cross sec-
tion s calculated by the parameters in Table VII~solid line! is
compared with the experimental data in Ref.@14#. ~b! The vector
analyzing poweriT11 calculated by the interference terms betwe
the tensor amplitude and the vector one is compared with the
perimental data in Ref.@13#, where the twice analyzing power with
the negative sign is given. The dotted, dashed, and solid lines
calculated by setsA, B, andC in Table VII, respectively.

TABLE VI. Parameters used in calculations of the3He(dW ,p)4He
reaction for tensor analyzing powers.

pT pT8 pV pV8

A 0.1 0 0 0
B 0 0.1 0 0
C 0 0 0.07 0
D 0 0 0.07 20.05
7-9
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and defining

a[(
sisf

$uF0~sisf10!u21uF0~sisf11!u2%, ~4.4!

b[(
sisf

Re@F0* ~sisf10!F0~sisf11!#, ~4.5!

and

s05
m ikf

2

24p2cki
a, ~4.6!

we get

s5s0f ~u!S f ~u!1
2b

a
cosu D . ~4.7!

The vector analyzing poweriT11 is given by Y01(1,1)
with Q11,01(1,1) in Table IV,

iT115
3

NR~1,1!
Y01~1,1!sinu. ~4.8!

Defining bd1p ,

bd1p[
3Y01~1,1!

a f~u!
, ~4.9!

which is u independent because theu dependence o
Y01(1,1) is canceled by that of the denominator, we get

iT115bd1p

1

f ~u!1
2b

a
cosu

sinu. ~4.10!

The tensor analyzing powerT20 is given by the use ofQ’s in
Table V as

T2052
1

NR~1,1! HA3

2
~3 cos2 u21!X00~1,1!

12A6 cosuX01~1,1!1A6X11~1,1!J , ~4.11!

where the term ofX00(1,1) describes theS-wave contribu-
tion, that of X01(1,1) the interference between theS wave

TABLE VII. Parameters used in calculations of th
3He(dW ,p)4He reaction for cross section and vector analyzing pow

s0 62.0 mb/sr
g1 0.018
qV 20.09

A B C
qV8 0 0.09 0.14
03460
andP wave, and the last one,A6X11(1,1), theP-wave con-
tribution. Define theu-independent parameters,a, «1 , and
«2 as

a[
3X00~1,1!

2a f~u!2 , «1[
X01~1,1!

X00~1,1!
f ~u!,

«2[
X11~1,1!

X00~1,1!
f ~u!2. ~4.12!

We get

T2052A2

3

a

11
2b

a

cosu

f ~u!

3H ~3 cos2 u21!14«1

cosu

f ~u!
1

2«2

f ~u!2J . ~4.13!

The parametersb/a, g1 , andg2 are determined by fitting the
data of the cross section, whiles0 is arbitrary because the
absolute magnitude of the cross section has not been m
sured. We get several acceptable sets of parameters f
,ub/au,0.5, among which the two typical ones,A andB,
are given in Table VIII. Using these sets, we determine ot
parameters so as to reproduce the data ofiT11 andT20, for
which large magnitudes ofb/a give worse agreements wit
the data.

The comparison of the calculations by setsA andB with
the experimental data@11,18# is shown in Fig. 5, where the
calculations reproduce the data reasonably well, although
B gives too smallT20 at u50°. In Fig. 6, we show the
theoretical prediction ofT21 and T22 by setsA and B. The
formulas of the analyzing powers are given by the terms
X00(1,1) andX01(1,1) with the relatedQ’s in Table V,

T215
2a

11
2b

a

cosu

f ~u!

H cosu sinu1«1

sinu

f ~u!J ~4.14!

and

T2252
a

11
2b

a

cosu

f ~u!

sin2 u. ~4.15!

The experimental data in a preliminary report@18# are also
given in the figure. The calculations reproduce most of
data, althoughT21 by setB is too large compared with the

r.

TABLE VIII. Parameters used in calculations of cross secti

and vector and tensor analyzing powers of1H(dW ,g)3He reactions.

s0 b/a g1 g2 a «1 «2 bd1p

A 1.00 20.10 0.10 20.40 20.13 20.13 0.15 20.10
B 1.00 0.10 20.10 20.40 20.13 20.13 0.15 20.10
7-10
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ANALYZING POWER FORMULA AND APPLICATION TO . . . PHYSICAL REVIEW C60 034607
data atu5135°. Further examinations of the theoretical p
diction require more experimental data ofT21 andT22.

Now let us examine the contribution of theS wave. Keep-
ing only the S-wave contributions, one gets, from Eq
~4.13!–~4.15!,

T2q52A16

15
aP2

q~cosu!, ~4.16!

which is equivalent to our prediction, Eq.~2.19!. In Figs. 5
and 6, Eq.~4.16! is compared with the experimental dat
where the global features of the data ofT20, T21, andT22 are
simultaneously described by the single formula~4.16!. The
anisotropy of the angular distribution of the measure cr
section is reproduced by including theP-wave contributions
in addition to theS-wave one where theu dependence of the
amplitude is considered. The significance of theS-wave and
P-wave contributions is consistent with the situation in
cent microscopic calculations@11,19#, where bothM1 and
E1 transitions are important. However, in the tensor ana
ing powers—for example,T20—the contributions of theP

FIG. 5. Cross section and vector and tensor analyzing powe
1H(dW ,g)3He reactions at energies below 80 keV. The calculatio
of s, iT11, andT20 by the vector amplitudes are compared with t
experimental data in Refs.@11,18#. The parameters are given i
Table VIII and the calculations by setA (B) are described by the
solid ~dashed! lines. The dashed line ins completely overlaps the

solid one. The dotted line shows2A16
15aP2

0(cosu).
03460
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wave throughNR are considerably canceled by the effect
the u dependence ofX00(1,1) and the contributions o
X01(1,1) andX11(1,1), resulting in a good description of th
analyzing powers by Eq.~4.16!.

The present analyses explain the1H(dW ,g)3He data suc-
cessfully by the assumption of the vector-amplitude dom
nance. Let us consider the interactions in their first ord
Both of S and D states in the internal motions of the de
teron and3He produce the vector amplitudes due to the v
tor property of the photon emission operator. However,
D states can produce the transition amplitudes ofK52 and
3. These effects should be taken into account in the calc
tion. Such calculations will be performed when refined e
perimental data become available, to avoid ambiguities
to the increase of parameters.

The present approach is of a phenomenological natur
provide information on the role of the spin-dependent int
action and the reaction mechanism in a manner indepen
of the details of the interactions and thus free from th
ambiguities. This has different features from the conve
tional one such as microscopic calculations which spec
the details of the interactions. Despite the difference in
approach,s and T20 by the present calculation are close
those by sophisticated microscopic calculations@19# and
both calculations have almost similar qualities in agreem
with the experimental data. This will mean the assumption
vector-amplitude dominance employed in the calculation
be a plausible one.

V. SUMMARY AND DISCUSSIONS

The present paper derives the general formulas of the
lyzing powers forA(aW ,b)B reactions by the decompositio

in

s

FIG. 6. Comparison of theoretical prediction ofT21 andT22 with

the experimental data@18# in 1H(dW ,g)3He reactions at energies be
low 80 keV. The calculation by the vector amplitudes are shown
the parameter setA (B) in Table VIII by the solid~dashed! lines.

The dotted lines show 2A16
15aP2

1(cosu) for T21 and

2A 16
15aP2

2(cosu) for T22.
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of the analyzing power by the tensor rank in the spin spa
using the invariant-amplitude method. From the formul
we find that the angular distribution ofTkq (k5even) is
given by Pk

q(cosu) when the incident beam is theS wave
and theQ value has a suitable magnitude. This predicti
describes the main feature of the observed analyzing pow
in low energy reactions.

The explicit forms of the vector and tensor analyzi
powers are given for the low tensor ranksK51 and 2. They
are successful in the analyses of the experimental data o
3He(dW ,p)4He reaction at the 430-keV resonance a
1H(dW ,g)3He reactions at center-of-mass energies below
keV. In the former, the dominant contribution to the cro
section and the tensor analyzing powers arises from
S-wave transition by the tensor interactions and the obser
angular distributions of tensor analyzing powers are
scribed approximately byP2

q(cosu) as was mentioned above
The deviations of the data of the tensor analyzing pow
from theS-wave prediction as well as the finite vector an
lyzing power are explained by theP-wave corrections, for
which the vector interactions in the spin space are resp
sible. This suggests important contributions of thep-a spin-
l.

.

y

s

G.
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orbit interaction in the final state. In the1H(dW ,g)3He reac-
tion, the experimental data of the cross section and the ve
and tensor analyzing powers are reproduced by the ve
amplitudes in the spin space. The observed angular distr
tions of T2q (q50,1,2) are approximately described by
simple formP2

q(cosu).
In the present analyses, the angular distributions of

analyzing powers are due to the following two sourc
Qkq,l i l i8

(K,K8), which originates from the geometrical pa

of the matrix element ofRKk , and theu dependence of the
invariant amplitude F(sisfKl i ;cosu). In particular, the
former plays essential roles in reproducing the analyzi
power data in the3He(dW ,p)4He reaction. Such effects hav
not been recognized in conventional treatments.

Finally, considering the success of the present analy
we hope more experimental data at low energies will beco
available in the future. The parameters obtained by
present theory will be useful information for calculations
models.

The authors would like to express their thanks to Prof
sor S. Ishikawa for valuable discussions.
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