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M. Tanifuji
Department of Physics, Hosei University, Tokyo 102, Japan

H. Kameyama
Chiba-Keizai College, Chiba 263, Japan
(Received 12 February 1999; published 6 August 1999

General formulas of analyzing powers in nuclear reactions are derived in a model-independent way, decom-
posing the analyzing powers by the rank of tensors in the spin space by the invariant-amplitude method. The
validity of the formulas is examined in low energy reactions, fhte(&,p)“He reaction at the 430-keV
resonance anH-l(&, v)®He reactions at energies below 80 keV, for which the formulas reproduce experimental
data very well. The analyses clarify the following. The former reaction occurs mainly due to tensor interactions
with incidentS waves whileP wave corrections by spin-orbit interactions have indispensable contributions to
the analyzing powers. The data of the latter reaction are explained by the vector transition amplitudes in the
spin space. The formulas predict the angular distribution of the analyzing Jqyék= even) to be similar to
Pl(cosé) for incidentS waves wherQ values are finitef S0556-281@9)05908-1

PACS numbdis): 24.70+s, 24.10—i, 24.30~v, 25.10+s

I. INTRODUCTION parts are described by the invariant amplitudes which are
designated by the tensor rank. More details of the method are
Investigations of polarization observables in nucleargiven later. The formulas are model independent, although
reactions—for example, of analyzing powers for polarizedthe final state is restricted to two-body ones, and thus will be
beams—provide substantial information on nuclear spinwidely applicable.
dependent interactions as well as underlying reaction mecha- |n the next section, we will derive the formulas of the
nisms. In practice, possible spin-dependent interactions takgoss section and the analyzing powers. They are general but
part together in a reaction and their effects are mixed up withyre inconvenient to handle. For practical convenience, we
each other in the observables, resulting in difficulties in find-yi give their explicit forms, specializing the analyzing
ing of the contributions of each spin-dependent interactionpov\,er to the vector one and the tensor ones, and limiting the

To identify the effect of a particular spin-dependent ir'ter""c'tensor rank to 1 and 2. The validity of the present formulas is

tion on the observable, it will be useful to decompose reacy, ot limited by the incident energy of the reaction. However,

tion ampllt_udes Intospin-space _ tensars, pepause SPNe application is very simple in low energy reactions be-
dependent interactions—for example, .s_p|n-orb|t interactions use of a small number of the effective partial waves. Since
so-called tensor ones, etc.—are classified, according to the(‘F '

tensorial character in the spin space, as the vector, th e explicit forms are different between.parity—unchanged re-
second-rank tensor, and so on, and thus in such decompoé\gt'onS and parity-changed ones, we will choose examples of

tion each component of the amplitude is tagged by the corthe application, by one for each case, i.e., the(d,p)*He
responding spin-dependent interaction. When the observableaction at the 430-keV resonance for the former and
is calculated by the tagged amplitudes, one will find the ef'H(d, y)°He reactions at the center-of-mass energies below
fect of the relevant spin-dependent interaction on the obsengp keV for the latter, where the photon is treated as a 1
able in an easy way. The decomposition of the amplitudegarticle. The former reaction is well known to give a mea-
has been performed earligt,2] with success to clarify the sure of the polarization of the deuteron and is employed in
role of the individual spin-dependent interaction in the reacexperiments as an analyzg0]. This requires refined mea-
tion mechanisnj1-9]. surements and analyses of the analyzing powers. Also, the
To perform such kinds of analyses more efficiently, it will role of the spin-dependent interactions has not been clarified.
be worthwhile to decompose the polarization observable itThe latter reaction has recently gained attention because of

self by the tensor rank in the spin space, taking a step forastrophysical interests and one needs detailed information on
ward from the amplitude decomposition. This will allow us the reaction mechanisfil1].

to extract directly the contribution of a particular spin-
dependent interaction from the observable. For that purpose,

we will dgrive the formula fqr each component of the qb- Il. DERIVATION OF FORMULAS OF THE CROSS
servable in such de_composmon—for examp_le, fo_r analyzing SECTION AND ANALYZING POWERS

powers. The extension to other observables is quite easy. The

theory is developed by the invariant-amplitude methbl Let us consider a reactioa+A—Db+B. The analyzing

where the geometrical parts of thematrix elements are powerT,, for the polarized projectila is given in Ref[12]
simply calculated due to the decomposition and the physicas
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1 . with
qu=N—RTr( M M"), (2.2

with M= 2 (—)*Sc- R (2.5
Ng=Tr(MMT), (2.2

whereM is the T matrix of the reaction and, is the spin  whereRy, is the tensor in coordinate space. The matrix el-
operator of the projectile with the rarkand thez compo- ement of My describes the reaction amplitude due to the

nentq. The matrix element of,, is given by interaction of the rank in the spin space, which includes
R higher order terms of any interaction as long as they have the
(SaVal TkqlSava) = K(Sakvaa|savy), (2.3 tensorial property of ranK. Effects ofD states of the inter-
) nal motions of the related nuclei are included in the ampli-
wheres(v) denotes the spinz(componenit tude ofK=2. Using Eq.(2.4),

First we will introduce the decomposition of the reaction
amplitude into the spin-space tensors, by which we will con-
struct the formula of analyzing power using EQ.1). Ex- s +
pandM into the spin-space tens&,, whereK(«) is the Tr(M7yM ):g, Tr(My: M) (2.6
rank (z component of the tensor,

_ The matrix element oMy is given by the invariant-
M= E M 2. K
R @24 amplitude method1],

<VbVB;kf|MK| VaVA;ki>: g (SaSAVaVA|Si Vi)(SbSBVbVB|Sfo)(_)Sf_yf(SiSfVi - Vf|KK)
i >f

K
X 2 [C(k)@Ci iy, (knIKF (sisiKl, scoso), 2.7
|i=K*K

wherek; (ki) denotes tha@-A (b-B) relative momentum in the incidefwutgoing channel,d is the relative angle betwedn

and k¢, andC,, is related toY,, as usual. The quantiti is K for K=even andk+1 for K=odd when the parity is
unchanged by the reactions(a) 7w (A) = m(b)7(B), andK is K+1 for K=even andK for K=odd when m(a)m(A)
#a(b)m(B), as shown in the Appendix of Rdfl]. In the derivation of Eq(2.7), the matrix element 0§ _, is calculated

by the Wigner-Eckart theorem, where the geometrical part is given by the Clebsch-Gordan coefficients in the equation. The

geometrical part of the matrix elementRf . will be represented byC|i(Ri)®C|f(I2f)]f since the matrix element is a tensor

constructed of ordinary-space vectors and we have only two such vegtargjk; , after the integration over the coordinate
variables. The physical parts of both matrix elements are included in the amfi{sggKI; ;cosé), which is designated by
the relevant tensor rank and is a function of the center-of-mass energy. We E&#s;Kl; ;cos6) the invariant amplitude
because it is invariant under rotations of the coordinate axes. The quiar(tity gives the orbital angular momentum in the
incident (outgoing channel when the& dependence oF(s;s{Kl;;cos#) is neglected. As will be discussed later, the
dependence yields additional angular momenta.

After some Racah-algebraic calculations, E27) gives

Tr(My migMi) = (=)' 20 85/ 8W(s{ saksasas)WIksiK sy K)R 2, (KKaw]K'x) X [C ()

’
S Si St

®C (k)]K > [c.f(lzi)@c.fr(ﬁf)]ffF*(sistli :c0sO)F(s/sK'l! ;cosb), (2.9
\/ i

which satisfies
Tr(My M) = (=)  TrH(M migME)* (2.9

To transformC,(k) andC, (k) in Eq. (2.8) into singleC,(k), we will use the following relations:
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2 (kKax|K'«)[Cy (k) & Cy, (k) TS TCy (k)@ Cpy (k) T, = (=) *R'KHIC, (k) @ Cy (k) 1B [Cy (k)@ €y (k) 1< T

(2.10
and
[[Cy (k)@ C (k)1 ®[Cy (k) ® Cyy (k) 1F T
L1y K
=RR' > LLU| 17 KOG (ke Cy (k)] elC (ko @ Cy (kMG (2.19
o L, Ly k
Defining T, 4(K,K"),
N _5KK’ 1 T T
Tiq(K,K")= > N—R{Tr(MK,quMK)+Tr(MKquMK,)}, (2.12
and using Eqs(2.8)—(2.11), we getT,4(K,K") in the coordinate systeny|lk;xk; andzlk;,
2_5 ’ Re o A A~
qu(K,K’):(_)kMP%(i Im > 5:5/8,W(s/Saks,;S,51 ) W(ksK's; s/ K)K?K 2
R sis/ s¢
K K’
x 2 2 2 L1/ 00L0)(141{00L0)(LiL Oqlka)
li=K—K I/ =K’'—K"’ Lilt
I, I K
XCq(6,¢=0)U Il 1t K" | F*(s;siKl;;cos@)F(s/siK'l/ ;cosb), (2.13
L, Ly k
|
where AP=0 (1) for the no (yes parity change and Re )
(i Im) in the large parentheses is fér=even (odd. The g Re[F* (s;s¢Kl; ;cost)F(s;s¢Kl; ;cos6)],
quantity T, 4(K,K") is invariant under the exchange between ot
K andK’ and the factor (2 8¢ «) avoids double counting (219
for K’ =K when employed in Eq2.6). From Eqgs.(2.6) and o
(2.12, the decomposition of 4 is described as andNg is given by
Ta= 2 Ti(KK), 214 Ne=2) Na(K.K). (218
K=K’

whereK andK' are restricted bys,—s;|<K(K')<s +s The cross sectiow is proportional _toNR and the propor-
due to Eq.(2.7), and Eq.(2.13 provides the component tlpnal factor depends on the reaction type gnd then will be
To(K,K"), which is the analyzing power induced by the g'VgU for each example in the following sections.
rank K amplitude and the ranK’ one in the spin space. ince the present formulas are exact and model_lndepen-
The quantityNg is decomposed in a similar way. The dent, in numerical analyses one can treat the amphtudes, or
(K,K’) component is given by setting=q=0 in the nu- quantities composeq of the amplltudes,_ as flexible param-
mérator of Eq(2.13 eters like phase shifts in elastic scattering. In such an ap-
D proach, it is convenient to expand the amplitude by the Leg-
K K’ endre polynomials for describing thedependence,
Nr(KK)=8k(—)*PHRR? X X Y

li=K-K I/ =K'-K’ L
><(|,||'OO|L0)(|f|§OO|LO) X 1+2 ’)’|(SiSfK|i)P|(C030) s
=1

X (=)W1 KL)CLo( 6, = 0)

F(s;siKl; ;cos0) =Fqy(sis:Kl;)

(2.19
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TABLE I. Qoomi’ for K=1 and 2 in the cases &fP=0 and TABLE II. Qllli'i’ for K,K’'<2 in the case oAP=0.
AP#0.
K K’ Y1 (KKY) Quay/(K,K)
Z (KK’ 1 for AP=0 4 for AP#0
NH ) Qooy, Qoo 1 > Y.o(1.2) \/gsine
Zyo(K,K) Ok, even K, odd Y1(1,2) cosfsin g
Zpy(1,1) 0 2 coy Y1A1,2) \/gsinﬁ
1
Z1y(1,1) 5Si? 0 1 2 2 Y1o(2,2) —\Esing
Y20(2,2) 3./5cosfsing
V2
Zp(2,2) ——cosé 0
V3
1 1 =k(even). In the application in the following sections, we
Z11(2,2) 6(C°§ 6+3) Esin2 6 will discuss this feature in other reactions.
ZoA(2.2) 30201 0 Using Egs.(2.13 and (2.15, Ng(K,K"), iT11(K,K"),
oA and T,4(K,K") are provided in more convenient forms for
2,42.2) 22 o oSS practical use. Define
V3
1
Z,42,2) 1 Zsir2 o X (KK")= 2 5iS/ 8, W(S/ Sp2S, S5 )W
2 s.s S¢
X (25K 's¢ ;5 K)Re[F* (s;5¢Kl; ;cosf)F
whereF(s;s¢Kl;) and y,(s;s¢Kl;) are treated as adjustable X (s!siK'l! ;cos)}, (2.20

parameters. For deuteron elastic scattering by spinless tar-
gets, it has been show,7] that Eq.(2.7) is equivalent to
the usual partial-wave expansion of scattering amplitudes Y|| (K,K")= 2 S8/ S.W(s{spl18,;8.8)W

when EQq.(2.17) is applied. Thus, at low energies, only few sis! st
terms of smalll are important in the expansid2.17). Re-
membering X (1siK's¢ ;s K)Im{F* (s;s¢Kl; ;coso)F
X (s{siK'l{ ;cosh)}, (2.21
Pi(c0s6) =2, Cfii(k) Cim(ky), (2.19

which satisfy, forK' =K,

one will see that thé dependence d¥ (s;s;Kl; ;cosé) yields X1 (KK) =X (KK, Y (K K) ==Y (K K)
additional orbital angular momenta both in the incident and H o . o (2.22
outgoing channels. '
Equation (2.13 includes important information on the
analyzing powers at very low energies. At such energies, the
dominant partial wave is th& wave. For theS wave, |,
=I{=L;=0 and the# dependence oF (sisiKl;;cos6) is 7 /(K,K)=2, Re[F*(s;siKl;;cos)F(s;siKl{ ;cos6)}.
negligible. Then, we get, fdk=even, ' ;S (2.23

’ q

Tka(K,K")=Py(cosd), 219 Using these quantities

whereP}(cosé6) is normalized with the phase as usual. Ear- K/

lier, a similar feature off, was found by the approximation , )

where the spin-dependent amplitude is treated in first order Taq(K,K)= NR| EK: K1/ _%: K’ Qzal, i

[7]. However, Eq(2.13 shows that Eq(2.19 holds without

the limitation due to this approximation and is more general. X (K, KX /(K K", (2.29

In comparison with experimental data, some obserVggd H

exhibit this characteristic; for example, in tHel(d,p)3H L X K
2 J 3 - —

and A H(d,-n) He reactions at E4=30keV and the. iT(K,K')= NG > Z Quuy

3He(d, y)°Li one atE4=800 keV, the measured angular dis- Rl

tribution of T,, is approximately described bP3(cos6)

[5,7,8. The feature of the analyzing power by E§.19 is

expected to be observed when Qevalue of the reaction is

finite and thus the effectivl is sufficiently large to get ¢ and

=K-K |/ =K'-K’

X (KK (KK, (2.29
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TABLE I“ on]ili" QzlJili,' andQ221i|i' fOI‘ K,K’$2 in the case OﬁF’:O

K K’ X0 (K,K") Qaoy,1/(K,K") Qa1 (K,K") Qo211 (K,K")
v3 3
1 1 X11(1,1) —sir? 6 0 3
11 o 45|n2 0
1 2 X10o(1,2) 35 cosdsin’ VE(2 cog 9-1)sing —Ecossir? ¢
X11(1,2) \/%sinz P \J5 cos@sin 6 B \/—gsinz )
2
X12(1.2) 0 VEsine 0
5 53
2 2 Xoo(2,2) ——(3co6-1 ~—cos6siné -22sirte
X01(2,2) > #(3 cog 6+1) > (2 cog 6+1)sin @ > gsir? 9
01\ & ———=CO0S co —_ (of0) Sin — —=CO0s¢dslI
V21 J14 J14
10 573 5v3
XoA2,2) ———(3cog6-1) — cosésin6 —
V14 V7 V7
5 5 573
X11(2,2) ———(5co 6+3) ——cosésiné ———sirf o
6\14 J21 a7
20 5
X1A2,2) ——cosé —sing 0
J21 J14
Xo(2,2) 52 0 0
7
K K’ lll. APPLICATION TO THE  3He(d,p)*He REACTION
Nr(K,K)= > > Qoo (KK)Z (K K), AT THE 430-keV RESONANCE
li=K—K I/ =K' —K' ' ' R
' (2.26) In the ®He(d,p)*He reaction at the 430-keV resonance,

whereQ'’s for K,K’'<2 are given in Tables |-V. Thes@'s
are different between the casa®=0 andAP#0 because

of the difference in the available due to the differenk.
ThenQ’s are described foAP=0 andAP+#0, separately.

TABLE IV. QMJM for K,K'<2 in the case ofAP+#0.

K K’ Y10 (KK Quyy,11 (K,KY)
1 1 You(1,1) 3 sing
3
1 2 Y01(1,2) —siné
V2
3 )
Yox1,2) —cosésiné
V2
3 )
Y11(1,2) —cosésiné
V2
3
Y15(1,2) —siné
V2
5

the vector and tensor analyzing powers and some spin cor-
relation coefficients were measured earfiE3] and the cross
section data have been reported quite recelity]. These
experimental data have been analyzed by the Legendre-
polynomial fit. The analyses have claimdé®wave and
D-wave contributions to be important, in addition to the
S-wave one which is dominant. In the following, we will
reanalyze the data by using Eq8.13—(2.17) and discuss
the origin of theP-wave effect.

In the reaction, the possibkg is 1/2 and 3/2. However,
experimental evidence—for example, phase shiftspa#
scattering—shows the 430-keV resonance to be thé 3/2
state by 9994 15]. Then we will assume the contribution of
s;=1/2 to be negligible. First, we will consider ti&wave
for the incident channel and later investigate the contribution
of the P waves. For thes wave, because of,=3/2 ands;
=1/2, the reaction takes place by tensor interactions which
include effects of th® states of the internal motions of the
deuteron,®He and“He. Because of th&wave restriction,
the vector analyzing power vanishes. The tensor analyzing
powers from the tensor interaction are given Xyy2,2)
multiplied by Q,400(2,2) in Table Ill. The Racah coefficients
in Xgo(2,2) are evaluated with the specificatiosg=1 and

sy=1/2 and the factotF (£320;cosf)|? is canceled by the

denominatoiNg which isZy(2,2) becaus€ggod2,2)=1 as
in Table I. Finally we get
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TABLE V QzOJiIi,’ QZl’Iili,' anszzJi|i' fOI’ K,K’SZ in the case Oﬁp7£0

K K’ X0 (K,K") Qa1 (K,K") Qa1 (K,K") Qo211 (K,K")
1 1 Xoo(1,1) (3 c0g6-1) 3 cosfsin @ — 3 st o
Xo1(1,1) —2./6 cosé 3sinfg 0
X11(1,1) -6 0 0
1 2 Xo1(1.2) V15 cosssir’ 0 VE(2 cog 6-1)sine — % cososir? 0
Xo2(1,2) Vi5sirf 6 \3 cosasing NEEY
X15(1,2) 0 \E cosdsing —\/10sirf 6
X12(1,2) 0 \/gsinﬂ 0
5 15 15
2 2 X11(2,2) ———(3cog 6-2)sirt 9 cos@sir 6 co g5sir? 6
& 2V1a ) 21 ol
5 15 15
X1A2,2) — ——cosdsir? ¢ ——sint g ———cosésir? 6
. J14 221 221
5 15
X2A2,2) ———sirfe 0 sin? ¢
“ 214 4y21
1 oa 1 oo
Toq=— ﬁ P3(cos#) for q=0,1,2. (3.1 ATpq=Toqt E P3(cos), (3.2

which we will study by including corrections due to transi-

This exhibits what we predicted by E.19 and is also tions from theP wave, allowing the admixture of negative-

equivalent to the result in Refl10]. The analyzing-power parity states—for example, a 3/2ne[17]—at 430 keV.

data are in Refl13], where the twice analyzing powers are ™ - 1o p_wave effect, we will take account of contribu-
given except foiT 5o [16]. We will follow this scale. Figure 1 iong of the vector amplitudes in addition to those of the
shows the comparison between the calculated by(Bd)  ensor ones. Since the reaction occurs dominantly by the ten-
and the experimental data, where the calculation gives consor interaction, the vector amplitude is considered only by
siderably good agreement with the dataTe, To1, and  the interference term with the tensor amplitudes. Then, the
T,z, both in magnitude and angular shape. This indicate$-wave contributions are given by the terms of tensor am-
that the contribution of the transition from tisewave by the  plitudes, Xq,(2,2) andX;4(2,2), and those of the tensor-
tensor interaction is dominant. However, small but systemvector interferenceX;o(1,2) andX;,(1,2), for whichQ’s

atic differences are observed between the calculation and trere given in Table Ill. Calculate the Racah coefficients in-
experiment. To describe the differences more clearly, we wilcluded and define the relative magnitudes ofhevave am-
defineAT,, as plitudes to theS-wave one by

/ Nr(S), 33
2
/ Ng(S), (3.9

Re)

(S:): Im

31 31
F* 5520;00&9 F 5521;0050

31
F(——Zl;cos@)

Pyl _(Re (30 sl El 2 2 20:cosol | / Nucs 3
v =lim 55 ,CO 23 ;CO r(S), (3.5
'\ [Re 31 31

(2Z)=(Im F*(Ezll;cose>F<§§21;cose> /NR(S), (3.6)

with
2

) (3.7

N S_F3120' SO
R(S)= 5 520;c0
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wherep’s are for the cross section and the tensor analyzing powers'arfdr the vector analyzing power. We get the tensor
analyzing powers as

Too=—1{ ———(3cog 9—1)— — 6(3 cog +1)— ——pi(5cog §+3)— — 6sir 6— —~—p!,si 6
co cos6(3 co co cosé si si ,
20 203 2V3 Pr 123 Pr : Pv \/—pv

Nr
(3.9
T 1w 9'0+1 (2 §9+1)'0+1 ' cosfsinf v3 (2 cog 6—1)sing L 6sing
=—/7—cosfsing+ — co sing+ —pi cosfsinf— — cog #—1)sinf— —p),cosédsind |,
21 NR > 2‘/EPT 2‘/§pT 21/va 2pv
(3.9
1 V3 1 V3 V3 1
T,,=—1{ — —sin? §— ——p; cosd sit §— — p’ sir? #+ ——py, cosOsir’ 6+ —p.,sit 0, 3.1
22 WRI 2‘/2F)T 8pT 2‘/ipv 4pv ] (3.10
with
_ 2V2 1
NR:1+TpTcosa+€p+(co§a+3), (3.11)

which are obtained by the terms @((2,2), Zy,(2,2), and  analyses, it will be concluded that the data/df,, are ex-
Z11(2,2) with the relatedQ’s in Table I. The first term of plained by theP-wave effects, which are mainly produced
eachT,, in Eqgs.(3.8)—(3.10 describes th& wave contribu- by the interference between tt&wave amplitude by the
tion by the tensor interaction, E€B.1), whenﬁR=1. Thep-  tensor interactions and thfe-wave one by the vector inter-

wave corrections due to the tensor amplitudes are denoted @ftions. In the present reaction, the vector interaction will be
the coefficientsp and p;, and those due to the tensor- interpreted as spin-orbit interactions. Because of the very

tor interf i do’ . Si th , low incident energy, the spin-orbit interaction will be very
vector interference terms are iy andpy . SINCe tNESY'S — \yeak in the incident channel. On the other hand, the large
are expected to have small magnitudes, we will neglect th

) ; H— a kinetic energy due to the higl value in the outgoing
correction by thed dependence of the amplitudes and treat. 2 nnel produces a stromga spin-orbit interaction, which
p’s as theé-independent parameters. In Figs. 2 and 3, th '

P ibuti d th intorf &ill be responsible for sucRP-wave effects.
tensorP-wave contributions and the tensor-vector interfer- 1 o .0ss sectiom is given by

ence P-wave ones, which are calculated by Ed8.8)—
(3.11, are compared with the empiricAlT,, which are ob- wi iy
tained by using the observel,, on the right-hand side T Sanlk
(RHS of Eq. (3.2. The order of magnitude ob’s is as- !
sumed to be 0.1 as in Table VI, considering tRevave  whereu; (u;) is the reduced mass in the incidéntitgoing

effects to be small corrections compared to $aave con-  -hannel andTR is given by Eq(3.11). From the analyses of
tribution. In Fig. 2, thept terms withpr=0.1 almost fit the AT,, stated above, one can choope= pi=0 and then

data of AT, but fail to reproduce those of XT,, at large - . . .
angles and give too smallA?T ,, compared to the data except Nr=1. We will apply the Legendre-polynomial expansion

those at angles arourg=90° . Such unsuccessful results are (2-17 to F(3320;cosf) up tol=1 and get
not improved by varying the magnitude and/or changing the

2_
Nk, (3.12

F 3120' SO
EE ;CO

sign of pr. That s, thepy term cannot reproduce all &fT o= 0o(1+ 1 c086), (3.13
simultaneously. As seen in the figure, a similar consideratioqvhere

excludes the possibility of explaining theT,, data by the

pt effects or a combination of the; andpy effects. On the i i K 31 2

other hand, as is shown in Fig. 3, tipg effects with py T0= 2amk, Fo 5520) : (3.19

=0.07 reproduce the global features Afl,, data forq
=0, 1, and 2 simultaneously although several data points—n Fig. 4(a), Eq.(3.13 is compared to the experimental data
for example, two data points of AT, around [14] with oq=62.0mb/sr andy,=0.018 (see Table VI|.
#=90°—deviate from the calculated curves. The contribu-The calculation reproduces most of the data. However, sev-
tions of thepy, terms withpy,= —0.05 seem to improve the eral data points, particularly at forward angles, deviate from
agreement with the data but the improvement is not quitehe theoretical curve. When this discrepancy is assumed to
sure. The agreement with the data &f2,; becomes worse be unimportant, the anisotropy of the cross section will be
by including thep,, terms around§=120°. From these explained as the contribution of thg term which describes
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FIG. 1. Tensor analyzing powers in thde(d, p)*He reaction at
the 430-keV resonance. The solid lines represent the calculation by g 2. p-wave corrections due to tensor interactions to tensor
; —(— q i — -
the S-wave assumptionTaq=( 1/5)Pg(cos) with 9=0.1.2. " 4halyzing powers in théHe(d, p)“He reaction at the 430-keV reso-
The expenmgntal _data are taken from Raf3]. The quantitiesTy, nance. The solid lines are calculated by gein Table VI and
andTj, are given in the double scale. describe the contribution of the interference terms betweerSthe

. . ave andP wave. The dashed lines calculated by Bedre for the
the P-wave effect due to the tensor interaction. Such a small) ;. p.wave contributions. The data QkT,, are obtained by

magnitude ofy, will justify the neglect of thef dependence AT 5q=Taq(measuredy (1\5)PY(cost). AT, and AT, are

of p's in the analyses of the tensor analyzing powers. given in the double scale. The measufeg are taken from Ref.
The vector analyzing poweT ,, is given by the terms of [13].

Y10(2,2), Y1o(1,2), andY4(1,2) with the relatedQ’s in
Table II. Calculating the Racah coefficients, we get reproducing the feature of the observed angular distribution.
Then the spin-orbit interaction will be important to fit the

: Bd+3e By e . data of the vector analyzing power
Ty 1+y1cosasm0 (1+ylcosa)2cosasm0,
(319 IV. APPLICATION TO lH(da,‘y)gHe REACTIONS
with BELOW 80 keV
3 1 1 Since the spin parity of a photon is 1 *H(d, y)3He re-

actions are typical examples of the case where the parity of

the system is changed by the reaction. Because of scarce
(3.16 experimental data at very low energies, we will treat the
simple case where only the vector amplitudes are effective.

Bd+3ne= EQT* ﬁqV1 Byisme™— 5av:

where theé dependence of the invariant amplitudes is COM"his treatment takes account of the most important mecha-

sidered only for the main amplitudg(3320;cosé). In Fig.  nism of the reaction, since the emission of the photon takes
4(b), the vector analyzing powers calculated with,  place essentially due to the vector interaction which is pro-
= —0.09 andyr=0 are compared with the experimental dataportional to the polarization vector of the photon. More de-

[13], choosinggy,=0, 0.09, and 0.14. The contribution of tails of the interaction will be discussed at the end of this

finite gy, shifts the maximum of T, toward larger angles, section.
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() FIG. 4. Cross section and vector analyzing power in the
. 3He(&,p)“He reaction at the 430-keV resonan¢®.The cross sec-
60 120 180 tion ¢ calculated by the parameters in Table \(Holid line is

0 (deg) compared with the experimental data in Rgf4]. (b) The vector

120

) . analyzing powei T, calculated by the interference terms between
FIG. 3. P-wave corrections due to interference between the VeCyg tensor amplitude and the vector one is compared with the ex-
tor a[nplltude and the tensor one to tensor analyzing powers in thBerimentaI data in Ref13], where the twice analyzing power with
*He(d, p)“He reaction at the 430-keV resonance. The dashed lineghe negative sign is given. The dotted, dashed, and solid lines are
are calculated by the parameter €ein Table VI and represent the  calculated by sets, B, andC in Table VI, respectively.

contribution of the interference terms between $hwave transition

due to tenlfor inlt_gr?ctions lan(lj tﬁ’(e;w;ve one ldlée t?] vegg_r_intellr- theoretical parameters obtained by fitting the data will nec-
ac“f'?;-tT € ?O' tu;:e; ia (f:u ate by t@t'nc ijh e the f‘ 't',(t’.na essarily be approximate. From this viewpoint, we will con-
contributions from the interierence between mavave ransition — giqer the g dependence of the amplitudes only for the inci-

due to tensor interactions and tRewave one due to vector inter-
actions. The definition and scale AfT,, are the same as those in
Fig. 2. The data are taken from R¢L3].

For the vector amplitudes, the cross section is given by
Ngr(1,1) which consists of the terms @fo(1,1), Zy,(1,1),
andZ44(1,1) with the correspondin@’s in Table I,

Mikf2

- 24’77'20 ki

with

Ngr(1,D), 4.9

(o

where

F(s;s:10;c0s) =Fq(s;s:10)f(0),

f(#)=1+vy,P,(cosh)+ y,P,(cosh),

reaction for tensor analyzing powers.

dent S waves for simplicity, and thed dependence is
assumed to be independentspfands;. Taking the expan-
sion (2.17) up tol =2,

4.3

TABLE VI. Parameters used in calculations of thée(d, p)*He

Ng(1,0)= > {|F(55:10;c088)|?+ |F(s;5111;cos0)|?
Si St

+2 cosf Re F*(s;s;10;cosd)F(s;s;11;cos0)]}.
4.2

Experimental data are given by a kind of average over thg

Pt Pt Pv Pv
A 0.1 0 0 0
B 0 0.1 0 0
C 0 0 0.07 0

0 0 0.07 —-0.05

incident energies below 80 keV and then the quality of the
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TABLE VII. Parameters used

in calculations of the
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TABLE VIIl. Parameters used in calculations of cross section

3He(a,p)"'He reaction for cross section and vector analyzing powerand vector and tensor analyzing power§H(5,y)3He reactions.

oy 62.0 mb/sr
1 0.018
Qv —0.09
A B C
ay 0 0.09 0.14
and defining
azg {IFo(si5¢10) |2+ |Fo(sisi1D)|2, (4.4)
i of
b=2, RAFF(ssl0Fo(sisi1D)], 4.5
i >f
and
2
Hiks
0'0—_2_2417 Cki a, (46)
we get
2b
o=oof(0)| f(0)+ ;COSG . (4.7

The vector analyzing poweiT 1, is given by Yqq(1,1)
with Q43 0/1,1) in Table IV,

3
Tu=g g You L Dsine. (4.9
Defining B p ,
_3Ypu(1,1
d+p= T af(h) 4.9

which is 6 independent because thé dependence of
Yo1(1,1) is canceled by that of the denominator, we get

(4.10

iTll:Bder Sin 0
f(6)+ ;coso

The tensor analyzing powdr, is given by the use o®’s in
Table V as

Too=— R(ll){\[(sco% 1)Xgo(1,1)

+26 costXgy(1,1) + @xn(l,l)] . (41D

where the term ofXyo(1,1) describes th&wave contribu-
tion, that of Xy4(1,1) the interference between tisewave

oy b/a V1 Vs o £ €5

ﬁd+p

A 100 -0.10 0.10 -0.40 —-0.13 —0.13 0.15 —0.10
B 1.00 0.10 —-0.10 —0.40 -0.13 -0.13 0.15 —-0.10

andP wave, and the last ong/6X,(1,1), theP-wave con-
tribution. Define the#-independent parameters, ¢,, and
Eo as

_MedLh XD
= Zaf0)? " T Xy O
X1,
£,= Xoo(l,l)f(a) . (4.12
We get
N
T20=~ N3 2p coss
1+;f(_0)
cosfd 2e,
X { (3 co¥ — 1)+481f(0) 07 . (413

The parameters/a, y,, andy, are determined by fitting the
data of the cross section, white, is arbitrary because the
absolute magnitude of the cross section has not been mea-
sured. We get several acceptable sets of parameters for 0
<|b/a|<0.5, among which the two typical one&,andB,
are given in Table VIII. Using these sets, we determine other
parameters so as to reproduce the datélef and T,q, for
which large magnitudes di/a give worse agreements with
the data.

The comparison of the calculations by sét&ndB with
the experimental datgl1,18 is shown in Fig. 5, where the
calculations reproduce the data reasonably well, although set
B gives too smallT,g at 6=0°. In Fig. 6, we show the
theoretical prediction off,; and T,, by setsA andB. The
formulas of the analyzing powers are given by the terms of
Xoo(1,1) andXq,(1,1) with the related)’s in Table V,

_— 2a ) siné 41
Zl_m COSHSIn0+81f(_0) ( . 4)
a ()
and
To= ° in? 4.1
22 2b cosf 0. (.19
T2 (o)

The experimental data in a preliminary repft8] are also
given in the figure. The calculations reproduce most of the
data, althoughr,, by setB is too large compared with the
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FIG. 6. Comparison of theoretical prediction®f; andT,, with

the experimental dafd 8] in 1H(a,y)3He reactions at energies be-
low 80 keV. The calculation by the vector amplitudes are shown for
the parameter sek (B) in Table VIl by the solid(dashed lines.

The dotted lines show—\/%aPé(cose) for T, and
- \/%an(cose) for Tp,.

wave throughNg are considerably canceled by the effect of
the 6 dependence o0fXyy(1,1) and the contributions of

FIG. 5. Cross section and vector and tensor analyzing powers iXy,(1,1) andX;,(1,1), resulting in a good description of the
1H(d, y)®He reactions at energies below 80 keV. The calculationsanalyzing powers by Eq4.16.

of o, 1T,,, andT,q by the vector amplitudes are compared with the
experimental data in Ref$11,18. The parameters are given in
Table VIII and the calculations by sét (B) are described by the
solid (dashedl lines. The dashed line ior completely overlaps the

solid one. The dotted line shows \/%an(cose).

data atd=135°. Further examinations of the theoretical pre-

diction require more experimental dataDf; and T,.
Now let us examine the contribution of tisavave. Keep-
ing only the S-wave contributions, one gets, from Egs.

(4.13—(4.15),
16
Toq=— \/1:5an(cose),

which is equivalent to our prediction, E€R.19. In Figs. 5
and 6, Eq.(4.16 is compared with the experimental data,
where the global features of the datalgf, T,,, andT,, are
simultaneously described by the single form@al6). The

(4.19

The present analyses explain tF'ld(&,y)3He data suc-
cessfully by the assumption of the vector-amplitude domi-
nance. Let us consider the interactions in their first order.
Both of S and D states in the internal motions of the deu-
teron and®He produce the vector amplitudes due to the vec-
tor property of the photon emission operator. However, the
D states can produce the transition amplitude& ef2 and
3. These effects should be taken into account in the calcula-
tion. Such calculations will be performed when refined ex-
perimental data become available, to avoid ambiguities due
to the increase of parameters.

The present approach is of a phenomenological nature to
provide information on the role of the spin-dependent inter-
action and the reaction mechanism in a manner independent
of the details of the interactions and thus free from their
ambiguities. This has different features from the conven-
tional one such as microscopic calculations which specify
the details of the interactions. Despite the difference in the
approacho and T,q by the present calculation are close to
those by sophisticated microscopic calculatidd®| and

anisotropy of the angular distribution of the measure cros$oth calculations have almost similar qualities in agreement

section is reproduced by including tifewave contributions

in addition to theS-wave one where thé dependence of the
amplitude is considered. The significance of S&waave and
P-wave contributions is consistent with the situation in re-
cent microscopic calculationd1,19, where bothM1 and
E1 transitions are important. However, in the tensor analyz
ing powers—for exampleT,;—the contributions of theP

with the experimental data. This will mean the assumption of
vector-amplitude dominance employed in the calculation to
be a plausible one.

V. SUMMARY AND DISCUSSIONS

The present paper derives the general formulas of the ana-
lyzing powers forA(&,b)B reactions by the decomposition
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of the analyzing power by the tensor rank in the spin spacey it interaction in the final state. In th(d, y)*He reac-
using the invariant-amplitude method. From the formulasyjgn the experimental data of the cross section and the vector
we find that the angular distribution dfiq (k=even) is  4nq tensor analyzing powers are reproduced by the vector
given by P{(cos6) when the incident beam is th& wave  gmplitudes in the spin space. The observed angular distribu-
and theQ value has a suitable magnitude. This predictiontjgns of T,q (0=0,1,2) are approximately described by a
describes the main feature of the observed analyzing POWeLmple formPJ(cos6).
in low energy reactions. _ In the present analyses, the angular distributions of the
The explicit forms of the vector and tensor analyzing analyzing powers are due to the following two sources:
powers are given for the low tensor rarik;; and 2. They Qiq1/(K,K'), which originates from the geometrical part
are successful in the analyses of the experimental data of the ' ' .
3He(5 )%He reaction at the 430-keV resonance and-Of thg matrix el_ement oRk,, and thed dependpnce of the
s ,p3 . i invariant amplitude F(s;s;Kl;;cosf). In particular, the
H(d, y)"He reactions at center-of-mass energies below 8@ormer plays essential roles in reproducing the analyzing-
keV. In the former, the dominant contribution to the cross ower data in théHe(d,p)*He reaction. Such effects have
section and the tensor analyzing powers arises from thEot been recognized in’ conventional tréatments
S-wave transition by the tensor interactions and the observe Finally, considering the success of the presént analyses,

angular dlstrlb_utlons of gensor analyzing powers are deWe hope more experimental data at low energies will become
scribed approximately biz(cos¢) as was mentioned above. gy qijable in the future. The parameters obtained by the

The deviations of the data of the tensor analyzing poweresent theory will be useful information for calculations by
from the S-wave prediction as well as the finite vector ana- j,5dels.

lyzing power are explained by the-wave corrections, for
which the vector interactions in the spin space are respon- The authors would like to express their thanks to Profes-
sible. This suggests important contributions of fher spin-  sor S. Ishikawa for valuable discussions.
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