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Ground-g band coupling in heavy deformed nuclei and SU„3… contraction limit
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We derive analytic expressions for the energies andB(E2)-transition probabilities in the states of the ground
andg bands of heavy deformed nuclei within a collective vector-boson model with SU~3! dynamical symme-
try. On this basis we examine the analytic behavior of the SU~3! energy splitting and theB(E2) interband
transition ratios in the SU~3! contraction limits of the model. The theoretical analyses outline physically
reasonable ways in which the ground-g band coupling vanishes. The experimental data on the lowest collective
states of even-even rare earth nuclei and actinides strongly support the theoretical results. They suggest that a
transition from the ground-g band coupling scheme to a scheme in which the ground band is situated in a
separate irreducible representation of SU~3! should be realized towards the midshell regions. We propose that
generally the SU~3! group contraction process should play an important role for such transitions in any
collective band coupling scheme in heavy deformed nuclei.@S0556-2813~99!01309-6#

PACS number~s!: 21.60.Fw, 21.60.Ev, 23.20.Js
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I. INTRODUCTION

An important advantage of the dynamical symmetry~DS!
approach@1–4# in nuclear theory is the possibility to de
scribe consistently various collective bands of heavy
formed nuclei@5–7#. Generally, the DS concept is based
the assumption that the physical system possesses a
mary’’ symmetry with respect to a given group, called t
DS group. The Hamiltonian of the system reduces this sy
metry to the group of invariance of the system@which for the
nuclear system coincides with the angular momentum gr
SO~3!# and thus the energy spectrum is generated@1–4#. The
Lie algebra of the DS group is then reduced to the algebr
the group of invariance and is referred to as spectrum g
erating algebra. The basic idea of DS approach in he
deformed nuclei is that their collective bands can be un
into one or several multiplets, appearing in this reduct
@5–7#. It provides a natural way to study the interaction b
tween a particular couple of bands as well as the atten
spectroscopic characteristics of nuclei.

Various classification schemes with band coupling ha
been developed on the basis of DS approach. Well kno
models, such as the interacting boson model~IBM ! @8#, the
symplectic models@9,10# and the Fermion dynamical sym
metry model @11#, provide a good overall description o
nuclear collective phenomena, covering the different regi
of vibrational, rotational, and transitional nuclei.

On the other hand, some models, based on the SU~3! dy-
namical symmetry, reproduce successfully the particu
characteristics of rotational bands in deformed nuclei. S
models are the pseudo-SU~3! model @12#, which has micro-
scopic motivations, as well as the vector-boson mo
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~VBM ! with SU~3! dynamical symmetry@13–15#, which al-
lows a relevant phenomenological treatment of the SU~3!
multiplets in nuclei.

While in the SU~3! limit of the IBM the possible irreduc-
ible representations~irreps! (l,m) are restricted by the tota
number of bosons describing the specific nucleus, in
VBM the possible SU~3! irreps (l,m) are not restricted by
the underlying theory. However, it has been shown rece
@16# that some favored regions of (l,m) multiplets in the
VBM could be outlined through the numerical analysis of t
experimental data available for the ground (g) and the
g-collective bands of even-even deformed nuclei.~The fa-
vored multiplets provide the best model descriptions.! As a
result, a systematic behavior of the SU~3! symmetry proper-
ties of rotational nuclei has been established in terms of
VBM. It suggests the presence of a transition betwee
scheme, in which theg and theg bands are coupled into on
and the same (l,m) irrep and a scheme, where these tw
bands belong to different irreps. In addition it has been s
posed that the fine systematic properties of rotational spe
could be interpreted as a manifestation of a more gen
dynamical symmetry.

As a first step in the recovering of the dynamical mech
nism causing such a transition, one should study the wa
which the SU~3! symmetry is reduced in the (l,m) plane. In
particular, it is of interest to reproduce the limits, in whic
the quantum numbersl andm go to infinity, i.e., the cases
in which the SU~3! irreps are not finite anymore. These lim
its correspond to the so called SU~3! contraction process, in
which the algebra of SU~3! goes to the algebra of the sem
direct productT5`SO(3), i.e., SU(3)̃ T5`SO(3) @T5 is
the group of five-dimensional translations generated by
components of the SU~3!-quadrupole operators@17–22#.
Generally, the contraction limit corresponds to a singular l
ear transformation of the basis of a given Lie algebra. T
transformed structure constants approach a well-defined
its and a new Lie algebra, called contracted algebra, res
@17#. The original and the contracted algebra are not isom
phic.
©1999 The American Physical Society05-1
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On the above basis it is expected that in the SU~3! con-
traction limit the space of the SU~3! irreps should undergo a
respective limiting transition. As a result the SU~3! multip-
lets should be disintegrated to sets of various indepen
bands. It is, therefore, reasonable to consider this limit a
natural way in which the band-mixing interactions vanish
is important to remark that the SU~3! contraction process is
situation in which a compact group goes to a noncomp
one. Hence, one could try to interpret the vanishingg-g
band-mixing interaction as a transition from a compact t
noncompact DS group.

In the present work we realize the above considerati
through the formalism of the VBM. Our purpose is to exa
ine the various directions in the (l,m) plane by investigating
the respective changes in the structure of the SU~3! multip-
lets in terms of model defined spectroscopic characteris
of rotational nuclei. As such, we consider here the SU~3!
energy splitting and theg-g interband transitions, which
carry important information about the link between the tw
bands. It is known that the energy splitting of the multip
determines to a great extent the systematic behavior of
SU~3! dynamical symmetry in deformed nuclei@16#.

In the VBM relatively simple analytic expressions for th
energies and the transition probabilities can be derived b
for the lowestL52 states of any (l,m) multiplet and for all
the states of any (l,2) multiplet. The analytic expressions fo
the L52 states allow one to examine the SU~3! characteris-
tics of nuclei in terms of two-dimensional surfaces in t
(l,m) plane, while in the (l,2) direction one is able to in
vestigate the behavior of the full set of states in the multip
i.e., the states withL>2. On the other hand, theL>2 states
of the irreps withm.2 can be treated numerically.

In such a way, a relevant combination of analytic a
numerical analyses could be applied in order to reveal
systematic behavior of all the states of SU~3! irreps in the
(l,m) plane including the limiting cases of SU~3! group
contraction. The collective scheme of the VBM is co
structed by using the irreps withl>m and comprises the
following two SU~3! contraction limits:~i! l˜`, with m
finite; ~ii ! l˜`, m˜`, with m<l.

Below we provide a detailed study of the most importa
spectroscopic characteristics of theg and theg band in the
above limiting cases. It will be shown that our approa
gives a reasonable interpretation of the corresponding exp
mental data and leads to rather clear conclusions abou
rearrangement of collective rotational bands in heavy
formed nuclei.

In Sec. II theg-g band coupling scheme of the VBM i
briefly presented. In Sec. III we derive analytic expressio
for the energies and theB(E2) transition probabilities for the
2g and 2g states of an arbitrary (l,m) multiplet. Using them,
we obtain the analytic behavior of the energy splitting a
the physically meaningful transition ratios in the SU~3! con-
traction limits ~i! and ~ii !. In Sec. IV we derive expression
for the splitting and the transition ratios for the full set
states (L>2) in the (l,2) multiplets and obtain their analyti
form in the first limiting case (l˜`; m52). In Sec. V all
analytic results are examined numerically. Also, there
provide a numerical study of the second limiting casel
03430
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˜`, m˜`; m<l) for the states withL>2. The results are
discussed together with an analysis of experimental data
Sec. VI the conclusions are given.

II. g-g BAND COUPLING IN THE VBM

The vector-boson model~VBM ! with SU~3! dynamical
symmetry is founded on the assumption that the low-ly
collective states of deformed even-even nuclei can be
scribed by means of two distinct kinds of vector boso
whose creation operatorsj1 andh1 areO~3! vectors and in
addition transform according to two independent SU~3! ir-
reps of the type (l,m)5(1,0) @13–15#. The vector bosons
provide a relevant construction of the SU~3! angular momen-
tum and quadrupole operators like the bosons in
Schwinger realization of SU~2! @23#. Therefore, they can be
considered as natural building blocks of a model sche
with SU~3! dynamical symmetry. Also, the vector boso
can be interpreted as quanta of elementary collective exc
tions of the nucleus@15#.

In this model an SU~3!-symmetry reducing Hamiltonian
is constructed by using three basicO~3! scalars, which be-
long to the enveloping algebra of SU~3! @13#:

V5g1L21g2L•Q•L1g3A1A. ~1!

Here g1 , g2, and g3 are free parameters,L and Q are the
angular momentum and quadrupole operators, respectiv
andA15j12h122(j1

•h1)2.
The basis states

U ~l,m!

a,L,M L ~2!

corresponding to the SU(3).O(3) group reduction, are
constructed by means of the above vector-boson opera
and are known as the basis of Bargmann-Moshinsky@24,25#.
The quantum numbera in Eq. ~2! distinguishes the various
O~3! irreps (L,M ) appearing in a given SU~3! irrep (l,m)
and labels the different bands of an SU~3! multiplet. It is an
integer number determined through the following inequa
@14,25#:

maxH 0,
1

2
~m2L !J <a<minH 1

2
~m2b!,

1

2
~l1m2L2b!J ,

~3!

where

b5H 0, l1m2L even,

1, l1m2L odd.
~4!

In the VBM the g and the lowestg band belong to one
and the same SU~3! multiplet, wherel andm are even and
l>m. These bands are labeled by two neighboring inte
values of the quantum numbera. @More precisely, the state
of theg band are labeled by the largest value ofa appearing
in Eq. ~3!, while theg band corresponds to the next small
a value.# The so defined multiplet is split with respect toa.
5-2
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The above scheme provides a good description of the
ergy levels and of theB(E2) transition ratios within and
between theg and g bands @13,16#. The other collective
bands, in particular the lowestb band, do not belong to the
same irrep. Therefore, they are not considered in the fra
work of this model.

III. THE L 52 STATES IN THE „l,µ… PLANE

A. L 52 energy splitting

Here we consider theL52 energy levels of theg and the
g band in terms of the VBM. For any (l,m) multiplet (m
>2), the 2g and 2g states are the only possible ones appe
ing at angular momentumL52. They are labeled by the
quantum numbera as follows @see inequality~3!#: a1
5m/221 for 2g anda25m/2 for 2g . Hence, for theL52
states the Hamiltonian matrix is always two-dimensional a
the corresponding eigenvalue equation has the form

detS V1,12v (2) V1,2

V2,1 V2,22v (2)D 50, ~5!

wherev (2)[vL52 are the eigenvalues and

Vj , j 8[^a j ,2uVua j 8,2&5K ~l,m!

a j ,2,2
UVU ~l,m!

a j 8,2,2L , ~6!

with j , j 851,2, are the corresponding Hamiltonian matrix
ements. We have derived these matrix elements in the f

V1,15 K S m

2
21D ,2uVuS m

2
21D ,2L 56g116g2~2l12m13!

1g3P~l,m!, ~7!

V2,25 K m

2
,2uVu

m

2
,2L 56g126g2~2l12m13!1g3Q~l,m!,

~8!

V1,25 K S m

2
21D ,2uVu

m

2
,2L 512g2m22g3m~m22!, ~9!

V2,15 K m

2
,2uVuS m

2
21D ,2L 5212g2l12g3l~l12m12!,

~10!

where

P~l,m!5l~m22!~m12!~l12m12!

1m~m22!~m11!~m13!, ~11!

Q~l,m!5lm2~l12m12!1m~m21!~m11!~m12!.
~12!

The energy levelsE2
g and E2

g , corresponding to the 2g
and 2g states, respectively, are determined as
03430
n-

e-

r-

d

m

E2
g5v1

(2)2v (0), ~13!

E2
g5v2

(2)2v (0), ~14!

where

v i
(2)5

1

2
$V1,11V2,21~21! i

3A~V1,11V2,2!
224~V1,1V2,22V1,2V2,1!%, ~15!

i 51,2, are the solutions of the eigenvalue equation~5!, and
v (0)5g3m2(l1m11)2 is the zero-level eigenvalue, corre
sponding to the ground state 0g . After using Eqs.~7!–~10!
we obtain the following analytic expressions forE2

g andE2
g :

E2
g56g122Fg322AAg2

21Bg3
22Cg2g3, ~16!

E2
g56g122Fg312AAg2

21Bg3
22Cg2g3, ~17!

where

A5A~l,m!59@~2l12m13!224lm#, ~18!

B5B~l,m!5@l~l12m12!1m~m11!#2

2lm~l12m12!~m22!, ~19!

C5C~l,m!56~2l12m13!@l~l12m12!

1m~m11!#26lm~l13m!, ~20!

F5F~l,m!5l~l12m12!12m~m11!. ~21!

Hence, we derive a model expression for the energy sp
ting of the SU~3! multiplet. It is known that the splitting can
be characterized by the ratio@16#

DE25
E2

g2E2
g

E2
g

. ~22!

In terms of Eqs.~16! and ~17! the quantityDE2 obtains the
following analytic form:

DE25
2

~3g12Fg3!/AAg2
21Bg3

22Cg2g321
. ~23!

The expressions, obtained so far, allow us to study a
lytically the g-g band-mixing interaction and the energ
splitting atL52 in the (l,m) plane. In particular we are abl
to reproduce analytically the SU~3! contraction limits:~i! l
˜`, with m finite; ~ii ! l˜`, m˜`, with m<l. Since the
differencel2m is always finite, we take for definitenessm
5l. In each of these limits we estimate thel and/or m
dependence of the matrix elements~7!–~10!, as well as the
analytic behavior of the splitting ratioDE2.
5-3
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In case~i! the matrix elements are determined by the c
responding highest degrees ofl. Thus form.2 the Hamil-
tonian matrix (Vi , j ) obtains the following asymptotic form:

~V!l˜`;S l2 *

l2 l2D , ~24!

where the upper off-diagonal element~denoted by *) does
not depend onl. Then the relative contribution of the off
diagonal~band-mixing! terms in the eigenvalue equation~5!
decreases with the increase ofl asl2/l451/l2. For m52
the termV1,1 is proportional tol instead ofl2 @see Eqs.~7!
and~11!#, so that in this particular case the off-diagonal co
tribution decreases as 1/l.

In the same limiting case the functions~18!–~21! have the
following asymptotic behavior:

Al˜`536l2, Bl˜`5l4, Cl˜`512l3, Fl˜`5l2.

After applying them in Eq.~23!, we find the analytic limit of
the splitting ratio~23!:

lim
l˜`

DE25
2

2g3 /ug3u21
. ~25!

We remark that the application of the VBM in rare ear
nuclei and actinides requiresg3,0 @16#, which gives in Eq.
~25!

lim
l˜`

DE25`. ~26!

Therefore, in this case the SU~3! multiplet is completely
split.

Consider now the limiting case~ii !, l5m˜`. Then the
asymptotic form of the matrix (Vi , j ) is

~V!l5m˜`;S l4 l2

l2 l4D . ~27!

Here we find that the relative magnitude of the band-mix
interaction decreases asl4/l851/l4, i.e., more rapidly in
comparison to the previous case.

Furthermore, in the limiting case~ii ! one has

Al5m˜`5108l2, Bl5m˜`513l4,

Cl5m˜`572l3, Fl5m˜`55l2.

Then the SU~3! splitting ratio goes to

lim
l5m˜`

DE25
2

2~5/A13!g3 /ug3u21
. ~28!

For g3,0 we obtain
03430
-

-

g

lim
l5m˜`

DE252/~5/A1321!55.17. ~29!

Therefore, in this case the band-mixing interaction vanish
while the energy splitting between the two bands rema
finite.

B. Transition ratios in the L 52 states

Here we turn to the electromagnetic transition probab
ties for the states 2g , 2g , and 0g . In particular it is of inter-
est to consider the followingB(E2) transition ratios:

R1~2!5
B~E2;2g˜2g!

B~E2;2g˜0g!
, ~30!

R2~2!5
B~E2;2g˜2g!

B~E2;2g˜0g!
. ~31!

The first of themR1(2) gives the relative magnitude of th
g-g interband transition probability with respect to th
ground intraband one. Thus it naturally characterizes the
between the two bands within the multiplet. The second ra
represents one of the widely used collective characteristic
nuclei related to Alaga rules. Both quantities~30! and ~31!
can be obtained from the experimental data on deform
nuclei and therefore have a direct physical meaning.

In order to derive analytic expressions for the above ra
we calculate the matrix elements of the quadrupole oper
Q0 between the eigenstates

uv i
(2)&5Ci1

(2)U ~l,m!

m/221,2,2L 1Ci2
(2)U ~l,m!

m/2,2,2L , i 51,2;

~32!

uv (0)&5C(0)U ~l,m!

m/2,0,0L , ~33!

of the VBM Hamiltonian~1!. ~It should be remembered tha
the eigenvaluesv1

(2) , v2
(2) , andv (0) correspond to the 2g ,

2g , and 0g states, respectively.! After applying analytically
the formalism developed in Ref.@16# we obtain the follow-
ing matrix elements:

^v1
(2)uQ0uv2

(2)&

5
4

7

l~C21
(2)!21m~C22

(2)!21~2l12m13!C21
(2)C22

(2)

C11
(2)C22

(2)2C21
(2)C12

(2)
,

~34!

^v1
(0)uQ0u.v1

(2)&5A6C(0)
mC22

(2)2lC21
(2)

C11
(2)C22

(2)2C12
(2)C21

(2)
, ~35!
5-4
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^v (0)uQ0uv2
(2)&5A6C(0)

lC11
(2)2mC12

(2)

C11
(2)C22

(2)2C12
(2)C21

(2)
. ~36!

The wave-function coefficients are determined as

Ci1
(2)5~ f 11

(2)12hi2f 21
(2)1hi2

2 f 22
(2)!21/2, ~37!
e

.

e
-

t

03430
Ci2
(2)5hi2Ci1

(2) , i 51,2, ~38!

C(0)5~ f (0)!21/2. ~39!

Here
f 11
(2)5K ~l,m!

m/221,2
U ~l,m!

m/221,2L 5
1

30
R~l,m! (

l 50

m22 S m/2

l /2 DSl~l,m!
~ l 11!~m2 l !

m2~l1 l 16!

3@~m2 l !~l12!~l13!~l15!2ml~l14!~l1 l 16!#, ~40!

f 21
(2)5K ~l,m!

m/2,2
U ~l,m!

m/221,2L 5
1

15
R~l,m! (

l 50

m22 S m/2

l /2 DSl~l,m!
~ l 11!~m2 l !

m
, ~41!

f 22
(2)5K ~l,m!

m/2,2
U~l,m!

m/2,2L 5
1

15
R~l,m!(

l 50

m S m/2

l /2 DSl~l,m!~ l 11!~ l 12!, ~42!

f (0)5K ~l,m!

m/2,0
U~l,m!

m/2,0L 5R~l,m!(
l 50

m S m/2

l /2 DSl~l,m!
~l1m2 l !~l1 l 14!

m~l13!~l1m14!
, ~43!
th
y.
m-

s

are the corresponding overlap integrals obtained by the g
eral expression in Ref.@14#, with

R~l,m!5~l13!!! ~m!! !2, ~44!

Sl~l,m!5@~ l 21!!! #2
~l1m2 l 22!!! ~l1m14!!!

~l1 l 14!!!
.

~45!

In addition @see Eqs.~13!–~15! in Ref. @16##

hi252
~V112v i

(2)!

V12
5$23g2~2l12m13!

1g3@~l1m!212l1m#1~21! i

3AA~l,m!g2
21B~l,m!g3

22C~l,m!g2g3%/@6g2m

2g3m~m22!#, ~46!

with A(l,m), B(l,m), and C(l,m) being defined in Eqs
~18!–~20!.

By using the general expression for theB(E2) transition
probability between two of the above eigenstates

B~E2;Ln˜Ln9
8 !5S L8 2 L

2L 0 L D 22

u^vn9
(L8)uQ0uvn

(L)&u2

~47!

(L,L850,2; n,n95g,g), we have studied analytically th
transition ratios~30! and ~31! in the two limiting cases con
sidered in the previous subsection. We have analyzed
explicit expressions for the overlap integrals~40!–~43! and
n-

he

thehi2 factors~46!. In this way we have deduced that in bo
limits, ~i! and ~ii !, the overlap integrals increase to infinit
On the other hand one can verify that this behavior is co
pensated consistently in the ratios~30! and ~31!, where the
total contribution of the integrals and thehi2 factors is finite.

Thus, for the case~i! (l˜`, with m finite! we have ob-
tained the following analytic limits of the transition ratio
R1(2) andR2(2):

lim
l˜`

B~E2;2g˜2g!

B~E2;2g˜0g!
50, ~48!

lim
l˜`

B~E2;2g˜2g!

B~E2;2g˜0g!
5

10

7 S m12

2m D 2

. ~49!

So, in this case we find that the relative magnitude of theg-g
interband transition is zero, while the ratioR2(2) obtains
finite values depending on the quantum numberm. We re-
mark that form52 one hasR2(2)510/7, which is the stan-
dard Alaga value.

In case~ii ! (m5l˜`) we obtain the following limits:

lim
l5m˜`

B~E2;2g˜2g!

B~E2;2g˜0g!
5

10

7

~c2
214c211!2

~c2
21c211!~c221!2

'0.172, ~50!

lim
l5m˜`

B~E2;2g˜2g!

B~E2;2g˜0g!
5

10

7

~c2
214c211!2~c1

21c111!

~c2
21c211!2~c121!2

'0.304, ~51!
5-5
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with c15242A13'27.606 andc25241A13'20.394.
In this case one finds that both ratios,R1(2) and R2(2),
remain finite.

We remark that all obtained limits do not depend on
model parameters.~It is assumed thatg1 , g2, and g3 are
finite, with g2,0 andg3,0.!

IV. THE „l,2… DIRECTION

A. SU„3… splitting in L>2 states

For the (l,2) irreps theg and theg bands are the only
possible ones appearing in the corresponding SU~3! multip-
lets. They are labeled by the quantum numbersa251 and
a150, respectively@see inequality~3!#. In the even angular
momentum states the Hamiltonian matrix is always two
mensional, while for the odd states of theg band one has a
single matrix element. Hence for the (l,2) multiplets one is
able to derive analytic expressions for the spectrosco
characteristics of thefull set of states(L>2) in a way simi-
lar to that of the previous section. That is why we do n
explain in detail all steps of analytic calculations and rep
only the final results in this direction.

So, for a given (l,2) multiplet the energy levelsEg(L)
and Eg(L) of the g and theg band can be written in the
following form:

Eg~L !5B̃1ÃL~L11!2uB̃uR(L), ~52!

Eg~Leven!5B̃1ÃL~L11!1uB̃uR(L), ~53!

Eg~Lodd!52B̃1~Ã1g3!L~L11!, ~54!

where

Ã5Ã~g1 ,g2 ,g3!5g12~2l15!g22g3 , ~55!

B̃5B̃~l,g2 ,g3!56~2l15!g222~l13!2g3 , ~56!

and

R(L)5A11aL~L11!1bL2~L11!2 ~57!

with

a5a~l,g2 ,g3!52
4

B̃2
$~l13!@~l13!g326g2#g3

23~g326g2!g2%, ~58!

b5b~l,g2 ,g3!5
1

B̃2
~g326g2!2. ~59!

Now we introduce the following energy ratio:

DEL5
EL

g2EL
g

E2
g

, ~60!
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which is more general compared to Eq.~22! and character-
izes the magnitude of the energy splitting in any even an
lar momentum state of a given SU~3! multiplet.

By using Eqs.~52! and~53! we obtainDEL in the follow-
ing analytic form:

DEL5
2uB̃uR(L)

6Ã2uB̃uR(2)1B̃
, ~61!

which in the SU~3! contraction limit goes to

lim

m52
l˜`

DEL5 2
2g3 /ug3u21

. ~62!

For g3,0 one has

lim

m52
l˜`

DEL5`. ~63!

Thus we find that for all even states of a given (l,2) mul-
tiplet the SU~3! splitting goes to infinity in the same way@see
also Eqs.~25! and ~26!#.

B. Transition ratios in the „l,2… direction

For the (l,2) direction theB(E2) transitions between the
states of a given multiplet can be examined through the
lowing @more general compared to Eqs.~30! and ~31!# tran-
sition ratios:

R1~L !5
B~E2;Lg˜Lg!

B@E2;Lg˜~L22!g#
, L5even, ~64!

R2~L !5
B~E2;Lg˜Lg!

B@E2;Lg˜~L22!g#
, L5even, ~65!

R3~L !5
B~E2;Lg˜~L11!g!

B@E2;Lg˜~L21!g#
, L5odd. ~66!

The first two ratios,R1(L) andR2(L), have the same physi
cal meaning as the ratios~30! and ~31! of the previous sec-
tion. The third ratio,R3(L), involves the odd angular mo
mentum states in the study. In such a way we investigate
transition characteristics of the full set of states in a giv
SU~3! multiplet.

In the case of a (l,2) multiplet the Hamiltonian eigen
states are constructed as

uv i
(L)&5Ci1

(L)U~l,2!

0,L L 1Ci2
(L)U~l,2!

1,L L , i 51,2, L5even,

~67!

uvodd
(L)&5Codd

(L)U~l,2!

0,L L , L5odd. ~68!

The necessary transition matrix elements are derived
the form
5-6
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^v1
(L)uQ0uv2

(L)&5
12

~L11!~2L13!
@~l122L !~C21

(L)!21@2l151L~L21!#C21
(L)C22

(L)

1L~L21!~C22
(L)!2#/@C11

(L)C22
(L)2C21

(L)C12
(L)#, ~69!

^v1
(L22)uQ0uv1

(L)&5
6

AL~2L21!
@~l142L !C11

(L22)C22
(L)2~l122L !C12

(L22)C21
(L)12C12

(L22)C22
(L)#/@C11

(L)C22
(L)2C21

(L)C12
(L)#,

~70!

^v1
(L22)uQ0uv2

(L)&5
26

AL~2L21!
@~l142L !C11

(L22)C12
(L)2~l122L !C12

(L22)C11
(L)12C12

(L22)C12
(L)#/@C11

(L)C22
(L)2C21

(L)C12
(L)#,

~71!

^v1
(L11)uQ0uv2

(L)&52
6

~L12!AL11
Codd

(L)@~2l2L14!C22
(L11)1~l2L11!C21

(L11)#/@C11
(L11)C22

(L11)2C21
(L11)C12

(L11)#,

~72!

^v1
(L21)uQ0uv2

(L)&52
12

~L11!AL

1

Codd
(L) @~l2L13!C11

(L21)2~L21!C12
(L21)#, ~73!
th

se

at

e-
with the wave-function coefficients

Ci1
(L)5@ f 11

(L)12hi2
(L) f 21

(L)1~h(L)! i2
2 f 22

(L)#21/2, L5even,
~74!

Ci2
(L)5hi2

(L)Ci1
(L) , L5even, i 51,2, ~75!

Codd
(L)5~ f odd

(L) !21/2, L5odd. ~76!

The corresponding overlap integrals are obtained in
form

f 11
(L)5K ~l,2!

0,L
U~l,2!

0,L L
5SL~l!

@~L21L11!l1L314L212L12#

L~L21!
, ~77!

f 21
(L)5K ~l,2!

1,L
U~l,2!

0,L L 5SL~l!~l1L14!, ~78!

f 22
(L)5K ~l,2!

1,L
U~l,2!

1,L L
5SL~l!

@2~l2L12!~l1L14!1~L11!~L12!#

~l2L12!
,

~79!

f odd
(L)5K ~l,2!

0,L
U~l,2!

0,L L 5Sodd
L ~l!

~L11!~L12!~l12!

2L~L21!
,

~80!

with
03430
e

SL~l!5
2L! ~l2L12!!! ~l1L11!!!

~2L11!!!
,

Sodd
L ~l!5

2L! ~l2L11!!! ~l1L12!!!

~2L11!!!
. ~81!

Also we have

hi2
(L)5$26g2@~2l15!1L~L21!#1g3@2~l13!2

2L~L11!#1~21! i B̃R(L)%/@12g2L~L21!#.

~82!

Equations~77!–~80! show that the overlap integrals increa
to infinity with the increase of the quantum numberl. How-
ever, similarly to the previous section, one can verify th
this behavior is compensated consistently in the ratios~64!–
~66!.

After using the above analytic form of the matrix el
ments ~69!–~73! we have obtained the SU~3! contraction
limits of the ratiosR1(L), R2(L), and R3(L) @Eqs. ~64!–
~66!#:

lim

m52
l˜`

B~E2;Lg˜Lg!

B~E2;Lg˜~L22!g!
50, ~83!

lim

m52
l˜`

B~E2;Lg˜Lg!

B~E2;Lg˜~L22!g!
56

~L21!~2L11!
~L11!~2L13!

, ~84!

lim

m52
l˜`

B~E2;Lg˜~L11!g!

B~E2;Lg˜~L21!g!
5

~L21!
~L12!

. ~85!

Thus, we find that for all the states (L>2) of the Hamil-
tonian the relative magnitude of theg-g interband transitions
5-7
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goes to zero. Also, we see that the ratiosR2(L) andR3(L)
go to the corresponding standard Alaga rules.

V. RESULTS AND DISCUSSIONS

The theoretical results given above allow one to exam
the mechanism of the SU~3! symmetry reduction in the spac
of the (l,m) irreps as well as to identify its manifestation
reference to the experimental data on heavy deformed nu

The analytic study of the Hamiltonian matrix elemen
shows@Eqs.~24! and~27!# how the increase in the quantu
numbersl and/or m is connected with the correspondin
decrease in theg-g band-mixing interaction within the
framework of the SU~3! symmetry. Generally this result il
lustrates the behavior of the energy-mixing in the (l,m)
plane. In both limits,~i! and ~ii !, the g-g mixing decreases
asymptotically to zero. Similar limiting behavior of theL
>2 matrix elements in the (l,2) direction has been estab
lished in our previous work~see Sec. IV C of Ref.@16#!.
Thus in all limiting cases the SU~3! symmetry disappear
completely and the two bands do not belong to the sa
SU~3! multiplet anymore.

It is appropriate at this point to elucidate the meaning
the above consideration in terms of the SU~3! group contrac-
tion process@18–22#. This process corresponds to a reno
malization of the quadrupole operatorQ—Q/A^C2&, with

^C2&5~l12m!~l12m16!13l~l12! ~86!

being the eigenvalue of the second order Casimir operato
SU~3!. The following commutation relations between the a
gular momentum and the renormalized quadrupole opera
are then valid:

@Lm ,Ln#52A2C1m1n
1m1nLm1n , ~87!

@Lm ,Qn#5A6C1m2n
2m1nQm1n , ~88!

FIG. 1. The theoretical energy splitting ratioDE2 @Eq. ~23!# is
plotted as a two-dimensional function of the quantum numberl
andm for g151, g2520.2, andg3520.25.
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@Qm ,Qn#53A10C2m2n
1m1n Lm1n

^C2&
. ~89!

They differ from the standard SU~3! commutation relations
by the factor̂ C2& in the right-hand side of Eq.~89!. Taking
into account Eq.~86!, one finds that in both limits~i! and~ii !,
considered in the present work, the commutator~89! van-
ishes and the commutation relations of the algebra of
triaxial rotor group T5`SO~3! hold. In such a way the van
ishing g-g band mixing could be interpreted as a transiti
from a compact to a noncompact DS group.

Let us now analyze the behavior of the splitting and tra
sition ratios of Secs. III and IV in the (l,m) plane. For this
purpose we use the analytic expressions for numerical ca
lations. In the particular case ofL>2 states in the (m5l
˜`) direction, which is not accessible analytically, we a
ply numerically the algorithm developed in Ref.@16#. All
calculations are carried out for the same set of fixed mo

FIG. 2. The theoretical energy splitting ratioDEL @Eq. ~60!# is
plotted as a function of the quantum numberl for L52,4,. . . ,12
with g151, g2520.2, andg3520.25 in the cases~a! m52; ~b!
m5l.
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TABLE I. Experimental values of the energy splitting@Eq. ~22!, column 5# andB(E2)-interband transition ratios in the 2g and 2g states
@Eq. ~30! in column 6, Eq.~31! in column 7# of deformed rare earth nuclei and actinides. The corresponding favored SU~3!-quantum
numbers (l,m) are given in column 4. The valence pair numberN, as well as theR45E4

g/E2
g energy ratio are also given in columns 2 an

3, respectively. Data are taken from Ref.@26#, for the energies and from the Refs. in the last column, for the transition probabilities.

Nucl. N R45E4
g/E2

g (l,m) DE25(E2
g2E2

g)/E2
g R1(2)52g˜2g/2g˜0g R2(2)52g˜2g /2g˜0g Ref.

152Sm 10 3.009 ~14,4! 7.915 0.065~5! 2.56 ~26! @27#
154Sm 11 3.253 ~58,6! 16.565 0.022 1.35 @28,29#
154Gd 11 3.015 ~14,4! 7.093 0.083~6! 2.15 ~24! @28#
156Gd 12 3.239 ~24,4! 11.969 0.039~3! 1.56 ~12! @30#
158Gd 13 3.288 ~28,4! 13.932 0.029~4! 1.71 ~41! @31#
160Gd 14 3.298 ~22,2! 12.128 <1023 1.69 ~19! @32,33#
158Dy 13 3.207 ~16,6! 8.567 0.103~23! 3.22 ~133! @31#
160Dy 14 3.270 ~16,2! 10.131 0.028~9! 1.93 ~112! @32#
162Dy 15 3.294 ~16,2! 10.007 <1023 1.66 @34#
164Dy 16 3.301 ~16,2! 9.379 0.038~4! 2.00 ~38! @35#
162Er 13 3.229 ~16,4! 7.822 0.067~11! 2.37 ~35! @34#
164Er 14 3.277 ~18,4! 8.412 0.052~7! 2.19 ~48! @35#
166Er 15 3.289 ~20,4! 8.751 0.045~5! 1.76 ~26! @36#
168Er 16 3.309 ~22,4! 9.291 0.0410~3! 1.80 ~12! @37#
170Er 17 3.310 ~30,4! 10.858 0.034~7! 1.93 ~36! @38#
168Yb 14 3.266 ~14,2! 10.218 0.046~6! 2.09 ~72! @37#
170Yb 15 3.293 ~18,2! 12.594 0.024~6! 1.78 ~77! @38#
172Yb 16 3.305 ~58,4! 17.602 0.011~3! 1.45 ~65! @39,29#
174Yb 17 3.310 ~68,6! 20.356 0.012~3! 2.40 ~94! @40#
176Yb 16 3.308 ~42,4! 14.358 0.018~4! 1.94 ~70! @41#
174Hf 15 3.268 ~36,6! 12.481 0.049~12! 1.54 ~63! @40#
178Hf 15 3.291 ~30,4! 11.604 0.028~2! 1.18 ~19! @42#
182W 13 3.291 ~18,4! 11.203 0.053~6! 1.90 ~19! @29#
184W 12 3.274 ~16,4! 7.123 0.071~5! 1.91 ~19! @43#
186W 11 3.242 ~24,10! 5.030 0.181~13! 2.27 ~32! @44#
230Th 11 3.272 ~24,4! 13.586 0.028~5! 1.83 ~53! @45#
232Th 12 3.284 ~26,4! 14.893 0.036~6! 2.73 ~62! @46#
234U 13 3.296 ~58,6! 20.304 0.021~5! 1.69 ~69! @47#
238U 15 3.304 ~60,6! 22.614 0.019~1! 1.75 ~17! @48#
-
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parametersg151, g2520.2, g3520.25. These values be
long to the corresponding parameter regions obtained f
group of rare earth nuclei and actinides~see Table II in Ref.
@16#!. In this respect they can be considered as an overal
of model parameters. Also, it should be emphasized tha
the SU~3! contraction limiting cases the various sets of~fi-
nite! parameter values give the same asymptotic behavio
the model quantities.

In Fig. 1 the splitting ratioDE2 @Eq. ~23!# is plotted as a
function of the quantum numbersl and m. In the limiting
case~i! (l˜`, with m finite! the two-dimensional surfac
shows a rapid increase ofDE2, while in case~ii ! (m5l
˜`) the splitting ratio gradually saturates towards the c
stant value;5.17 @see Eq.~29!#. In Fig. 2 the splitting ratio
DEL @Eq. ~60!# is plotted as a function of the quantum num
berl for L52,4,. . . ,12. In the casel˜`, m52 the energy
splitting goes to infinity with almost equal values for a
angular momenta@Fig. 2~a!#. In case~ii ! DEL trends to finite
values which increase withL @Fig. 2~b!#. So, in the first
limiting case the complete reduction of the SU~3! symmetry
leads to a large energy separation between the bands in
03430
a

et
in

of

-

the

multiplet, while in the second case~for finite angular mo-
menta! the bands remain close to each other, but their mu
disposition does not depend on the Hamiltonian parame
anymore, so that it should not be associated with any b
coupling.

The experimentalDE2 ratios of several rare earth nucle
and actinides are given in Table I. They vary within th
limits 5<DE2<20, for the rare earths and 13<DE2<25,
for the actinides. The behavior of the splitting ratios is cle
TheDE2 ratio generally increases towards the middle of t
rotational region. This is illustrated in Table I through th
number of the nucleon pairs~or holes! in the valence shells
N. ~The numberN is a well established characteristic o
nuclear collectivity used in the IBM@8#.! A clearly pro-
nounced increase ofDE2 with increasingN is observed for
the isotopes of Sm, Gd, Er, Yb, and W. A similar behavior
the energy splitting is observed in theL.2 states of these
nuclei @26#. One concludes that the data show that the SU~3!
splitting increases toward the midshell regions.

We turn now to the analysis of the interband transiti
ratios. In Fig. 3 the theoretical ratioR1(2), Eq.~30!, is plot-
5-9
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ted as a two-dimensional function of the quantum numberl
andm. In the limiting case~i! (l˜`, with m finite! the R1
surface shows a rapid decrease to zero. In case~ii ! (m5l
˜`) R1(2) decreases gradually and saturates towards
constant value;0.172@see Eq.~50!#. In Fig. 4 the transition
ratio R1(L) @Eq. ~64!# is plotted as a function of the quantu
numberl for L52,4,. . . ,12. In the casel˜`, m52 it
goes to zero with almost equal values for all angular m
menta @Fig. 4~a!#. In case~ii ! R1(L) obtains finite values
which decrease withL @Fig. 4~b!#. Thus in the first limiting
case theg-g interband transition link vanishes rapidly, whi
in the second case~for finite angular momenta! the relative
magnitude of the interband transition probability rema
nonzero. However, as in the energy splitting, theR1 ratios do
not depend on the Hamiltonian parameters anymore. Th
fore, they should not be treated in terms of the SU~3! sym-
metry anymore.

The experimentalR1(2) values for several rare earth n
clei and actinides are given in Table I. Here one observe
rather spectacular decrease ofR1(2) towards the midshel
regions. The best examples~with the largest number of avail
able data! occur in the cases of the Gd, Er, and Yb isotop
Note that the decrease in the experimentalg-g transition
probabilities is well consistent with the corresponding
crease in the SU~3! splitting. In this way, the experimenta
data strongly support the VBM predictions in the SU~3! con-
traction limit.

The two-dimensional surface obtained for the theoret
R2(2) ratio, Eq.~31!, is shown in Fig. 5. We see thatR2(2)
gradually decreases withl and m and trends towards th
finite values, obtained in the limiting cases~i! and ~ii ! @see
Eqs.~49! and~51!#. In Fig. 6 the transition ratioR2(L) @Eq.
~65!# is plotted as a function of the quantum numberl for
L52,4,. . . ,12. In thecasel˜`, m52 it gradually goes to

FIG. 3. The theoreticalR1(2) ratio @Eq. ~30!# is plotted as a
two-dimensional function of the quantum numbersl and m for
g2520.2 andg3520.25.
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the Alaga values for the corresponding angular mome
@Fig. 6~a!, see also Eq.~84!#. In case~ii ! R2(L) trends to
finite values which~in the numerically investigatedl range!
exhibit a complicated behavior as a function ofL @Fig. 6~b!#.
In both limiting cases the lack of dependence on the Ham
tonian parameters indicates the complete reduction of
SU~3! symmetry. The experimental data onR2(2), given in
Table I, show a slightly expressed trend of decreasing
wards the midshells, but one could not draw any defin
conclusions about the systematic behavior of this quantit

In Fig. 7 the transition ratioR3(L) @Eq. ~66!# is plotted as
a function of the quantum numberl for the odd angular
momentaL53,5, . . . ,11. Forl˜`, m52 it goes to the
corresponding Alaga values in a way similar to theR2(L)
ratio @Fig. 7~a!, see also Eq.~85!#. In the second direction
~ii !, R3(L) saturates to finite values@Fig. 7~b!#. It is clear that
towards the SU~3! contraction limit theB(E2) transition
characteristics of the oddg band states should be consiste
with the even angular momentum ones.

In order to assess quantitatively the results presente
far, we provide a numerical analysis of the SU~3! multiplets
in the (l,m) plane on the basis of the experimental ener
and transition ratios given in Table I. More precisely w
determined the quantum numbersl andm together with the
Hamiltonian parametersg1 , g2, and g3, by fitting them in
the numerical procedure of Ref.@16# so as to reproduce th
experimentalg andg band levels up toL58, for lantanides
andL518, for actinides together with the values of the e
perimental ratiosDE2 , R1(2), and R2(2). @Only for two
nuclei, 160Gd and162Dy, theR1(2) ratios have not been use
in the fits due to the uncertainty of the experimental data#

The ‘‘favored’’ values of the quantum numbersl andm
obtained for the various isotopes are given in the fourth c
umn of Table I. Generally the quantum numberl vary in the
range 14<l<68, whilem obtains the values 2<m<6.

So, one finds that whilem is closed in narrow limits, the
quantum numberl exhibits a well pronounced systemat
behavior. The favoredl values as well as the SU~3! splitting
ratio DE2 increase with the increase of the valence pair nu
ber N, i.e., towards the middle of the valence shells
rotational nuclei. For example, the small splitting observ
in the nuclei 152Sm (DE257.9), 154Gd (DE257.1), and
162Er (DE257.8) which are situated near the beginning
the respective group of rotational isotopes, is associated
the smalll values,l514216 and the relatively large inter
band transition ratiosR1(2)50.0720.08. On the other hand
for the middshell nuclei172,174Yb with large splitting values,
DE2518220 and small R1(2);0.01, we obtain large
l-values,l;60270. Also, largel values,l;60 have been
obtained for the234,238U isotopes withDE2520222. Well
pronounced systematic behavior of the quantum numberl is
observed in the Er and Yb isotopes.

The above results are consistent with the numerical an
ses carried out in Ref.@16#. It should be mentioned that th
involvement of the interband transition ratioR1(2) in the
present fits leads to an increase in the quantum numbem
above them52 values. Actually, some trend of small in
crease inm ~up to m56) with the increase ofl is indicated
5-10
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GROUND-g BAND COUPLING IN HEAVY DEFORMED . . . PHYSICAL REVIEW C 60 034305
for various isotope groups~see, for example, the Yb isotope
in Table I!. Nevertheless, in almost all nuclei under study t
quantum numberl is essentially larger thanm, which is
natural for the well deformed nuclei. Several exceptions
observed in the nuclei far from the midshell region, such
158Dy @with (l,m)5(16,6)# and 186W @with (l,m)
5(24,10)# where the interband transition ratios are ve
largeR1(2);0.120.2.

The above quantitative considerations show that
changes in the SU~3! characteristics of nuclei~especially the
quantum numberl) towards the middle of given rotationa
region could be associated with the corresponding decr
in the g-g band mixing interaction towards the SU~3! con-
traction limits. In terms of our study the strongg-g splitting,
observed near the middle of rotational regions, correspo
to the weak mutual perturbation of the bands. This is con
tent with the respectively good rotational behavior of theg
band, which in this case could belong to a separate SU~3!
multiplet. ~See the experimental energy ratios,R45E4

g/E2
g ,

given in Table I.!

FIG. 4. The theoreticalR1(L) ratio @Eq. ~64!# is plotted as a
function of the quantum numberl for L52,4, . . . ,12 withg25
20.2 andg3520.25 in the cases~a! m52; ~b! m5l.
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We remark that present analyses are based mainly on
in the rare earth region. Actually Table I includes only nuc
for which theg-g interband transition probabilities are me
sured. That is why only four actinides~230,232Th,234,238U) are
considered. Nevertheless, they give an indication for sim
behaviors of the splitting and the interband transition rat
as the ones in rare earth nuclei. On the other hand, the
erally stronger energy splitting, observed in the actinide
gion ~see also Ref.@26#!, suggests a generally weakerg-g
coupling compared to the rare earth nuclei.

We are now able to discuss the physical significance
the considered SU~3! contraction limits as well as to depic
the physically meaningful directions in the (l,m) plane,
which could be appropriate for studying the transition b
tween the different band coupling schemes. The theoret
analyses and experimental data show that the limiting c
~i! (l˜`, with m finite! has a rather clear physical interpr
tation. It is consistent with the observed continuous incre
of the g-g band splitting and the corresponding continuo
decrease of the interband transition probabilities towards
midshell regions in rare earth nuclei. The limiting case~ii !
(l5m˜`) does not have any similar direct interpretatio
It suggests finite values for the splitting and the interba
transition probabilities, while the bands do not interact in t
framework of SU~3! symmetry. In addition, it is well known
that the casel5m does not correspond to deformed nucl
for which the inequalitym,l is satisfied. Nevertheless th
study of this limit is useful from the following viewpoint: I
implies that the strong suppression of the band interactio
well as the transition between the different band coupl
schemes could be realized at reasonable~finite! SU~3! split-
ting. Based on the above considerations, we deduce tha
possibly interesting physically meaningful directions in t
(l,m) plane should be associated with a consistent incre
in the quantum numbersl and m. Thus, any particular di-
rection of interest could be easily estimated by using its
termediate behavior between the two considered limit
cases.

FIG. 5. The same as Fig. 3 but for the theoreticalR2(2) ratio
@Eq. ~31!#.
5-11
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Some discussion concerning the interacting boson mo
~IBM ! classification scheme@8# is appropriate at this point
In Ref. @16# it has been suggested that for deformed nuc
both the VBM scheme~with g-g band coupling! and the
IBM one ~with b-g band coupling! could be considered a
complementary schemes. It has also been pointed out tha
SU~3! scheme of the VBM is naturally applicable to nucl
with weak energy splitting, while strong splitting invokes th
SU~3! scheme of the IBM, in which theg-band is situated in
a separate irrep. Furthermore, the theoretical results and
experimental data given in the present work suggest that
VBM band coupling scheme is more appropriate near
ends of the rotational regions, while in the midshell regio
the coupling scheme of the IBM is realized. In this resp
the detailed comparison of both band-coupling mechani
would be of interest. For example, the analytic expressi
for theg-g interband transition probabilities, obtained in th
framework of the IBM in Ref.@49#, would be useful.@See
Eqs. ~5! and ~6! of Ref. @49#.# They give a behavior of the
transition ratiosR1(L), R2(L), andR3(L) @Eqs. ~64!, ~65!,
and ~66!# in the infinite valence pair number limit (N˜`)

FIG. 6. The same as Fig. 4 but for the theoreticalR2(L) ratio
@Eq. ~65!#.
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similar to the behavior obtained in the limiting case~i! (l
˜`, with m52) @Eqs.~83!, ~84!, ~85!# of the present VBM
scheme.

As an extension of the present studies it would be wor
while to examine, in a similar way, the link between theg
and the b band. Furthermore, in addition to the VBM
scheme, one could refer in this case to the modifications
the IBM in which higher-order terms conserving the SU~3!
symmetry are added@50#. The consistent study~within both
models! of the ways in which the SU~3! symmetry is reduced
could give important information about the rearrangemen
rotational bands into different SU~3! irreps.

In the above context, we emphasize that the analy
implemented in the presented paper give a general pres
tion to handle the fine behavior of the band coupling int
actions in any collective algebraic scheme in heavy
formed nuclei. Actually, the group contraction proce
should play a major role in a transition between two differe
band coupling schemes. The transition from the comp

FIG. 7. The theoreticalR3(L) ratio @Eq. ~66!# is plotted as a
function of the quantum numberl for L53,5, . . . ,11 withg2

520.2 andg3520.25 in the cases~a! m52; ~b! m5l.
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SU~3! group to the noncompactT5`SO(3) rotor group
could be considered as a starting point in a process of re
struction of various multiplets in a more general symplec
group of dynamical symmetry.@It is interesting to mention
that the meaning of SU~3! contraction has been also di
cussed~though in a rather different aspect! in reference to a
possible phase transition between a superconductor and
rotor collective motion of nuclei@51#.#

VI. CONCLUSIONS

We have derived analytic expressions for the energies
B(E2) transition probabilities in the ground- andg-band
states of even deformed nuclei within the vector-bos
model with SU~3! dynamical symmetry. On this basis w
applied both analytic and numeric analyses to examine
behavior of the corresponding energy splitting andB(E2)
transition ratios in the two SU~3! contraction limits of the
model,~i! (l˜`, with m finite! and~ii ! (l5m˜`). It has
been shown that in both limits theg-g band mixing de-
creases asymptotically to zero. In case~i! this is associated
with the corresponding continuous increase in the splitting
the multiplet and the rapidly vanishingg-g interband transi-
tion link. Case~ii ! gives finite values for the energy splittin
and the interband transition ratios which, however, sho
not be associated with any band coupling. The latter re
implies that a strong reduction of the band interaction co
be possible at finite SU~3! splitting. Thus, the present analy
e

.

G
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ses outline the possible directions in the (l,m) plane in
which theg-g band coupling is reduced.

The experimental data on the ground- andg-band states
in deformed even-even nuclei show clearly a pronoun
increase in theg-g band splitting and a corresponding d
crease in the interband transition probabilities towards
midshell regions. They suggest that the SU~3! contraction
effects in theg-g band coupling scheme should be sought
the best rotational nuclei, in which the mutual perturbation
the bands is weak. So, the experimental data and their q
titative estimation in the VBM framework strongly suppo
our theoretical analyses.

Based on the presented investigation, we conclude
the transition from theg-g band coupling scheme to
scheme in which theg band is situated in a separate irre
should be realized towards the midshell regions. In this
spect the complementarity of the classification schemes
the vector-boson model with SU~3! dynamical symmetry and
the IBM becomes clear. The consistent study of the re
rangement of collective bands in deformed nuclei, includ
theb-excited bands, will be the subject of forthcoming wor
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