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Ground-y band coupling in heavy deformed nuclei and SI(8) contraction limit
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We derive analytic expressions for the energiesB(ie2 )-transition probabilities in the states of the ground
and y bands of heavy deformed nuclei within a collective vector-boson model witl3)3lynamical symme-
try. On this basis we examine the analytic behavior of thé3s@nergy splitting and th&(E2) interband
transition ratios in the S(3) contraction limits of the model. The theoretical analyses outline physically
reasonable ways in which the groundand coupling vanishes. The experimental data on the lowest collective
states of even-even rare earth nuclei and actinides strongly support the theoretical results. They suggest that a
transition from the ground- band coupling scheme to a scheme in which the ground band is situated in a
separate irreducible representation of(${should be realized towards the midshell regions. We propose that
generally the S(B) group contraction process should play an important role for such transitions in any
collective band coupling scheme in heavy deformed nuf89556-28189)01309-9

PACS numbegps): 21.60.Fw, 21.60.Ev, 23.20.Js

I. INTRODUCTION (VBM) with SU(3) dynamical symmetry13-15, which al-
lows a relevant phenomenological treatment of the(3HU
An important advantage of the dynamical symmé®y)  multiplets in nuclei.
approach[1-4] in nuclear theory is the possibility to de-  While in the SU3) limit of the IBM the possible irreduc-
scribe consistently various collective bands of heavy deible representationSrreps (\,u) are restricted by the total
formed nuclei[5—7]. Generally, the DS concept is based onnumber of bosons describing the specific nucleus, in the
the assumption that the physical system possesses a “pi#/BM the possible S(B) irreps (\,u) are not restricted by
mary” symmetry with respect to a given group, called thethe underlying theory. However, it has been shown recently
DS group. The Hamiltonian of the system reduces this symf16] that some favored regions oh (x) multiplets in the
metry to the group of invariance of the systwhich for the  VBM could be outlined through the numerical analysis of the
nuclear system coincides with the angular momentum groupxperimental data available for the ground) (and the
SO(3)] and thus the energy spectrum is generfledd]. The  y-collective bands of even-even deformed nuc(@he fa-
Lie algebra of the DS group is then reduced to the algebra ofored multiplets provide the best model descriptipiss a
the group of invariance and is referred to as spectrum gerresult, a systematic behavior of the @Jsymmetry proper-
erating algebra. The basic idea of DS approach in heavties of rotational nuclei has been established in terms of the
deformed nuclei is that their collective bands can be united/BM. It suggests the presence of a transition between a
into one or several multiplets, appearing in this reductionscheme, in which thg and they bands are coupled into one
[5-7]. It provides a natural way to study the interaction be-and the sameX,u) irrep and a scheme, where these two
tween a particular couple of bands as well as the attendafiands belong to different irreps. In addition it has been sup-
spectroscopic characteristics of nuclei. posed that the fine systematic properties of rotational spectra
Various classification schemes with band coupling havecould be interpreted as a manifestation of a more general
been developed on the basis of DS approach. Well knowdynamical symmetry.
models, such as the interacting boson mdéM) [8], the As a first step in the recovering of the dynamical mecha-
symplectic model$9,10] and the Fermion dynamical sym- nism causing such a transition, one should study the way in
metry model[11], provide a good overall description of which the SWU3) symmetry is reduced in thex(u) plane. In
nuclear collective phenomena, covering the different regiongarticular, it is of interest to reproduce the limits, in which
of vibrational, rotational, and transitional nuclei. the quantum numbers and u go to infinity, i.e., the cases,
On the other hand, some models, based on th&Sdy-  in which the SUW3) irreps are not finite anymore. These lim-
namical symmetry, reproduce successfully the particulaits correspond to the so called &) contraction process, in
characteristics of rotational bands in deformed nuclei. Suclwhich the algebra of S(3) goes to the algebra of the semi-
models are the pseudo-8) model[12], which has micro- direct productTs/ASO(3),i.e., SU(3)>Ts/A\SO(3) [Ts is
scopic motivations, as well as the vector-boson modethe group of five-dimensional translations generated by the
components of the SB)-quadrupole operator§l7—-22.
Generally, the contraction limit corresponds to a singular lin-
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On the above basis it is expected that in the@Won-  —oo, u—o; u<\) for the states with.=2. The results are
traction limit the space of the §B) irreps should undergo a discussed together with an analysis of experimental data. In
respective limiting transition. As a result the & multip-  Sec. VI the conclusions are given.
lets should be disintegrated to sets of various independent
bands. It is, therefore, reasonable to consider this limit as a Il. g-y BAND COUPLING IN THE VBM
natural way in which the band-mixing interactions vanish. It
is important to remark that the $8) contraction processisa  he vector-boson modd€VBM) with SU(3) dynamical
situation in which a compact group goes to a noncompactymmetry is founded on the assumption that the low-lying
one. Hence, one could try to interpret the vanishing collective states of deformed even-even nuclei can be de-

band-mixing interaction as a transition from a compact to ascribed by means of two distinct kinds of vector bosons,
noncompact DS group. whose creation operatog&” and »* are O(3) vectors and in

In the present work we realize the above consideration@ddition transform according to two independent($Ur-
through the formalism of the VBM. Our purpose is to exam-reps of the type X,u)=(1,0) [13-15. The vector bosons
ine the various directions in the.(«) plane by investigating Provide a relevant construction of the @Jangular momen-
the respective changes in the structure of thé3thultip-  tum and quadrupole operators like the bosons in the
lets in terms of model defined spectroscopic characteristic§chwinger realization of S@) [23]. Therefore, they can be
of rotational nuclei. As such, we consider here the(3U considered as natural building blocks of a model scheme
energy Sp“tt'ng and th@_ﬂy interband transitionsl which W|th SU(S) dynamical Symmetry. AISO, the vector bOSOhS
carry important information about the link between the twocan be interpreted as quanta of elementary collective excita-
bands. It is known that the energy splitting of the multiplettions of the nucleu$l5].
determines to a great extent the systematic behavior of the In this model an S(B)-symmetry reducing Hamiltonian
SU(3) dynamical symmetry in deformed nuclei6). is constructed by using three bagix3) scalars, which be-

In the VBM relatively simple analytic expressions for the long to the enveloping algebra of £8) [13]:
energies and the transition probabilities can be derived both ’ N
for the lowest_ =2 states of anyX, «) multiplet and for all V=0:1L74+ 0oL -Q-L+gsA A @
the states of anyN,2) multiplet. The analytic expressions for
the L=2 states allow one to examine the @Ucharacteris-
tics of nuclei in terms of two-dimensional surfaces in the
(\,u) plane, while in the X,2) direction one is able to in-
vestigate the behavior of the full set of states in the multiplet,
i.e., the states with =2. On the other hand, tHe=2 states
of the irreps withu>2 can be treated numerically.

In such a way, a relevant combination of analytic and
numerical analyses could be applied in order to reveal the ) _
systematic behavior of all the states of SVWirreps in the corresponding to the SU()O(3) group reduction, are
(\,u) plane including the limiting cases of $8) group constructed by means of_the above vector-bo_son operators
contraction. The collective scheme of the VBM is con-2and are known as the basis of Bargmann-Moshiri2ky25.
structed by using the irreps with=u and comprises the The quantum numbet in .Eq..(2) dIS.tIHQUIShe.S the various
following two SU3) contraction limits:(i) A—c, with O irreps (,M) appearing in a given SB) irrep (A, )
finite; (i) N—o, p—oo, with w<A. gnd labels the d|fferent'bands of an (S;UmuIUplgt. IF isan

Below we provide a detailed study of the most important'meger number determined through the following inequality
spectroscopic characteristics of theand they band in the (14,25
above limiting cases. It will be shown that our approach 1 1 1
gives a reasonable interpretation of the corresponding experis T P e S N o
mental data and leads to rather clear conclusions about th}gax(o?(ﬂ L)) \a\mm[z(,u A, 2(}\+'LL L=B).
rearrangement of collective rotational bands in heavy de- (©)]
formed nuclei.

In Sec. Il theg-y band coupling scheme of the VBM is Where
briefly presented. In Sec. Il we derive analytic expressions
for the energies and tH&(E2) transition probabilities for the g 0, Aftu—Leven, @)

24 and 2, states of an arbitrary\( ) multiplet. Using them, 1, N+pu—L odd.

we obtain the analytic behavior of the energy splitting and

the physically meaningful transition ratios in the @WUcon- In the VBM theg and the lowesty band belong to one
traction limits (i) and (ii). In Sec. IV we derive expressions and the same S3) multiplet, wherex and n are even and
for the splitting and the transition ratios for the full set of A\=u. These bands are labeled by two neighboring integer
states [=2) in the (\,2) multiplets and obtain their analytic values of the quantum number. [More precisely, the states
form in the first limiting case X—; u=2).In Sec. V all of theg band are labeled by the largest valuenodppearing
analytic results are examined numerically. Also, there wean Eq. (3), while the y band corresponds to the next smaller
provide a numerical study of the second limiting case ( « value] The so defined multiplet is split with respectdo

Hereg,, g,, andgs; are free parameterg, and Q are the
angular momentum and quadrupole operators, respectively,
andA* — §+27’+2_ (§+ 7]+)2'

The basis states

@

(N )
a,L,M
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The above scheme provides a good description of the en- Ed= 0P - 0, (13)
ergy levels and of thé3(E2) transition ratios within and
between theg and y bands[13,16. The other collective Eg=w(22)—w(°), (14

bands, in particular the loweg band, do not belong to the

same irrep. Therefore, they are not considered in the frame‘*,;/here

work of this model.

Ill. THE L=2 STATES IN THE (A\,p) PLANE
A. L=2 energy splitting

Here we consider the=2 energy levels of thg and the
v band in terms of the VBM. For any\(u) multiplet (u

=2), the Z; and 2, states are the only possible ones appear-, (0)—

w-(2)=E{V + Voot (= 1)
i 2 11 2,2

X(V11+ Vo) =4(V1 Vo= Vi Va0, (15

i=1,2, are the solutions of the eigenvalue equati®n and
gsu2(N+ u+1)? is the zero-level eigenvalue, corre-

ing at angular momenturb =2. They are labeled by the sponding to the ground statg OAfter using Egs(7)—(10)

quantum numbera as follows [see inequality(3)]: «a;
=ul2—1 for 2, and a,= u/2 for 24. Hence, for theL =2

states the Hamiltonian matrix is always two-dimensional and

the corresponding eigenvalue equation has the form

Vii— @
de( '
Va1

Vi
\Fre o

) =0, ©)

wherew®=w"=2 are the eigenvalues and

(N p)
v aj/,2,2>’ (6)

(N p)
C(j,2,2

Vj’er<aj,2|V|ajr,2>=<

with j,j’=1,2, are the corresponding Hamiltonian matrix el-

we obtain the following analytic expressions % andEJ

ements. We have derived these matrix elements in the form

V1’1: < (%_1 ,2|V|(%—1) ,2> :6gl+ 6g2(2)\+2,u,+3)

+g3p()\!/1/)! (7)

"
V3= <512|V|§:2> =607, 602(2N+2u+3)+93Q(\, 1),
(8)

v1,2=<(§—1),2|V|§,2>=1292M—293m—2), ©)

- 1) ,2> = — 129N+ 2gsA (N + 20+ 2),
(10

PN, w)=Nu—2)(pt2)(N+2u+2)

+u(u—2)(p+1)(u+3), (11)

QN ) =ApP(N+2u+2) + pu(p—1) (u+ 1)(,u+2)(-12)

The energy level€d and E}, corresponding to the 2
and 2, states, respectively, are determined as

E9=60,—2Fg3—2JAg;+Bg5—C0ygs,  (16)
E}=69;—2FQ3+2VAQ;+B0g5—Cgy05, (1)
where

A=A\ w)=9[ (2N +2u+3)2—4xpu], (18)

B=B(\,u)=[N\+2u+2)+u(u+1)]?
“Au(N+2u+2)(n—2), (19

C=C(\,u)=6(2N+2u+3)[NN+2u+2)
+u(p+1)]=6Nu(N+3u), (20
F=FO\,u)=A\+2u+2)+2u(u+1). (22

Hence, we derive a model expression for the energy split-
ting of the SU3) multiplet. It is known that the splitting can
be characterized by the rati@6]

E)—EJ

E3

In terms of Eqs(16) and(17) the quantityAE, obtains the
following analytic form:
AE 2
2= .
(391~ Fgs)/ VA, +Bg5—Cgpgs—1

(23

The expressions, obtained so far, allow us to study ana-
Iytically the g-y band-mixing interaction and the energy
splitting atL =2 in the (\, ) plane. In particular we are able
to reproduce analytically the §B) contraction limits:(i) A
—oo, with w finite; (i) A\—o0, u—oo, with u<X\. Since the
difference\ — u is always finite, we take for definitenegs
=\. In each of these limits we estimate theand/or u
dependence of the matrix elemeri®—(10), as well as the
analytic behavior of the splitting ratidE..
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In ca;e(i) the matrix elements are determined by the cor- lim AE,=2/(5//13-1)=5.17. (29)
responding highest degreesof Thus foru>2 the Hamil- A= oo
tonian matrix ¥/; ;) obtains the following asymptotic form:
Therefore, in this case the band-mixing interaction vanishes,
N2+ while the energy splitting between the two bands remains
2 2), (24)  finite.
AN

(V))\—rwN

where the upper off-diagonal elemetenoted by *) does B. Transition ratios in the L =2 states

not depend or\. Then the relative contribution of the off-  Here we turn to the electromagnetic transition probabili-
diagonal(band-mixing terms in the glginvaluze equatit®)  ties for the states2 2, and Q. In particular it is of inter-
decreases with the increaselofasA“/A"=1/\". Foru=2  ggt to consider the following(E2) transition ratios:

the termV, ; is proportional ton instead of\? [see Eqs(7)

and(11)], so that in this particular case the off-diagonal con- B(E2:2,-2,)

tribution decreases as\l/ 1(2)= , (30)
In the same limiting case the functioffs8)—(21) have the B(E2;24—0,)
following asymptotic behavior:
B(E2;2,—2,)
A)\_>Oc:36)\2, B)\_,QG:)\4, C)\_,QG:].Z)\S, F)\_,OO:)\Z- RZ(Z)Z— (31)

B(E2;2,—04)
After applying them in Eq(23), we find the analytic limit of ) ) . ]
the splitting ratio(23): The first of themR,(2) gives the relative magnitude of the
g-y interband transition probability with respect to the
ground intraband one. Thus it naturally characterizes the link
lim AE,= _ (25) between the two bands within the multiplet. The second ratio
Ao —0s/|gs|—1 represents one of the widely used collective characteristics of
nuclei related to Alaga rules. Both quantiti€&0) and (31)
We remark that the application of the VBM in rare earthcan be obtained from the experimental data on deformed
nuclei and actinides requirgg <0 [16], which gives in Eq. nuclei and therefore have a direct physical meaning.

(25 In order to derive analytic expressions for the above ratios
we calculate the matrix elements of the quadrupole operator
lim AE,=. (26) Qo between the eigenstates
A—x
Therefore, in this case the $) multiplet is completely lo®)=c® (A u) e (N ) i—1 0
; i il i2 ' [l
split. ul2—1,2,2 ul2,2,

Consider now the limiting casgi), A= u—x. Then the (32
asymptotic form of the matrix\(; ;) is

(N, )
o> , (33

ul2,0,

A4 )\2) 7 |w(0)>:C(O)
A2 N4

(V))\M—»DON(

of the VBM Hamiltonian(1). (It should be remembered that
%he eigenvalues?, %), andw® correspond to the 2
2,, and (b_ states, respec’;iveWAfter applying analytically
the formalism developed in Ref16] we obtain the follow-
ing matrix elements:

Here we find that the relative magnitude of the band-mixin
interaction decreases as/\8=1/\*, i.e., more rapidly in
comparison to the previous case.

Furthermore, in the limiting cas@) one has

Ar—e=108\%  B)_, .=13\%
(04| Qql wf?)

— 79,3 —£)\2
Coazpme=T2A%,  Fy—pye=5\" A NCE)+u(CE)?+ (20 +2u+3)CCH)
Then the SB) splitting ratio goes to 7 C(121)C(222)_C(221)C(122) ,
(34)
im AE 2 9
m 2= .
A= p—o0 _(5/\/1_3)93/|g3| -1 ,LLC(Z)—)\C(Z)
0) (2 _ \/— (0) 22 21
. (017]Qol-01™)=V6CT 5 ooy 39
For g3<0 we obtain CiYC% —Ci7Cyy
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AC@ - uC C@=h,,c?, =12, (39
(0Qolwf?) = VBC . (39
cicH- el oo
CO=(fO)H~12 39
The wave-function coefficients are determined as (™ 39
CiP=(f+2h, 2 +n5fH) 37 Here
J
(@) (Np) | (N ) 1 2 ) (I+1)(—1)
W\ w2-1,2u2-12 =0 | 112 2N +1+6)
X[(—=D(N+2)(N+3)(A+5)—u (N +4)(N+1+6)], (40)
(N,w)| (N u) 1 wl2 (I+1)(u—1)
@) — - |
Fa <M/2,2 M/2—1,2> R ’“)E <|/2) Mp) D
)| (e 1 - (
(2)= =—R ! +1)(1+
15 <M2,2 wi22) ~ RO | S +1)(1+2), (42
’LL f—
(O Now)| (V)| 2 Sonp AN+ u—D(N+1+4) 3
nl2,0 /.L/2,0 =0 |/2 T UNF3) (N ut+4b)

are the corresponding overlap integrals obtained by the gerheh;, factors(46). In this way we have deduced that in both

eral expression in Refl14], with

RO w)=(N+3)1 (u!!)?, (44)
AN+ pu—1=2)1L(N+ u+ 41!
SO =[1-DNP NFI+ A0
(45

In addition[see Eqs(13)—(15) in Ref.[16]]

(Vi1— o)

R

={—3g,(2\+2+3)
+ 0[N+ )%+ 20+ p]+(— 1)
X AN, )95+ BN, u)g5— C(N, 1)9203}/[6gou

—Oau(pn—2)], (46)

with A(\, 1), B(\,u), andC(A,u) being defined in Egs.

(18)—(20).
By using the general expression for tB€E?2) transition
probability between two of the above eigenstates

!

|<w(L 1 Qolw{)?
(47

B(E2;LV—>L;,,)=( Lo L

(L,L’

=0,2; v,v"=g,v), we have studied analytically the
transition ratiog30) and(31) in the two limiting cases con-

limits, (i) and (i), the overlap integrals increase to infinity.
On the other hand one can verify that this behavior is com-
pensated consistently in the rati@0) and (31), where the
total contribution of the integrals and the, factors is finite.

Thus, for the casé) (A— o, with u finite) we have ob-
tained the following analytic limits of the transition ratios
R1(2) andR,(2):

B(E2;2,—2,)

lim ————’ 9 —0, (48)
s B(E2;2,—0,)

B(E2;2,—~2,) 10
B(E2;2,—0,) 7

wt2\?
2

lim (49)

A—©

So, in this case we find that the relative magnitude ofgthe

interband transition is zero, while the rati®,(2) obtains

finite values depending on the quantum numpeiWe re-

mark that foru=2 one hak,(2)=10/7, which is the stan-
dard Alaga value.

In case(ii) (u=\—) we obtain the following limits:

B(E2;2,-2y) 10 (c5+4c,+1)°

r= = B(E2;2g—0g) 7 (c2+Cy+1)(c—1)2
~0.172, (50)
B(E2;2,—2,) 10(c§+4c2+1)2(c§+c1+1)

L. B(E2;2,509) 7 (c2+cy+1)%(cy—1)2

sidered in the previous subsection. We have analyzed the

explicit expressions for the overlap integré/)—(43) and

~0.304, (51
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with ¢,= —4— /13~ —7.606 andc,= —4+13~—-0.394.  which is more general compared to Eg2) and character-
In this case one finds that both ratid?;(2) and R,(2), izes the magnitude of the energy splitting in any even angu-
remain finite. lar momentum state of a given &) multiplet.

We remark that all obtained limits do not depend on the By using Egqs(52) and(53) we obtainAE_ in the follow-
model parametergt is assumed thay,, g,, andg; are  ing analytic form:
finite, with g,<0 andg;<0.)

AE 2IBIRY) 61
IV. THE (.2 DIRECTION L A BRO1B’ (61)
A. SU(3) splitting in L=2 states
For the (\,2) irreps theg and they bands are the only which in the SU3) contraction limit goes to
possible ones appearing in the corresponding3pthultip-
lets. They are labeled by the quantum numbess-1 and lim AEL=ﬁ. (62
a1=0, respectivelyfsee inequality3)]. In the even angular M 937193
momentum states the Hamiltonian matrix is always two di- a
mensional, while for the odd states of tiyeband one has a Forg;<0 one has
single matrix element. Hence for th&,@) multiplets one is
able to derive analytic expressions for the spectroscopic lImAE =, (63
characteristics of th&ull set of stategL=2) in a way simi- L:z

lar to that of the previous section. That is why we do not

explain in detail all steps of analytic calculations and reportThus we find that for all even states of a givenZ) mul-

only the final results in this direction. tiplet the SU3) splitting goes to infinity in the same wagee
So, for a given §,2) multiplet the energy levelg9(L)  also Egs(25) and(26)].

and E”(L) of the g and they band can be written in the

following form: B. Transition ratios in the (\,2) direction

For the (\,2) direction theB(E2) transitions between the

—RLA _ IR L
E%(L)=B+AL(L+1)—[BIRY, (52 states of a given multiplet can be examined through the fol-
o ~ lowing [more general compared to Ed80) and(31)] tran-
E”(Leyen =B+AL(L+1)+|B|RWV, (53 sition ratios:
~ o~ B(E2;L,—Ly)
E"(Log9=2B+(A+g3)L(L+1), 54 = Y g =
(Lodd) (A+g3)L( ) (54 Ry (L) BIEZL,~(L_2)]" L=even, (64
where
R.(L) B(E2;L,—Lyg) . ©9
- = , =even,
A=A(91,92,93) =01~ (2N +5)g,— 03, (59 2 B[E2;L,—(L—2)4]
BB - _ B(E2;L,—(L+1),)
B=B(\,02,05)=6(2\ +5)g,— 2(A +3)°gs,  (56) - Y 9 -
Ra(L) BIEZIL, = (L—1),]" L=odd. (66)
and
The first two ratiosR;(L) andR,(L), have the same physi-
RU=\1+alL(L+1)+bL*(L+1)? (57)  cal meaning as the ratid80) and(31) of the previous sec-
_ tion. The third ratio,R3(L), involves the odd angular mo-
with mentum states in the study. In such a way we investigate the

transition characteristics of the full set of states in a given
4 SU(3) multiplet.
a=a(\,92,93) =~ ?{()‘+3)[()‘+3)93_692]93 In the case of aX,2) multiplet the Hamiltonian eigen-
states are constructed as

—3(93—692)92}, (58)
Wy cw| 2 w| M2
1 ; |wi >=Cil O,L +Ci2 1,L y |=1,2, L=even,
b=b(\,02.03) = 5(93—692) : (59 (67)
: . . (N2
Now we introduce the following energy ratio: |w(()|azj>zcga)d oL > L = odd. (68)
El—EY " : o
AE, = T (60) The necessary transition matrix elements are derived in
E> the form
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12
(0$P]Qql Sy = m[(mz—u(c“))zﬂzmw L(L—1)]cc

+L(L-1)(cHHAccs)-cicy, (69)
6
(L=2) (L)y — (L=2)c (L) (L=2)~(L) (L=-2)c (L) Lc (L)_ L)L)
1) wy )= +4-L)C33 N+2—-L)C5; “/Cy+2C55 I[Ci7 C57/CY ],
<1 |Q0| 1> m( ) ( ) ][ 21 12]
(70)
-6
(L=2) (L)y — _ (L=2)(L) _ (L=2)~(L) (L=2)~(L) L) b))
1) wy Y= —=—=[(N+4—-L)C C N+2-L)C; “Ci7+2CY; “/Ci7']/[Ci7C C57/CY ],
< 1 |Q0| 2 > L(2L—1)[( 11 12 ( 11 2] [ 11 ~22 21 12]
(71
6
(L+1) (L) — (L) (L+1) (L+1) (L+1)~(L+1)_ ~(L+1)~(L+1)
o w Y= (2A—L+4)Cy '+ (A—L+1)C; I[Cii 7'C% C C ,
< 1 |Q0| 2 > (L+2)\/LT odc[ ) ( ) ][ 21 12 ]
(72)
1
(L-1) (Ly— (L-=1)_ — (L-1)
1) wy )= AN—L+3)C3; L-1)C , 73
(01 7|Qolwy”) (L+1)fcg;{,[( ) (L=1)Ci; ] (73
|
with the wave-function coefficients = 2LIN—L+2)IT(N+L+1)!!
CO=[ 19+ 2nBFE) + (N2 L =even, (2L+1H ’
(74) ) 2LI(AN =L+ 1) (A+L+2)!!
Sodd()\): (2L+l)” (81)
cW=hEcH)  L=even, i=1,2, (75) &
Also we have
Cl=(fin 2 L=odd. (76)
h(&)={—6g,[(2\+5)+L(L—1)]+g3[2(A +3)?
The corresponding overlap integrals are obtained in the ~
form —L(L+ )]+ (—1)'BROY[12g,L(L—1)].
(82
o[22
fir= oL | oL Equations77)—(80) show that the overlap integrals increase
' ' to infinity with the increase of the quantum numberHow-
Lo [P+ L+ DA+ +4L2+ 2L +2] ever, similarly to the previous section, one can verify that
=S(\) L(L—1) , (77) this behavior is compensated consistently in the rads—
(66).
N2 n2) After using the above analytic form of the matrix ele-
f(le)_< ' ' >:SL()\)()\+L+4), (780  ments (69—(73) we have obtained the §B) contraction
oL limits of the ratiosR;(L), R,(L), and R3(L) [Egs. (64)—
(66)]:
f<L>_<()"2) (A.2) B(E2;L,—L,)
27\ 1L | 1L i v
ol Im B B2~ (L-2y ®3
_g [2()\ L+2)(N+L+4)+(L+1)(L+2)] n=2
=S (N—L+2) ’ |' B(EZiL,~Lg) _ (L—1)(2L+1) 84
(79 . B(E2;L,—(L—2)y (L+1)(2L+3)’
,u,:2
(U _ N2V (L+1)(L+2)(N+2) im B(E2;L —>(L+1)g):(L—1). (85)
odd "\ oL | oL/ Ted 2L(L—-1) : v B(E2;L,—(L=1)g) (L+2)
(80) o2
Thus, we find that for all the states £2) of the Hamil-
with tonian the relative magnitude of tigey interband transitions
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100 x T+ r 1 rrrr+Jrrrrgrrrrr 11T
) - ) xr L=12 ]
FIG. 1. The theoretical energy splitting ratddE, [Eq. (23)] is o b ]
plotted as a two-dimensional function of the quantum numbers - 1
andu for g;=1, g,=—0.2, andgz= —0.25. 2r ]
20 |- L=10 J
goes to zero. Also, we see that the ratRgL) and R3(L) 1| -'
go to the corresponding standard Alaga rules. w6l ]
14 N L-s ]
V. RESULTS AND DISCUSSIONS < wl 1
The theoretical results given above allow one to examine ol L6 ]
the mechanism of the §8) symmetry reduction in the space sl ]
of the (\,u) irreps as well as to identify its manifestation in : ;
: ‘ 6| L=4 -
reference to the experimental data on heavy deformed nucle| [ /_———————’—‘_’— Lo |
The analytic study of the Hamiltonian matrix elements ‘r T
shows[Egs.(24) and(27)] how the increase in the quantum ) AN ENENENEFE NN SN SN SN
numbersh and/or u is connected with the corresponding 10 2 % “ 5 %
decrease in theg-y band-mixing interaction within the A
framework of the SI(B) symmetry. Generally this result il- FIG. 2. The theoretical energy splitting rat\E, [Eq. (60)] is

lustrates the behavior of the energy-mixing in the,k)  piotted as a function of the quantum numbefor L=2,4,. . .,12

plane. In both limits(i) and (ii), the g-y mixing decreases \jth g,=1, g,=—0.2, andgs=—0.25 in the case) u=2: (b)

asymptotically to zero. Similar limiting behavior of tHe =),

=2 matrix elements in then(2) direction has been estab-

lished in our previous worksee Sec. IV C of Ref[16]).

Thus in all limiting cases the SB) symmetry disappears [Qm.Qn]=3110C

completely and the two bands do not belong to the same

SU(3) multiplet anymore. ) ) )
It is appropriate at this point to elucidate the meaning of hey differ from the standard S8 commutation relations

the above consideration in terms of the(8lUgroup contrac- oY the factor(C,) in the right-hand side of Eq89). Taking

tion procesg18—24. This process corresponds to a renor-INto account Eq(86), one finds that in both limit&§) and(ii),

malization of the quadrupole operatOk—Q/{C,), with considered in the present work, the commuta®®) van-
a P peraiQr—Q/(C2) ishes and the commutation relations of the algebra of the

(C)=(A+2u)(\+2u+6)+3N(\+2)  (86) triaxial rotor group E/\SQ(3) hold. In such a way the van-
ishing g-y band mixing could be interpreted as a transition
being the eigenvalue of the second order Casimir operator Gfom a compact to a noncompact DS group.
SU(3). The following commutation relations between the an- et us now analyze the behavior of the splitting and tran-
gular momentum and the renormalized quadrupole operatoksition ratios of Secs. Ill and IV in thex( ) plane. For this

im+n Lm+n

2m2n <C2> .

(89

are then valid: purpose we use the analytic expressions for numerical calcu-
Imin lations. In the particular case &f=2 states in the =N\
[Lm.Lnl=—V2CTmin Linsn. (87) ) direction, which is not accessible analytically, we ap-
ply numerically the algorithm developed in R¢fL6]. All
[Lm.Qnl= V6CIM3"Qumen. (88)  calculations are carried out for the same set of fixed model
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TABLE I. Experimental values of the energy splittifigqg. (22), column 5 andB(E2)-interband transition ratios in thg, 2nd 2, states
[Eg. (30) in column 6, Eq.(31) in column 7 of deformed rare earth nuclei and actinides. The corresponding favorég)-uantum
numbers §,u) are given in column 4. The valence pair numbgras well as th&R,=EJ/EJ energy ratio are also given in columns 2 and
3, respectively. Data are taken from REZ6], for the energies and from the Refs. in the last column, for the transition probabilities.

Nucl. N  R,=E¥EJ (N, ) AE,=(EJ-E/EY  Ry(2)=2,-242,—0, Ry(2)=2,—2,/2,—0, Ref.
1525m 10 3.009 (14,9 7.915 0.065(5) 2.56(26) [27]
1545m 11 3.253 (58,6 16.565 0.022 1.35 [28,29
154Gd 11 3.015 (14,9 7.093 0.0836) 2.15(24) [28]
156Gd 12 3.239 (24,4 11.969 0.0393) 1.56(12) [30]
158G 13 3.288 (28,9 13.932 0.0294) 1.71(41) [31]
160Gd 14 3.298 (22,2 12.128 <10°° 1.69(19) [32,33
158y 13 3.207 (16,6 8.567 0.10323) 3.22(133 [31]
160Dy 14 3.270 (16,2 10.131 0.0289) 1.93(112 [32]
162Dy 15 3.294 (16,2 10.007 <10°° 1.66 [34]
164Dy 16 3.301 (16,2 9.379 0.03g4) 2.00(39) [35]
162y 13 3.229 (16,9 7.822 0.067(11) 2.37(35) [34]
164y 14 3.277 (18,9 8.412 0.0527) 2.19(48 [35]
166y 15 3.289 (20,9 8.751 0.0455) 1.76(26) [36]
168 16 3.309 (22,9 9.291 0.04103) 1.80(12) [37]
170y 17 3.310 (30,9 10.858 0.0347) 1.93(36) [38]
168y 14 3.266 (14,2 10.218 0.0466) 2.09(72) [37]
170yp 15 3.293 (18,2 12.594 0.0246) 1.78(77) [38]
72y 16 3.305 (58,49 17.602 0.0113) 1.45(65) [39,29
174yp 17 3.310 (68,6 20.356 0.0123) 2.40(94) [40]
176yp 16 3.308 (42,9 14.358 0.0184) 1.94(70) [41]
179f 15 3.268 (36,6 12.481 0.04912) 1.54(63) [40]
178 15 3.291 (30,9 11.604 0.0282) 1.18(19 [42]
183y 13 3.291 (18,9 11.203 0.0536) 1.90(19) [29]
By 12 3.274 (16,4 7.123 0.071(5) 1.91(19 [43]
84y 11 3.242 (24,10 5.030 0.181(13) 2.27(32 [44]
230Th 11 3.272 (24,9 13.586 0.0285) 1.83(53 [45]
232Th 12 3.284 (26,9 14.893 0.0366) 2.73(62) [46]
24 13 3.296 (58,6 20.304 0.021(5) 1.69(69) [47]
=Yy 15 3.304 (60,6 22.614 0.0191) 1.75(17) [48]

parameterg;=1, g,=—0.2, g3=—0.25. These values be- multiplet, while in the second cadgor finite angular mo-
long to the corresponding parameter regions obtained for menta the bands remain close to each other, but their mutual
group of rare earth nuclei and actinidege Table Il in Ref. disposition does not depend on the Hamiltonian parameters
[16]). In this respect they can be considered as an overall seinymore, so that it should not be associated with any band
of model parameters. Also, it should be emphasized that igoupling.

the SU3) contraction limiting cases the various sets(fif The experimentalE, ratios of several rare earth nuclei
nite) parameter values give the same asymptotic behavior aind actinides are given in Table |. They vary within the
the model quantities. limits 5<AE,=<20, for the rare earths and £A\E,<25,

In Fig. 1 the splitting ratidAE, [Eq. (23)] is plotted as a for the actinides. The behavior of the splitting ratios is clear:
function of the quantum numbebs and «. In the limiting  The AE, ratio generally increases towards the middle of the
case(i) (A—oo, with u finite) the two-dimensional surface rotational region. This is illustrated in Table | through the
shows a rapid increase &E,, while in case(ii) (u=X\ number of the nucleon paif®r holes in the valence shells
—) the splitting ratio gradually saturates towards the conN. (The numberN is a well established characteristic of
stant value~5.17[see Eq(29)]. In Fig. 2 the splitting ratio nuclear collectivity used in the IBM8].) A clearly pro-
AE, [Eq.(60)] is plotted as a function of the quantum num- nounced increase afE, with increasingN is observed for
ber\ forL=2,4,...,12. Inthe cask—x, u=2 the energy the isotopes of Sm, Gd, Er, Yb, and W. A similar behavior of
splitting goes to infinity with almost equal values for all the energy splitting is observed in the>2 states of these
angular momentfFig. 2(@)]. In case(ii) AE, trends to finite  nuclei[26]. One concludes that the data show that thé33U
values which increase with [Fig. 2(b)]. So, in the first splitting increases toward the midshell regions.
limiting case the complete reduction of the @Usymmetry We turn now to the analysis of the interband transition
leads to a large energy separation between the bands in thatios. In Fig. 3 the theoretical ratR;(2), Eq.(30), is plot-
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the Alaga values for the corresponding angular momenta
[Fig. 6(a), see also Eq(84)]. In case(ii) Ry(L) trends to
finite values which(in the numerically investigated range
exhibit a complicated behavior as a functionLgfFig. 6b)].
In both limiting cases the lack of dependence on the Hamil-
tonian parameters indicates the complete reduction of the
SU(3) symmetry. The experimental data 83(2), given in
Table I, show a slightly expressed trend of decreasing to-
wards the midshells, but one could not draw any definite
conclusions about the systematic behavior of this quantity.
In Fig. 7 the transition rati®s(L) [Eq. (66)] is plotted as
a function of the quantum number for the odd angular
momentaL=3,5,...,11. ForA—», u=2 it goes to the
corresponding Alaga values in a way similar to tRg(L)
ratio [Fig. 7(a), see also Eq(85)]. In the second direction
(i), Rg(L) saturates to finite valu¢fig. 7(b)]. It is clear that
towards the SIB) contraction limit theB(E2) transition
characteristics of the odgl band states should be consistent
with the even angular momentum ones.

In order to assess quantitatively the results presented so
FIG. 3. The theoreticaR;(2) ratio [Eq. (30)] is plotted as a far, we provide a numerical analysis of the @Umultiplets
two-dimensional function of the quantum numbersand u for in the (\,u) plane on the basis of the experimental energy
g,=—0.2 andgz=—0.25. and transition ratios given in Table I. More precisely we

determined the quantum numbersand i together with the

ted as a two-dimensional function of the quantum numhers Hamiltonian parameterg,, g,, andgs, by fitting them in
and u. In the limiting case(i) (A—c, with u finite) the R, the numerical procedure of R4fL6] so as to reproduce the
surface shows a rapid decrease to zero. In ¢apéu=X\ experimental andy band levels up td. =8, for lantanides
—») R;(2) decreases gradually and saturates towards thendL =18, for actinides together with the values of the ex-
constant value-0.172[see Eq(50)]. In Fig. 4 the transition ~perimental ratiosAE,, R;(2), andR,(2). [Only for two
ratioR, (L) [Eq. (64)] is plotted as a function of the quantum nuclei, **°Gd and'®Dy, theR;(2) ratios have not been used
number for L=24,...,12. In the casé.—xo, w=2 it in the fits due to the uncertainty of the experimental data.
goes to zero with almost equal values for all angular mo- The “favored” values of the quantum numbexsand u
menta[Fig. 4a]. In case(ii) R;(L) obtains finite values obtained for the various isotopes are given in the fourth col-
which decrease with [Fig. 4(b)]. Thus in the first limiting umn of Table I. Generally the quantum numbevary in the
case theg-vy interband transition link vanishes rapidly, while range 14\ <68, while . obtains the values2u<6.
in the second casgor finite angular momenjathe relative So, one finds that whilg: is closed in narrow limits, the
magnitude of the interband transition probability remainsquantum numbei exhibits a well pronounced systematic
nonzero. However, as in the energy splitting, Bheratios do  behavior. The favored values as well as the §8) splitting
not depend on the Hamiltonian parameters anymore. Thergatio AE, increase with the increase of the valence pair num-
fore, they should not be treated in terms of the(®Wym-  ber N, i.e., towards the middle of the valence shells in
metry anymore. rotational nuclei. For example, the small splitting observed

The experimentaR;(2) values for several rare earth nu- in the nuclei **’Sm (AE,=7.9), *Gd (AE,=7.1), and
clei and actinides are given in Table I. Here one observes &%r (AE,=7.8) which are situated near the beginning of
rather spectacular decrease Rf(2) towards the midshell the respective group of rotational isotopes, is associated with
regions. The best examplésith the largest number of avail- the small\ values\ =14—16 and the relatively large inter-
able dataoccur in the cases of the Gd, Er, and Yb isotopesband transition ratioR;(2)=0.07—0.08. On the other hand,
Note that the decrease in the experimergaj transition for the middshell nuclet’?1"4b with large splitting values,
probabilities is well consistent with the corresponding in-AE,=18-20 and smallR;(2)~0.01, we obtain large
crease in the S(3) splitting. In this way, the experimental \-values\~60-70. Also, largex values\~60 have been
data strongly support the VBM predictions in the @Ucon-  obtained for the?*4#233 isotopes withAE,=20—22. Well

traction limit. pronounced systematic behavior of the quantum nurkkier
The two-dimensional surface obtained for the theoreticabbserved in the Er and Yb isotopes.
R,(2) ratio, Eq.(31), is shown in Fig. 5. We see th&,(2) The above results are consistent with the numerical analy-

gradually decreases with and . and trends towards the ses carried out in Ref16]. It should be mentioned that the
finite values, obtained in the limiting casé$ and (ii) [see involvement of the interband transition ratR®,(2) in the
Egs.(49) and(51)]. In Fig. 6 the transition rati®,(L) [Eq.  present fits leads to an increase in the quantum number
(65)] is plotted as a function of the quantum numbefor  above thew=2 values. Actually, some trend of small in-
L=2,4,...,12. Inthecase—x, u=2 itgradually goesto crease inu (up to u=6) with the increase of is indicated
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[ FIG. 5. The same as Fig. 3 but for the theoretiRa(2) ratio

[Eq. (3D)].

We remark that present analyses are based mainly on data
in the rare earth region. Actually Table | includes only nuclei
for which theg-vy interband transition probabilities are mea-
sured. That is why only four actinidé$>®232Th,23423)) are
considered. Nevertheless, they give an indication for similar
behaviors of the splitting and the interband transition ratios
as the ones in rare earth nuclei. On the other hand, the gen-
erally stronger energy splitting, observed in the actinide re-
gion (see also Ref[26]), suggests a generally weakgsy
coupling compared to the rare earth nuclei.

0.00 L L L L L We are now able to discuss the physical significance of

10 20 30 40 50 60 the considered S@3) contraction limits as well as to depict

A the physically meaningful directions in the\ () plane,

which could be appropriate for studying the transition be-
tween the different band coupling schemes. The theoretical
analyses and experimental data show that the limiting case
(i) (A—o0, with u finite) has a rather clear physical interpre-
tation. It is consistent with the observed continuous increase
for various isotope groupsee, for example, the Yb isotopes of the g-y band splitting and the corresponding continuous
in Table ). Nevertheless, in almost all nuclei under study thedecrease of the interband transition probabilities towards the
quantum numben is essentially larger tham, which is  midshell regions in rare earth nuclei. The limiting ca#e
natural for the well deformed nuclei. Several exceptions arg) = ;,— o) does not have any similar direct interpretation.
observed in the nuclei far from the midshell region, such ast suggests finite values for the splitting and the interband
Py [with (\,u)=(16,6) and "W [with (\,u) transition probabilities, while the bands do not interact in the
=(24,10)] where the interband transition ratios are veryframework of SW3) symmetry. In addition, it is well known
largeR;(2)~0.1-0.2. that the casé = u does not correspond to deformed nuclei,

The above quantitative considerations show that thgor which the inequalityu<\ is satisfied. Nevertheless the
changes in the S@) characteristics of nucléespecially the  study of this limit is useful from the following viewpoint: It
quantum numbek) towards the middle of given rotational implies that the strong suppression of the band interaction as
region could be associated with the corresponding decreasgell as the transition between the different band coupling
in the g-y band mixing interaction towards the 8) con-  schemes could be realized at reasonfitéte) SU(3) split-
traction limits. In terms of our study the stroggy splitting,  ting. Based on the above considerations, we deduce that the
observed near the middle of rotational regions, correspondsossibly interesting physically meaningful directions in the
to the weak mutual perturbation of the bands. This is COﬂSiS()\,M) plane should be associated with a consistent increase
tent with the respectively good rotational behavior of the in the quantum numbers and w. Thus, any particular di-
band, which in this case could belong to a separaté3BU rection of interest could be easily estimated by using its in-
multiplet. (See the experimental energy rati®,=EJ/E3,  termediate behavior between the two considered limiting
given in Table ) cases.

02s [
[ L4

0.20 L
= 0.15 C L6

0.10 |-

0.05 |-

FIG. 4. The theoreticaR,(L) ratio [Eq. (64)] is plotted as a
function of the quantum numbex for L=24,...,12 withg,=
—0.2 andgz=—0.25 in the case&@) u=2; (b) u=N\.
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function of the quantum numbex for L=3,5,...,11 withg,

Some discussion concerning the interacting boson modeT ~ 0-2 @1d9s=~0.25 in the case@) . =2; (b) p=A.

(IBM) classification schemg8] is appropriate at this point.

In Ref.[16] it has been suggested that for deformed nuclesimilar to the behavior obtained in the limiting ca@g (A

both the VBM schemewith g-y band coupling and the —oo, with uw=2) [Egs.(83), (84), (85)] of the present VBM
IBM one (with 8-y band coupling could be considered as scheme.

complementary schemes. It has also been pointed out that the As an extension of the present studies it would be worth-
SU(3) scheme of the VBM is naturally applicable to nuclei while to examine, in a similar way, the link between the
with weak energy splitting, while strong splitting invokes the and the 8 band. Furthermore, in addition to the VBM
SU(3) scheme of the IBM, in which thg-band is situated in scheme, one could refer in this case to the modifications of
a separate irrep. Furthermore, the theoretical results and thike IBM in which higher-order terms conserving the (SU
experimental data given in the present work suggest that theymmetry are adde[b0]. The consistent studgwithin both
VBM band coupling scheme is more appropriate near thenodels of the ways in which the S(3) symmetry is reduced
ends of the rotational regions, while in the midshell regionscould give important information about the rearrangement of
the coupling scheme of the IBM is realized. In this respectrotational bands into different S8) irreps.

the detailed comparison of both band-coupling mechanisms In the above context, we emphasize that the analyses
would be of interest. For example, the analytic expressiongmplemented in the presented paper give a general prescrip-
for the g-y interband transition probabilities, obtained in the tion to handle the fine behavior of the band coupling inter-
framework of the IBM in Ref[49], would be useful[See actions in any collective algebraic scheme in heavy de-
Egs.(5) and (6) of Ref.[49].] They give a behavior of the formed nuclei. Actually, the group contraction process
transition ratiosR;(L), R,(L), andR3(L) [Egs.(64), (65, should play a major role in a transition between two different
and (66)] in the infinite valence pair number limitN— o) band coupling schemes. The transition from the compact
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SU(3) group to the noncompacts/\SO(3) rotor group Ses outline the possible directions in the,4) plane in
could be considered as a starting point in a process of recofvhich theg-y band coupling is reduced.

struction of various multiplets in a more general symplectic The experimental data on the ground- apdhand states
group of dynamical symmetnylt is interesting to mention in deformed even-even nuclei show clearly a pronounced
that the meaning of S@3) contraction has been also dis- increase in they-y band splitting and a corresponding de-
cussedthough in a rather different aspgdn reference to a €réase in the interband transition probabilities towards the

possible phase transition between a superconductor and rigﬂ%idShe!l regions. They suggest that the (SUcontraction
rotor collective motion of nuclei51].] effects in theg-y band coupling scheme should be sought in

the best rotational nuclei, in which the mutual perturbation of
the bands is weak. So, the experimental data and their quan-
titative estimation in the VBM framework strongly support

We have derived analytic expressions for the energies an@Ur theoretical analyses. o
B(E2) transition probabilities in the ground- angband Based on the presented investigation, we conclude that

states of even deformed nuclei within the vec:tor-bosonthe transjtion .from theg-y pan_d coupl_ing scheme o a
model with SU3) dynamical symmetry. On this basis we scheme in which thg band is situated in a separate irrep

applied both analytic and numeric analyses to examine tha"ould be realized towards the midshell regions. In this re-
behavior of the corresponding energy splitting &B¢E2) spect the complementarity of the classification schemes of

transition ratios in the two S(@3) contraction limits of the the vector-boson model with $8) dyqamical symmetry and
model, (i) (\—c, with  finite) and (i) (A = u—). It has the IBM becomes clear. The consistent study of the rear-
been shown that in both limits thg-y band mixing de- rangement of collective bands in deformed nuclei, including
creases asymptotically to zero. In cd8ethis is associated the B-excited bands, will be the subject of forthcoming work.
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