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Relativistic structure of the deuteron: Electrodisintegration andy scaling
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Realistic solutions of the spinor-spinor Bethe-Salpeter equation for the deuteron with the realistic interaction
kernel, including the exchange of, o, w, p, n, and § mesons, are used to systematically investigate
relativistic effects in inclusive quasielastic electron-deuteron scattering within the relativistic impulse approxi-
mation. Relativistig/ scaling is considered by generalizing the nonrelativistic scaling function to the relativistic
case, and it is shown thgtscaling does occur in the usual relativistic scaling variable resulting from the energy
conservation in the instant form of dynamics. The present approagtscéling is fully covariant, with the
deuteron being described by eight components, viz38fe", s, ~, D7+, D7, ®P; ~, °P7*, Pr T,

P, " waves. It is demonstrated that if the negative relative energy st@es P, are disregarded, the
concept of covariant momentum distributioN§p,,p), with po=M p/2— p?+mZ, can be introduced, and

that calculations of electrodisintegration cross section in terms of these distributions agree within a few percent
with the exact calculations, which include th®; and P, states, provided the nucleon three momentum
|[p|<1 GeVrc; in this momentum range, the asymptotic relativistic scaling function is shown to coincide with
the longitudinal covariant momentum distributig&0556-281®9)03708-5

PACS numbgs): 25.30-c, 13.40-f, 21.45+v, 24.10.Jv

[. INTRODUCTION section from scattering off a pointlike nucleus, scales to a
function of the variable v, according to
The concept of scaling, which plays an important role in|q|W§‘(2)(v,qz)/WT(z)(v,qz)aF(y) where, in the case of
the investigation of the hadronic structure, can be introducethe deuteronbut not for complex nuclef5]), F(y) repre-
in the description of scattering processes whenever the crosents the nucleon longitudinal momentum distributi¢y) :*
section factorizes into a product of two different quantities,
with the first one reflecting the nature of the scattering pro- (y)= J“‘n( )dp, =2 J“’n( )pldlpl —ly|
cess, and therefore depending upon the relevant independenI y 0 Py-PL)ApL=em Iyl PIPICIPL BI=1Y1-
kinematical variables, and the second ¢tfee scaling func- 1.9
tion) reflecting the internal structure of the target, and there-
fore depending upon a new varialféne scaling variable Experimental dat§6—8], due to the effect of the final-state
which can be associated to the dynamics of the constituentsteraction(FSI), exhibit only a qualitative scaling behavior,
of the target. and a quantitative analys[9] of deuteron dat48], taking
The best example of scaling (scaling is provided by into account the FSI, allowed one to obtain the nucleon mo-

inclusive deep inelastic scattering of leptons off nucleondn€ntum distribution in the deuteron using EQG.D. It
[1]: in the Bjorken limit (v—,Q?—, xg=Q%2my should, however, be stressed that the approach of [Rgf.

— const, with» and Q? being, respectively, the energy and leading to Eq.(l.l),_ is bas_ed on a fully relativistic instant--
the four-momentum transfers. and beina the nucleon form treatment of kinematics, but on the usual nonrelativistic
mass, the quantity F(Xg Q’2)= WN(xg- Q%) where (Schralingen treatment of the deuteron, and therefore lacks

Nro o g Y FalXg;, &)= VI (X . & : a consistent covariant treatment of the procefecently
W>(xg;, Q) represents the deviation of the inclusive €rossyy 1) 5 relativistic covariant model, based on the light-front
section from scattering off a pointlike nucleon, becor@gs

: : ' X k dynamics and light cone kinemati€$2], has been adopted
independent, i.e., scales in the variakig (the Bjorken scal-

: X ) i to analyze inclusive QE scattering off the deuteron, treating
ing variablge which can be associated to the momentum frac-

tion of the quark inside the hadron. Inclusive scattering of———
leptons off a nucleus\ in the quasielasti¢QE) region (v _ _ _ )
<Q2/2m, i.e.,xg>1) has been theoretically shoy®,4—6 2We will consider, from now on, negative values yofor which
to exhibi,t an’OthJer kind of scaling, the so Ca”szc'a"ng the effects of non-nucleonic degrees of freedom are kinematically
which can be summarized as followsat sufficiently high ~ SuPPressed. . " )
values of the three-momentum transfgr the ql)J/ant?ty 3Note that FSI have been treated in Rf] within a full Schre

A > N 2 dinger equation approach, i.e., using ground and continuum eigen-
|a|W52)(7,9%)/Wy(»)(»,G%), where the nuclear structure

1 A o functions of the same Hamiltonian. Such an approach is a correct
function Wy ,)(v,q%) represents the deviation of the cross gne at the kinematics of the data of RE8] which, at negative

values ofy, correspond to a very smdless than the pion threshold
relative energy of the neutron-proton pair in the continuum; it
*On leave from Bogoliubov Lab. Theor. Phys., JINR, Dubna, should always be kept in mind, however, that at high value@%f
Russia. such that the nucleon-nucleoN ) cross section becomes strongly
For exhaustive reviews of scaling see Ref§2,3,5,6. absorptive, the Schdinger approach is inadequdsee, e.g.[10]).
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the latter as a system of two spinless particles interacting via Il. THE ELECTRON-NUCLEON

a simple scalar interaction. Within such a model, the deu- AND ELECTRON-DEUTERON CROSS SECTIONS
teron wave function has only one componéthie S wave), WITHIN THE BETHE-SALPETER FORMALISM
the square of which defines the model momentum distribu- A. General formulas for the cross section

tion. However, it is well known that in the realistic case of i _ .
two interacting spinor particles, the deuteron state is deter- In this section the cross sections for electron-hadron scat-

mined by at least four components if one nucleon is on-masgerin.g within thg covariar)t BS formalism will be derived. In

shell[13], five components within the spinor light cone for- particular, el"’.‘St'C scattering off amoving and off-mass-shell
malism[14], or even eight components within the covariantnUCIeon a_nd mclusw_e guasielastic scattering off the deuteron
Bethe-Salpete(BS) approach{ 15,16, at rest, will be considered. Both processes will be denoted

Th ity of than t & and D A(e,e") X, whereA stands for the target hadron aXdor the

€ hecessily of more han o compone a(n_ final hadronic states. The four momenta of the initial and
waves in the description of the deuteron in a covariant ap-final electrons in the laboratory system de (£,k) andk’
proach, follows from an accurate account of the contributionz(g, k'), respectively: the four momentum transfer s
of the negative relative energy states in the deuteron, the k—k’=(»,q), and the orientation of the coordinate system

so-calledP waves. Frequently, in the calculation of observ- s qefined byq=(0,04,). At high energies the electron mass
ables within covariant formalisms with realistic interactions, can pe disregarded, so that

the final results are rather cumbersoiisee, for instance,

Refs.[13,17,1§) and a separation, in a compact form, of an 5 o , _ -q° B Q?

analog of the momentum distribution of the deuteron be- k?=(k")"=0, kk __kq_T_ o (2.3)
comes difficult, if not, sometimes, impossible. The inclusive

quasielastic cross section and the concepy staling have 5 5 .6

not been so far considered within covariant approaches with Q°=-q =455'S|n2§, (2.2
realistic interaction, and an investigation of the possibility to

define relativistic scaling functions and momentum distribu-where 6 is the scattering angle. The following relations will

tions is still lacking. be useful in what follows:

In this paper we focus on a detailed study of quasielastic _
eD scattering, and the possibility of analyzing it in terms of e V14 VSir(0/2) +(Q?/v?) ety (23
scaling functions and momentum distributions, using the nu- ) sin( 6/2) ; =&-v 23
merical BS solution recently obtained with a realistic one-
boson exchange interacti¢h9—-21. 1 Q2

Through this paper, as 1], relativistic effects will be 0089k=—ﬁ( 1+2—), 2.9
investigated within the impulse approximatidi®\), which 1+Q%v vé
means that the final-state interaction of thp pair in the

lal=1a,l=VQ*+v?, (2.5

continuum will be disregarded, though it has been shfyn
that the FSI leads to sizabl_e scaling violati_on effects at IO\A(Nhere 6, is the polar angle of the initial electron.
values of|q|. FSI effects will be analyzed in a subsequent " pjaeafter the electron-nucleon vertex in the on-mass-shell
paper22], here we are only interested in the investigation Ofform, viz:
y scaling within a fully covariant treatment of inclusied
scattering in A, within a description of the deuteron in terms N o o Ouad” )
of realistic solutions of the BS equation. FAQ)=7,Fa(Q) i — o= kFy(Q7), (2.6
Our paper is organized as follows: in Sec. Il the deriva-

tion, within the BS formalism, of the two basic quantities will be used, wheré-; , are the electromagnetic form factors
which are necessary to define relativisfiscaling, i.e., the of the nucleon, and its anomalous magnetic moment. It is
cross section for elastic electron scattering from a movingvell known that the choicé2.6) for FiN(QZ) violates gauge
and off-mass-shell nucleon, and the cross section for incluinvariance; this is a relevant point which will be briefly dis-
sive quasielastic scattering from the deuteron, are presentedissed in Sec. Ill. In the one-photon exchange approxima-
in Sec. llI the relativistic scaling function is defined, its non- tion the general formula for the invariant cross section for the
relativistic reduction is illustrated, and the results of numeri-processA(e,e’) X has the following form:
cal calculations are presented; a relativistic momentum dis-
tribution appropriate to the BS approach is defined in Sec.
IV, where the relationship between the relativistic momen-
tum distribution and scaling function is illustrated; the sum- dk’
(rjnary and concl.usmns are prese_nted in Sec. V; some relevant X 8D (k+ pa—k' — py) dre, (2.7

etails concerning the construction of the Mandelstam vertex (2m)32¢&
for the operator o&D scattering and for the computation of
matrix elements within the Bethe-Salpeter formalism arewherep, is the initial target momentunpy is the total mo-
given in Appendixes A and B, respectively. mentum of the final hadron sta¢ dry is the phase space

do= L|/\/l ex|?(2m)*
4kpA et+A—e’+X
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D
(b)

FIG. 1. Diagrams corresponding to elastid scatteringa), and
inclusive e D scattering in the impulse approximatidn).

factor, andM, a_er +x IS the invariant matrix element de-
scribing the process. For the elastic electron nucleoN)
[Fig. 1(a)] and electron deuteroreD) scattering in the im-
pulse approximatiofFig. 1(b)], we have, respectively:

PA=P, Px=p'=p+q,
dp; for eN scattering,
d’TX:—
(27)32E’
(2.9
Pa=Pp, Px=p1tp.=Pp+aq,

g dp; dp, for eD scattering.
Y= ,
X (2m)32E] (2m)%2E,
(2.9
Using the identity
dp; d*p;
———=48((py)?>—m? : 2.1
(2m)2E] ((py) )(277)3 (2.10

the elasticeN and the inclusiveeD cross sections are ob-
tained by integrating over the*p; :

do_ 1 f M %(2m)
dg’kor 4kpA et+A—e’+X m
g/
><5((pl+q)2—m2)2( dr, (2.1)

2m)3
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The square of the invariant matrix element in E2.11),
averaged over the spins of the colliding particles and
summed over the spins of the scattered particles, can be cast
in the form

| Meiaser +x|2(2m) 8((p1+q)%—m?)
4

— € nv A
_EL (kvq)W,uy(pAvq)v (212)

where the leptonic tensdr*” has the familiar form:

2
q
Le(k,a) =2| 2k,k, = (k,a,+k,0,) + gw;) :

(2.13

As for the hadronic tensow"

_ vy @ppearing in elastieN
scattering, one has

W},(a%,p;- )
=3Tr{(p1+mISNQ?) (p1+a+mIeNQ?)}
X (2m)8((py+q)>—m?). (2.149

By contracting Eqg.(2.14 with the leptonic tensor, Eq.
(2.13, one obtains, in the nucleon rest systgm=(m,0)],

the well-known Rosenbluth cross section. In the case of a
complex system, e.g., the deuteron, only the general expres-
sion for the hadronic tensor can be unambiguously defined in
terms of the two independent structure functions,
lez(qz,pD-q), whose explicit form, however, relies on par-
ticular theoretical models; the model adopted in this paper is
described in the next subsection.

B. The hadronic tensor

Our strategy in computing the hadronic tensor for a com-
posite system is the following one:raicleonictensor opera-

tor (A)l’)‘y will be defined, whose expectation value between
relativistic hadronic statepA) generates the corresponding
hadronic tensor, according to

W, =(A|OY |A). (2.15

The general requirements for the operaﬁzﬂy are as fol-
lows:

(i) it should lead to Eq(2.14 when sandwiched between
free nucleon stategA)=|N));

(i) when sandwiched between deuteron statés) (

whered is the phase space factor corresponding to the fina|D)) it should incorporate the effects from the Fermi mo-

hadron stateX without the hit nucleon(),, is the scattered
electron solid angle, angl, is the initial nucleon momentum
in eN (p7=m?) andeD (p;=Pp—p,, p>#m?) scattering.

tion and the off-mass shellness of the hit nucleon.

The operator@MV, Eqg. (2.195, due to the choice of the
vertex(2.6), has the following form:

034003-3
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ON,(p1,a) = (2m) 8((p; + )2~ m?)| F3(Q3)ON(py1,a)

5 F(QYF Q10 (p, )

2
+4—F2(Q >o<2)<p1,q>], (2.16

where

éi}g(pl !Q) = 2[ - g,u,v(iil—’— a_ m) + 7;1,pr+ 7Vplﬂ]1
(2.17

OU2(p;,q)=4[g,,(-ma+(g®+qpy)], (2.1
O0@)(p1,a)=2[g,,(MF+p162—G(g>+2qpy))

_qZ( yuplv+ yvplﬂ)]1 (219

and all terms proportional tg,,(,y have been omitted in view

of the gauge invariance of the leptonic tens@@.13),
AumL*'=0. In Egs.(2.19—(2.19 and in the rest of the

paper the short-hand notatignwill be used for the scalar
product of a four-vectop with y matrices, i.e.p= YuP*. In
actual calculations we first contraClN with the leptonic

PHYSICAL REVIEW C 60 034003

Let us discuss the meaning of the ter2s21)—(2.23:

f)stat represents the contribution from the interaction of the
lepton with the nucleon at rest, and in caseedf scattering
its average over nucleon spinors yields the Rosenbluth cross

section; 50, Originates the motion of the nucleodD
takes into account the off-mass shellnespé;(mz) of a
bound nucleon, and therefore contributes only to #i2
cross section.

As already pointed out, theN andeD cross sections are

obtained by sandwiching the relativistic opera&fh(rp1 ,0,K)
between relativistic nucleon or deuteron states; this means
that, within the present approach, the hadronic tensor has
exactly the same form for a free or for a bound nucleon. The
only assumption we make is that the electromagnetic vertices
for free and bound nucleons are of the same form, with all
nuclear effects provided by the state vectors. In the usual,
noncovariant plane-wave impulse approximati@WIA),
based on the use of nonrelativistic wave functions, the cross
section off a nucleug\ is obtained by relating the nuclear
hadronic tensoW,, to the nucleon hadronic tensa¥,, by
a convolution formula, with resulting ambiguities as far as
the extrapolation of theN cross section for a bound off-
mass shell nucleon is concerneste, e.g.[23,24).

As previously mentioned, gauge invariance is broken for
the deuteron current corresponding to the choice(Ed.6).
Several phenomenological prescriptions have been, however,

tensorL””, and the resulting operator is then sandwichedsuggested to restore[i23,24. It should be pointed out that
between target ground states. The result of the contraction BUr paper is mainly aimed at theoretically comparing relativ-

(see Appendix A

O(p1,a,k)=L*"0,,,={Ogtat 8Omor+ 804} (277)

X 8((py+q)2—m?), (2.20
where
Oga= 2[ 92— 4mv8+4m€2]A(Q2)+ B(Q)
(2.21)
80 o= 4[mrE—q(kpy) — E(2mE—mv)
+k(2kp;—qpy) JA(Q?), (2.22
2
5©oﬁz—2q2(a+ F1(Q%)
2kq? R
A M+ apyFL(Q)FA(QY)
ot 202
o~ [a(g“+2qp1) [F5(Q7), (2.23
and
2 2
A(Q%)=| F4(QH)— —F3Q?% |, (2.24
B(QH)=(F1(Q%)+ kF2(Q?)32. (2.29

istic and nonrelativistic deuteron momentum distributions
andy-scaling functions, without presenting any comparison
with experimental data which would, of course, require a
serious consideration of gauge invariance violation effects.
The procedure used in this paper can, in principle, be
adopted in the description &D scattering within the non-
relativistic, Schrdinger picture. However, in this case, con-
sistency would require a nonrelativistic reduction of the
vyNN vertex. A systematic study of deuteron electrodisinte-
gration within the nonrelativistic approach taking into ac-
count the FSI, relativistic corrections, and meson exchange
currents, can be found {f25] and references quoted therein.

C. The elastic electron-nucleon cross section

The elasticeN cross section resulting by sandwiching
Ogarand 50, between free nucleon states reads as follows:

do é’Ep1 ~
dQ (p k) recono' (2.26
k/
where(i) fecoil iS the recoil term
- 2Esi? 12— v py, v—2ESir? 612
recon Eﬁ1+q |q| Eﬁlﬂi
(2.27

(it) €Ep, /(p1k) comes from the redefinition of the incident

e “reduced”

flux for a moving nucleon;f(iii) is the
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where

a? coZ( 6/2)

T Mott= 2.2
M 482 sinf(012) (229

N

P

D D

FIGA. 2. The diagram corresponding to the averaging of_the op-iS the Mott cross section. In the above equatiEra
eratorO, Eq.(2.20, between deuteron states. The crossed line cor- 1

responds to the nucleon on the mass shell. = m*+pi, Ep,+q=Vm~+(p;+0q)“. It can easily be seen

from Eqgs. (2.26—(2.28 that for a nucleon at resfp;
electron-nucleon cross section, i.e., the cross section without (m,0) ] Eq.(2.26) coincides with the Rosenbluth cross sec-
the flux factor and the recoil contribution, tion.

2

~

2
0
A(QH)+ —Ztar\Z—B(QZ) D. The inclusive electron-deuteron cross section
2m? 2 within the BS formalism

oN= 0oy E =
ott EplEpl+q

The relativistic impulse approximatioifior the inclusive

[(p1k)?=(p1k)(p1a) —mM?EE' ¢, eD cross section is obtained by averaging the oper@tor

given by Eq.(2.20, with the Bethe-Salpeter amplitudesee
(2.28 Fig. 2. The result is

A(Q?)
m2&E' cos 612

do BS:U fpmax|p|2d|p| 1 fzw de, 1 1
d€'d /o U (2m)* 166 cog(6/2) Jo [Pl-ldl 2WMp [Mp(Mp—2w) 2

1 — N A A - A A
X 5% T{Gm(P,Pp)(P1+M)(Ostart 8Omort 041 (P1+M)Gu(P,Pp)(p2+m)}|,  (2.30

wherep,;=Pp—p,, Gy is the Bethe-Salpetdd— NN vertex,M is the deuteron total angular momentum projectjois the
relative momentum of the nucleons, i.p,,=Pp/2%p. The deuteron-nucleon vertey, is the truncated Green’s function
which is related to the conjugated Bethe-Salpeter amplitigeby

(pa+m) (p2+m)
Yu(p,Pp)=———5-Gu(p,Pp)———-. (2.3
m(P,Pp) (02— ) m(P D)(pg—mz) 1

The limits of integration in Eq(2.30, |p|min=|Y| and pnax are obtained from energy conservation provided by déhe
function

. MD(MD+ZV)+q2—2w(MD+y))
8(Pp—pota)?—m?)= 5| cosf,— , (2.32
(Forpera) ) 2[p|-|dl P 2]
|
which determines the value of cgsfrom the constraint: 1 e
1<cosfp=1 (2.33 [Plmax=7 | (Mp+ %) \[ 1= ——+[d] { =Prmax,
—1=<cosf,<1. _
p (2.39

Solving the inequalitieg2.33 with cosé, defined by the

argument of theS function (2.32), we obtain the same result wheres denotes the Mandelstam variable for 4 vertex

asin[9], i.e., s=(Pp+q)°=Mp(Mp+21)-Q%  (2.39
10 mi :1 (Mp+ ) /1_ 4m2_| HEN It can be seen from Eq2.39 that p,,.x Sharply increases
Plmin=7 bV s A= with |g|, such a circumstance, as we shall see, has relevant

(2.39 consequences for the occurrenceyafcaling.
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In the calculation of the trace appearing in £2,.30, two

different operators have to be considered, namely the scala‘é

operator,1, coming from Oy [Eq. (2.21)], and the vector

operatory,, , contained ind0,,orand 80, [Egs.(2.22 and
(2.23].

We have calculated the BS average of these operators pl
<i)p0,e and(y,)pole: Where the subscript “pole” means that

the trace in Eq(2.30 has been obtained using Eg.31) and

by evaluating the integral ovgr, in the pole corresponding

to the second particle on-mass sHédlr details, see Appen-
dix B), i.e.,

Poo=W=yp=+m?,

Mp

po:T—W, p1o=Mp—w.

(2.37

PHYSICAL REVIEW C 60 034003

2
Z 1

®), (GeV/e)

pole’

L B

BS
“pole

2
A
-
v

<%,>

10! E

101 f

101

102k

103k

104 ' L ' L A 104 ! ) ! . RN
0.0 02 04 0.6 08 10 0,0 0.2 04 0,6 0,38 1,0

p.GeVic p.GeVic

FIG. 3. The Bethe-Salpeter matrix elemer(l$>p0|e(p) and

TheeD cross section can now be rewritten in terms of the( )53 (p) (solid lineg compared with their nonrelativistic limits,
nucleon pole contributions to the vector and the scalar part&q. (2.44, computed with nucleon momentum distributiog(p)

namely,
BS

do B Pmax P|2d|p|
| =owmon(2m) 2
de&'dQy/ vl (2m)

1 JZW dep

885’c052(9/2) 2|p|-|af

X (fstart OF mott 6f off) » (2.38

where
fstar= Zm[q2+4&€’]A(Q2)+ B(Qz)}u-)pole(p
(2.39
mot 4{ 2m5€’<1>pole(p)+[ qﬂ(kpl)
+KA(2kp1— AP v, poid P A(Q?)
(2.40
8t o= —20° q/j'(')’,u>pole(p)+ <1>pole(p) 1(Q2)

+qp1<1>pole p)]Fl(QZ)FZ(QZ)
2~2
Pl (7, el P)(G%+2qpy) IF5(Q?).

(2.4))
Let us compare Eq2.38, which represents the B&D

corresponding to the realistic Bori@7] (dashed, Paris[28] (dot-
ted, and Reid 29] (dash-dottefinteractions.

d PWIA p E-
_ Uo —(2 f max d N p+q
(dg,ko'>eD (2m) ] |p| |p| o(p) |q|

X(Tept Ten)s (2.42
where;ep(n) is the relativistic electron-nucleon cross section
for a free moving nucleofsee, e.g., Ref23]) and the non-
relativistic momentum distributiomp(p) is normalized as
follows:

f dpnp(p)=1. (2.43

The most relevant difference between E@2.38 and
(2.42 arises from the noncovariant treatment of tbBe
—NN vertex which, in Eq(2.42), is entirely determined by
a single quantity, the nucleon momentum distributigy{p),
whereas in the covariant BS cross section, @439, it de-
pends uporzil)we and(yM>pOIe In order to exhibit the quan-
titative dlfference between the two cross sections let us com-
pare (1)85 pole @nd <7M) e With their nonrelativistic limits
(|p|2/m2< 1) which are given by(for details see Refs.

[19,26)):
(V) hsdP) = (2m)3(p,, [Ep)np(p),
<1>pole(p)_’ zw)s(m/Ep)nD(p) (2.44

where p,=(E,,p) and np(p) is the deuteron momentum

inclusive cross section in which the matrix elements of botrdistribution.

theeN and theD — NN vertices are treated covariantly, with

the usual noncovariant PWIA cross section, where é¢hé

In Figs. 3 and 41)55, and(y,)ps. are compared with
their nonrelativistic I|m|t obtained with(p) corresponding

vertex is treated covariantly within the instant-form of dy- to various realistic interactions. Using Eq2.44) the non-

namics, and the verte®—NN is treated noncovariantly

within the Schrdinger approach, viz.

relativistic limit of the BS cross section can be obtained
straightforwardly, viz.
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] to makep a2 and the dependence EfeN (or Tep) UpON
i Ip| very weak. In such a case, E@.45 can be cast in the

1L

- 10 E following form:
/'a NR
= do Eviig o
> ] — | =(sagtse) 2l (op f d|p|n
@ 1005 3 (dg,koJeD (ep en) |q| ( ) |Y\|p| |p| D(p)y
o F ] 3.2
o

2 wheresgy andEy ;g representr,y and p+q. Calculated at
2 & 101 3 3 Ip|=|plmin=|y| and are taken out of the integral. Such an
A, ' ] approximation has been carefully investigated in R&fand
a found to be valid within few percents, provide®?

>0.5 GeVf/c?. It is clear therefore, that at large values of

3 |g| the following quantity(the nonrelativistic scaling func-

102
s tion)

- |q| do |\
‘ 3 FY%(al.y)= ( ) /(s tSen)
10-3 (|q| y Ey+\dl de'dQ, . ep ™ 2en
] (3.2
4 . will be directly related to the longitudinal momentum distri-
o4l— v _
00 02 04 06 08 L0 bution [5]

p,GeVic

FNR(lal,y)—=f(y)=27| [pldlplnp([p]), (3.3
FIG. 4. The same as in Fig. 3 but for the vector density 1yl

BS H o~
{72)padP) corresponding to o8 =1. whose first derivative will provide the nonrelativistic mo-

do NR o E- - mentum distribution. As already pointed out, the condition
<—> =(2m) max|p|d|p|nD(p)ﬂ(}ep+}en), for the occurrence of nonrelativistig scaling is that Eq.
d&'dQy/ Iyl |l (2.45 could be cast in the forni3.1), which means thati)

(245  Q?>0.5 GeV¥/c? in order to make the replacemeaty

wheregon=cen(|pl.|al,») is given by Eq.(2.28, without |__)Te’|\‘) >a|n(|j [Epr“Eq_;Eé*é% ;r?j(sébé%] %ngr((ljlgr E)mgxatlﬂgte
the off-mass shell contributidriEq. (2.41)], which can easily they ins/e ral. qo.f ' the rﬁomentum distribution
be shown to vanish in the nonrelativistic limit. P 9 " L '
Thus, we have demonstrated that the nonrelativistic limit/ ;] {PdIpIno(|p)— [y [pld|pInp(|pl). Condition (i) ob-
of the BS inclusive cross sectiq@.38, obtained by taking Viously implies that the larger the value of|, the larger the
the nonrelativistic limit of<i>'?3€ and (y,)B5., has exactly value of|q| at which scaling will occur. The satisfaction of
the same structure as the instant form result of f&f.apart ~ the inequalitieq|>2[y|,xg;>1 lead, for any well-behaved
from some minor differences between the relativistii  No(/p|), to the following conditions for the occurrence of
cross sectionsrey and .y, which are irrelevant for the nonrelativisticy scaling:
present paper, and which will be discussed elsewf22g
In closing this section, the following remarks are in order:

(i) the BS covariant inclusiveD cross section does not fac- Note, that the above conditions are very different from the
torize into a product of an electron nucleon cross section andqqitions for Bjorken scaling'=|q|. Let us now discuss

a delutedr%cn s;[ructurhe funct||o n. In th|s' resplz)s/%tl t..he ?ﬁya”anltelativistic scaling. To keep contact with nonrelativistic scal-
results differ from the usual noncovariant PW &) within ing, let us define the following relativistic scaling function:
the BS formalism the interacting nucleon is consistently

2m/3<v<|q|, |g|=2m. 3.4

treated as an off-mass shell particle. Consequently, the ma- lq do BS

trix element of theyNN vertex is half off shell for theeD FB(|ql,y)= - ( ) / (SeptSen),
scattering. As a result, additional off-mass shell effects, rep- Eyria \dg'dQy/

resented by Eq(2.41), arise due to covariance of the ap- (3.5
proach.

with (da/d€"dQy)ES given by Eq.(2.38. In the rest of the
IIl. THE RELATIVISTIC SCALING FUNCTION paper the following questions will be answered:
(i) Does(and at which values dfj|) Eq. (3.5 scale iny?
(ii) If scaling does occur, can a relationship be established
In the nonrelativistic case, the conceptyagcaling can be between the asymptotic scaling function and the momentum
introduced when the value ¢f| becomes large enough so as distribution?

A. Nonrelativistic and relativistic scaling functions

034003-7
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140 132 129 Xy 175 160 154 X,
2.0x104 T T T 3.0x10-5 T T .
y=-0.4 Gev/c
1.5x104 y=-0.2 Gev/c ]
7 2.0x10-51
>
§ 1.0x1041 f,
2 1.0x10-5-
>y 5.0x105 ]
= 0 50 100 150 200 0 50 100 150 200
A
(S
196 182 173 Xy 195 187 Yy
1.4x105] 1 4.0x106f =0.8 Gev/c
1.2x10% y=-0.6 Gev/c 1 3.0x106}
54 ]
LOx10: 2.0x106}
8.0x10; i
1.0x106}
6.0x10 i
0 50 100 150 200 0 50 100 150 200
IqP?, fm™

FIG. 5. The scaling functiof®5(|q|,y), Eq.(3.5) vs|q|? for various values of. For the sake of completeness, the value of the Bjorken
variablexg;=Q?/2mv is also shown.

It is clear, by looking at Eq(2.38), that relativistic scal- which has been adjusted to provide a numerical solution of
ing, as the nonrelativistic one, is entirely governed by thehe homogeneous BS equation. Recently, the solution be-
value of pax [EQ. (2.35], in that one expects that, starting came available in the form of analytical parametrizations ob-
from a certain high value dfj|, pyax becomes large enough tained by fitting the numerical solution to the BS equation,
as to saturate thgp| dependence of<i)p0,e(|p|) and using the least-squares proced(i2®]. The details of nu-
(7w po|PI)- It should be pointed out that if scaling of Eq. merical calculation of various matrix elements appearing in
(3.5 is observed, this would imply that a factorization of Eq. e D electrodisintegration are given in Appendix B.

(2.38 similar to the one occurring in the nonrelativistic case  In Fig. 5 the approach to scaling of the BS scaling func-
[i.e., EQ.(3.2)] occurs in the relativistic case as well. Such ation (3.5) is shown for various values gf It can be seen that
factorization, due to the complex structure of E238 is,a  scaling is approached very rapidly due to the sharp increase
priori, not obvious. As for the second question, it is by noof p__ in Eq. (2.38 with |q| (cf. Fig. 6). It can also be seen

means a frivial one, for in the BS case even the concept ghat the value oflg|, at which scaling is reached, sharply
momentum distributions is not well defined. Neverthelessincreases with the value ofy, going from [qf

we will see that the concept of relativistic momentum distri—N1 GeVic (v~0.3 GeV), aty=-0.2 GeVk, to |
butions can be introduced, and that a relationship of such a , ./, (v~0.8 GeV) aty=—0.8 GeVk. These val-

momentum distribution with the asymptotic scaling functlon,ues match very well the condition for nonrelativisgiscal-

can be established. ing (3.4); this apparently surprising result will be explained
later on. Let us now briefly discuss the role played by inelas-
tic channels on the scaling function. It can be shd®8]
that for all values of/ presented in Fig. 5, the values ofand

In this section the results of numerical calculations of the|q| in the region of the approach to scaling are below the
relativistic scaling functionF®5(|q|,y), Eq. (3.5, will be  pion production threshold, which can be reached only at
presented. In our calculations the numerical solufit®21] higher values ofq|, providedQ?<5 Ge\?/c?. Therefore,
of the spinor-spinor BS equation containing a realistic oneinelastic excitations of the nucleon are kinematically forbid-
boson-exchange interaction kernel, which includes the set afen in a wide range ofqg| for a given value ofy. The
T, o, o, p, 7, andd exchanged mesons, is used. The mesorasymptotic scaling function is shown wsin Fig. 7, whereas
parametergmasses, coupling constants, and cutoff paramthe contribution of the off-mass shell terni®.41) is pre-
eterg have been taken to be the same as in RdfS,16], sented in Fig. 8. By comparing the two figures, it can be seen
except for the coupling constant of the scatarmeson, that the off-mass shell corrections are negligibly small in the

B. Numerical calculations of the relativistic cross section
and scaling function

034003-8
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10! . . . .
o
~—
> -5
O 10 |
g ——y=00
il [ y=-0.2 GeV/c 1
~~~~~~~~~~~~~ y=-0.4 Gev/c
.................. y=-0.6 GeV/c
-———y=-0.8 GeV/c
—6
-1 1 1 1 1 10 L
10 0 10 20 30 40
Iql, fm-1
FIG. 6. The dependence of the upper limit of integratiphy,ax
in Eqg. (2.39 upon|q|, for fixed values ofy.
whole range ofly|, and in what follows they will be disre- _
garded. Figure 9 illustrates the role of the “moving” com- 10
ponents, Eq.(2.40, calculated at different values dfj|

=3, 10, and 18 Ge\: as expected, these corrections in- -1 -8 -06 -04 02 0

crease witHy| and are practicallyg| independent. The vari-
ous contributions to the total scaling function are presentec y,GeV/e

in Fig. 10, whereas, in Fig. 11 the asymptotic relativistic BS

scaling function is compared with the nonrelativistic one, FIG. 8. Off-mass-shell contributions f&%(y): the three curves

calculated with various realistic interactions. It can be seeigorrespondfrom the top to the three terms of Eq2.41).

that for|y|>0.4 GeVk, the differences between the BS and

the nonrelativistic scaling functions are very large, except foiinclusive cross sectiof2.38 into the freeeN cross section

the Reid soft core interaction. and some kind of deuteron structure function. Due to the
The scaling behavior of the relativistic scaling function complexity of Eqs(2.39—(2.41), neither the origin of such a

(3.5 shown in Fig. 5 would imply the factorization of the BS factorization, nor the nature of the deuteron structure func-

tion are clear at the moment; they will, however, be dis-

o cussed and clarified in the next section.
102 ¢ E
_ ] IV. RELATIVISTIC MOMENTUM DISTRIBUTION
Since in the covariant BS formalism the deuteron ampli-
_ tude does not have a probabilistic interpretation, the concept
> 103 F E
2 T T T T T T T T
é _ 102 e Iql=3 Gev/c 3
%_‘ > - Iql=10Gev/c ]
% ----- Iql=18Gev/c ]
104 3 2100
9 ]
104 3
102 E ]
105 5
10-6 P R T T | 106 il ) ; . )
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 -1.0 08 06 -04 -02 00
y, GeV/c y, GeVic
FIG. 7. The asymptotic scaling functioh®S(y) computed FIG. 9. The “moving corrections” t&=25(|q|,y), Eq.(2.40), for
within the Bethe-Salpeter formalisfEq. (3.5 evaluated atq| |[g|=3, 10, and 18 GeW, respectively. The solid line is the
—]. asymptotic scaling functiofi®S(y).
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102 102 _

= Static

f 55(y), Mev !

103]

f B5(y), MeV-1

104]
10-3

105]

106]

104

10-7 ;_ | 1 1 1 1 1 3
-10 -08 -06 -04 -02 00
y, Gev/c

FIG. 11. The BS asymptotic scaling functi¢full) compared
with the nonrelativistic scaling functio(8.2) corresponding to the
Reid (dashegl, Paris(dotted, and Bonn(dot-dashefinteractions.

105

positive energy states with=0,2, so that one may expect
o the probability of negative energy states witk=1 in Eq.
e (4.1) to be much smaller than the probability for tA&; *
106 —t 1,1 and®D; * states. Moreover, it can be shown that the waves
1.0 08 06 04 02 0.0 3s/ " and °D; * directly correspond to th& and D waves
y, GeV/e in the deuteron, with the waves with negative energy vanish-
ing in the nonrelativistic limit(The connection between the
FIG. 10. The various contributions to the asymptotic Scalingpartia| amp”tudes defined in the Dirac and W}Sp"] repre-
function f(y). Dot-dashed line: the static pa@.39; dotted line:  gentation can be found in RE1.8].)
the “_moving” corrections(2.40. The solid line is the total scaling Let us now investigate analytically the matrix elements
function[Eq. (3.9 evaluated afq|—<]. (V)i P) and(1)554p), Egs.(2.39—(2.41). Their explicit
£Sxpressions are

of momentum distribution is ambiguous. Nevertheless, w

will now rearrange the matrix elements bfand ¥, N such
a way that, under certain conditions, they could be inter-Rgo(p)=
preted in terms of a relativistic momentum distribution.

Let us return to the main quantity, E®.30, and try to
analyze it analytically in more detail. To this end, it is con-
venient in the decomposition of the BS amplitude to shift d
from the Dirac basis, used in RdfL9], to a basis of spin- X Gy (Pat+m)] 9Po
angular matrices[15,30, i.e., an outer product of two 2
spinors, representing the solutions of the free Dirac equation
with positive and negative energies. This basis, wrlich is freyyhere® stands for eithety, or 1. Now instead of calculat-
quently used, is labeled by the relative momentpmthe  ing the pole contributions in Eq4.2), we go back to the
helicities\;, and the energy spip; of the particle§15], and  original definition of these averages, following E¢8.30
is sometimes called thel(\;,\,,p;1,p,) representation. The and(2.31), namely,
spectroscopic notations are used for the partial amplitudes
viz. L2 e,

1 1 1
—1
6Mp W (pf-m?)? (p5—m?)

XTr[ G(py+m)O(py+m)

, 4.2

pole

Ro(p)=

T T b D b P T - R
(4.2)
: 4.3

Po=Mp/2—E,

X‘I’M(Pz_m)])
The partial amplitudes in the bagi.1) exhibit a more trans-

parent physical meaning, since they can be compared with

the deuteron states in the nonrelativistic limit. It is intuitively and calculate directly the tradd.3) evaluated ap,=Mp/2
clear that the two nucleons in the deuteron are mainly in—E,. Here it is worth emphasizing that in our case, when

034003-10
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one particle(the second one in the present notation-

mass shell, only four partial amplitudes contribute to the pro- 6Ri=— (277)3E—
2

cess[13], namely, only those partial amplitudé4.1) with
the secondp-spin index positive, i.e., théS, ™, D] ",

p;*, and 3P * amplitudes. In correspondence to these
contributions, we introduce the Bethe-Salpeter wave func-

tions for each vertex, viz.

Wa(pg o]y =L G5 (PorlpDI27
SO 2 2Mp(2E,—Mp)

Gp* (po.lph/2m

v = 4.4
D(p0!|p|) \/E’]T \/WD(ZEZ—MD), ( )
1 G, (polphi2m
‘I’Pl(p01|p|):\/§ﬂ_ \?MMD ;
G, "(Po.lp)/2m
P
(4.5

\I,F’s(p01|p|):\/§77 JMMD ’

PHYSICAL REVIEW 60 034003

[V s(Po,|P) (e, (Po,IP])

m [Zﬁlpl

3m

~\2%5 (po.IpI)+ ¥ (Po. [P (V2¥5 (po.|p])

+\pr3<po,|p|>)]]. (4.1)

As a conclusion, the inclusiveD cross section will be
given by Eq.(2.39 with Egs. (2.39—(2.41) for (1)®S and
(y,)®° replaced by Eqs4.7)—(4.11).

From what we have exhibited, it can be seen that in the
BS formalism, there is no universal momentum distribution
[cf. Egs.(4.7)—(4.9)] so that, in principle, a factorized cross
section in the form(2.45 does not hold. This is a conse-
quence of the covariance of the BS formalism, where the
small component$4.5 with negative relative energies are
taken into account. It has been shoj8] that the contribu-
tion from the waves with positive relative energies are much
larger than the one frorﬂf,z;.(po,|p|), which therefore, can
be disregarded. However, the correctigdslQ and (4.11),
resulting from the interference between large and small
waves contribute both to the static and to the moving
nucleon contribution to theD cross section andy priori,
cannot be disregarded; accordingly they will be taken into

where the normalization factors have been chosen so as i@..oynt in our calculations. Let us now introduce the follow-

correspond to the nonrelativistic normalization of the deu

teron wave function:

| dowpr+wion -1 4.6
Then forRg we obtain

Ryo=(2m)3(WE&(po,|p)) + W (po.|p) + W5 (o, p])

+W5.(Po.lpD) (4.7
R;=(Zw)3E%(‘I’§(po,|p|)+‘1’%(po,|p|)
~ W2 (Po,[P) = W3 (Po.lp)+6R;, (4.8

i 32 2 2 Y
Ri=(2m) EZ(‘Ifs(po,lle‘IfD(po,lpl) V5 (Po.|pl)

=3 (Po.pD)+ Ri, (4.9
where
2y/3m
572;:(277)3%{Tm[q’s(ponD(‘PPl(pmmD

~\2Wp (po. [P+ Wo(po,|PD (V2Wp (po.|p])

+‘I’P3(po,|p|))]]a (4.10

ing quantity, which will be called hereaftehe covariant

relativistic momentum distribution

NBS(pg,p)=N(po,p)+ SN(py.p), (4.12
where

N(po.p)=(PE&(po,Ip)+¥5(po,lp]),  (4.13

2\3
5N(po,p)=:T[‘Ps(po,lpl)(*l’pl(po,lpl)

— 25 (po.[pl))
+¥p(Po. P (V2¥5 (Po.Ipl)
+\I}P3(p01|p|))]+- (4.19

Since the relative energy, is fixed, the momentum distri-
bution (4.13), which is defined only in terms of th&and D
components, resembles the nonrelativistic distribution
np(p), and therefore it is expected to provide the main con-
tribution to theeD cross section.

Thus the matrix element®g, Egs.(4.7—-(4.9), can be
written in the following way:

D N(povp)v ,LL:O,
= 3K,
Ry” (27T) E2 N(po,p)-l-%&N(po,p), /u'=(11213)
(4.1
M p|
Ri=(2m) g N(Po,p)— - 6N(Po,p) (- (4.16
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M (p)|

100 =
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FIG. 12. The Bethe-Salpet&wave |V (po,|p|)| (solid line),
with po=Mp/2— p?+m?, compared with the GrosS wave cor-
responding to the solution Il B of Ref13] (dot-dashefand with
the nonrelativistic deuteroBwave obtained from the Paridotted
and Bonn(dashed potentials.

If, for the time being, the quantityyN(pg,p) is disre-
garded, it is possible to relate the BS incluse® cross

PHYSICAL REVIEW C 60 034003
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FIG. 13. The same as in Fig. 12 for the deutefbmwave.

section to the elastieN cross section for a moving nucleon; from which information on the covariant nucleon momentum

as a matter of fact, by inserting Eqg.15 and(4.16 into
Egs.(2.39—(2.41), one obtains

BS
Pmax

) :@w)[ |pld|p|N(po,p)
Iyl

eD

( do
de'dQ,

E;ic ~ ~
Xﬁ(aep-l-aen).

(4.17
At large values ofq|, Eqg. (4.17) becomes

do ) BS
de'dQ,

Ejgl+y
|q

%{Sep+ Sen

(2m) |;|p|d|p|N(povp).
(4.18

eD

where, as beforez®™ andEj., 4 have been evaluated fil
=|pminl =1y|. If Eq. (4.18 is placed in Eq.(3.5), the BS
asymptotic scaling function is obtained, viz.

(85(y) = MI( do

4 dQy

BS
E - ) {Sep+sen}71
y+lal D

=(2m) @mmemmm, (4.19

distributionN(pg,p) could be obtained.

The asymptotic scaling function, calculated by E419),
coincides with the exact scaling functidiobtained using
Egs.(2.389—(2.4)) in Eq. (3.5] in the whole range oy (the

[ T I T I T ]
—y

i 3 |
F e III -1

P

3
= 102 =
& ]
S0 N/
103 | 3

1 0_4 1 I 1
0,0 0,5 1,0 1,5

p, GeVie

FIG. 14. The Bethe-Salpeter negative relative energy waves
‘prlvg(po-|p|)-
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T T T T T e V. SUMMARY AND CONCLUSIONS
103 —— N®(p lph-BS 1 _ _ _ _
" ™ o n (p) - Bonn ] In the present paper the inclusive quasielastic electron-
S b ] deuteron cross section has been analyzed within the relativ-
> 10tk - ny, (Iph) - Paris istic impulse approximation using recent, realistic solutions
o F N\ T n (p)) - Reid ; [21] of the spinor-spinor Bethe-Salpeter equation for the
& 100F N 8 N(p_pl) - BS deuteron, with the interaction kernel including the exchange
o 101k 0 b of 7, o, w, p, », and § mesons. In our approach, both the
by 3 v*N and theD—NN vertices are treated relativistically,
z 102k ] with eight components for the deuteron amplitude, unlike the
] usual, nonrelativistic approadb], in which they*N is de-
103 \ scribed by a relativistic free electron-nucleon cross section,
104 ] and theD—NN vertex by the usual nonrelativistic two-
] Y _ component Schiinger wave function(we reiterate that
105k ‘ L/ when we refer to the latter approach as the “nonrelativistic”
] one, we refer only to th®—NN verteX. The aim of our
106f ' paper was twofold, viz.(i) to investigate the relevance of
00 02 04 06 08 10 relativistic effects, andii) to understand whether the concept

of y scaling can be introduced in a relativistic description of
inclusiveeD scattering. The main results of our analysis can

FIG. 15. The Bethe-Salpeter covariant momentum distribution®® summarlzedlals fOII_OWS: , ,
(4.12), with py=Mp/2— \pZ+m?, (full) and the contribution due (1) The relativistic inclusiveeD cross section has been
to negative relative energy statés14) (dot-dashefd The nonrela- obtained in terms of the pole matrix eleme(ﬁ$E36(|p|) and
tivistic momentum distributions corresponding to the Bdlot- <7,L>,?§ie(|pl), taking into account the off-mass shellness of
dot-dashel] Paris(dotted, and Reid(dashed potentials are also the nucleon and it has been found that unlike the nonrelativ-
shown. istic case, the BS cross section does not factorize into a prod-
uct of the free electron-nucleon cross section and a structure
largest difference occurring gt= — 0.8 and being less than factor depending upon the deuteron momentum distribution.
10%), which means that the BS inclusive cross section could (2) It has been shown that the BS cross section can be
be safely replaced by its approximatié4.18. In order to  written as a function of the three momentum transtpend
understand such a result, in Figs. 12—-14 the separate B variabley, which is exactly the same relativistic scaling
waves, viz. theSandD waves(full lines of Figs. 12 and 18  variable used in the nonrelativistic approach and resulting
and theP; andP; waves(Fig. 14 are shown. It can be seen from the relativistic instant-form energy-momentum conser-
that the latter waves are smaller by order of magnitudes thawation. Thus, in full analogy with the nonrelativistic case, a
the SandD waves, so that the quantiN(po,p), due to the  relativistic scaling functior=®%(|q|,y) has been defined as
interference term4.10 and (4.11) generated by the nega- the ratio of the BSeD cross section to the freeN cross
tive energy states, turns out to be negligible up|pp  Section(times a proper phase space fagtandy scaling of
~1 GeVlc. Thus we can conclude that in the interval 0 F®%(|q|.y) has been demonstrated to occur, iE23(|q],y)
<|p|<1 GeVic the total distribution(4.12) can be safely — f®(y), with the conditions for relativistigy scaling being
approximated by the diagonal contributiof.13, as illus-  very similar to those of nonrelativistic scaling, i.e.m3
trated in Fig. 15, where the full momentum distributions are<»</q|, [q|=2m.
shown. This is the reason why the BS inclusive cross section (3) It has been pointed out that whereas the mechanism of
factorizes in the same way as the nonrelativistic one, and theonrelativistic scaling is easily understood in terms of the
relativistic scaling functior(3.5) scales iny. In Figs. 12—-15 rapid decay of the momentum distribution,(p), which
we have also compared the full BS results with the resultsnakes the nonrelativistic scaling functiofr"?(|q[,y)
from other approaches, viz. the nonrelativistic Sclimger ~27rf‘3}‘|y|n(p)|p|d|p| to rapidly saturate witq|, i.e., to
approach with different types of interactiofsee also Ref. scale iny, a similar explanation in the relativistic case is not,
[18]), as well as the relativistic approach based upon thén principle, possible, since, as stated in point 1, the BS cross
Gross equationg13]. The BS and the Gros§13]) ap- section does not factorize, and, moreover, the concept of
proaches differ both in the form of the relativistic equationsmomentum distribution in the BS case is not uniquely de-
as well as in the number of exchanged bosons considered fined. Thus, in order to understand the mechanism of the
the kernel(six in the former approach and four in the latter observed relativistiy scaling, the role of the various com-
one), but both reproduce equally well the experimentdl  ponents of the BS amplitude was analyzed, and it has been
phase shifts and the ground-state properties of the deuterofgund that if the extremely small diagonal contribution of the
which is reflected in the very similar behavior of tBandD negative energy waves is omitted, it is possible to define a
waves shown in Figs. 12 and 13; these results also show thabvariant momentum distribution of the fort®S(p,,p)
the high momentum contenj(=0.5 GeVk) generated by =N(pg,p)+ dN(po.p), Where SN(pg,p), which originates
relativistic equation is appreciably higher than the one profrom the interference between the positive and negative
vided by nonrelativistic wave functions. waves, can be safely disregarded provifige<1 GeV/c, so

Ipl, GeV/c
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that, as a result, the BS cross section factorizes in the sam !
way as does the nonrelativistic cross section and the relativ |
istic scaling function becomes F&(|q|,y)
~27-rf|q{ YIN(po.p)|p|,d|p|; such a result provides the ex-
planation for the relativistiy scaling and makes it possible !
to obtain the BS covariant momentum distributions by a
simple first-order derivative of the asymptotic BS scaling
function f8(y)~27 [ N(po.p)pld]p|. _ N o _
(4) The BS relativistic momentum distributiohl(py,p), FIG. 16. The diagram defining the squared invariant matrix el-
and the nonrelativistic onep(p), are practically the same ement for the deuteron in terms of the opera®orEq. (A1). The
up to|p|~0.4-0.5 GeV¢, where they start to differ by an crossed line corresponds to the nucleon on the mass shell.
amount which depends upon the two-body interaction pro-
ducing np(p). To sum up, it can be concluded that, if the (5(12)(p1,q,k)=4q2[(—m?:1+(q2+qp1))], (A5)
effects from negative energly states can be disregarded,
which has been demonstrated to be the case when the

nucleon momentum in the deutergp<1 GeVk, the con- 0®@(p;,q,k) =20 [ mP—q(g?+2qp,— 2kp;)
cept of y scaling can be introduced in the BS relativistic )
description of inclusive quasielastieD scattering, in the —2k(2kpy—qpy)]. (AB)

same way as it is in the conventional nonrelativistic ap-
proach, i.e., by introducing a scaling function which, in the
scaling regime, is nothing but the nucleon longitudinal mo- ‘ , 4 ) ) .
mentum distribution; moreover, both in the relativistic andalmpl'IUdeS’ times the factef/Q", gives the invariant matrix
nonrelativistic cases, scaling is shown to occur in the sam&€Ments. _ X _
variabley, and at values o and|q| such that quasielastic A graphical representation of the opera®(p,,q,k) is

The average of EqA6) with the nucleon or the deuteron

scattering is the dominant process. presented in Fig. 16, where the crossed nucleon line corre-
sponds to a nucleon on the mass shell with the propagator
ACKNOWLEDGMENTS (2m) 8((py+ )2 —m?)(py+q+m).

. ) , The nucleon operatch(pl,q,k) is the central object in
C.d.A. is very grateful to F. Gross for supplying us with ; giscussion about the connection between the nucleon and

the numerical values of the wave functions shown in Figs. 13,6 deyteron cross sections. Let us first consider the differ-
and 13. L.P.K. and A.Yu.U. are indebted to INFN, Sezmneemia' elastic cross section for the processN—e’ +N.

di Perugia, for warm hospitality and financial support. This-l-he invariant matrix element is defined by
work was partially supported by RFBR Grant No. 96-15-

96423.
| Mesnmer +nl2(27) 8((p1+9)°—m?)
APPENDIX A: CONSTRUCTION et 1
OF THE NUCLEON OPERATOR Q4 2 2 <plysl|o(p1'q k) |p1'sl> (A7)

The contraction of the operatof2.16—(2.19 with the

leptonic tensoi2.13 yields
4

e* 1 “ ~
O(p1,9.k)=0,,(p1,a)L*"(k,q) (AL) =§ gTr{(pﬁ m)O(p1,9,K)} (A8)

F2(Q%)0M(py,q,k) Let us first obtain the cross section in the rest frame of the
nucleon[p;=(m,0)]

+_F1(Q )F2(Q%)0M(py,q.k) 1 L
TPt mgi=2my,  STrH{(py+m)k}=2me,

2
K ~
+RF§(Q2)O(2’(D1,q,k) (A2)

1 ~
X (27) 8((p1+ )2 —m?), (A3) ST (Pt m)}=2m, (A9)

where Kpi=mé&, gpy=mv, (A10)

OM(py,q,k)=2[a’m—q(q?+2kpy) +k(4kp,—2qpy)],
(A4) so that
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| Mesnoer +n|2(27) 8((p1+ )2 —m?)
4
—[4(m?q?— mv?—4m?vE+ AmPE?)F3(Q?) + 4kq*F 1(Q?)F,(Q?)

Q4
+ k2q2(q2— 42+ 4vE)F5(Q?)](2m) 8(2myv—Q?) (A11)
et [ 0 2 0 2 0 «202
251611255’_(00525—%sinzz)Fi(Qz)—%sinzzFl(Q )F q 1+sir? ) g(QZ)]
X (27)8(2myv—Q?) (A12)

4

[ 2
=516m2&5” 00522( l(Q )—

q2 q?
F3(Q )) ——Sln2 (F1(QY)+ kF5(Q%)?

(2m)8(2myv—Q2).

(A13)

Inserting the last expression in E@.11) we get the Rosenbluth cross section:

do LI P ( FrQ - <0 (Q)) 75 (F(Q%) + kFo(Q)2 | (2mu—Q?) (ALY
= = ~ —SI K my—
de'dQ,, 2&2sirf(6/2) ! P2 ! 2
2~2 2 2
_ TP Ry B ) 2 21)2 _Q_
= OMott (Fl(Q ) am? F2(Q )) 2m2tar‘22(F1(Q )+ kF2(Q%)) Y oml (A15)
|
Let us now consider theD cross section. To this end, we . o ~ q? ’
will consider an arbitrary reference frame where the four 60.4=—20° q+ ﬁ)Fl(Q )
momentum of the nucleon ip;=(p19,p1); Moreover the
nucleon can be off-mass shepq#m?). 2kq? - 5 5
Our strategy now is to explicitly separate that part of the tm (=ma+apy)F1(Q7)FA(Q)

operator describing the free nucleon at rest, i.e., the part de-
fining the cross sectiofA15), from the remaining parts of 2
the operator due to the nucleon motion and the off-mass- _Z_[Q( 9%+20p,) IF5(Q?). (A18)
shell corrections.

Rearranging the terms in EqéA1)—(A6) according to .
their contributions, we find It can be seen that in EGA17) A(Q?) and B(Q?) are

weighted by two different functions, viz. a scalar, and a mix-
ture of scalar and vector terms, respectively. This is a result
of the relativistic structure of our formalism, in which, unlike
the nonrelativistic case and the relativistic case for a nucleon
at rest, the vector charge density does not coincide with the
probability density. Because of the different structure of the
A o _ . weighting factors ofA(Q?) andB(Q?) in O, the average
whereQ,, is the sum of terms contributing to the invariant vall?e of%he latter calf:ulezted for g[he)deute?gn will not fa%tor-
matrix element for the free nucleon, ad® is the sum of  jze into a common term foA(Q?) andB(Q?). However, if

the terms providing the off-mass-shell corrections. Since wehe difference between the vector and the scalar charges is
can add to and subtract from both terms in EL6) pieces  not too large, one could be able to define a common term for
VaniShing for a nucleon on the mass She”, the Separation qﬁbthA(Qz) and B(Qz), p|us proper correction terms. There-
O,n and 80 is not unique, but the physical results do not fore, we redefine our definition @,

depend on the way this is done. In our definition

22

O(p1,9.k) ={Opn+ 80}H(27) 5((p1+q)2— m?),
(A16)

éonE ostat+ 56mota (A19)
4

~ q -
oonzﬁB(QZ)+z[q2m—2q(kpl) A ore2 2 21 P52
Ogia=2[q°m—4mvE+4mE2]A(Q?) + —B(Q?),

+2k(2kpy—apy) JA(Q?), (A17) (A20)
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‘Wick rotation A 10%
WL vV
3 2 B e ) e 10
_________ :____________,___‘ 1 4 >
ReP
-2
10
16°
FIG. 17. The integration contour in E@2). The singularities 1
and 2 correspond to the first and second particles on-mass shel
p1o=W andp,,=w, respectively, whereas the singularities labeled 0 0.5 1 15 0 0.5 1 15
as 3 and 4 correspond to both particles off-mass spef= —w p, GeV p, GeV
and pyg= —W.
FIG. 18. The deuteron densitie&) (yo)(|p|). The solid line
A ~ © corresponds to the integration oveg, and the dashed line to the
= - - —mv)+ - >
OOmor=4[MrE—q(kpy) = &(2mE=mw) +k(2kpy nucleon pole contribution; the nucleon pole contribution to the sca-
—qpy)]AQ?), (A21) lar density(1)(|p|) is given by the dotted linetb) (1)(|p|). The

solid line corresponds to the integration oygy and the dashed
line to the nucleon pole contribution; the dotted line represents
the nucleon pole contribution to the scalar density calculated via

whereO..is a scalar operator defining the invariant matrix
o (vo)(Ip)[1—p?/(2m?)].

element for the nucleon at rest aa®, is defined by the
combination of scalar and vector currents, which gives

. ; %ulation of matrix elements in the form of E(B1) and the
nonzero contribution for the moving nucleon.

matrix elementg2.30), we introduce the deuteron densities
(see also Ref.31)]):
APPENDIX B: THE POLE STRUCTURE OF THE MATRIX

ELEMENTS WITHIN THE BS FORMALISM

- i d 1
In computing the deuteron observables within the BS for- (O)Bs(p)zzwI (Zpo) 7
malism, i.e., the matrix elements of a given operator b ™) (pr—m*+ie)*(p;—m°+ie)

(D|O|D)=(0), one makes use of the Mandelstam tech-

1 — -
nique, which yields X3 % Tr{Gw(Po.P)(Py+m)
e dd . X O(p1+m)Gu(Po,p) (P + M)}, (B2)
©)=5-| . .
2Mo ) (2m)* (pi—mP+ie)’(p3—m?+ie) where the integration contour is shown in Fig. 17. There are
1 B two kinds of singularities in Eq(B2): (i) when one of the
X= > TH{Gw(Po.p)(P1+m)O(p;+m) particles is on mass shelb;;=w or p,,=w, labeled “1”
3 W and “2” in Fig. 17, and(ii) when both particles are deeply

- virtual, pjg=—Ww or py,,=—w, labeled “3” and “4,” re-
XG(Po,p) (P2 +m)}. (B1)  spectively. As previously mentioned, in E@2) the singu-
larities are removed by performing the Wick rotation and by
!t can bfa seen that in E¢B1) there are poles .and cuts iAn the :E;e%r]z[";%r?tf&? ;[ICS Iéroasg;nﬁ\ r?/namz %Bbggftgggqﬂ ;ﬁ:‘t and
integration oveip,. However, the whole matrix eleme(®)  jntegrate Eq(B2) in the Minkowsky space. Thus there re-
is real and finite. This allows one to perform the Wick rota- main two singularities contributing to the full densities, a
tion in the complex plane of the relative eneqgyand safely simple pole ap,,=w, and a pole of second order pty=
compute the integrals in E¢B1). Moreover, in this case the _\y The former, which corresponds to the spectator on the
BS vertex functionGy(po,p) depends upon the imaginary mass shell, gives the dominant contribution to the full inte-
part of po, which allows one to use directly the numerical grg). It is exactly this contribution which enters our formulas
solution[21,2Q obtained in the rotated system. In particular, iy sec. II[Eqg. (2.30], and in Sec. I[Egs. (2.39—(2.41)].
when(O) is defined at fixed value gf, (which is just the The approximation of the full matrix elements by the
case ofeD processes investigated in this paptite Wick  nucleon pole contribution is often used in describing the pro-
rotation is no longer relevant in the computation of matrixcesses with the deuterdi3,32. Accordingly let us define
elements. In order to establish a connection between the cale nucleon pole contribution to the full density:
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: =S Tr{Gu(po.p)
— r ,
2Mp 2wM3(Mp—2w)2 3 47t MPoP

<©> gcﬁe( p)=

X(py+m)O(py+m)Gy(Po,p)(Po+m)}.
(B3)
It can be seen that the matrix elemént30 is the pole part
of Eq. (B1). Insofar as the pole contributigiq. (B3)] domi-
nates the full densitjEg. (B2)], the relevant quantitig€gs.
(2.39—-(2.42)] can be calculated by using the Wick

PHYSICAL REVIEW 60 034003

rotation and by computing numerically the integ(BR) in

the rotated system, using the numerical solutions of the BS
equation obtained in Ref21]. Figure 18 shows the charge
(yo) and scalar1) densities computed by Eq#B2) and
(B3). It can be seen that up tp| ~0.65 GeVk, both meth-
ods provide the same resulfabove 0.65 GeW the pole
contribution has been calculated using for the BS vertex
functionG,,, the analytical parametrization from Rg20]).
More details on the behavior of various full and pole densi-
ties can be found in Ref31].
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