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Relativistic structure of the deuteron: Electrodisintegration and y scaling

C. Ciofi degli Atti, D. Faralli, A. Yu. Umnikov, and L. P. Kaptari*
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~Received 15 September 1998; published 29 July 1999!

Realistic solutions of the spinor-spinor Bethe-Salpeter equation for the deuteron with the realistic interaction
kernel, including the exchange ofp, s, v, r, h, and d mesons, are used to systematically investigate
relativistic effects in inclusive quasielastic electron-deuteron scattering within the relativistic impulse approxi-
mation. Relativisticy scaling is considered by generalizing the nonrelativistic scaling function to the relativistic
case, and it is shown thaty scaling does occur in the usual relativistic scaling variable resulting from the energy
conservation in the instant form of dynamics. The present approach ofy scaling is fully covariant, with the
deuteron being described by eight components, viz. the3S1

11 , 3S1
22 , 3D1

11 , 3D1
22 , 3P1

12, 3P1
21 , 1P1

12 ,
1P1

21 waves. It is demonstrated that if the negative relative energy states1P1 , 3P1 are disregarded, the
concept of covariant momentum distributionsN(p0 ,p), with p05MD/22Ap21m2, can be introduced, and
that calculations of electrodisintegration cross section in terms of these distributions agree within a few percent
with the exact calculations, which include the1P1 and 3P1 states, provided the nucleon three momentum
upu<1 GeV/c; in this momentum range, the asymptotic relativistic scaling function is shown to coincide with
the longitudinal covariant momentum distribution.@S0556-2813~99!03708-5#

PACS number~s!: 25.30.2c, 13.40.2f, 21.45.1v, 24.10.Jv
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I. INTRODUCTION

The concept of scaling, which plays an important role
the investigation of the hadronic structure, can be introdu
in the description of scattering processes whenever the c
section factorizes into a product of two different quantitie
with the first one reflecting the nature of the scattering p
cess, and therefore depending upon the relevant indepen
kinematical variables, and the second one~the scaling func-
tion! reflecting the internal structure of the target, and the
fore depending upon a new variable~the scaling variable!
which can be associated to the dynamics of the constitu
of the target.

The best example of scaling (x scaling! is provided by
inclusive deep inelastic scattering of leptons off nucleo
@1#: in the Bjorken limit (n˜`,Q2

˜`, xBj5Q2/2mn
5const, withn and Q2 being, respectively, the energy an
the four-momentum transfers, andm being the nucleon
mass!, the quantity F2(xBj ,Q

2)[nW2
N(xBj ,Q

2) where
W2

N(xBj ,Q
2) represents the deviation of the inclusive cro

section from scattering off a pointlike nucleon, becomesQ2

independent, i.e., scales in the variablexBj ~the Bjorken scal-
ing variable! which can be associated to the momentum fr
tion of the quark inside the hadron. Inclusive scattering
leptons off a nucleusA in the quasielastic~QE! region (n
<Q2/2m, i.e., xBj.1) has been theoretically shown@2,4–6#
to exhibit another kind of scaling, the so calledy scaling,
which can be summarized as follows:1 at sufficiently high
values of the three-momentum transferq, the quantity
uquW1(2)

A (n,q2)/W1(2)
N (n,q2), where the nuclear structur

function W1(2)
A (n,q2) represents the deviation of the cro

*On leave from Bogoliubov Lab. Theor. Phys., JINR, Dubn
Russia.

1For exhaustive reviews ofy scaling see Refs.@2,3,5,6#.
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section from scattering off a pointlike nucleus, scales to
function of the variable y, according to
uquW1(2)

A (n,q2)/W1(2)
N (n,q2)˜F(y) where, in the case o

the deuteron~but not for complex nuclei@5#!, F(y) repre-
sents the nucleon longitudinal momentum distributionf (y):2

f ~y!5E
0

`

n~pi ,p'!dp'52pE
uyu

`

n~p!upudupu, pi[uyu.

~1.1!

Experimental data@6–8#, due to the effect of the final-stat
interaction~FSI!, exhibit only a qualitative scaling behavio
and a quantitative analysis@9# of deuteron data@8#, taking
into account the FSI, allowed one to obtain the nucleon m
mentum distribution in the deuteron using Eq.~1.1!. It
should, however, be stressed that the approach of Ref.@9#,
leading to Eq.~1.1!, is based on a fully relativistic instant
form treatment of kinematics, but on the usual nonrelativis
~Schrödinger! treatment of the deuteron, and therefore lac
a consistent covariant treatment of the process.3 Recently
@11#, a relativistic covariant model, based on the light-fro
dynamics and light cone kinematics@12#, has been adopted
to analyze inclusive QE scattering off the deuteron, treat

,

2We will consider, from now on, negative values ofy for which
the effects of non-nucleonic degrees of freedom are kinematic
suppressed.

3Note that FSI have been treated in Ref.@9# within a full Schrö-
dinger equation approach, i.e., using ground and continuum ei
functions of the same Hamiltonian. Such an approach is a cor
one at the kinematics of the data of Ref.@8# which, at negative
values ofy, correspond to a very small~less than the pion threshold!
relative energy of the neutron-proton pair in the continuum;
should always be kept in mind, however, that at high values ofQ2,
such that the nucleon-nucleon (NN) cross section becomes strong
absorptive, the Schro¨dinger approach is inadequate~see, e.g.,@10#!.
©1999 The American Physical Society03-1
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the latter as a system of two spinless particles interacting
a simple scalar interaction. Within such a model, the d
teron wave function has only one component~the S wave!,
the square of which defines the model momentum distri
tion. However, it is well known that in the realistic case
two interacting spinor particles, the deuteron state is de
mined by at least four components if one nucleon is on-m
shell @13#, five components within the spinor light cone fo
malism @14#, or even eight components within the covaria
Bethe-Salpeter~BS! approach@15,16#.

The necessity of more than two components (S and D
waves! in the description of the deuteron in a covariant a
proach, follows from an accurate account of the contribut
of the negative relative energy states in the deuteron,
so-calledP waves. Frequently, in the calculation of obser
ables within covariant formalisms with realistic interaction
the final results are rather cumbersome~see, for instance
Refs.@13,17,18#! and a separation, in a compact form, of
analog of the momentum distribution of the deuteron
comes difficult, if not, sometimes, impossible. The inclus
quasielastic cross section and the concept ofy scaling have
not been so far considered within covariant approaches
realistic interaction, and an investigation of the possibility
define relativistic scaling functions and momentum distrib
tions is still lacking.

In this paper we focus on a detailed study of quasiela
eD scattering, and the possibility of analyzing it in terms
scaling functions and momentum distributions, using the
merical BS solution recently obtained with a realistic on
boson exchange interaction@19–21#.

Through this paper, as in@11#, relativistic effects will be
investigated within the impulse approximation~IA !, which
means that the final-state interaction of thenp pair in the
continuum will be disregarded, though it has been shown@9#
that the FSI leads to sizable scaling violation effects at l
values ofuqu. FSI effects will be analyzed in a subseque
paper@22#, here we are only interested in the investigation
y scaling within a fully covariant treatment of inclusiveeD
scattering in IA, within a description of the deuteron in term
of realistic solutions of the BS equation.

Our paper is organized as follows: in Sec. II the deriv
tion, within the BS formalism, of the two basic quantitie
which are necessary to define relativisticy scaling, i.e., the
cross section for elastic electron scattering from a mov
and off-mass-shell nucleon, and the cross section for in
sive quasielastic scattering from the deuteron, are presen
in Sec. III the relativistic scaling function is defined, its no
relativistic reduction is illustrated, and the results of nume
cal calculations are presented; a relativistic momentum
tribution appropriate to the BS approach is defined in S
IV, where the relationship between the relativistic mome
tum distribution and scaling function is illustrated; the su
mary and conclusions are presented in Sec. V; some rele
details concerning the construction of the Mandelstam ve
for the operator ofeD scattering and for the computation o
matrix elements within the Bethe-Salpeter formalism
given in Appendixes A and B, respectively.
03400
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II. THE ELECTRON-NUCLEON
AND ELECTRON-DEUTERON CROSS SECTIONS
WITHIN THE BETHE-SALPETER FORMALISM

A. General formulas for the cross section

In this section the cross sections for electron-hadron s
tering within the covariant BS formalism will be derived. I
particular, elastic scattering off a moving and off-mass-sh
nucleon and inclusive quasielastic scattering off the deute
at rest, will be considered. Both processes will be deno
A(e,e8)X, whereA stands for the target hadron andX for the
final hadronic states. The four momenta of the initial a
final electrons in the laboratory system arek5(E,k) andk8
5(E8,k8), respectively; the four momentum transfer isq
5k2k85(n,q), and the orientation of the coordinate syste
is defined byq5(0,0,qz). At high energies the electron mas
can be disregarded, so that

k25~k8!2.0, kk852kq5
2q2

2
5

Q2

2
, ~2.1!

Q2[2q254EE8sin2
u

2
, ~2.2!

whereu is the scattering angle. The following relations w
be useful in what follows:

E5 n

2 S 11
Asin2~u/2!1~Q2/n2!

sin~u/2!
D , E85E2n ~2.3!

cosuk5
1

A11Q2/n2 S 11
Q2

2nED , ~2.4!

uqu5uqzu5AQ21n2, ~2.5!

whereuk is the polar angle of the initial electron.
Hereafter the electron-nucleon vertex in the on-mass-s

form, viz:

Gm
eN~Q2!5gmF1~Q2!1 i

smaqa

2m
kF2~Q2!, ~2.6!

will be used, whereF1,2 are the electromagnetic form facto
of the nucleon, andk its anomalous magnetic moment. It
well known that the choice~2.6! for Gm

eN(Q2) violates gauge
invariance; this is a relevant point which will be briefly di
cussed in Sec. III. In the one-photon exchange approxi
tion the general formula for the invariant cross section for
processA(e,e8)X has the following form:

ds5
1

4kpA
uMe1A˜e81Xu2~2p!4

3d (4)~k1pA2k82pX!
dk8

~2p!32E8
dtX , ~2.7!

wherepA is the initial target momentum,pX is the total mo-
mentum of the final hadron stateX, dtX is the phase spac
3-2
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factor, andMe1A˜e81X is the invariant matrix element de
scribing the process. For the elastic electron nucleon (eN)
@Fig. 1~a!# and electron deuteron (eD) scattering in the im-
pulse approximation@Fig. 1~b!#, we have, respectively:

pA5p, pX5p85p1q,

dtX5
dp18

~2p!32E8
J for eN scattering,

~2.8!

pA5PD , pX5p181p25PD1q,

dtX5
dp18

~2p!32E18

dp2

~2p!32E2

, J for eD scattering.

~2.9!

Using the identity

dp18

~2p!32E18
5d„~p18!22m2

…

d4p18

~2p!3
, ~2.10!

the elasticeN and the inclusiveeD cross sections are ob
tained by integrating over thed4p18 :

ds

dE8dVk8

5
1

4kpA
E uMe1A˜e81Xu2~2p!

3d„~p11q!22m2
…

E8
2~2p!3

dt, ~2.11!

wheredt is the phase space factor corresponding to the fi
hadron stateX without the hit nucleon,Vk8 is the scattered
electron solid angle, andp1 is the initial nucleon momentum
in eN (p1

25m2) andeD (p15PD2p2 , p1
2Þm2) scattering.

FIG. 1. Diagrams corresponding to elasticeN scattering~a!, and
inclusiveeD scattering in the impulse approximation~b!.
03400
al

The square of the invariant matrix element in Eq.~2.11!,
averaged over the spins of the colliding particles a
summed over the spins of the scattered particles, can be
in the form

uMe1A˜e81Xu2~2p!d„~p11q!22m2
…

5
e4

Q4
Lmn~k,q!Wmn

A ~pA ,q!, ~2.12!

where the leptonic tensorLmn has the familiar form:

Lmn~k,q!52S 2kmkn2~kmqn1knqm!1gmn

q2

2 D .

~2.13!

As for the hadronic tensorWmn
N , appearing in elasticeN

scattering, one has

Wmn
N ~q2,p1•q!

5 1
2 Tr$~ p̂11m!Gm

eN~Q2!~ p̂11q̂1m!Gn
eN~Q2!%

3~2p!d~~p11q!22m2!. ~2.14!

By contracting Eq.~2.14! with the leptonic tensor, Eq
~2.13!, one obtains, in the nucleon rest system@p15(m,0)#,
the well-known Rosenbluth cross section. In the case o
complex system, e.g., the deuteron, only the general exp
sion for the hadronic tensor can be unambiguously define
terms of the two independent structure function
W1,2(q

2,pD•q), whose explicit form, however, relies on pa
ticular theoretical models; the model adopted in this pape
described in the next subsection.

B. The hadronic tensor

Our strategy in computing the hadronic tensor for a co
posite system is the following one: anucleonictensor opera-
tor Ômn

N will be defined, whose expectation value betwe
relativistic hadronic statesuA& generates the correspondin
hadronic tensor, according to

Wmn
A 5^AuÔmn

N uA&. ~2.15!

The general requirements for the operatorÔmn
N are as fol-

lows:
~i! it should lead to Eq.~2.14! when sandwiched betwee

free nucleon states (uA&5uN&);
~ii ! when sandwiched between deuteron states (uA&

5uD&) it should incorporate the effects from the Fermi m
tion and the off-mass shellness of the hit nucleon.

The operatorÔmn , Eq. ~2.15!, due to the choice of the
vertex ~2.6!, has the following form:
3-3
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Ômn
N ~p1 ,q!5~2p!d„~p11q!22m2

…H F1
2~Q2!Ômn

(1)~p1 ,q!

1
k

2m
F1~Q2!F2~Q2!Ômn

(12)~p1 ,q!

1
k2

4m2
F2

2~Q2!Ômn
(2)~p1 ,q!J , ~2.16!

where

Ômn
(1)~p1 ,q!52@2gmn~ p̂11q̂2m!1gmp1n1gnp1m#,

~2.17!

Ômn
(12)~p1 ,q!54@gmn„2mq̂1~q21qp1!…#, ~2.18!

Ômn
(2)~p1 ,q!52@gmn„mq21 p̂1q22q̂~q212qp1!…

2q2~gmp1n1gnp1m!#, ~2.19!

and all terms proportional toqm(n) have been omitted in view
of the gauge invariance of the leptonic tensor~2.13!,
qm(n)L

mn50. In Eqs. ~2.17!–~2.19! and in the rest of the
paper the short-hand notationp̂ will be used for the scala
product of a four-vectorp with g matrices, i.e.,p̂[gmpm. In
actual calculations we first contractÔmn

N with the leptonic
tensorLmn, and the resulting operator is then sandwich
between target ground states. The result of the contractio
~see Appendix A!:

Ô~p1 ,q,k!5LmnÔmn5$Ôstat1dÔmot1dÔoff%~2p!

3d„~p11q!22m2
…, ~2.20!

where

Ôstat52@q2m24mnE14mE 2#A~Q2!1
q4

m
B~Q2!,

~2.21!

dÔmot54@mnE2q̂~kp1!2E~2mE2mn!

1 k̂~2kp12qp1!#A~Q2!, ~2.22!

dÔoff[22q2S q̂1
q2

2mDF1
2~Q2!

1
2kq2

m
~2mq̂1qp1!F1~Q2!F2~Q2!

2
k2q2

2m2
@ q̂~q212qp1!#F2

2~Q2!, ~2.23!

and

A~Q2![S F1
2~Q2!2

k2q2

4m2
F2

2~Q2!D , ~2.24!

B~Q2![„F1~Q2!1kF2~Q2!…2. ~2.25!
03400
d
is

Let us discuss the meaning of the terms~2.21!–~2.23!:
Ôstat represents the contribution from the interaction of t
lepton with the nucleon at rest, and in case ofeN scattering
its average over nucleon spinors yields the Rosenbluth c
section;dÔmot originates the motion of the nucleon;dÔoff

takes into account the off-mass shellness (p1
2Þm2) of a

bound nucleon, and therefore contributes only to theeD
cross section.

As already pointed out, theeN andeD cross sections are
obtained by sandwiching the relativistic operatorÔ(p1 ,q,k)
between relativistic nucleon or deuteron states; this me
that, within the present approach, the hadronic tensor
exactly the same form for a free or for a bound nucleon. T
only assumption we make is that the electromagnetic vert
for free and bound nucleons are of the same form, with
nuclear effects provided by the state vectors. In the us
noncovariant plane-wave impulse approximation~PWIA!,
based on the use of nonrelativistic wave functions, the cr
section off a nucleusA is obtained by relating the nuclea
hadronic tensorWmn

A to the nucleon hadronic tensorWmn
N by

a convolution formula, with resulting ambiguities as far
the extrapolation of theeN cross section for a bound off
mass shell nucleon is concerned~see, e.g.,@23,24#!.

As previously mentioned, gauge invariance is broken
the deuteron current corresponding to the choice Eq.~2.16!.
Several phenomenological prescriptions have been, howe
suggested to restore it@23,24#. It should be pointed out tha
our paper is mainly aimed at theoretically comparing relat
istic and nonrelativistic deuteron momentum distributio
and y-scaling functions, without presenting any comparis
with experimental data which would, of course, require
serious consideration of gauge invariance violation effec

The procedure used in this paper can, in principle,
adopted in the description ofeD scattering within the non-
relativistic, Schro¨dinger picture. However, in this case, co
sistency would require a nonrelativistic reduction of t
gNN vertex. A systematic study of deuteron electrodisin
gration within the nonrelativistic approach taking into a
count the FSI, relativistic corrections, and meson excha
currents, can be found in@25# and references quoted therei

C. The elastic electron-nucleon cross section

The elasticeN cross section resulting by sandwichin
ÔstatanddÔmot between free nucleon states reads as follo

ds

dVk8

5
EEpW 1

~p1k!
f recoils

eÑ, ~2.26!

where~i! f recoil is the recoil term

f recoil
21 511

2E sin2 u/22n

EpW 11qW
2

p1z

uqu
n22E sin2 u/2

EpW 11qW
.

~2.27!

~ii ! EEpW 1
/(p1k) comes from the redefinition of the inciden

flux for a moving nucleon;~iii ! seÑ is the ‘‘reduced’’
3-4
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electron-nucleon cross section, i.e., the cross section wit
the flux factor and the recoil contribution,

seÑ5sMott

m2

EpW 1
EpW 11qW

H A~Q2!1
Q2

2m2
tan2

u

2
B~Q2!

1
A~Q2!

m2EE8cos2 u/2
@~p1k!22~p1k!~p1q!2m2EE8#J ,

~2.28!

FIG. 2. The diagram corresponding to the averaging of the

eratorÔ, Eq. ~2.20!, between deuteron states. The crossed line c
responds to the nucleon on the mass shell.
lt

03400
ut

where

sMott[
a2 cos2~u/2!

4E 2 sin4~u/2!
~2.29!

is the Mott cross section. In the above equationEpW 1

5Am21p1
2, EpW 11qW5Am21(p11q)2. It can easily be seen

from Eqs. ~2.26!–~2.28! that for a nucleon at rest@p1
5(m,0)# Eq. ~2.26! coincides with the Rosenbluth cross se
tion.

D. The inclusive electron-deuteron cross section
within the BS formalism

The relativistic impulse approximationfor the inclusive
eD cross section is obtained by averaging the operatorÔ,
given by Eq.~2.20!, with the Bethe-Salpeter amplitudes~see
Fig. 2!. The result is

-

r-
n

S ds

dE8dVk8
D

eD

BS

5sMottE
uyu

pmaxupu2dupu

~2p!4

1

16EE8cos2~u/2!
E

0

2p dwp

upu•uqu
1

2wMD

1

@MD~MD22w!#2

3F1

3 (
M

Tr$ḠM~p,PD!~ p̂11m!~Ôstat1dÔmot1dÔoff!~ p̂11m!GM~p,PD!~ p̂21m!%G , ~2.30!

wherep15PD2p2 , GM is the Bethe-SalpeterD˜NN vertex,M is the deuteron total angular momentum projection,p is the
relative momentum of the nucleons, i.e.,p1,25PD/26p. The deuteron-nucleon vertexGM is the truncated Green’s functio
which is related to the conjugated Bethe-Salpeter amplitudeCM by

CM~p,PD!5
~ p̂11m!

~p1
22m2!

GM~p,PD!
~ p̂21m!

~p2
22m2!

. ~2.31!

The limits of integration in Eq.~2.30!, upumin[uyu and pmax are obtained from energy conservation provided by thed
function

d„~PD2p21q!22m2
…5

1

2upu•uqu
dS cosup2

MD~MD12n!1q222w~MD1n!

2upu•uqu D , ~2.32!
vant
which determines the value of cosup from the constraint:

21<cosup<1. ~2.33!

Solving the inequalities~2.33! with cosup defined by the
argument of thed function ~2.32!, we obtain the same resu
as in @9#, i.e.,

upumin5
1

2
UH ~MD1n!A12

4m2

s
2uquJ U[uyu,

~2.34!
upumax5
1

2 H ~MD1n!A12
4m2

s
1uquJ [pmax,

~2.35!

wheres denotes the Mandelstam variable for theg* D vertex

s5~PD1q!25MD~MD12n!2Q2. ~2.36!

It can be seen from Eq.~2.35! that pmax sharply increases
with uqu, such a circumstance, as we shall see, has rele
consequences for the occurrence ofy scaling.
3-5
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In the calculation of the trace appearing in Eq.~2.30!, two
different operators have to be considered, namely the sc
operator,1̂, coming fromÔstat @Eq. ~2.21!#, and the vector
operatorgm , contained indÔmot anddÔoff , @Eqs.~2.22! and
~2.23!#.

We have calculated the BS average of these opera

^1̂&pole and^gm&pole, where the subscript ‘‘pole’’ means tha
the trace in Eq.~2.30! has been obtained using Eq.~2.31! and
by evaluating the integral overp20 in the pole corresponding
to the second particle on-mass shell~for details, see Appen
dix B!, i.e.,

p205w5Ap21m2, p05
MD

2
2w, p105MD2w.

~2.37!

TheeD cross section can now be rewritten in terms of t
nucleon pole contributions to the vector and the scalar pa
namely,

S ds

dE8dVk8
D

eD

BS

5sMott~2p!E
uyu

pmaxupu2dupu

~2p!4

3
1

8EE8cos2~u/2!
E

0

2p dwp

2upu•uqu

3~ f stat1d f mot1d f off!, ~2.38!

where

f stat5F2m@q214EE8#A~Q2!1
q4

m
B~Q2!G^1̂&pole

BS ~p!,

~2.39!

d f mot54$22mEE8^1̂&pole
BS ~p!1@2qm~kp1!

1km~2kp12qp1!#^gm&pole
BS ~p!%A~Q2!,

~2.40!

d f off522q2Fqm^gm&pole
BS ~p!1

q2

2m
^1̂&pole

BS ~p!GF1
2~Q2!

1
2kq2

m
@2mqm^gm&pole

BS ~p!

1qp1^1̂&pole
BS ~p!#F1~Q2!F2~Q2!

2
k2q2

2m2
@qm^gm&pole

BS ~p!~q212qp1!#F2
2~Q2!.

~2.41!

Let us compare Eq.~2.38!, which represents the BSeD
inclusive cross section in which the matrix elements of b
theeN and theD˜NN vertices are treated covariantly, wit
the usual noncovariant PWIA cross section, where theeN
vertex is treated covariantly within the instant-form of d
namics, and the vertexD˜NN is treated noncovariantly
within the Schro¨dinger approach, viz.
03400
lar

rs,

ts,

h

S ds

dE8dVk8
D

eD

PWIA

5~2p!E
uyu

pmax
upudupunD~p!

EpW 1qW

uqu

3~ s̄ep1s̄en!, ~2.42!

wheres̄ep(n) is the relativistic electron-nucleon cross secti
for a free moving nucleon~see, e.g., Ref.@23#! and the non-
relativistic momentum distributionnD(p) is normalized as
follows:

E dp nD~p!51. ~2.43!

The most relevant difference between Eqs.~2.38! and
~2.42! arises from the noncovariant treatment of theD
˜NN vertex which, in Eq.~2.42!, is entirely determined by
a single quantity, the nucleon momentum distributionnD(p),
whereas in the covariant BS cross section, Eq.~2.38!, it de-
pends upon̂1̂&pole

BS and^gm&pole
BS . In order to exhibit the quan-

titative difference between the two cross sections let us c
pare ^1̂&pole

BS and ^gm&pole
BS with their nonrelativistic limits

(upu2/m2!1) which are given by~for details see Refs
@19,26#!:

^gm&pole
BS ~p!˜~2p!3~pm /Ep!nD~p!,

^1&pole
BS ~p!˜~2p!3~m/Ep!nD~p!, ~2.44!

where pm5(Ep ,p) and nD(p) is the deuteron momentum
distribution.

In Figs. 3 and 4̂ 1̂&pole
BS and ^gm&pole

BS are compared with
their nonrelativistic limit obtained withnD(p) corresponding
to various realistic interactions. Using Eqs.~2.44! the non-
relativistic limit of the BS cross section can be obtain
straightforwardly, viz.

FIG. 3. The Bethe-Salpeter matrix elements^1&pole
BS (p) and

^g0&pole
BS (p) ~solid lines! compared with their nonrelativistic limits

Eq. ~2.44!, computed with nucleon momentum distributionnD(p)
corresponding to the realistic Bonn@27# ~dashed!, Paris@28# ~dot-
ted!, and Reid@29# ~dash-dotted! interactions.
3-6
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S ds

dE8dVk8
D

eD

NR

5~2p!E
uyu

pmax
upudupunD~p!

EpW 1qW

uqu ~ s̃ep1s̃en!,

~2.45!

where s̃eN5s̃eN(upu,uqu,n) is given by Eq.~2.28!, without
the off-mass shell contribution@Eq. ~2.41!#, which can easily
be shown to vanish in the nonrelativistic limit.

Thus, we have demonstrated that the nonrelativistic li
of the BS inclusive cross section~2.38!, obtained by taking
the nonrelativistic limit of^1̂&pole

BS and ^gm&pole
BS , has exactly

the same structure as the instant form result of Ref.@5#, apart
from some minor differences between the relativisticeN
cross sectionss̃eN and s̄eN , which are irrelevant for the
present paper, and which will be discussed elsewhere@22#.

In closing this section, the following remarks are in ord
~i! the BS covariant inclusiveeD cross section does not fac
torize into a product of an electron nucleon cross section
a deuteron structure function. In this respect the covar
results differ from the usual noncovariant PWIA;~ii ! within
the BS formalism the interacting nucleon is consisten
treated as an off-mass shell particle. Consequently, the
trix element of thegNN vertex is half off shell for theeD
scattering. As a result, additional off-mass shell effects, r
resented by Eq.~2.41!, arise due to covariance of the a
proach.

III. THE RELATIVISTIC SCALING FUNCTION

A. Nonrelativistic and relativistic scaling functions

In the nonrelativistic case, the concept ofy scaling can be
introduced when the value ofuqu becomes large enough so

FIG. 4. The same as in Fig. 3 but for the vector dens
^g3&pole

BS (p) corresponding to cosu pW qŴ 51.
03400
it
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-

to makepmax;` and the dependence ofs̄eN ~or s̃eN) upon
upu very weak. In such a case, Eq.~2.45! can be cast in the
following form:

S ds

dE8dVk8
D

eD

NR

5~sep1sen!
Ey1uqW u

uqu ~2p!E
uyu

`

upudupunD~p!,

~3.1!

whereseN andEy1uqW u represents̃eN andEpW 1qW , calculated at
upu5upumin5uyu and are taken out of the integral. Such
approximation has been carefully investigated in Ref.@5# and
found to be valid within few percents, providedQ2

.0.5 GeV2/c2. It is clear therefore, that at large values
uqu the following quantity~the nonrelativistic scaling func
tion!

FNR~ uqu,y![
uqu

Ey1uqW u
•S ds

dE8dVk8
D

eD

NRY ~sep1sen!

~3.2!

will be directly related to the longitudinal momentum distr
bution @5#

FNR~ uqu,y!˜ f ~y!52pE
uyu

`

upudupunD~ upu!, ~3.3!

whose first derivative will provide the nonrelativistic mo
mentum distribution. As already pointed out, the conditi
for the occurrence of nonrelativisticy scaling is that Eq.
~2.45! could be cast in the form~3.1!, which means that~i!
Q2.0.5 GeV2/c2, in order to make the replacements̃eN
˜seN and EpW 1qW˜Ey1uqW u possible, and ~ii ! pmax5(uq
u2uyu)@uyu @cf. Eqs.~2.34! and ~2.35!# in order to saturate
the integral of the momentum distribution
* uyu

pmaxupudupunD(upu)˜* uyu
` upudupunD(upu). Condition ~ii ! ob-

viously implies that the larger the value ofuyu, the larger the
value of uqu at which scaling will occur. The satisfaction o
the inequalitiesuqu@2uyu,xBj.1 lead, for any well-behaved
nD(upu), to the following conditions for the occurrence o
nonrelativisticy scaling:

2m/3<n,uqu, uqu>2m. ~3.4!

Note, that the above conditions are very different from t
conditions for Bjorken scalingn.uqu. Let us now discuss
relativistic scaling. To keep contact with nonrelativistic sc
ing, let us define the following relativistic scaling function

FBS~ uqu,y![
uqu

Ey1uqW u
•S ds

dE8dVk8
D

eD

BSY ~sep1sen!,

~3.5!

with (ds/dE8dVk8)eD
BS given by Eq.~2.38!. In the rest of the

paper the following questions will be answered:
~i! Does~and at which values ofuqu) Eq. ~3.5! scale iny?
~ii ! If scaling does occur, can a relationship be establis

between the asymptotic scaling function and the momen
distribution?
3-7
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FIG. 5. The scaling functionFBS(uqu,y), Eq. ~3.5! vs uqu2 for various values ofy. For the sake of completeness, the value of the Bjork
variablexBj5Q2/2mn is also shown.
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It is clear, by looking at Eq.~2.38!, that relativistic scal-
ing, as the nonrelativistic one, is entirely governed by
value of pmax @Eq. ~2.35!#, in that one expects that, startin
from a certain high value ofuqu, pmax becomes large enoug
as to saturate theupu dependence of^1̂&pole(upu) and
^gm&pole(upu). It should be pointed out that if scaling of Eq
~3.5! is observed, this would imply that a factorization of E
~2.38! similar to the one occurring in the nonrelativistic ca
@i.e., Eq.~3.2!# occurs in the relativistic case as well. Such
factorization, due to the complex structure of Eq.~2.38! is, a
priori , not obvious. As for the second question, it is by
means a trivial one, for in the BS case even the concep
momentum distributions is not well defined. Neverthele
we will see that the concept of relativistic momentum dis
butions can be introduced, and that a relationship of suc
momentum distribution with the asymptotic scaling functio
can be established.

B. Numerical calculations of the relativistic cross section
and scaling function

In this section the results of numerical calculations of
relativistic scaling functionFBS(uqu,y), Eq. ~3.5!, will be
presented. In our calculations the numerical solution@19,21#
of the spinor-spinor BS equation containing a realistic o
boson-exchange interaction kernel, which includes the se
p, s, v, r, h, andd exchanged mesons, is used. The me
parameters~masses, coupling constants, and cutoff para
eters! have been taken to be the same as in Refs.@15,16#,
except for the coupling constant of the scalars meson,
03400
e

of
,

-
a

,

e

-
of
n
-

which has been adjusted to provide a numerical solution
the homogeneous BS equation. Recently, the solution
came available in the form of analytical parametrizations
tained by fitting the numerical solution to the BS equatio
using the least-squares procedure@20#. The details of nu-
merical calculation of various matrix elements appearing
eD electrodisintegration are given in Appendix B.

In Fig. 5 the approach to scaling of the BS scaling fun
tion ~3.5! is shown for various values ofy. It can be seen tha
scaling is approached very rapidly due to the sharp incre
of pmax in Eq. ~2.38! with uqu ~cf. Fig. 6!. It can also be seen
that the value ofuqu, at which scaling is reached, sharp
increases with the value ofy, going from uqu
;1 GeV/c (n;0.3 GeV), at y520.2 GeV/c, to uqu
;2 GeV/c (n;0.8 GeV) aty520.8 GeV/c. These val-
ues match very well the condition for nonrelativisticy scal-
ing ~3.4!; this apparently surprising result will be explaine
later on. Let us now briefly discuss the role played by inel
tic channels on the scaling function. It can be shown@22#
that for all values ofy presented in Fig. 5, the values ofn and
uqu in the region of the approach to scaling are below
pion production threshold, which can be reached only
higher values ofuqu, providedQ2<5 GeV2/c2. Therefore,
inelastic excitations of the nucleon are kinematically forb
den in a wide range ofuqu for a given value ofy. The
asymptotic scaling function is shown vs.y in Fig. 7, whereas
the contribution of the off-mass shell terms~2.41! is pre-
sented in Fig. 8. By comparing the two figures, it can be s
that the off-mass shell corrections are negligibly small in
3-8
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whole range ofuyu, and in what follows they will be disre
garded. Figure 9 illustrates the role of the ‘‘moving’’ com
ponents, Eq.~2.40!, calculated at different values ofuqu
53, 10, and 18 GeV/c; as expected, these corrections i
crease withuyu and are practicallyuqu independent. The vari
ous contributions to the total scaling function are presen
in Fig. 10, whereas, in Fig. 11 the asymptotic relativistic B
scaling function is compared with the nonrelativistic on
calculated with various realistic interactions. It can be se
that for uyu.0.4 GeV/c, the differences between the BS an
the nonrelativistic scaling functions are very large, except
the Reid soft core interaction.

The scaling behavior of the relativistic scaling functio
~3.5! shown in Fig. 5 would imply the factorization of the B

FIG. 6. The dependence of the upper limit of integrationupumax

in Eq. ~2.35! upon uqu, for fixed values ofy.

FIG. 7. The asymptotic scaling functionf BS(y) computed
within the Bethe-Salpeter formalism@Eq. ~3.5! evaluated atuqu
˜`].
03400
d

,
n

rinclusive cross section~2.38! into the freeeN cross section
and some kind of deuteron structure function. Due to
complexity of Eqs.~2.39!–~2.41!, neither the origin of such a
factorization, nor the nature of the deuteron structure fu
tion are clear at the moment; they will, however, be d
cussed and clarified in the next section.

IV. RELATIVISTIC MOMENTUM DISTRIBUTION

Since in the covariant BS formalism the deuteron amp
tude does not have a probabilistic interpretation, the conc

FIG. 8. Off-mass-shell contributions tof BS(y): the three curves
correspond~from the top! to the three terms of Eq.~2.41!.

FIG. 9. The ‘‘moving corrections’’ toFBS(uqu,y), Eq.~2.40!, for
uqu53, 10, and 18 GeV/c, respectively. The solid line is the
asymptotic scaling functionf BS(y).
3-9



w

er

n-
if

tio
fre

d

w
ly
i

t

es

sh-
e

ts

en

ing

CIOFI degli ATTI, FARALLI, UMNIKOV, AND KAPTARI PHYSICAL REVIEW C 60 034003
of momentum distribution is ambiguous. Nevertheless,
will now rearrange the matrix elements of1̂ andgm in such
a way that, under certain conditions, they could be int
preted in terms of a relativistic momentum distribution.

Let us return to the main quantity, Eq.~2.30!, and try to
analyze it analytically in more detail. To this end, it is co
venient in the decomposition of the BS amplitude to sh
from the Dirac basis, used in Ref.@19#, to a basis of spin-
angular matrices@15,30#, i.e., an outer product of two
spinors, representing the solutions of the free Dirac equa
with positive and negative energies. This basis, which is
quently used, is labeled by the relative momentumpW , the
helicitiesl i , and the energy spinr i of the particles@15#, and
is sometimes called the (J,l1 ,l2 ,r1 ,r2) representation. The
spectroscopic notations are used for the partial amplitu
viz. 2S11LJ

r1 ,r2 , i.e.,

3S1
11 ,3S1

22 ,3D1
11 ,3D1

22 ,1P1
12 ,1P1

21 ,3P1
12 ,3P1

21 .
~4.1!

The partial amplitudes in the basis~4.1! exhibit a more trans-
parent physical meaning, since they can be compared
the deuteron states in the nonrelativistic limit. It is intuitive
clear that the two nucleons in the deuteron are mainly

FIG. 10. The various contributions to the asymptotic scal
function f BS(y). Dot-dashed line: the static part~2.39!; dotted line:
the ‘‘moving’’ corrections~2.40!. The solid line is the total scaling
function @Eq. ~3.5! evaluated atuqu˜`].
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positive energy states withL50,2, so that one may expec
the probability of negative energy states withL51 in Eq.
~4.1! to be much smaller than the probability for the3S1

11

and 3D1
11 states. Moreover, it can be shown that the wav

3S1
11 and 3D1

11 directly correspond to theS andD waves
in the deuteron, with the waves with negative energy vani
ing in the nonrelativistic limit.~The connection between th
partial amplitudes defined in the Dirac and ther-spin repre-
sentation can be found in Ref.@18#.!

Let us now investigate analytically the matrix elemen
^gm&pole

BS (p) and^1&pole
BS (p), Eqs.~2.39!–~2.41!. Their explicit

expressions are

RÔ~p![S 2 i
1

6MD
(
M

1

~p1
22m2!2

1

~p2
22m2!

3Tr@ḠM~ p̂11m!Ô~ p̂11m!

3GM~ p̂21m!#
dp0

2p DU
pole

, ~4.2!

whereÔ stands for eithergm or 1. Now instead of calculat-
ing the pole contributions in Eq.~4.2!, we go back to the
original definition of these averages, following Eqs.~2.30!
and ~2.31!, namely,

RÔ~p!5S ~p2
22m2!

4MDw

1

3 (
M

Tr@C̄MÔ

3CM~ p̂22m!# D U
p05MD/22E2

, ~4.3!

and calculate directly the trace~4.3! evaluated atp05MD/2
2E2. Here it is worth emphasizing that in our case, wh

FIG. 11. The BS asymptotic scaling function~full ! compared
with the nonrelativistic scaling function~3.2! corresponding to the
Reid ~dashed!, Paris~dotted!, and Bonn~dot-dashed! interactions.
3-10
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RELATIVISTIC STRUCTURE OF THE DEUTERON: . . . PHYSICAL REVIEW C60 034003
one particle~the second one in the present notation! is on-
mass shell, only four partial amplitudes contribute to the p
cess@13#, namely, only those partial amplitudes~4.1! with
the secondr-spin index positive, i.e., the3S1

11 , 3D1
11 ,

1P1
21 , and 3P1

21 amplitudes. In correspondence to the
contributions, we introduce the Bethe-Salpeter wave fu
tions for each vertex, viz.

CS~p0 ,upu!5
1

A2p

GS
11~p0 ,upz!/2p

A2MD~2E22MD!
;

CD~p0 ,upz!5
1

A2p

GD
11~p0 ,upu!/2p

A2MD~2E22MD!
; ~4.4!

CP1
~p0 ,upu!5

1

A2p

G
1P1

21
~p0 ,upu!/2p

A2MDMD

;

CP3
~p0 ,upu!5

1

A2p

G
3P1

21
~p0 ,upu!/2p

A2MDMD

, ~4.5!

where the normalization factors have been chosen so a
correspond to the nonrelativistic normalization of the de
teron wave function:

E dp„u2~p!1w2~p!…51. ~4.6!

Then forRÔ we obtain

Rg0
5~2p!3

„CS
2~p0 ,upu!1CD

2 ~p0 ,upu!1CP1

2 ~p0 ,upu!

1CP3

2 ~p0 ,upu!…, ~4.7!

RgW 5~2p!3
p

E2
„CS

2~p0 ,upu!1CD
2 ~p0 ,upu!

2CP1

2 ~p0 ,upu!2CP3

2 ~p0 ,upu!…1dRgW , ~4.8!

R1̂5~2p!3
m

E2
„CS

2~p0 ,upu!1CD
2 ~p0 ,upu!2CP1

2 ~p0 ,upu!

2CP3

2 ~p0 ,upu!…1dR1̂ , ~4.9!

where

dRgW 5~2p!3
p

E2
H 2A3m

3upu @CS~p0 ,upu!„CP1
~p0 ,upu!

2A2CP3
~p0 ,upu!…1CD~p0 ,upu!„A2CP1

~p0 ,upu!

1CP3
~p0 ,upu!…#J , ~4.10!
03400
-

-

to
-

dR1̂52~2p!3
m

E2
H 2A3upu

3m
@CS~p0 ,upu!„CP1

~p0 ,upu!

2A2CP3
~p0 ,upu!…1CD~p0 ,upu!„A2CP1

~p0 ,upu!

1CP3
~p0 ,upu!…#J . ~4.11!

As a conclusion, the inclusiveeD cross section will be
given by Eq.~2.38! with Eqs. ~2.39!–~2.41! for ^1̂&BS and
^gm&BS replaced by Eqs.~4.7!–~4.11!.

From what we have exhibited, it can be seen that in
BS formalism, there is no universal momentum distributi
@cf. Eqs.~4.7!–~4.9!# so that, in principle, a factorized cros
section in the form~2.45! does not hold. This is a conse
quence of the covariance of the BS formalism, where
small components~4.5! with negative relative energies ar
taken into account. It has been shown@18# that the contribu-
tion from the waves with positive relative energies are mu
larger than the one fromCP

2 (p0 ,upu), which therefore, can
be disregarded. However, the corrections~4.10! and ~4.11!,
resulting from the interference between large and sm
waves contribute both to the static and to the mov
nucleon contribution to theeD cross section and,a priori,
cannot be disregarded; accordingly they will be taken i
account in our calculations. Let us now introduce the follo
ing quantity, which will be called hereafterthe covariant
relativistic momentum distribution:

NBS~p0 ,p!5N~p0 ,p!1dN~p0 ,p!, ~4.12!

where

N~p0 ,p!5„CS
2~p0 ,upu!1CD

2 ~p0 ,upu!…, ~4.13!

dN~p0 ,p!5H 2A3

3
@CS~p0 ,upu!„CP1

~p0 ,upu!

2A2CP3
~p0 ,upu!…

1CD~p0 ,upu!„A2CP1
~p0 ,upu!

1CP3
~p0 ,upu!…#J . ~4.14!

Since the relative energyp0 is fixed, the momentum distri-
bution ~4.13!, which is defined only in terms of theS andD
components, resembles the nonrelativistic distribut
nD(p), and therefore it is expected to provide the main co
tribution to theeD cross section.

Thus the matrix elementsRÔ , Eqs. ~4.7!–~4.9!, can be
written in the following way:

Rgm
5~2p!3

pm

E2
•H N~p0 ,p!, m50;

N~p0 ,p!1
m

upu
dN~p0 ,p!, m5~1,2,3!

~4.15!

R1̂5~2p!3
m

E2
•H N~p0 ,p!2

upu
m

dN~p0 ,p!J . ~4.16!
3-11
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If, for the time being, the quantitydN(p0 ,p) is disre-
garded, it is possible to relate the BS inclusiveeD cross
section to the elasticeN cross section for a moving nucleon
as a matter of fact, by inserting Eqs.~4.15! and ~4.16! into
Eqs.~2.39!–~2.41!, one obtains

S ds

dE8dVk8
D

eD

BS

5~2p!E
uyu

pmax
upudupuN~p0 ,p!

3
EpW 1qW

uqu ~ s̃ep1s̃en!. ~4.17!

At large values ofuqu, Eq. ~4.17! becomes

S ds

dE8dVk8
D

eD

BS

'$sep1sen%
EuqW u1y

uqu ~2p!E
uyu

`

upudupuN~p0 ,p!,

~4.18!

where, as before,s̃eN andEpW 1qW have been evaluated atupu
5upminu5uyu. If Eq. ~4.18! is placed in Eq.~3.5!, the BS
asymptotic scaling function is obtained, viz.

f BS~y![
uqu

Ey1uqW u
S ds

dE8dVk8
D

eD

BS

$sep1sen%
21

5~2p!E
uyu

`

upudupuN~p0 ,p!, ~4.19!

FIG. 12. The Bethe-SalpeterS wave uCS(p0 ,upu)u ~solid line!,
with p05MD/22Ap21m2, compared with the GrossS wave cor-
responding to the solution II B of Ref.@13# ~dot-dashed! and with
the nonrelativistic deuteronSwave obtained from the Paris~dotted!
and Bonn~dashed! potentials.
03400
from which information on the covariant nucleon momentu
distributionN(p0 ,p) could be obtained.

The asymptotic scaling function, calculated by Eq.~4.19!,
coincides with the exact scaling function@obtained using
Eqs.~2.38!–~2.41! in Eq. ~3.5!# in the whole range ofy ~the

FIG. 13. The same as in Fig. 12 for the deuteronD wave.

FIG. 14. The Bethe-Salpeter negative relative energy wa
CP1,3

(p0 ,upu).
3-12
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largest difference occurring aty520.8 and being less tha
10%!, which means that the BS inclusive cross section co
be safely replaced by its approximation~4.18!. In order to
understand such a result, in Figs. 12–14 the separate
waves, viz. theSandD waves~full lines of Figs. 12 and 13!,
and theP1 andP3 waves~Fig. 14! are shown. It can be see
that the latter waves are smaller by order of magnitudes t
theSandD waves, so that the quantitydN(p0 ,p), due to the
interference terms~4.10! and ~4.11! generated by the nega
tive energy states, turns out to be negligible up toupu
;1 GeV/c. Thus we can conclude that in the interval
,upu,1 GeV/c the total distribution~4.12! can be safely
approximated by the diagonal contribution~4.13!, as illus-
trated in Fig. 15, where the full momentum distributions a
shown. This is the reason why the BS inclusive cross sec
factorizes in the same way as the nonrelativistic one, and
relativistic scaling function~3.5! scales iny. In Figs. 12–15
we have also compared the full BS results with the res
from other approaches, viz. the nonrelativistic Schro¨dinger
approach with different types of interactions~see also Ref.
@18#!, as well as the relativistic approach based upon
Gross equations@13#. The BS and the Gross~@13#! ap-
proaches differ both in the form of the relativistic equatio
as well as in the number of exchanged bosons considere
the kernel~six in the former approach and four in the latt
one!, but both reproduce equally well the experimentalNN
phase shifts and the ground-state properties of the deute
which is reflected in the very similar behavior of theSandD
waves shown in Figs. 12 and 13; these results also show
the high momentum content (upu.0.5 GeV/c) generated by
relativistic equation is appreciably higher than the one p
vided by nonrelativistic wave functions.

FIG. 15. The Bethe-Salpeter covariant momentum distribut
~4.12!, with p05MD/22Ap21m2, ~full ! and the contribution due
to negative relative energy states~4.14! ~dot-dashed!. The nonrela-
tivistic momentum distributions corresponding to the Bonn~dot-
dot-dashed!, Paris ~dotted!, and Reid~dashed! potentials are also
shown.
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V. SUMMARY AND CONCLUSIONS

In the present paper the inclusive quasielastic electr
deuteron cross section has been analyzed within the rel
istic impulse approximation using recent, realistic solutio
@21# of the spinor-spinor Bethe-Salpeter equation for t
deuteron, with the interaction kernel including the exchan
of p, s, v, r, h, andd mesons. In our approach, both th
g* N and theD˜NN vertices are treated relativistically
with eight components for the deuteron amplitude, unlike
usual, nonrelativistic approach@5#, in which theg* N is de-
scribed by a relativistic free electron-nucleon cross sect
and theD˜NN vertex by the usual nonrelativistic two
component Schro¨dinger wave function~we reiterate that
when we refer to the latter approach as the ‘‘nonrelativisti
one, we refer only to theD˜NN vertex!. The aim of our
paper was twofold, viz.:~i! to investigate the relevance o
relativistic effects, and~ii ! to understand whether the conce
of y scaling can be introduced in a relativistic description
inclusiveeD scattering. The main results of our analysis c
be summarized as follows:

~1! The relativistic inclusiveeD cross section has bee
obtained in terms of the pole matrix elements^1̂&pole

BS (upu) and
^gm&pole

BS (upu), taking into account the off-mass shellness
the nucleon and it has been found that unlike the nonrela
istic case, the BS cross section does not factorize into a p
uct of the free electron-nucleon cross section and a struc
factor depending upon the deuteron momentum distribut

~2! It has been shown that the BS cross section can
written as a function of the three momentum transfersq and
a variabley, which is exactly the same relativistic scalin
variable used in the nonrelativistic approach and result
from the relativistic instant-form energy-momentum cons
vation. Thus, in full analogy with the nonrelativistic case,
relativistic scaling functionFBS(uqu,y) has been defined a
the ratio of the BSeD cross section to the freeeN cross
section~times a proper phase space factor!, andy scaling of
FBS(uqu,y) has been demonstrated to occur, i.e.,FBS(uqu,y)
˜ f BS(y), with the conditions for relativisticy scaling being
very similar to those of nonrelativistic scaling, i.e., 2m/3
<n,uqu, uqu>2m.

~3! It has been pointed out that whereas the mechanism
nonrelativistic scaling is easily understood in terms of t
rapid decay of the momentum distributionnD(p), which
makes the nonrelativistic scaling functionFNR(uqu,y)
;2p* uyu

uqu2uyun(p)upudupu to rapidly saturate withuqu, i.e., to
scale iny, a similar explanation in the relativistic case is no
in principle, possible, since, as stated in point 1, the BS cr
section does not factorize, and, moreover, the concep
momentum distribution in the BS case is not uniquely d
fined. Thus, in order to understand the mechanism of
observed relativisticy scaling, the role of the various com
ponents of the BS amplitude was analyzed, and it has b
found that if the extremely small diagonal contribution of t
negative energyP waves is omitted, it is possible to define
covariant momentum distribution of the formNBS(p0 ,p)
5N(p0 ,p)1dN(p0 ,p), wheredN(p0 ,p), which originates
from the interference between the positive and nega
waves, can be safely disregarded providedupu,1 GeV/c, so

n

3-13
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that, as a result, the BS cross section factorizes in the s
way as does the nonrelativistic cross section and the rela
istic scaling function becomes FBS(uqu,y)
;2p* uyu

uqu2uyuN(p0 ,p)upu,dupu; such a result provides the ex
planation for the relativisticy scaling and makes it possibl
to obtain the BS covariant momentum distributions by
simple first-order derivative of the asymptotic BS scali
function f BS(y);2p* uyu

` N(p0 ,p)pudupu.
~4! The BS relativistic momentum distribution,N(p0 ,p),

and the nonrelativistic one,nD(p), are practically the same
up to upu;0.4–0.5 GeV/c, where they start to differ by an
amount which depends upon the two-body interaction p
ducing nD(p). To sum up, it can be concluded that, if th
effects from negative energyP states can be disregarde
which has been demonstrated to be the case when
nucleon momentum in the deuteronupu<1 GeV/c, the con-
cept of y scaling can be introduced in the BS relativis
description of inclusive quasielasticeD scattering, in the
same way as it is in the conventional nonrelativistic a
proach, i.e., by introducing a scaling function which, in t
scaling regime, is nothing but the nucleon longitudinal m
mentum distribution; moreover, both in the relativistic a
nonrelativistic cases, scaling is shown to occur in the sa
variabley, and at values ofn and uqu such that quasielasti
scattering is the dominant process.
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APPENDIX A: CONSTRUCTION
OF THE NUCLEON OPERATOR

The contraction of the operators~2.16!–~2.19! with the
leptonic tensor~2.13! yields

Ô~p1 ,q,k![Ômn~p1 ,q!Lmn~k,q! ~A1!

5H F1
2~Q2!Ô(1)~p1 ,q,k!

1
k

2m
F1~Q2!F2~Q2!Ô(12)~p1 ,q,k!

1
k2

4m2
F2

2~Q2!Ô(2)~p1 ,q,k!J ~A2!

3~2p!d„~p11q!22m2
…, ~A3!

where

Ô(1)~p1 ,q,k!52@q2m2q̂~q212kp1!1 k̂~4kp122qp1!#,
~A4!
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Ô(12)~p1 ,q,k!54q2@„2mq̂1~q21qp1!…#, ~A5!

Ô(2)~p1 ,q,k!52q2@mq22q̂~q212qp122kp1!

22k̂~2kp12qp1!#. ~A6!

The average of Eq.~A6! with the nucleon or the deutero
amplitudes, times the factore2/Q4, gives the invariant matrix
elements.

A graphical representation of the operatorÔ(p1 ,q,k) is
presented in Fig. 16, where the crossed nucleon line co
sponds to a nucleon on the mass shell with the propag
(2p)d„(p11q)22m2

…( p̂11q̂1m).
The nucleon operatorÔ(p1 ,q,k) is the central object in

our discussion about the connection between the nucleon
the deuteron cross sections. Let us first consider the dif
ential elastic cross section for the processe1N˜e81N.
The invariant matrix element is defined by

uMe1N˜e81Nu2~2p!d„~p11q!22m2
…

5
e4

Q4

1

2 (
s1

^p1 ,s1uÔ~p1 ,q,k!up1 ,s1& ~A7!

5
e4

Q4

1

2
Tr$~ p̂11m!Ô~p1 ,q,k!%. ~A8!

Let us first obtain the cross section in the rest frame of
nucleon@p15(m,0)#

1

2
Tr$~ p̂11m!q̂%52mn,

1

2
Tr$~ p̂11m!k̂%52mE,

1

2
Tr$~ p̂11m!%52m, ~A9!

kp15mE, qp15mn, ~A10!

so that

FIG. 16. The diagram defining the squared invariant matrix

ement for the deuteron in terms of the operatorÔ, Eq. ~A1!. The
crossed line corresponds to the nucleon on the mass shell.
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uMe1N˜e81Nu2~2p!d„~p11q!22m2
…

5
e4

Q4
@4~m2q22mnq224m2nE14m2E 2!F1

2~Q2!14kq4F1~Q2!F2~Q2!

1k2q2~q224E 214nE!F2
2~Q2!#~2p!d~2mn2Q2! ~A11!

5
e4

Q4
16m2EE8F S cos2

u

2
2

q2

2m2
sin2

u

2D F1
2~Q2!2

kq2

m2
sin2

u

2
F1~Q2!F2~Q2!2

k2q2

4m2 S 11sin2
u

2DF2
2~Q2!G

3~2p!d~2mn2Q2! ~A12!

5
e4

Q4
16m2EE8Fcos2

u

2 S F1
2~Q2!2

k2q2

4m2
F2

2~Q2!D 2
q2

2m2
sin2

u

2
„F1~Q2!1kF2~Q2!…2G ~2p!d~2mn2Q2!.

~A13!

Inserting the last expression in Eq.~2.11! we get the Rosenbluth cross section:

ds

dE8dVk8

5
a2m

2E 2sin4~u/2!
Fcos2

u

2 S F1
2~Q2!2

k2q2

4m2
F2

2~Q2!D 2
q2

2m2
sin2

u

2
„F1~Q2!1kF2~Q2!…2Gd~2mn2Q2! ~A14!

5sMottF S F1
2~Q2!2

k2q2

4m2
F2

2~Q2!D 2
q2

2m2
tan2

u

2
~F1~Q2!1kF2~Q2!!2GdS n2

Q2

2mD . ~A15!
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Let us now consider theeD cross section. To this end, w
will consider an arbitrary reference frame where the fo
momentum of the nucleon isp15(p10,p1); moreover the
nucleon can be off-mass shell (p1

2Þm2).
Our strategy now is to explicitly separate that part of t

operator describing the free nucleon at rest, i.e., the part
fining the cross section~A15!, from the remaining parts o
the operator due to the nucleon motion and the off-ma
shell corrections.

Rearranging the terms in Eqs.~A1!–~A6! according to
their contributions, we find

Ô~p1 ,q,k!5$Ôon1dÔoff%~2p!d„~p11q!22m2
…,
~A16!

whereÔon is the sum of terms contributing to the invaria
matrix element for the free nucleon, anddÔoff is the sum of
the terms providing the off-mass-shell corrections. Since
can add to and subtract from both terms in Eq.~A16! pieces
vanishing for a nucleon on the mass shell, the separatio
Ôon anddÔoff is not unique, but the physical results do n
depend on the way this is done. In our definition

Ôon[
q4

m
B~Q2!12@q2m22q̂~kp1!

12k̂~2kp12qp1!#A~Q2!, ~A17!
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dÔoff[22q2S q̂1
q2

2mDF1
2~Q2!

1
2kq2

m
~2mq̂1qp1!F1~Q2!F2~Q2!

2
k2q2

2m2
@ q̂~q212qp1!#F2

2~Q2!. ~A18!

It can be seen that in Eq.~A17! A(Q2) and B(Q2) are
weighted by two different functions, viz. a scalar, and a m
ture of scalar and vector terms, respectively. This is a re
of the relativistic structure of our formalism, in which, unlik
the nonrelativistic case and the relativistic case for a nucl
at rest, the vector charge density does not coincide with
probability density. Because of the different structure of t
weighting factors ofA(Q2) andB(Q2) in Ôon, the average
value of the latter calculated for the deuteron will not facto
ize into a common term forA(Q2) andB(Q2). However, if
the difference between the vector and the scalar charge
not too large, one could be able to define a common term
bothA(Q2) andB(Q2), plus proper correction terms. There
fore, we redefine our definition ofÔon:

Ôon[Ôstat1dÔmot, ~A19!

Ôstat52@q2m24mnE14mE 2#A~Q2!1
q4

m
B~Q2!,

~A20!
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dÔmot54@mnE2q̂~kp1!2E~2mE2mn!1 k̂~2kp1

2qp1!#A~Q2!, ~A21!

whereÔstat is a scalar operator defining the invariant mat
element for the nucleon at rest anddÔmot is defined by the
combination of scalar and vector currents, which gives
nonzero contribution for the moving nucleon.

APPENDIX B: THE POLE STRUCTURE OF THE MATRIX
ELEMENTS WITHIN THE BS FORMALISM

In computing the deuteron observables within the BS f
malism, i.e., the matrix elements of a given opera

^DuÔuD&[^Ô&, one makes use of the Mandelstam tec
nique, which yields

^Ô&5
i

2MD
E d4p

~2p!4

1

~p1
22m21 i e!2~p2

22m21 i e!

3
1

3 (
M

Tr$ḠM~p0 ,p!~ p̂11m!Ô~ p̂11m!

3GM~p0 ,p!~ p̂21m!%. ~B1!

It can be seen that in Eq.~B1! there are poles and cuts in th
integration overp0. However, the whole matrix element^Ô&
is real and finite. This allows one to perform the Wick rot
tion in the complex plane of the relative energyp0 and safely
compute the integrals in Eq.~B1!. Moreover, in this case the
BS vertex functionGM(p0 ,p) depends upon the imaginar
part of p0, which allows one to use directly the numeric
solution@21,20# obtained in the rotated system. In particula
when ^Ô& is defined at fixed value ofp0 ~which is just the
case ofeD processes investigated in this paper! the Wick
rotation is no longer relevant in the computation of mat
elements. In order to establish a connection between the

FIG. 17. The integration contour in Eq.~B2!. The singularities 1
and 2 correspond to the first and second particles on-mass s
p105w andp205w, respectively, whereas the singularities labe
as 3 and 4 correspond to both particles off-mass shell,p1052w
andp2052w.
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culation of matrix elements in the form of Eq.~B1! and the
matrix elements~2.30!, we introduce the deuteron densitie
~see also Ref.@31#!:

^Ô&BS~p!5
i

2MD
E dp0

~2p!

1

~p1
22m21 i e!2~p2

22m21 i e!

3
1

3 (
M

Tr$ḠM~p0 ,p!~ p̂11m!

3Ô~ p̂11m!GM~p0 ,p!~ p̂21m!%, ~B2!

where the integration contour is shown in Fig. 17. There
two kinds of singularities in Eq.~B2!: ~i! when one of the
particles is on mass shell,p105w or p205w, labeled ‘‘1’’
and ‘‘2’’ in Fig. 17, and~ii ! when both particles are deepl
virtual, p1052w or p2052w, labeled ‘‘3’’ and ‘‘4,’’ re-
spectively. As previously mentioned, in Eq.~B2! the singu-
larities are removed by performing the Wick rotation and
integrating along the imaginary axis ofp0. Instead of rotat-
ing the contour, we close it in the upper semiplane, a
integrate Eq.~B2! in the Minkowsky space. Thus there re
main two singularities contributing to the full densities,
simple pole atp205w, and a pole of second order atp105
2w. The former, which corresponds to the spectator on
mass shell, gives the dominant contribution to the full in
gral. It is exactly this contribution which enters our formul
in Sec. II @Eq. ~2.30!#, and in Sec. III@Eqs. ~2.39!–~2.41!#.
The approximation of the full matrix elements by th
nucleon pole contribution is often used in describing the p
cesses with the deuteron@13,32#. Accordingly let us define
the nucleon pole contribution to the full density:

ell,

FIG. 18. The deuteron densities:~a! ^g0&(upu). The solid line
corresponds to the integration overp0, and the dashed line to th
nucleon pole contribution; the nucleon pole contribution to the s
lar density^1&(upu) is given by the dotted line.~b! ^1&(upu). The
solid line corresponds to the integration overp0 and the dashed
line to the nucleon pole contribution; the dotted line represe
the nucleon pole contribution to the scalar density calculated
^g0&(upu)@12p2/(2m2)#.
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^Ô&pole
BS ~p!5

1

2MD

1

2wMD
2 ~MD22w!2

1

3 (
M

Tr$ḠM~p0 ,p!

3~ p̂11m!Ô~ p̂11m!GM~p0 ,p!~ p̂21m!%.
~B3!

It can be seen that the matrix element~2.30! is the pole part
of Eq. ~B1!. Insofar as the pole contribution@Eq. ~B3!# domi-
nates the full density@Eq. ~B2!#, the relevant quantities@Eqs.
~2.39!–~2.41!# can be calculated by using the Wic
u.

ov

cl

03400
rotation and by computing numerically the integral~B2! in
the rotated system, using the numerical solutions of the
equation obtained in Ref.@21#. Figure 18 shows the charg
^g0& and scalar̂ 1& densities computed by Eqs.~B2! and
~B3!. It can be seen that up toupu;0.65 GeV/c, both meth-
ods provide the same results~above 0.65 GeV/c the pole
contribution has been calculated using for the BS ver
functionGM , the analytical parametrization from Ref.@20#!.
More details on the behavior of various full and pole den
ties can be found in Ref.@31#.
,
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