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Equivalence of nonstatic two-pion-exchange nucleon-nucleon potentials

J. L. Friar
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 27 January 1999; published 27 July 1999!

Off-shell aspects of the one-pion-exchange potential and their relationship to different forms of the nonstatic
~subleading-order! chiral two-pion-exchange nucleon-nucleon potential are discussed. Various types of off-
shell behavior are categorized and numerous examples are given. Recently derived potentials based on chiral
approaches are supplemented by a rather general form of the two-pion-exchange potential that is derived using
old-fashioned methods and exhibits off-shell dependence. The latter potential is closely related to a general
form of one-pion-exchange relativistic corrections and nonstatic two-pion-exchange three-nucleon forces de-
veloped long ago.@S0556-2813~99!07508-1#

PACS number~s!: 11.30.Rd, 12.39.Fe, 13.75.Cs, 21.30.Fe
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I. INTRODUCTION

Off-shell effects in nuclear potentials have long pos
conceptual and technical problems in nuclear physics@1,2#.
Although the off-shell problem often is caused by poo
posed input~and is therefore largely insoluble!, even if the
input is completely specified~e.g., a Lagrangian! there can
still be ambiguity in final forms obtained for potentials. W
will focus on the ambiguities, which are basicallychoices
made by theorists. Thus, many different potentials are c
rect ~to some order!, but have different forms~in part!. Nev-
ertheless, these different forms lead toequivalentobserv-
ables. We refer collectively to these ambiguities as ‘‘o
shell’’ effects. We wish to emphasize that differe
formalisms make these choices automatically. It is only
trying to relate different calculations that these ambiguit
must be understood. That is our primary purpose in t
work.

There are three basic types of ambiguity that have ar
in calculating nuclear potentials@3#. The first type is caused
by an energy-dependent potentialV(E), whereE is the ei-
genvalue of the appropriate equation of whichV(E) is part.
Such forms occur naturally@4,5# when expanding energy de
nominators that occur in Schro¨dinger perturbation-theory
treatments of mesons that are exchanged between nucl
V(E);(1/Em)J(1/@Em1(H2E)#)J, where J is a meson-
nucleon vertex~the twoJ’s refer to different nucleons!, Em is
the transiting-meson energy andH2E is the nucleons’ en-
ergy difference between intermediate and initial states.
panding in powers of (H2E)/Em , one finds the usual stati
potential (J2/Em

2 ) plus energy-dependent corrections. This
perfectly satisfactory~the Sturm-Liouville equation@6# is of
this type!, but energy-dependence is difficult to implement
anything other than the two-nucleon system. This ener
dependence was the origin of the Brueckner-Watson@7# vs
TMO @8# controversy long ago~reviewed in Ref.@9#!, and
many results from chiral perturbation theory have this fo
@10#. The cost of this dependence is sufficiently high~par-
ticularly for A>3! that we do not recommend keeping it, b
rather one should eliminate it by any of various means
veloped over the years@3#. This has been done in all of th
results of Sec. II. We will not further consider this type
off-shell dependence.
0556-2813/99/60~3!/034002~7!/$15.00 60 0340
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The second type of off-shell dependence arises from u
tary ambiguities in the form of the potential, often from di
ferent choices of field variables@5,2# in thesameLagrangian.
Thus if H is the nuclear Hamiltonian

~E2H !C50, ~1!

a transformationC85eiUC>(11 iU )C ~for small U! pro-
duces

~E2H8!C850, ~2a!

where the transformed Hamiltonian

H8>H2 i @H,U# ~2b!

is a satisfactory variant ofH ~for smallU!. Such transforma-
tions effect gauge transformations in electromagnetic pr
lems and occur naturally in relativistic corrections to nucle
potentials@11,4,5#.

One specific example of the latter is the quasipoten
ambiguity@3#, determined by an off-shell parametern. When
a meson of massm is exchanged between two nucleons~1
and 2! in an arbitrary reference frame, the relativistic prop
gator has the form

1

q0
22~qW 21m2!

>2
1

qW 21m22
q0

2

~qW 21m2!2 , ~3!

whereq0
2 is nonvanishing in general and is given byDE1

2 or
DE2

2 or 2DE1DE2 , whereDEi is the energy transferred b
the meson to nucleoni. Each choice leads to a differen
off-shell potential, corresponding to the different ways
projecting out q0 , the time component of the four
momentum vector. A general result forq0

2 is given by the
linear combination: @(DE11DE2)2(12n)22DE1DE2#,
which specifies the parametern @3# and demonstrates that th
effect is a unitary ambiguity. Common choices of the para
eter n are n50 ~standard! @3,11#, n51/2 ~no retardation!
@4,12#, and n51 ~soft!. Most techniques lead ton50, al-
though a Foldy-Wouthuysen procedure@13# leads ton51.
The popularn51/2 choice@5# simplifies the nuclear poten
©1999 The American Physical Society02-1
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tial. Note that DEi
2 is of order (1/M2), where M is the

nucleon mass. This generates a relativistic correction to
potential.

Another unitary ambiguity arises when using pseud
scalar ~PS! or pseudovector~PV! relativistic pion-nucleon
interactions. The on-shell forms are identical, but they dif
off-shell. These differences can be subsumed@4,5# to order
(1/M2) by a collection of off-shell operators proportional
a parameterm. Common choices arem521 ~PS free
spinors! @1,11,14#, m50 ~minimal nonlocality! @15,16#, m
51 ~PV! @11#, andm53 ~soft! @4#. Conventional chiral per-
turbation theory~CPT! @17,18# expansions~term-by-term
chirality! correspond tom51 and are preferred for that rea
son, although other criteria having to do with the final for
of OPEP may mandate other values~viz., m50, discussed
below!.

The third type of ambiguity is the form ambiguity. Pote
tials only make sense in the context of a scheme for itera
them to produce a final~to all orders! result for a binding
energy or scattering amplitude. The nonrelativistic paradi
is to add the kinetic energyTNR5pW 2/2M to the potentialV to
obtain the HamiltonianHNR that is used in Eq.~1! to obtain
the desired observable. The naive~but obvious! relativistic
generalization of this is to form the free energy@4#

T5(
i 51

A

ApW i
21M2

˜2ApW 21M2, ~4!

for a collection of identical-mass nucleons, where the sec
form applies only to the two-nucleon problem in its cent
of-mass frame. ThenHR5T1V is the appropriate relativis
tic form of the energy to be used in Eq.~1!. A one-time
formalism ~linear in E! is always possible if one freezes o
antinucleon degrees of freedom or by using a variety of p
jection schemes, which typically lead to different quasip
tential equations@3#.

An example of a quasipotential method is the popu
Blankenbecler-Sugar@19# ~BS! procedure, which is based o
a two-nucleon Green’s function of nonrelativistic form. A
though this is a well-developed procedure that casts fi
theory calculations into a Schro¨dinger-like appearance, th
relationship between BS results and more conventional o
@using Eq.~4! for T# can be obtained by means of a tric
@20#. The two-body relativistic Schro¨dinger equation~RSE,
for lack of a better name! corresponding to the second for
in Eq. ~4! is

@2ApW 21M21V~rW !#CR52Ak21M2CR , ~5!

wherek is the momentum corresponding to the energy eig
value E and rW is the nucleons’ separation. Squaring bo
sides, subtracting 4M2 from both sides, and dividing by 4M
lead to the remarkable andequivalent@20#

FpW 2

M
1V̄~rW !GCBS5

k2

M
CBS, ~6!
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where

V̄~rW !5HApW 21M2

2M
,V~rW !J 1

V2

4M
~7!

is the effective potential to be used in what appears to b
nonrelativistic Schro¨dinger equation. This equation require
relativistic kinematics~e.g., in relatingk and E!, however,
and is not nonrelativistic. This procedure@using Eq.~6!# is at
the heart of the Nijmegen partial-wave-analysis~PWA! pro-
gram @21# for treating nucleon-nucleon scattering.

Any form change in the equation redefines the effect
potential, which is hardly a surprise. Note theV2/4M term,
which will be seen again since it typically sets the scale
corrections resulting from changes of form, and the fac
;(E/M ) that multipliesV. Such factors occur everywher
when calculating potentials. This factor repositions relativ
tic corrections fromT to V̄. Clearly other form changes ar
possible. Although Eq.~6! is a decided advantage in treatin
the two-nucleon problem, it is not of any obvious use for t
many-nucleon problem~there will be cross terms betwee
the kinetic energies of different nucleons!. A recent major
advance has been the ability to handleAp21m2 in configu-
ration space@22#, since modeling momentum-dependent o
erators in that space is the single most challenging nume
problem.

In Sec. II we review selected previous calculations a
derive a new general form of the nonstatic~subleading order
in CPT! two-pion-exchange nucleon-nucleon potential th
manifests the unitary ambiguities discussed above. This f
subsumes several previously calculated potentials as we
a number of cases not previously considered, and allows
of these results to be compared. In Sec. III results for spec
off-shell choices are discussed, including the important c
of the Nijmegen PWA program. Our summary is presen
in Sec. IV.

II. CALCULATION

It should be obvious from the previous examples that
have been discussing variants of relativistic corrections.
ing either the old rules of scale@5# ~countingT;1/M or 1/L,
whereL is the large-mass scale of QCD, andV;T;1/M ! or
more general and sophisticated power-counting rules@17,23#
leads to the same conclusion. Relativistic corrections to
nucleon kinetic energy~;1/M3 or 1/L3! can be juggled into
the BS potential (;V/M2;1/L3) or the BS correction term
(V2/4M;1/L3). The retardation corrections have the sam
intrinsic size (V/M2;1/L3). This defines the limits of the
expansions~in 1/M ! that will be made below.

With the exception of recent CPT calculations~or other
chiral variants! much of the work on one- and two-pion
exchange potentials is quite old@24#. In particular, the work
of TMO @8# and Sugawara and Okubo~SO! @11# stand out in
their technical clarity. Both developed an energ
independent potential. The static~i.e., leading order in CPT!
two-pion-exchange potential (V2p

0 ) was developed by TMO
and was recently reviewed in Ref.@9# in the context of
2-2
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energy-dependent alternatives. The leading-order nons
~i.e., subleading order in CPT! corrections (DV2p) were de-
veloped in SO, even though they had no credible theory
the interactions of pions and nucleons, which came la
Nevertheless, with the exception of missing seagull ter
~pp-N interactions! one of their models~PV coupling! pro-
duced correct and complete results. At the time of SO it w
known that nucleon-antinucleon ‘‘pair’’ terms in PS co
pling were unphysically large and had to be suppressed~they
were simply thrown away!. The reason for this suppressio
is now known to be chiral symmetry, which explains t
success of their PV coupling model~derivative coupling with
negligible pair terms!. In addition SO supplemented their P
Lagrangian with two seagull interactions, one with a sin
derivative of Weinberg-Tomozawa type@25# and another
~with no derivatives! of s-term type@c1 in Eq. ~9! below#.
Their results were correct for these interactions, as w
They did not consider seagulls with two derivatives, such
the c3 andc4 terms in Eq.~9!.

The work of SO also emphasized~by example! that no
unique form forDV2p exists without choosing an appropr
ate off-shell form forDVp , the relativistic corrections to the
one-pion-exchange potentialVp

0 ~OPEP!. Moreover, this
choice also affects the nonstatic two-pion-exchange th
nucleon forces~of nominal sizeVp

02/M !. The latter was de-
veloped in Ref.@5#, except for seagull counter terms fir
incorporated completely in Ref.@10# ~see also Refs.@1,2#!.
We emphasize that the former calculation treated the ‘‘B
terms’’ ~in this case the leading-orderp-N coupling and the
Weinberg-Tomozawapp-N coupling! to nonstatic~sublead-
ing! order, but important~dominant! terms in the chiral ex-
pansion were not treated until Ref.@10#. A review of one-
pion-exchange contributions to the Hamiltonian and to
charge form factor~from electron scattering! was presented
in the appendix to Ref.@5#. In addition, all necessary formu
las were developed for determiningDV2p , but the final in-
tegrals and spin-isospin commutators were not perform
This will be completed below.

The work of Refs.@4,5# is based on a relativistic Lagrang
ian for free nucleons plus a PVp-N interaction plus a
Weinberg-Tomozawa@25# pp-N interaction. A Foldy-
Wouthuysen reduction of this Lagrangian is made to the
propriate order in 1/M and this reduced set is used in tim
dependent perturbation theory in the usual way. It yie
potentials and pion-exchange-current operators. Beca
time-dependent perturbation theory leads to a variant
~time-independent! Schrödinger perturbation theory, the re
sulting potentials are energy-dependent. A mapping te
nique @or ~alternatively! perturbation-theory manipulations#
convert those forms to an energy-independent potential t
used in Eq.~1!, with the kinetic energy given by Eq.~4!.

For specificity we list next the required Lagrangian ter
L(D), whereD50,1,..., represents powers of 1/L ~i.e., L2D!
contained implicitly and explicitly in the coefficients of th
products of pion and nucleon fields. The termL(3) is only
formally required to produce the necessary part of the f
relativistic nucleon energyT listed in Eq. ~4!; it was not
required to calculate the 2p-exchange force in Ref.@5#. The
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L(2) terms @see Eq.~6f! of Ref. @4## are required only to
calculate theDVp potential and are not needed forDV2p .
Only L(0) andL(1) @see Eq.~5! of Ref. @5## are required in
order to produceDV2p . We have

L~0!5
1

2
@ṗ22~¹W p!22mp

2 p2#1N†F i ]02
1

4 f p
2 t•~p3ṗ!GN

1
gA

2 f p
N†sW •¹W ~t•p!N, ~8!

L~1!5
1

2M F2N†pW 2N2
11gA

2~m21!

4 f p
2 N†$pW ,•~t•p3¹W p!%N

1
gA~m11!

4 f p
N†$sW •pW ,t•ṗ%N1

gA
2~m21!

4 f p
2

3N†p•¹W 2pN2
gA

2~m21!

8 f p
2 N†$sW 3pW ,•¹W p2%NG

1
1

f p
2 N†F22c1mp

2 p22c3~¹W p!2

2
1

2 S c41
1

4M D « i jk«abcsktc] ipa] jpbGN, ~9!

L~2!52
gA

8 f pM2 N†$pW 2,sW •¹W ~t•p!%N

1
gAm

16f pM2 N†$sW •pW ,$pW ,•¹W ~t•p!%%N, ~10!

L~3!5
1

8M3 N†pW 4N. ~11!

Terms not required in what follows have not been liste
and this includes all short-rangeNN operators. Note that both
terms inL(2) depend on the average nucleon momentumpW
and are constrained by the requirements of relativity~as is
L(3) and four of the first five terms ofL(1)!. The ~nucleon!
momentum-dependent terms were developed by noting
the nucleon parts ofL(0) can be represented by a~covariant!
free-nucleon term plus a PVp-N vertex supplemented by
Weinberg-Tomozawa pp-N interaction. Performing a
Foldy-Wouthuysen reduction of this set@4,5# freezes out the
antinucleon degrees of freedom and leads to all terms exp
itly proportional to inverse powers ofM. We will ignore all
pion-momentum-dependent~form-factor! modifications of
the PV vertex. Although the coefficient ofpW 2 in Eq. ~10! is
completely specified, this is solely due to our knowledge t
the pion is a pseudoscalar object. Scalar- and vector-me
exchanges produce similar terms of opposite sign to e
other. Note the dependence on the off-shell parametem,
which arises from a redefinition of nucleon fields. The resu
2-3



a

ize
-

xte
a

er

is

h

of
l
ton

is

the

ors
d

ds

on-

red
-
er-

e-

r
nifi-
ich
uta-

in-

c

the

as

ave
u-

n

J. L. FRIAR PHYSICAL REVIEW C 60 034002
ing Lagrangian still satisfies chiral symmetry, but not on
term-by-term basis unlessm51.

Results for OPEP appropriate for Eq.~5! have been pre-
sented previously in many calculations and are summar
by Eq. ~A12! of Ref. @5#. We restrict ourselves to the two
nucleon sector; the three-nucleon sector is discussed e
sively in that reference. For continuity, we also revert to
convenient but old-fashioned notation for the effectivep-N
coupling constantf,

f 5
G

2M
'

gA

2 f p
, ~12!

where the second relation holds only if the Goldberg
Treiman@26# relation is exact. We find that to order (1/L3)

Vp5Vp
0 2

1

2M2 $pW 2,Vp
0 %1S 1

2
2n D i @TNR ,UG#

1~m22n11!i @TNR ,UE#, ~13!

where

Vp
0 5 f 0

2mpt1•t2sW 1•¹W sW 2•¹W h0~x!, ~14!

f 0
25

f 2mp
2

4p
, ~15!

xW5mp~xW12xW2!, ~16a!

h05
e2x

x
. ~16b!

Introduction of form factors intoh0 is straightforward, but
for simplicity will not be done here. Our primary interest
the tail of this force, as analyzed by the Nijmegen PWA@27#.
We also require the Gross (UG) and equivalence (UE) uni-
tary transformations@5#

UG5
1

4M
$pW •,xWVp

0 ~xW !/mp% ~17!

and

UE5
f 0

2

8M
t1•t2~$sW 1•pW ,sW 2•¹W h0~x!%1$sW 2•pW ,sW 1•¹W h0~x!%!,

~18!
03400
d
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-

where here and elsewhere¹W signifies¹W x .
Although the second term inVp is simple in form@and

represents the expansion of (M /E0)Vp
0 (M /E0), where E0

5ApW 21m2, in the c.m. frame#, the other terms are muc
more complicated and involve the coupling of~nucleon! spin
and momentum. This type of tensor coupling is the origin
the lower than usualPD of the deuteron for the traditiona
Bonn potential models, and subsequently for a higher tri
binding energy than other models@28#. Clearly, the last two
terms in Eq.~13! can be neglected on-shell, or bychoosing
n5 1

2 andm50 they can be neglected off-shell, as well. Th
is a popular choice. Note that the two factors of (M /E0)
arise from our nucleon normalization. Rather than use
covariantnormalization convention~current matrix elements
are manifestly covariant and nucleon normalization fact
are kept separate inS-matrix elements or are incorporate
into covariant phase-space factors! we revert to theinvariant
convention~normalization factors are incorporated into fiel
and the total charge, for example, is a Lorentz invariant! that
is consistent with a Foldy-Wouthuysen reduction and is c
ventional in nuclear problems.

We further note that Sugawara and Okubo encounte
bothUG andUE in the course of their derivation of the one
and two-pion-exchange potentials. Their conversion of int
mediate results toVp

0 2$pW 2,Vp
0 %/2M is equivalent to choos-

ing n5 1
2 and m50 in our result. That choice has been r

cently called the ‘‘minimal nonlocality’’~MNL ! choice@15#,
because it eliminates the complicatedsW •pW terms that other-
wise arise. This type of complexity matters little fo
momentum-space computational approaches, but is a sig
cant impediment to configuration-space calculations, wh
are now the dominant approach for high-accuracy comp
tions ofA.3 @29#. Minimal nonlocality is a significant sim-
plification.

As stated earlier, all but the final integrals and sp
isospin manipulations for obtaining the nonstaticDV2p were
performed in Ref.@5# during the calculation of the nonstati
‘‘Born-term’’ contributions to the 2p-exchange three-
nucleon force. We require Eqs.~15! and ~16! ~direct-plus
crossed-box diagrams!, Eq. ~18a! ~‘‘uncrossed’’ or overlap-
ping time-ordered diagrams!, Eq. ~20! ~seagulls with no time
derivatives!, and Eq. ~22a! ~the Weinberg-Tomozawa
seagull! of that reference. It was necessary to subtract
iterated contribution of OPEP (Vp) since this is automati-
cally included in the solution of the RSE, Eq.~5!. This sub-
traction led to an energy-dependent potential that w
mapped into an energy-independent form~this can be
achieved by many different equivalent techniques@30#!. Uni-
tary equivalences of 2p-range @such as in Eqs.~18a! and
~22a! of Ref. @5## were eliminated by converting them to 3p
range~which terms we are consistently ignoring!. By choos-
ing to develop an energy-independent potential we h
eliminated from consideration the first of the three ambig
ities discussed in the introduction.

The resulting nonstatic 2p-exchange nucleon-nucleo
force is given in its most general form appropriate form and
n off-shell ambiguities by
2-4
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DV2p
m,n5

f 0
4mp

2

2M
XLW •SW H 3@8g222xgg8~m22n23!#22t1•t2F8g2S 1

gA
221D 22xgg8~m22n11!G J

1F3$2xg~4g81xg9!~m23n!2~12n!x2g8~2g81xg9!116c̄3@3g21xg8~2g1xg8!#

132c̄1x2g2%22t1•t2S 2xg~4g81xg9!~m23n22!1~11n!x2g8~2g81xg9!1
2

gA
2 @3g21xg8

3~2g1xg8!# D G1
1

3
@3~11n!12~12n!t1•t2#$S12@xgg81x2~g821gg9!#22sW 1•sW 2@4xgg81x2

3~g821gg9!#%1
8

3
t1•t2S 4c̄41

1

gA
2 D @S12~xgg8!2sW 1•sW 2~3g212xgg8!#C, ~19!
d
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where

g~x!5
1

x

dh0~x!

dx
52e2xS 1

x2 1
1

x3D ~20!

and

c̄i5ciM /gA
2. ~21!

Each type of force in Eq.~19! ~spin-orbit, central, tensor, an
spin-spin! depends on the off-shell parameters. For comp
son purposes@see Eq.~7!# we also find

Vp
2

4M
5

f 0
4mp

2

12M
~322t1•t2!@2S12~xgg8!22sW 1•sW 2~3g2

12xgg8!13~3g212xgg81x2g82!#. ~22!

Note that only two types of isospin operator are possib
direct type (322t1•t2) and crossed type (312t1•t2). Both
uncrossed diagrams~with slanted time-ordered pion propa
gators! and reducible diagrams~with no pions at some inter
mediate time! are of direct type. This separation facilitate
comparisons between different calculations of certain d
grams.

The crucial elements in this calculation are the chi
seagulls. These were first calculated in Ref.@10#. Written in
the manner of Eq.~21!, the c̄i should be dimensionless num
bers whose magnitudes are;1 @23#. Because the low-massD
isobar plays such a large role inc3 andc4 , these values are
even larger and they play a dominant role inDV2p . The
remaining terms depend only onf. They were first calculated
i-

:

-

l

in an energy-independent form by Sugawara and Oku
Their calculation suppressed negative-energy states, w
contribute to ourp-N seagull amplitudes. They noted, how
ever, that their PV calculation~corresponding tom51 and
n50! had very weak pair terms, and indeedL(0) andL(1)

have no seagulls if we eliminate theci , the Weinberg-
Tomozawa terms~independent ofgA!, and setm51. For this
reason their calculation of the relativistic direct- and cross
box diagrams for PV coupling was complete.

We have verified their results for individual terms bo
before and after the unitary transformations they perform
Their final result corresponds tom50, n51/2 in Eq. ~19!
with the aforementioned seagull terms dropped. Thus,
SO PV calculation is the first correct calculation of the su
tracted box and crossed-box graphs. Their PS calcula
~corresponding tom521, n50! is, however, missing some
seagull terms, although we have verified all of their oth
calculated contributions. Although SO unnecessarily
proximatedAp21M22M by p2/2M in the free-nucleon en-
ergy, it is clear from their calculation thatVp1V2p

0

1DV2p
MNL is to be substituted forV in Eq. ~5!.

III. SPECIFIC FORMS OF DV2p

Having developed a new and general form forDV2p cor-
responding to them and n off-shell ambiguities, we now
relate this form to specific cases of potentials and proced
that are in common use today. For the special~and preferred!
MNL case~m50, n51/2! one finds
DV2p
MNL5

f 0
4mp

2

4M H 16LW •SW F3~g21xgg8!22t1•t2g2S 1

gA
221D G1F3$3xg~4g81xg9!2x2g8~2g81xg9!

132c̄3@3g21xg8~2g1xg8!#164c̄1x2g2%22t1•t2S 7xg~4g81xg9!13x2g8~2g81xg9!

1
4

gA
2 @3g21xg8~2g1xg8!# D G1

1

3
~912t1•t2!$S12@xgg81x2~g821gg9!#22sW 1•sW 2@4xgg8

1x2~g821gg9!#%1
16

3
t1•t2~4c̄411/gA

2 !@S12~xgg8!2sW 1•sW 2~3g212xgg8!#J . ~23!
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The form appropriate for the Nijmegen PWA@see Eq.~7!#
is then given by

DV2p
Nij 5DV2p

MNL1
Vp

2

4M
, ~24!

and should be used in Eq.~6! with an OPEP in the form

Vp
Nij5H E0

2M
,

M

E0
Vp

0 ~rW !
M

E0
J , ~25!

whereE05ApW 21M2 is an operator.
The usual approach of the Nijmegen group, however, i

approximate the operator-valued factors ofE0 in Eq. ~25! by
their on-shell value:Eos5Ak21M2. This changes their
OPEP to

V̄p
Nij5

M

Eos
Vp

0 , ~26!

and the difference ofVp
Nij and V̄p

Nij modifies the required
nonstatic 2p-exchange potential to~second-order perturba
tion theory is the easiest way to see this@31#!

DV̄ 2p
Nij 5DV2p

MNL1
3Vp

2

4M
. ~27!

That is, changing from operator-valued kinematical fact
to on-shell ~c-number! ones merely adds 2Vp

2 /4M to the
‘‘form’’ correction factor displayed in Eq.~24!.

In a similar fashion we note that the new Urbana@16#
relativistic potential model corresponds to Eq.~5! with

VUrb5S M

E0
Vp

0 M

E0
1V2p

0 1DV2p
MNL D1¯ . ~28!

In addition, the Bonn potential@14# incorporated into an
equation with relativistic kinematics requires a slightly d
ferent version ofDV2p

m,n corresponding tom521 andn5 1
2

in Eq. ~19!:

DV2p
Bonn5DV2p

21,1/2. ~29!
D

e
e

o
o
s

o
n
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Equations~23!–~29!, as well as Eq.~19!, are our principal
results. Specifying the form of the equation to be solved a
the form of OPEP eliminates the three types of ambigu
discussed in the Introduction.

Finally, a very interesting and unusual calculation~from
the nuclear physics perspective! was recently performed
@32#. The one-pion-exchange potential was calculated
shell, and the~wave-function-normalization! factor (M /E0)2

was extracted as a kinematical~flux! factor. Thus, the OPEP
was chosen to be the nonrelativisticVp

0 . Subtracting (M /E0)
times the iterated OPEP~using a nonrelativistic Green’s
function! they found aDV2p in the form

DV2p~Ref. @32#!5DV2p
MNL1

3Vp
2

4M
, ~30!

and did not relate this result to any particular dynami
equation. We have verified that Eq.~30! corresponds to the
conditions of Ref.@32#.

IV. SUMMARY

In summary, we have completed an old-fashioned cal
lation of the nonstatic two-pion-exchange nucleon-nucle
potential that emphasizes and highlights the off-shell nat
of OPEP. Different versions were developed that corresp
to different ~m,n! off-shell parameters, and to using relati
istic or nonrelativistic kinetic energies in the Schro¨dinger
equation, or using operator-valued or on-shell kinematic f
tors. These new results would correspond to the Nijme
@21#, Urbana@16#, and Bonn@14# approaches, and furthe
manipulation leads to the Munich result@32#. These various
approaches in perturbation theory correspond to differ
subtractions in the second-order iteration of OPEP and
resent different off-shell versions of that potential.
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