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Equivalence of nonstatic two-pion-exchange nucleon-nucleon potentials

J. L. Friar
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 27 January 1999; published 27 July 1999

Off-shell aspects of the one-pion-exchange potential and their relationship to different forms of the nonstatic
(subleading-orderchiral two-pion-exchange nucleon-nucleon potential are discussed. Various types of off-
shell behavior are categorized and numerous examples are given. Recently derived potentials based on chiral
approaches are supplemented by a rather general form of the two-pion-exchange potential that is derived using
old-fashioned methods and exhibits off-shell dependence. The latter potential is closely related to a general
form of one-pion-exchange relativistic corrections and nonstatic two-pion-exchange three-nucleon forces de-
veloped long agd.S0556-28139)07508-1

PACS numbgs): 11.30.Rd, 12.39.Fe, 13.75.Cs, 21.30.Fe

[. INTRODUCTION The second type of off-shell dependence arises from uni-
tary ambiguities in the form of the potential, often from dif-
Off-shell effects in nuclear potentials have long posedferent choices of field variabl¢5,2] in the sameLagrangian.
conceptual and technical problems in nuclear phyglgg8].  Thus if H is the nuclear Hamiltonian
Although the off-shell problem often is caused by poorly
posed input(and is therefore largely insolubleeven if the (E-H)¥=0, (1)
input is completely specifie¢e.g., a Lagrangignthere can _
still be ambiguity in final forms obtained for potentials. We a transformationV’' =e'Y¥=(1+iU)¥ (for smallU) pro-
will focus on the ambiguities, which are basicalthoices duces
made by theorists. Thus, many different potentials are cor-
rect(to some order but have different formgin part). Nev- (E-H")W¥'=0, (2a)
ertheless, these different forms lead eéquivalentobserv-
ables. We refer collectively to these ambiguities as “off- where the transformed Hamiltonian
shell” effects. We wish to emphasize that different
formalisms make these choices automatically. It is only in H'=H-i[H,U] (2b)
trying to relate different calculations that these ambiguities
must be understood. That is our primary purpose in thigs a satisfactory variant dfl (for smallU). Such transforma-
work. tions effect gauge transformations in electromagnetic prob-
There are three basic types of ambiguity that have arisefems and occur naturally in relativistic corrections to nuclear
in calculating nuclear potential8]. The first type is caused potentials[11,4,5.
by an energy-dependent potenti&lE), whereE is the ei- One specific example of the latter is the quasipotential
genvalue of the appropriate equation of whitE) is part.  ambiguity[3], determined by an off-shell parameteiWhen
Such forms occur naturalf,5] when expanding energy de- a meson of masm is exchanged between two nucleoids
nominators that occur in Schiimger perturbation-theory and 2 in an arbitrary reference frame, the relativistic propa-
treatments of mesons that are exchanged between nucleongitor has the form
V(E)~(1/E) J(A[E,+(H—E)])J, whereJ is a meson-

nucleon vertexthe twoJ's refer to different nucleonsk,, is 1 1 qg
the transiting-meson energy aht-E is the nucleons’ en- 7 2 = 3 22 ©)
ergy difference between intermediate and initial states. Ex- Qo—(G°+m?) g +m” (G7+m°)

panding in powers offl —E)/E,,, one finds the usual static

potential §?/E2) plus energy-dependent corrections. This |Swhereq0 is nonvanishing in general and is given hEF or
perfectly satisfactorythe Sturm-Liouville equatiofi6] is of ~ AE5 or —AE;AE,, whereAE; is the energy transferred by
this type, but energy-dependence is difficult to implement inthe meson to nucleon Each choice leads to a different
anything other than the two-nucleon system. This energyoff-shell potential, corresponding to the different ways of
dependence was the origin of the Brueckner-Wafsgrvs ~ Projecting out go, the time component of the four-
TMO [8] controversy long agdreviewed in Ref[9]), and ~momentum vector. A general result fqé is given by the
many results from chiral perturbation theory have this formlinear combination: [(AE;+AE,)?(1—v)—2AE,AE,],
[10]. The cost of this dependence is sufficiently higlar-  which specifies the parametef3] and demonstrates that the
ticularly for A=3) that we do not recommend keeping it, but effect is a unitary ambiguity. Common choices of the param-
rather one should eliminate it by any of various means deeter v are v=0 (standardl [3,11], »=1/2 (no retardation
veloped over the yeaf8]. This has been done in all of the [4,12], and v=1 (soft). Most techniques lead to=0, al-
results of Sec. Il. We will not further consider this type of though a Foldy-Wouthuysen procedyrE3] leads tov=1.
off-shell dependence. The popularv=1/2 choice[5] simplifies the nuclear poten-

0556-2813/99/6(B)/0340027)/$15.00 60 034002-1 ©1999 The American Physical Society



J. L. FRIAR PHYSICAL REVIEW C 60 034002

tial. Note thatAE? is of order (1IM?), where M is the  Where
nucleon mass. This generates a relativistic correction to the

potential. - /ﬁz + M2 V2
Another unitary ambiguity arises when using pseudo- V()= ——— V(N[ +— (7)
scalar (P or pseudovectofPV) relativistic pion-nucleon 2M 4M

interactions. The on-shell forms are identical, but they differ. . . .
off-shell. These differences can be subsurf¥d] to order is the effe_ctl_ve po't'er_1t|al to be u_sed in _vvhat appears to_ be a
(1/M?) by a collection of off-shell operators proportional to nonrelativistic Schrdinger equation. This equation requires

a parameters. Common choices argi=—1 (PS free relativistic kinematics(e.g., in relatingk and E), however,
spinors [1,11,14, =0 (minimal nonlocality [15.16], x and is not nonrelaﬁvistic. This procedt[lmsing Eq.(6)] is at

=1 (PV) [11], and u =3 (soft) [4]. Conventional chiral per- the heg;t ?f ”t]e I\#Jmeger: partlal-vlvave-anatltly(S?SNA) pro-
turbation theory(CPT) [17,18 expansions(term-by-term grapr‘n[ f] or Lea Ing 'nut(;]eon-nug eon sdca:c. erln?H trocti
chirality) correspond tqu=1 and are preferred for that rea- ny form change in e equaton regetines the etiective

son, although other criteria having to do with the final form pot_ent|a[, which is hard_Iy a surprise. Note tié/4M term,
of OPEP may mandate other valugsz., x=0, discussed which \{wll be seen again since it typically sets the scale for
below) ' ' corrections resulting from changes of form, and the factor

The third type of ambiguity is the form ambiguity. Poten- ~(E/M) that multipliesV. Such factors occur everywhere

tials only make sense in the context of a scheme for iteratinéfvhen calculating potenti_als. This factor repositions relativis-
them to produce a finalto all orders result for a binding fic corrections fromT to V. Clearly other form changes are

energy or scattering amplitude. The nonrelativistic paradignPossible. Although Eq6) is a decided advantage in treating

is to add the kinetic energyyg=p2/2M to the potentiaV to  the two-nucleon problem, it is not of any obvious use for the
obtain the HamiltoniarH g that is used in Eq(1) to obtain ~Many-nucleon problentthere will be cross terms between

the desired observable. The naiut obvious relativistic  the kinetic energies of different nuclegn#\ recent major

generalization of this is to form the free energl} advance has been the ability to hangie?+m? in configu-
ration spacg22], since modeling momentum-dependent op-

erators in that space is the single most challenging numerical
problem.

In Sec. Il we review selected previous calculations and
derive a new general form of the nonstattbleading order
H1 CPT) two-pion-exchange nucleon-nucleon potential that
manifests the unitary ambiguities discussed above. This form
subsumes several previously calculated potentials as well as
a number of cases not previously considered, and allows all
of these results to be compared. In Sec. Il results for specific
off-shell choices are discussed, including the important case

jection schemes, which typically lead to different quasipo—Of the Nijmegen PWA program. Our summary is presented

tential equation$3]. in Sec. IV.

An example of a quasipotential method is the popular
Blankenbecler-Sugdd.9] (BS) procedure, which is based on Il. CALCULATION
a two-nucleon Green'’s function of nonrelativistic form. Al-
though this is a well-developed procedure that casts fieldh
theory calculations into a Schiimger-like appearance, the
relationship between BS results and more conventional on
[using Eq.(4) for T] can be obtained by means of a trick
[20]. The two-body relativistic Schobnger equatiofRSE,
for lack of a better namecorresponding to the second form
in Eq. (4) is

A
T=3 VBl +M?=2\p?+ M2, (4)
i=1

for a collection of identical-mass nucleons, where the secon
form applies only to the two-nucleon problem in its center-
of-mass frame. Thehlg=T+V is the appropriate relativis-
tic form of the energy to be used in E@l). A one-time
formalism(linear inE) is always possible if one freezes out
antinucleon degrees of freedom or by using a variety of pro

It should be obvious from the previous examples that we
ave been discussing variants of relativistic corrections. Us-
ing either the old rules of scal&] (countingT~1/M or 1/A,
S¥hereA is the large-mass scale of QCD, aviet T~1/M) or
more general and sophisticated power-counting rulgs23|
leads to the same conclusion. Relativistic corrections to the
nucleon kinetic energy~1/M?3 or 1/A%) can be juggled into
the BS potential ¢ V/M?~1/A%) or the BS correction term
(V2/4M ~1/A®). The retardation corrections have the same

[23p2+ M2+ V(F) [P g=2k2+ M2Wq, (5)  intrinsic size ¥/M?~1/A®). This defines the limits of the
expansiongin 1/M) that will be made below.

wherek is the momentum corresponding to the energy eigen- With the exception of recent CPT calculatiofw other
value E and f is the nucleons’ separation. Squaring bothchiral varianty much of the work on one- and two-pion-

sides, subtractingM? from both sides, and dividing byM exchange potentials is quite di@4]. In particular, the work
lead to the remarkable aretjuivalen{20] of TMO [8] and Sugawara and Okuly§O) [11] stand out in

their technical clarity. Both developed an energy-
independent potential. The statice., leading order in CPT
two-pion-exchange potentiaVf_) was developed by TMO

Ves, © and was recently reviewed in Reff9] in the context of
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energy-dependent alternatives. The leading-order nonstatic(?) terms[see Eq.(6f) of Ref. [4]] are required only to
(i.e., subleading order in CRTorrections AV,,) were de-  calculate theAV. . potential and are not needed fAV,, .
veloped in SO, even though they had no credible theory oDnly £© and £3 [see Eq.(5) of Ref.[5]] are required in
the interactions of pions and nucleons, which came laterorder to produce\V,, . We have
Nevertheless, with the exception of missing seagull terms
(mm-N interaction one of their model$PV coupling pro- o L . S _ 1 .
duced correct and complete results. At the time of SO it was' ):z[ﬂ'z—(v‘") —m2a?]+ N id— 272 7 (X)) N
known that nucleon-antinucleon “pair” terms in PS cou- m
pling were unphysically large and had to be supprestegy R
were simply thrown away The reason for this suppression + —N'G-V(7 mN, (8
is now known to be chiral symmetry, which explains the .
success of their PV coupling modglerivative coupling with
negligible pair termp In addition SO supplemented their PV £ 1+gi(,u— 1) s -
Lagrangian with two seagull interactions, one with a singleﬁ oM —Np°N-— —4f2—N {p,- (7 @xX V)N
derivative of Weinberg-Tomozawa tyg@5] and another T
(with no derivativey of o-term type[c, in Eq. (9) below].
Their results were correct for these interactions, as well.
They did not consider seagulls with two derivatives, such as
thec; andc, terms in Eq.(9). 02(u—1)
The work of SO also emphasizetly examplé that no XN V27N — %NT{&X ﬁ,-ﬁwz}N}
unique form forAV,,. exists without choosing an appropri- 8f %
ate off-shell form forAV ., the gelativistic corrections to the L
one-pion-exchange potentidl, (OPEB. Moreover, this =N 2 2 E.\2
choice also affects the nonstatic two-pion-exchange three- - ffTN { 2cym, m* — Ca(V )
nucleon forcegof nominal sizeV%¥M). The latter was de-
veloped in Ref[5], except for seagull counter terms first 1
incorporated completely in Ref10] (see also Refd.1,2)). )
We emphasize that the former calculation treated the “Born
terms” (in this case the leading-order-N coupling and the
Weinberg-Tomozawar-N coupling to nonstatiqsublead- r@-_ 9a
ing) order, but importantdominanj terms in the chiral ex- 8f,M?
pansion were not treated until R¢fl0]. A review of one-
pion-exchange contributions to the Hamiltonian and to the Y N PO
charge form factoffrom electron scatteringwvas presented AT VA {0-pAP,- V(7 mHN, (10
in the appendix to Ref5]. In addition, all necessary formu- i
las were developed for determinidgV,., but the final in-
tegrals and spin-isospin commutators were not performed. ﬁ(g)_LNTA
This will be completed below. “gme P
The work of Refs[4,5] is based on a relativistic Lagrang-
ian for free nucleons plus a P¥r-N interaction plus a Terms not required in what follows have not been listed,
Weinberg-Tomozawa[25] wm-N interaction. A Foldy- and this includes all short-rand¥N operators. Note that both
Wouthuysen reduction of this Lagrangian is made to the apterms in£(?) depend on the average nucleon momenfiim
propriate order in M and this reduced set is used in time- and are constrained by the requirements of relatiéty is
dependent perturbation theory in the usual way. It yieldsc(® and four of the first five terms of"). The (nucleon
potentials and pion-exchange-current operators. Becauseomentum-dependent terms were developed by noting that
time-dependent perturbation theory leads to a variant ofhe nucleon parts of(?) can be represented by(eovarianj
(time-independentSchralinger perturbation theory, the re- free-nucleon term plus a P¥%-N vertex supplemented by a
sulting potentials are energy-dependent. A mapping techweinberg-Tomozawa w-N interaction. Performing a
nique [or (alternatively perturbation-theory manipulatiohs Foldy-Wouthuysen reduction of this det,5] freezes out the
convert those forms to an energy-independent potential to bantinucleon degrees of freedom and leads to all terms explic-
used in EqJ(1), with the kinetic energy given by Edg4). itly proportional to inverse powers dfl. We will ignore all
For specificity we list next the required Lagrangian termspion-momentum-dependenform-factoy modifications of
L™, whereA=0,1,..., represents powers ofAl{i.e., A~ %)  the PV vertex. Although the coefficient @ in Eq. (10) is
contained implicitly and explicitly in the coefficients of the completely specified, this is solely due to our knowledge that
products of pion and nucleon fields. The tegf?) is only  the pion is a pseudoscalar object. Scalar- and vector-meson
formally required to produce the necessary part of the fre@xchanges produce similar terms of opposite sign to each
relativistic nucleon energy listed in Eqg.(4); it was not other. Note the dependence on the off-shell paramgter
required to calculate ther2exchange force in Ref5]. The  which arises from a redefinition of nucleon fields. The result-

ga(n—1)
4f2

+1
ST N por N+

1
Cyt m)8ijk8abco'ch‘9i7Ta‘9j7Tb}Nu 9

N{p2.¢ V(7 m)IN

“N. (12)
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ing Lagrangian still satisfies chiral symmetry, but not on awhere here and elsewheVesignifiesV, .

term-by-term basis unlegs=1. Although the second term N, is simple in form[and
Results for OPEP appropriate for E@) have been pre- represents the expansion df/'(Eo)V?T(M/Eo), where E,

sented previously in many calculations and are summarized =>——> .
by Eg. (A12) of Ref.[5]. We restrict ourselves to the two- prms, in the c.m. framg the othgr terms are m.uch
ore complicated and involve the coupling(aficleon spin

nucleon sector; the three-nucleon sector is discussed extell!

sively in that reference. For continuity, we also revert to aand momentum. This type of tensor coupling is the origin of

convenient but old-fashioned notation for the effectiveN the lower thgn usuaPp of the deuteron for the trgditione}l
coupling constant, Bonn potential models, and subsequently for a higher triton

fo o~ (12)

binding energy than other moddl28]. Clearly, the last two
terms in Eq.(13) can be neglected on-shell, or bhoosing
v=3 andu =0 they can be neglected off-shell, as well. This
is a popular choice. Note that the two factors ®/E,)
arise from our nucleon normalization. Rather than use the
covariantnormalization conventiofcurrent matrix elements

where the second relation holds only if the Goldberger-are manifestly covariant and nucleon normalization factors
Treiman[26] relation is exact. We find that to order (1)

1
V,=Vo- W{pZ,V?T}+

where

1 .
2 V)'[TNRvUG]

+(/.L_2V+1)i[TNR,UE], (13)

Ve =12m_7- 7,61- Vi, Vhy(X), (14)

e

(15

are kept separate i§matrix elements or are incorporated
into covariant phase-space facfonge revert to thenvariant
convention(normalization factors are incorporated into fields
and the total charge, for example, is a Lorentz invajitt

is consistent with a Foldy-Wouthuysen reduction and is con-
ventional in nuclear problems.

We further note that Sugawara and Okubo encountered
bothUg andUg in the course of their derivation of the one-
and two-pion-exchange potentials. Their conversion of inter-
mediate results t&v2—{p2,V2}/2M is equivalent to choos-
ing »=3 and x=0 in our result. That choice has been re-
cently called the “minimal nonlocality’{MNL) choice[15],
because it eliminates the complicatédp terms that other-
wise arise. This type of complexity matters little for
momentum-space computational approaches, but is a signifi-
cant impediment to configuration-space calculations, which
are now the dominant approach for high-accuracy computa-
tions of A>3 [29]. Minimal nonlocality is a significant sim-
plification.

X=m(X1=X%2), (163 As stated earlier, all but the final integrals and spin-
isospin manipulations for obtaining the nonstatie,, were

x performed in Ref[5] during the calculation of the nonstatic
ho:eT- (16  “Born-term” contributions to the Zr-exchange three-

nucleon force. We require Eq$l5) and (16) (direct-plus
crossed-box diagramsEq. (189 (“uncrossed” or overlap-

Introduction of form factors intd, is straightforward, but ping time-ordered diagramsEq. (20) (seagulls with no time
for simplicity will not be done here. Our primary interest is derivative$, and Eq. (223 (the Weinberg-Tomozawa
the tail of this force, as analyzed by the Nijmegen PV2XA|. seagull of that reference. It was necessary to subtract the
We also require the GrossJg) and equivalencel{g) uni- iterated contribution of OPEPV(,) since this is automati-
tary transformation$s] cally included in the solution of the RSE, EG). This sub-
traction led to an energy-dependent potential that was
mapped into an energy-independent forithis can be
achieved by many different equivalent techniq[@8]). Uni-
tary equivalences of 2range[such as in Eqs(18a and
(229 of Ref.[5]] were eliminated by converting them ter3
range(which terms we are consistently ignorin@®y choos-
and ing to develop an energy-independent potential we have
eliminated from consideration the first of the three ambigu-
2 ities discussed in the introduction.

_To . s o & The resulting nonstatic 2exchange nucleon-nucleon

Ue=gy 71 72({01-B.02- Vo3 {2 .61 VhoOOD), ¢ oy given in its most general form appropriate foand
(18 v off-shell ambiguities by

1
Ug=7p7 (P XVE(R)/m,} (17)
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fom2 (. _ 1
AVEY= ;M” L-sl3[892—2xgg'(ﬂ—zv—3)]—271-72 892(52-—1)—2ng’(/1,—21/+1)
A
+|3{—xg(49" +xg")(n—3v)—(1-v)x°g' (29’ +xg") + 16c3[3g°+ X9’ (29+xg")]
2
+32?1ng2}—271-7-2( —xg(49’ +xg")(u—3v—2)+(1+v)x?g’ (29’ +xg") + g—2[3gz+xg’
A
1
X(2g+xg)]| |+ 3[8(1+ ) +2(1- )71 NS XgY +x*(g"*+9g")]~ 25,1 Go[ 4xQQ' +x°
8 _ 1 .. ,
X(9'?+gg") 1} + 37T 4cy+ % [S1AXgg’) — G1- G2(39°+2xgg )]), (19
A
|
where in an energy-independent form by Sugawara and Okubo.
1 dhg(x) Their calculation suppressed negative-energy states, which
g(x)=— AN —+ _3) (20) contribute to ourr-N seagull amplitudes. They noted, how-
x  dx X X ever, that their PV calculatiofcorresponding tqu=1 and
and »=0) had very weak pair terms, and indeg and £
_ ) have no seagulls if we eliminate the, the Weinberg-
ci=ciM/gj. 1) Tomozawa terméindependent ofj»), and sefu= 1. For this

. . . reason their calculation of the relativistic direct- and crossed-
Each type of force in Eq19) (spin-orbit, central, tensor, and box diagrams for PV coupling was complete.

2g|rlln-supr|r)otﬁcgggsEorE;;]]eWoeﬁ;lslggliiﬁgrameters_ For compari- We have verified their results for individual terms both
purp a before and after the unitary transformations they performed.

Vi fgm? o, Their final result corresponds ta=0, »=1/2 in Eq. (19)
M = 1o (3727 12)[2S12(xgg") — 201 72(39 with the aforementioned seagull terms dropped. Thus, the
SO PV calculation is the first correct calculation of the sub-
+2xg9’)+3(3g%+2xgg’ +x%g'?)]. (22 tracted box and crossed-box graphs. Their PS calculation

) ) _ (corresponding tg«= —1, »=0) is, however, missing some

Note that only two types of isospin operator are possibleseagull terms, although we have verified all of their other
direct type (3-27,- 7,) and crossed type (827,- 7). Both  cajculated contributions. Although SO unnecessarily ap-
uncrossed diagram@vith slanted time-ordered pion propa- proximatedypZ+ M2—M by p2/2M in the free-nucleon en-
gators and reducible diagramisvith no pions at some inter- grqy it is clear from their calculation thaV,+V9_
medlate_ time are of dlre<_:t type. This separation faC|I!tate_s +AV¥INL is to be substituted fov in Eq. (5).
comparisons between different calculations of certain dia- g
grams.

The crucial elements in this calculation are the chiral
seagulls. These were first calculated in R&f)]. Written in Il SPECIFIC FORMS OF AV,
the manner of Eq(21), thec; should be dimensionless num-  Having developed a new and general form 49v, . cor-
bers whose magnitudes arel [23]. Because the low-mags  responding to thew and v off-shell ambiguities, we now
isobar plays such a large role @ andc,, these values are relate this form to specific cases of potentials and procedures
even larger and they play a dominant roleAv,,.. The thatare in common use today. For the spe@al preferrefd
remaining terms depend only énThey were first calculated MNL case(u=0, v=1/2) one finds

MNL fgmi & 2 ’ 2 1
AV5; -=——=116L -5 3(g°+XxgQg’') — 27 ™0 g—i—l

+
4M

3{3xg(4g’ +xg")—x?g’ (29’ +xg")

+32C4[ 392+ xg' (2g+xg') ]+ 64c,x2g%} — 27, 7| 7Txg(4g’ +xg")+3x%g' (29’ +xg")

1
+3(9+27 n){S1dxg9 +Xx*(g'?+99")] - 25, G2 4xgy

4
+g—z[3gz+xg’(29+xg’)]
A

16 _
+x2(Q' 2+ 90"} 5 71 ma(4Cs+ UGR)[S1Axgg) — 01 G2(39°+2xg9)] - (23
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The form appropriate for the Nijmegen PWsee Eq(7)]
is then given by

2
™

AV = AVYNE M

(24)
and should be used in E¢G) with an OPEP in the form
, M
Nij _ >\
Vi [ (") EO],

whereEq= \/p?+M? is an operator.

Eo Mo

2M'Ey T (25)

PHYSICAL REVIEW C 60 034002

Equationg23)—(29), as well as Eq(19), are our principal
results. Specifying the form of the equation to be solved and
the form of OPEP eliminates the three types of ambiguity
discussed in the Introduction.

Finally, a very interesting and unusual calculatiérom
the nuclear physics perspectivevas recently performed
[32]. The one-pion-exchange potential was calculated on-
shell, and théwave-function-normalizatiorfactor (M/E)?
was extracted as a kinematidéllix) factor. Thus, the OPEP
was chosen to be the nonrelativis\‘le,. Subtracting M/Eg)
times the iterated OPERusing a nonrelativistic Green's
function) they found aAV, . in the form

The usual approach of the Nijmegen group, however, is to

approximate the operator-valued factorssgfin Eq. (25) by
their on-shell value:E,=+k?+MZ. This changes their
OPEP to

Wi:ﬂ

Ve,
EOS

(26)
and the difference o¥/\! and V! modifies the required
nonstatic 2Zr-exchange potential tésecond-order perturba-
tion theory is the easiest way to see tf84])

2
AV R =AVRR + o

(27)

That is, changing from operator-valued kinematical factors

to on-shell (c-numbej ones merely adds \ﬁr/4M to the
“form” correction factor displayed in Eq(24).

In a similar fashion we note that the new Urbari#®]
relativistic potential model corresponds to Ef) with

VUrb: M

M
0 0 MNL
+A EEDN
EO Vﬂ'EO V27T V27T

(28)
In addition, the Bonn potentidl14] incorporated into an
equation with relativistic kinematics requires a slightly dif-
ferent version ofAV4:” corresponding tu=—1 andv=3
in Eq. (19):

Avgonn: AVE 1,1/2

ko

(29

2

MNL 3 m
AV, (Ref. [32])=AV5 "+ o’ (30)
and did not relate this result to any particular dynamical
equation. We have verified that EGO) corresponds to the
conditions of Ref[32].

IV. SUMMARY

In summary, we have completed an old-fashioned calcu-
lation of the nonstatic two-pion-exchange nucleon-nucleon
potential that emphasizes and highlights the off-shell nature
of OPEP. Different versions were developed that correspond
to different (u,v) off-shell parameters, and to using relativ-
istic or nonrelativistic kinetic energies in the Sctiimger
equation, or using operator-valued or on-shell kinematic fac-
tors. These new results would correspond to the Nijmegen
[21], Urbana[16], and Bonn[14] approaches, and further
manipulation leads to the Munich res{i&2]. These various
approaches in perturbation theory correspond to different
subtractions in the second-order iteration of OPEP and rep-
resent different off-shell versions of that potential.
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