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First order kaon condensate
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First order Bose condensation in asymmetric nuclear matter and in neutron stars is studied, with particular
reference to kaon condensation. We demonstrate explicitly why the Maxwell construction fails to assure
equilibrium in multicomponent substances. Gibbs conditions and conservation laws require that for phase
equilibrium, the charge density must have opposite sign in the two phases of isospin asymmetric nuclear
matter. The mixed phase will therefore form a Coulomb lattice with the rare phase occupying lattice sites in the
dominant phase. Moreover, the kaon condensed phase differs from the normal phase, not by the mere presence
of kaons in the first, but also by a difference in the nucleon effective masses. The mixed phase region, which
occupies a large radial extent amounting to some kilometers in our model neutron stars, is thus highly hetero-
geneous. It should be particularly interesting in connection with the pulsar glitch phenomenon as well as
transport properties.@S0556-2813~99!04507-0#
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I. INTRODUCTION

Many phase transitions may occur in superdense ma
Among the possible new phases that have been consid
over the past few years are pion and kaon condensed
quark deconfined matter. Transitions from the normal to a
of these high-density phases may be of first or second or
The order depends in part on the strength of coupling c
stants. If of first order, especially interesting phenomena
cur in isospin asymmetric nuclear matter, including spatia
ordered regions of the normal and new phase in the rang
densities for which both phases are in equilibrium@1–3#.

In early work on pion condensation, the region of pha
coexistence was found by use of the Maxwell construct
~sometimes with reference to Van der Waal’s equation
state; cf. Refs.@4–8#!. The Maxwell construction is valid for
simple substances—those withonly oneindependent compo
nent, like water, or pure neutron matter~which nowhere ex-
ists!. However, as used,1 this construction can assure th
only one chemical potential is common to the two phas
whereas asymmetric nuclear matter, such as neutron
matter, has two independent components~the baryon and
electric charge!. Consequently the construction cannot s
isfy Gibbs criteria that all chemical potentials as well as pr
sure and temperature be common to both phases in equ
rium. In short, the states studied were unstable.

Similarly the deconfinement transition was treated
early work beginning in the 1970s with the same assum
tions and methods and without regard to equilibrium~in
some cases without regard to beta equilibrium in the p
phases and in others without regard to phase equilibriu!.

1To be sure, the Maxwell construction could be generalized.
‘‘equal areas’’ would be replaced by ‘‘equal volumes,’’ and ‘‘ta
gent slope’’ by ‘‘tangent surface’’ in a space ofn11 dimensions,
wheren denotes the number of independent components.
0556-2813/99/60~2!/025803~13!/$15.00 60 0258
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The deconfinement phase transition forb stable matter has
been treated recently in some detail taking account of e
librium in all phases@1,2,9–13#. ~The Gibbs criteria was
used in Refs.@14,15# in heavy-ion physics where it was es
sential for the distillation of strangeness.!

The possibility of kaon condensation was discussed
ready some years ago in the context of hyperonized neu
star matter@16#. But the real impetus for the recent intere
was provoked by the paper of Kaplan and Nelson@17# who
suggested the interaction of theK2 with the nuclear medium
may reduce its mass sufficiently, so that, as a boson, it m
replace electrons as the neutralizing agent in charge ne
matter. The Maxwell construction was again used in pre
ous work on first order kaon condensation@18–21#.

In the present paper we study the kaon condensed p
as afirst order phase transition in neutron star matter. Th
will serve as a general example of a Bose condens
~whether pion or kaon!. Unlike the previously cited work, we
assure compliance with Gibbs criteria for equilibrium. Just
in the case of the deconfinement phase transition, we
that the two phases in equilibrium are oppositely charg
though in sum, neutral, as ought to be so for stellar mate
Consequently, the total energy, including Coulomb and s
face energies, is minimized by a lattice arrangement of
rare phase immersed in the dominant@1–3#. The difference
between normal and kaon condensed phases is especia
lustrated by the fact that not only are kaons present in
latter, but the nucleon masses are strongly modified fr
their values in the normal phase or in vacuum. Even in
spatial regions of the mixed phase occupied by the norma
condensed phase, the nucleons have different masses ac
ing to the phase@22#. The high degree of inhomogeneity i
the mixed phase occupied as it is by a lattice structure,
localization of opposite charge in the phase occupying
lattice sites as compared with that of the background ph
and the very different nucleon effective masses in the t
phases, will likely affect the transport and superfluid prop
ties of neutron stars.
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NORMAN K. GLENDENNING AND JÜRGEN SCHAFFNER-BIELICH PHYSICAL REVIEW C60 025803
The paper is organized as follows: in Sec. II we introdu
the model Lagrangian which is based on the relativis
mean-field model for the nucleon-nucleon interactions an
kaon-nucleon interaction motivated from one-boson
change. We discuss the equation of state and especially
difference between a Maxwell construction and Gibbs c
dition as well as the properties of the mixed phase in Sec.
Consequences for the stellar properties are derived in
IV, both for global features as well as for the resulting ge
metrical structures inside neutron stars. Our results are s
marized in Sec. V.

II. RELATIVISTIC MEAN-FIELD MODEL WITH KAONS

In the approach presented here, we use a relativ
nuclear field theory solved in the mean-field approximati
The interaction between baryons is mediated by the
change of scalar and vector mesons. This picture is con
tently extended to include the kaons. The model is simila
the one used for describing the properties of the H dibar
in nuclear matter which is known to be thermodynamica
consistent@23#. The coupling schemes applied for the ka
are in analogy to the one we used for the H dibaryon@24#.

We start by summarizing briefly the relativistic mea
field model for nucleons. The Lagrangian is given by

LN5C̄N~ igm]m2mN1gsNs2gvNgmVm2grNtWNRW m!CN

1
1

2
]ms]ms2

1

2
ms

2s22U~s!2
1

4
VmnVmn

1
1

2
mv

2 VmVm2
1

4
RW mnRW mn1

1

2
mr

2RW mRW m, ~1!

whereVmn[]mVn2]nVm . The scalar meson is denoted b
s, the vector mesonv by Vm and the isovectorr meson by
Rm . The scalar self-interactionsU(s) are taken to be@25#

U~s!5
1

3
bmN~gsNs!31

1

4
c~gsNs!4. ~2!

The model parameters can be algebraically determined
five bulk properties of nuclear matter@3#. Here, for illustra-
tive purposes, we choose one of the parameter sets us
@26# with the nuclear matter properties: E/A
5216.3 MeV, r050.153 fm23, asym532.5 MeV, K
5240 MeV, andm* /m50.78. Other parameterizations wi
not change the overall feature of kaon condensation as
cussed in this paper.

Now we discuss the inclusion of the kaon-nucleon int
action terms. There are two main schemes for including
fects of kaon condensation in neutron star matter. One u
terms derived from chiral perturbation theory—the oth
couples the kaon to meson fields. We choose to take
latter approach so that nucleon and kaon interactions
treated on the same footing as pointed out above. The ka
then coupled to the meson fields using minimal coupling

LK5Dm* K*D mK2mK*
2K* K, ~3!
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where the vector fields are coupled via the standard form

Dm5]m1 igvKVm1 igrKtWKRW m. ~4!

Then the vector fields are coupled to a conserved cur
which is consistent with Ward identities. The form~4! results
in another coupling term in the Lagrangian~3! of the form

2gvK
2 VmVmK* K ~5!

in addition to the standard Yukawa coupling term whi
gives a nonlinear dependence of the kaon optical poten
with density.

The scalar field is coupled to the kaon by analogy to
minimal coupling scheme of the vector fields

mK* 5mK2gsKs. ~6!

In addition to the standard linear Yukawa coupling term
gives also a quadratic coupling term to the scalar field in
Lagrangian of the form

~gsKs!2K* K. ~7!

This term is small compared to the linear Yukawa coupli
term as it is suppressed bygsK /(2mK). Nevertheless, it will
simplify the equations of motion considerably as we w
show in the following.

The equation of motion for the kaon can be written as

@DmD m1mK*
2#K50. ~8!

The poles of the kaon propagator can then be determine

2vK
2 1mK

2 1k21PK~vK ,kW ,r!50, ~9!

where theK2 self-energy in matter~the space components o
the vector field vanishVi5RW i50) is given by

PK~v,kW ,r!522vK~gvKV01grKtWKRW 0!2~gvKV0

1grKtWKRW 0!222mKgsKs1~gsKs!2

~10!

and depends on the in-medium kaon energyvK . It is
straightforward to derive the dispersion relation fors-wave
condensation~i.e., for kW50) for theK2

vK5mK2gsKs2gvKV02grKR0,3, ~11!

which is linear in the meson fields. Here,R0,3 denotes the
time-like Lorentz component and the isospin 3-compone
There appear additional source terms in the equation of
tion for the meson fields if a kaon condensate is present

ms
2s5gsN@rs-2bmN~gsNs!22c~gsNs!3#12gsKmK* K* K,

mv
2 V05gvN~rp1rn!22gvK~vK1gvKV01grKR0,3!K* K,

mr
2R0,35grN~rp2rn!22grK~vK1gvKV01grKR0,3!K* K.

~12!
3-2



e
iv

tio
on

Th
-
r

t

Th

ul
h
th

it

an
ua-
n-
ctly
nal
tion

vely.
on
ss

in-
usu-
the
ing
on-

the
vor-
tive
aon
nd

ctro-
nd,
re-
cle-

nel

hat
on-

e

istic

-
he

ob-
t

FIRST ORDER KAON CONDENSATE PHYSICAL REVIEW C60 025803
Note that the equation of motion for nucleons are unchang
The conserved current associated with the kaons is der
by using

Jm
K5 i S K*

]L
]mK*

2
]L

]mK
K D

5K* i ]mK2~ i ]mK* !K22gvKVmK* K

22grKtWKRW mK* K. ~13!

In the mean-field approximation, theK2 density is given by

rK52J0
K52~vK1gvKV01grKR0,3!K* K. ~14!

For s-wave condensation we can use the dispersion rela
~11! to get an expression for the scalar density of the ka

2mK* K* K52~vK1gvKV01grKR0,3!K* K5rK , ~15!

which comes out to be the same as the vector density.
relation holds only forkW50 which is the case for cold neu
tron star matter ands-wave condensation. It is a result of ou
choice of the scalar coupling scheme~6!. For the negatively
charged kaon the equations of motion are then simplified

ms
2s5gsN@rs2bmN~gsNs!22c~gsNs!3#1gsKrK ,

mv
2 V05gvN~rp1rn!2gvKrK ,

mr
2R0,35grN~rp2rn!2grKrK . ~16!

The total energy density is given by

e5eN1eK ~17!

and has a contribution from the kaon condensate.
nucleon part consists of the standard terms~cf. Ref. @3#!

eN5
1

2
ms

2s21
b

3
mN~gsNs!31

c

4
~gsNs!41

1

2
mv

2 V0
2

1
1

2
mr

2R0,3
2 1 (

i 5N,l

n i

~2p!3E0

kF
i

d3kAk21mi*
2. ~18!

The sum is over nucleons and leptons. In principle it co
extend over baryons of the octet, but we neglect the hig
members in the present study. The kaon contribution to
energy density reads

eK52mK*
2K* K5mK* rK . ~19!

The kaon does not contribute directly to the pressure as
a (s-wave! Bose condensate so that the total pressure

p52
1

2
ms

2s22
b

3
mN~gsNs!32

c

4
~gsNs!41

1

2
mv

2 V0
2

1
1

2
mr

2R0,3
2 1

1

3 (
i 5N,l

n i

~2p!3E0

kF
i

d3k
k2

Ak21mi*
2

~20!
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is just the familiar expression known from relativistic me
field theory for nucleons and leptons only. Hence, the eq
tion of state will be considerably softened if the kaon co
densate is present. The pressure is modified only indire
through the change of the meson fields by the additio
kaon source terms which enter into the equations of mo
~16!. The total charge is then

qN5rp2re2rm , ~21!

qK5rp2re2rm2rK ~22!

in the normal and in the kaon condensed phase, respecti
The above relations do not fix the amplitude of the ka

condensateK* K. The charged kaon amplitude is zero unle
the condition

vK5mK25me ~23!

can be fulfilled. Generally the electrochemical potential
creases as the baryon density increases, since this will
ally mean that the proton density increases. Moreover,
K2 effective mass in the medium decreases with increas
density. Therefore at some density the above threshold c
dition may be fulfilled. Since all kaons can condense in
lowest energy state, they become energetically more fa
able than electrons as the neutralizing agent of posi
charge. With further increase of density and decrease in k
energyvK , the electrochemical potential will decrease a
the electron population will decrease.

For the isospin partner of theK2, the K0, the condition
for condensation to happen readsv(K0)50. Hence, if there
is no isovector potential for the kaons, theK0 can only ap-
pear after charged kaons have appeared and the ele
chemical potential hits zero. This seems quite unlikely a
to our knowledge, was therefore completely ignored in p
vious works. Nevertheless, the isospin potential of the nu
ons shift the energy of theK0 below the one of theK2 in
neutron-rich matter so that

v~K0!5v~K2!12grKR0,35v~K2!22
grK

2

mr
2 ~rn2rp!.

~24!

A strong isovector potential is supported by coupled chan
calculations for theK2 @27# which shifts the effective energy
of the K2 up by approximately 100 MeV at a density ofr
53r0. This would imply that the effective energy for theK0

is about 200 MeV lower than the one for theK2 in neutron
matter at that density. In our calculations, we find indeed t
K0 condensation can happen if the isovector coupling c
stant is chosen as strong as the nucleon one@see Eq.~25! in
the following#. For the sake of simplicity we ignore it in th
following but note that it is clear from our discussion thatK0

condensation should be taken into account in a more real
calculation.

The Lagrangian for the kaons~3! describes the kaon
nucleon interaction as well as the kaon-kaon interaction. T
K2 in a nuclear medium is certainly a coupled channel pr
lem due to the opening of theSp, Lp channels and canno
3-3
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NORMAN K. GLENDENNING AND JÜRGEN SCHAFFNER-BIELICH PHYSICAL REVIEW C60 025803
be treated on the mean-field level. Coupled channel calc
tions at finite density, first done by Koch@28#, yield an at-
tractive potential for theK2 at normal nuclear density o
about UK2(r0)52100 MeV. Waaset al. find a value of
UK2(r0)52120 MeV @29#. Kaonic data support the con
clusion that there is a highly attractive kaon optical poten
in dense nuclear matter@30#. Because the kaon is a boson
does not add directly to the pressure; it forms a Bose c
densate in thes-wave with zero momentum@17#. This is
contrary to pion condensation which condenses in ap-wave
with a finite momentum. A self-consistent treatment of t
in-medium self energy of the pion prevents pion conden
tion @31#. A coupled channel calculation including the mod
fied self-energy of the kaon has been studied in@32# and it
was found that the kaon still sees an attractive potentia
high density.

On the mean-field level considered here, the three k
coupling constants,gsK , gvK , andgrK can be fixed to kaon-
nucleon scattering lengths. The in-medium potentials for
K2 are given byG-parity, i.e., by switching the sign of th
vector potential. This gives similar results for theK2 optical
potential compared to the coupled channel calculations@33#.
We choose to couple the vector fields according to
simple quark and isospin counting rule

gvK5
1

3
gvN and grK5grN . ~25!

The scalar coupling constant is fixed to the optical poten
of the K2 at r0:

UK~r0!52gsKs~r0!2gvKV0~r0!. ~26!

The kaon potential is fixed at normal nuclear density a
varies as a function of the densityr.

We solve the equations of motion in three different wa
corresponding to the three possible solutions:~1! for pure
nuclear matter without kaons,~2! for pure kaon condense
matter, and~3! for the mixed phase. The latter one is foun
by solving for solutions~1! and ~2! separately and scannin
through the electrochemical potential until the pressures
the two phases for the same chemical potentials are eq
Initially, values for the meson fields are taken randomly. T
solution found at a certain baryochemical potential is th
used for the next step. We compare then the pressure o
three solutions and take the one with the highest pressur
turns out that this procedure ensures automatically that
solution for the mixed phase gives a~thermodynamically
consistent! volume fraction between zero and one.

III. EQUATION OF STATE WITH A KAON CONDENSATE

In the following we discuss the equation of state includi
kaons emphasizing the difference between the hitherto
plied Maxwell construction and the thermodynamic cons
tent Gibbs condition. Then we present our results for the
phases in the mixed phase.
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A. Maxwell versus Gibbs

The standard thermodynamic rule for two phases in th
modynamical equilibrium is given by the Gibbs condition

pI5pII , m i
I5m i

II , TI5TII , ~27!

which simply states that the two phases are in mechan
chemical and thermal equilibrium. This is basic thermod
namics and can be found in textbooks. For the special cas
only onechemical potential, the resulting equationpI(m,T)
5pII(m,T) has a unique solution form. It is often found by
use of a Maxwell construction in one form or another. F
example, the common tangent method, is based on the
that m5de/dr5dE/dN. Write the equation of state in th
form e5e(r). The segment of the common tangent,e
52p01m0r touching the equation of state once in ea
phase describes the mixed phase with common and con
values ofp0 and m0, independent of the proportion of th
two phases. Clearly, the Maxwell construction can ass
that only a single chemical potential is common to bo
phases.

However, neutron star matter has two chemical potenti
mB andme , each of which must be equal in the two phas
to assure equilibrium. Hence, a Maxwell constructioncannot
be used as it will produce a discontinuity in one of t
chemical potentials and will describe an unstable state—
for which there is a potential difference at the boundary
tween phases. This general fact concerning phase transi
with more than one conserved charge inside neutron s
was realized only a few years ago@1,2#. It was shown how to
assure equilibrium in substances of an arbitrary numbe
conserved charges, that conservation laws cannot be loc
imposed but only globally over the entire region of mixe
phase, how internal forces redistribute conserved charges
tween equilibrium phases so as to minimize the energy,
how, in the case that the electric charge is among the c
served charges, a Coulomb lattice will be formed.

Conservation laws and Gibbs conditions can be satis
simultaneously for substances of more than one conse
charge by applying the conservation law~s! only in a global
rather than alocal sense@1,2#. Thus for neutron star matte
which has two conserved charges, the Gibbs conditions
conservation of electric charge read

pN~mB ,me!5pK~mB ,me!, ~28!

qtotal5~12x!qN~mB ,me!1xqK~mB ,me!50, ~29!

whereq denotes charge density of the corresponding pha
This pair of equations can be solved formB , andme for any
volume proportion of kaon phasex in the interval ~0,1!.
Therefore the chemical potentials are functions of proport
x and therefore also are all other properties of the t
phases, including the common pressure. This is only a m
ematical proof that in general, properties will vary as t
proportion. Why and how they vary depends on how th
internal driving forces can exploit the degrees of freed
~one less than the number of independent chemical po
tials! so as to minimize the total energy@2#.
3-4
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FIRST ORDER KAON CONDENSATE PHYSICAL REVIEW C60 025803
The total baryon density in the mixed phase correspo
ing to the solution of the above pair of equations for cha
neutral matter in phase equilibrium is given as a function
x by

ntotal5~12x!nN~mB ,me!1xnK~mB ,me!, ~30!

wheren denotes baryon number density. A similar equat
holds for the energy density. It will be noted that the press
equality ~28! cannot be solved simultaneously with cond
tions of local charge neutrality, qN(mB ,me)50,
qK(mB ,me)50, since three conditions must be satisfied w
only two variables.

Figure 1 shows the behavior of the chemical potent
using Gibbs and Maxwell construction for comparison. T
vertical dotted lines indicate the region of the mixed pha
when using the Gibbs condition implemented for charge n
trality as described above. The electrochemical potential
creases in the pure hadronic phase as the density of neu
and protons increase. However, at the critical density
kaon condensation the electrochemical potential becom
decreasing function of density as kaons replace electron
their role of neutralizing the charge on protons. We note t
when the conservation of electric charge is imposed a
global constraint, as described above and in Ref.@2#, the
electrochemical potential is continuous, in contrast to
case of the Maxwell construction. In the Maxwell constru
tion, the electrochemical potential drops fromme
5240 MeV tome5167 MeV at the phase boundary resu
ing in a huge difference in the Fermi energy of the lepto
between the two phases. There needs to be an addit
force to prevent the electrons moving from the phase w
the higher chemical potential to the other which is co
pletely absent in a bulk treatment.

A Maxwell construction is often implemented by lookin
at the thermodynamical potential of interest, here the p
sure, as a function of the chemical potential as depicted
Fig. 2. The crossing of the curve is the point of equal pr

FIG. 1. The two chemical potentials, the electrochemical pot
tial and the baryochemical potential for the caseUK(r0)
52120 MeV using the Gibbs condition~solid line! and a Maxwell
construction~dashed line!. The large electric potential differenc
that occurs for the Maxwell construction gives rise to an instabil
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sure at the same baryochemical potential. Using the Gi
conditions~27!, the solid curve results which has always
higher pressure compared to the Maxwell construction be
the thermodynamically favored one. The change in the sl
at the crossover of the Maxwell construction is smeared o
The pressure difference between the two cases depend
the equation of state and the optical potential of the kaon
addition, it is also sensitive to finite size corrections. He
we discuss only bulk matter. Coulomb energy and surf
energy will reduce the pressure in the mixed phase. For
mixed phase of normal nuclear matter and nuclei in the c
of the neutron star, this correction is on the order
10 MeV/fm3. It depends on the surface tension which
unknown for a kaon condensed phase immersed in de
nuclear matter and will shift the curve for the Gibbs con
tion case to slightly lower values. But because the sum
Coulomb energy and surface energy vanishes at the bo
aries of the mixed phase@cf. Eq.~2! in Ref. @11# #, the bound-
aries are unaffected. We will discuss the geometric featu
when kaons are condensing in more detail later.

The differences between the two descriptions, Maxw
and Gibbs, are most striking for the relevant observable
neutron star calculations: the equation of state as plotte
Fig. 3. The solid line shows the equation of state for t
normal hadronic phase of neutron star matter, the dotted
the one for pure kaon condensed matter. The Maxwell c
struction results in a region of constant pressure~solid hori-
zontal line! connecting the two different equation of state
Applying the Gibbs condition causes two major differenc
compared to the Maxwell construction. First, the region
constant pressure vanishes and there is a continuous inc
of the pressure. Second, the density range of the mixed p
is much wider, it starts at a lower density and ends at a m
higher density. Hence, the mixed phase can well be
dominant portion of a neutron star.

The behavior of the thermodynamic potential, the pr
sure, and the two chemical potentials over the mixed ph
region using the Gibbs condition is summarized in Fig.
The baryochemical potential as well as the pressure are
tinuously rising with density. The electrochemical potent

-

.

FIG. 2. The pressure versus the baryochemical potential fo
Maxwell construction~dashed line! compared to the Gibbs condi
tion ~solid line!. The Gibbs condition is thermodynamically mor
stable.
3-5
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NORMAN K. GLENDENNING AND JÜRGEN SCHAFFNER-BIELICH PHYSICAL REVIEW C60 025803
increases until the mixed phase starts, then it is continuo
decreasing with density. There is now no jump in any
these observables and none stays constant over the m
phase region.

B. Dependence on parameters

The form of the equation of state depends sensitively
the chosen optical potential of the kaon. Figure 5 shows
equations of state for optical potentials of the kaon at nor
nuclear matter density between280 and2140 MeV. For
UK(r0)5280 MeV, there is no mixed phase and the pha
transition is of second order. For a deeper optical potentia
mixed phase appears as plotted in dashed-dotted lines.
deeper the optical potential of the kaon is, the lower is
density the mixed phase starts and the wider is the rang
the mixed phase. The equation of state is considerably s
ened by the presence of the kaon condensate. The cr
density for the onset of the kaon condensed phase is sum
rized for various kaon optical potentials in Table I. For t
casesUK(r0)5280 MeV and290 MeV the phase transi
tion is of second order.

FIG. 3. The equation of state for a pure nuclear matter~solid
line!, pure kaon matter~dotted line! for UK(r0)52140 MeV. The
Maxwell construction is shown by the horizontal line and the Gib
solution by the dashed-dotted line.

FIG. 4. The pressure, the electrochemical potential, and
baryochemical potential are plotted over the mixed phase re
using the Gibbs condition.
02580
ly
f
ed

n
e

al

e
a
he
e
of
ft-
al
a-

We comment here on the coupling schemes that h
been employed in studies of the kaon condensate. As pr
ously noted, we couple the kaon directly to the meson fie
In particular, the scalar meson is coupled in a minim
scheme as in Eq.~6!. Coupling of kaon to meson fields wa
also employed in Refs.@34,35#. However the scalar coupling
was implemented there throughmK*

25mK
2 2gsKs. In con-

trast to our scheme, the kaon effective mass is reduced f
its vacuum value through the scalar field by only half
much ~in leading order!. As a consequence, even thoug
much stronger optical potentials result from the coupli
constants used in Refs.@34,35#, namelyU(r0);180 MeV,
as compared with those favored by Koch@28# and Waas
et al. @29# of U(r0)51002120 MeV, which we also favor,
the phase transition found was weak and of second or
The order of the phase transition and the critical densi
corresponding to several parameterizations of nuclear ma
can be found in Table I. For the parameter set withm* /m
50.70 ~GL70! we find that the phase transition is of fir
order for an optical potential ofUK52120 MeV and
deeper. For the parameter set TM1 the phase transition
second order over the range of optical potentials shown
one has to go to deeper optical potential to get a first or
phase transition. This elucidates the sensitivity to the cho
nuclear parameterization.

The Pauli principle practically assures that hyperons w
be present in dense charge neutral matter. Their effect wil
to quench the growth of the electron chemical potential a
therefore either to raise the threshold density at which k
condensation occurs, or to preempt condensation altoge
@16#. Whether kaon condensation can actually occur the
fore depends upon whether negative or neutral hyper
form a large part of the baryon population of charge neu
matter at several times nuclear matter. This in turn depe
on two factors, neither of which is under strong control. O
is the strength of the coupling constants of hyperons to
scalar, vector and isovector mesons as compared to
nucleon couplings. Only the coupling constants for theL can
be constrained from hyperonic data and the extrapola
value of theL binding in nuclear matter@26,36#. The other

s

e
n

FIG. 5. The equation of state for various choices of the opti
potential of the kaon. Note that the order of the phase transi
changes from first to second betweenUK5100 and 80 MeV.
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TABLE I. The critical density for the appearance of the kaon condensed phase for different kaon o
potentials and parameter sets~TM1 is taken from@38#, GL70 with m* /m50.70 from@26#!.

UK(r0) ~MeV! 280 290 2100 2110 2120 2130 2140 2150

GL78: rc /r0 4.5 4.2 3.8 3.4 2.9 2.4 1.8 1.2
GL70: rc /r0 3.9 3.7 3.5 3.2 3.0 2.8 2.6 2.3
TM1: rc /r0 5.2 4.8 4.3 4.0 3.6 3.4 3.1 2.9
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factor that effects to some degree the hyperon fraction is
assumed compression modulus and effective nucleon ma
saturation density of symmetric nuclear matter@37#. At the
same time, as we see in Table I, the order and thres
density of kaon condensation also are rendered uncertai
the imprecision with which the properties of ordinary nucle
matter are known. So as to emphasize the interesting
that kaonsmayplay in neutron stars, we have omitted hype
ons completely. At the present time, we are unable to
with any degree of confidence whether kaon condensa
will occur before it is preempted by the ultimate phase tr
sition in the density and temperature domain of neut
stars—deconfinement. These effects should be studie
more detail in forthcoming work.

C. Mixed phase properties

We will show in the following that the two phases
equilibrium in the mixed phase have completely differe
properties. We will focus on the caseUK52120 MeV in
this section.

Figure 6 shows the populations of the nucleons, lepto
and kaons for the caseUK(r0)52120 MeV. The remark-
able feature is the ‘‘frozen’’ neutron density once kaons s
to condense. As it is more favorable to produce kaons
association with protons, the neutron density just st
~nearly! constant over the whole density range shown st
ing with the critical density. The lepton populations decrea
as theK2 appears as the new neutralizing agent.

The neutron density seems to be frozen once kaons ap
in the system as viewed on a logarithmical scale, but it
tually varies slowly, going up and then down slightly wi

FIG. 6. The population as a function of the nucleon density. T
neutron density stays nearly constant once kaon condensatio
pears.
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density at the order of a few percent. Note that the ove
neutron density in the mixed phase is the sum of the t
contributions from the normal and the kaon phase wh
makes it even more puzzling. The neutron population e
does not change when the pure kaon phase is reached.
ertheless, comparison with previous work on kaon cond
sation also indicates that the neutron population does
change very much once kaon condensation sets in. F
Tables 3 and 4 in Ref.@39# one can read off the neutro
density and finds that it changes at the level of a few perc
up to moderate densities. This holds also for the calculati
done by Fujii et al. @20#. The neutron density actually de
creases first after kaons have appeared then it rises agai
larger densities. The actual change in the neutron densi
less than 10% up to a density of'5r0 after kaons have
condensed@40#.

Figure 7 shows the population in the mixed phase for
two phases separately as a function of volume proportiox
of condensed phase. The normal phase population is den
as I, the kaon phase population as II. Forx50 the proton
population in the normal phase is small and neutrality
achieved by a balance with the sum of the lepton popu
tions. This corresponds to local neutrality in the pure pha
However with a growing fraction of condensed phase, cha
neutrality is achieved more economically between the t
phases in equilibrium as a global constraint—the pro
population increases to near equality with neutrons as
proportion of condensed phase increases, while the lep
populations decrease to the vanishing point. Isospin sym
try is thus closely achieved in the normal phase. This beh

e
ap-

FIG. 7. The population as a function of volume fraction of ka
condensed phase. Normal phase is denoted by I and conde
phase by II. Note the finite charge density in the condensed ph
~negative! and normal phase~positive! which vanish only on the
boundariesx51 or 0.
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NORMAN K. GLENDENNING AND JÜRGEN SCHAFFNER-BIELICH PHYSICAL REVIEW C60 025803
ior is expected and explained in Ref.@2# as a general featur
of the action of the isospin driving force toward symmetry
phase transitions of asymmetric nuclear matter.

The population behaviors in the condensed phase are
ferent. We can understand this as follows: compare the
ergy of neutron and of a proton-K2 pair, whose chemica
potentials are the same. They are respectively

mn5En5Am!21kF,n
2 1gvNV02grNR0,3, ~31!

mn5vK21Ep

5mK2gsKs2
1

3
gvNV02grNR0,3

1Am!21kF,p
2 1gvNV01grNR0,3,

5mK2gsKs1Am!21kF,p
2 1

2

3
gvNV0 . ~32!

From these two expressions ofmn we have

Am!21kF,p
2 5Am!21kF,n

2 1
1

3
gvNV02grNR0,3, ~33!

from which it is clear thatkF,p.kF,n when the sum of the
last two terms is positive. SinceV0 is proportional to the
density, whereasR03 is proportional to the difference in iso
spin densities of proton and neutron, the sum will genera
be positive, and is in the present case. That is,p-K2 pairs are
preferred to neutrons. However, the symmetry restoring t
in the energy will prevent an uninhibited growth of proto
compared to neutrons.

We have neglectedK0 condensation~as has everyone
else!. It is clear that eventually there will be a competitio
betweenp-K2 pairs andn-K0 pairs. It appears that with
increasing density, the condensed phase will tend tow
symmetry in neutrons and protons and similar density ofK2

andK0.
One striking question is, why should the nucleons not

the same in the two phases and why can they not move fr
between normal and kaon condensed phases? The answ
that when the nucleons are treated as dynamical part
they are different in the two phases. Their interaction w
the kaon field is what causes the decrease of the kaon e
tive mass with increasing density. The decrease in kaon m
ultimately leads to the condensation of kaons. The inter
tion also changes the nature of a nucleon. Figure 8 illustr
the dynamical nature of the nucleon: its effective mass
shown as a function of baryon density. Up tor
50.45 fm23 there exists only one solution—the pu
nucleon phase. The effective mass decreases with de
from its vacuum value down tomN* 5510 MeV at the end of
the pure normal phase (;3r0). In the mixed phase, a secon
solution appears at a much lower effective nucleon mas
mN* 5196 MeV. The second solution is the nucleon effect
mass in the kaon condensed phase fraction of the m
phase. The mixed phase ends atr50.97 fm23 and only the
second solution continues, now changing slope and decr
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ing with density. The nucleons have different effecti
masses due to the different mean-fields in the two phase
equilibrium. Hence, the nucleons cannot move freely
tween the two phases and a phase boundary can develo
Ref. @19# the nucleons in the two phases were treated o
implicitly through a phenomenological equation of sta
They did not appear as dynamical degrees of freedom, so
two solutions could not be found.

Figure 9 depicts the analogue to Fig. 8 for the energy
the kaon. Note that the kaon is only a test particle in
nucleon~normal! phase and appears only physically in t
condensed phase. The kaon energy decreases with de
due to the attractive vector interaction with nucleons, b
kaons do not appear in the medium until the threshold c
dition discussed above is satisfied. However, we can tr
the energy of a test kaon in the medium and it is shown
Fig. 9 as dashed-dotted line. Its energy as a test partic
also shown in the regions of the mixed phase that are oc
pied by the normal phase. When the kaon energy sinks
value satisfying the threshold condition, kaons begin to
pear, but because the phase transition is first order they
appear in a small fraction of the total volume which is t
kaon condensed phase in equilibrium with the normal pha
The energy of these medium modified kaons is less than

FIG. 9. The kaon energy versus the nucleon density.

FIG. 8. The effective nucleon mass as a function of the nucl
density. Shown by vertical lines is the onset and offset of the mi
phase.
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FIRST ORDER KAON CONDENSATE PHYSICAL REVIEW C60 025803
of a test kaon in the normal phase. The two energies
shown in the figure.

The most pronounced differences between the two ph
is in the energy density and the charge density. As can
read from Fig. 10, the energy density of the nucleon ph
~solid line! at the onset of the mixed phase ise
5460 MeV fm23 while it amounts to e51140
MeV fm23 for the kaon condensed phase~dashed line!. The
dashed-dotted line is the sum of the energy density of
two phase according to their volume fractionx:

e5~12x!eN~x!1xeK~x! ~34!

and is continuously growing with density butnot linearly, as
is the case in the Maxwell construction@eK(x) denotes the
total energy density of the kaon phase and should be dis
guished from Eq.~19!#. The nonconstant pressure is
course associated with the nonlinearity.

IV. STELLAR PROPERTIES

A. Large scale features

We have already stressed how differently the compu
equation of state and matter properties are, depending
whether the Maxwell construction is used to determine~in-
correctly! the mixed phase of normal and condensed pha
or whether Gibbs criteria for equilibrium are fully respecte
We start our discussion of the large scale properties of s
by illustrating the difference in the mass-energy distribut
in a star depending on which method is used. Figure
shows the distribution in the two cases. For the Maxw
construction the energy density is discontinuous at the
ticular radius at which the pressure has the constant valu
the Maxwell construction. The discontinuity is analogous
the separation of the phases in a gravitational field tha
characteristic of a substance having a single component~like
the steam above water in H2O). As we discussed earlie
neutron star matter in beta equilibrium does not behave
that: it has two independent components and all proper
are continuous from one phase to another. The distributio
mass energy for such a star is the continuous curve wi
discontinuity inslopebut notvalue, at the boundary betwee

FIG. 10. The energy density of normal phase~solid! and kaon
condensed phase~dashed!. The total energy is the volume weighte
sum ~dash-dotted!.
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mixed phase. The central core of mixed phase is surroun
by normal dense nuclear matter. For the particular value
U(r0)52120 MeV, the mixed phase extends to the cen
of the star and the pure condensed phase does not appe

Depending on the kaon potentialUK(r0), the pure kaon
condensed phase may not appear in the star, even for the
at the mass limit. Such is the case in the above illustrat
However, for a potentialUK(r0)52140 MeV, the pure
kaon condensed phase would form the core of stars wi
mass above about 1.25M ( , and for the limiting mass star
the condensed phase would extend to about 4.5 km.

The distribution of particles in the limiting mass star
dominated by the neutron in the normal phase outside 3
as can be seen from Fig. 12. TheK2 and proton are the
dominant species in the mixed phase core. Lepton pop
tions fall rapidly, as expected, as theK2 becomes dominant
However, overall, the proton population is far less than
neutron, and there appears little justification in referring t
star with a kaon condensate as a nucleon star.

Stellar sequences for several choices of the kaon pote
UK(r0) are shown in Fig. 13. Naturally the limiting mas
decreases with increasing potential depth~for which the con-
densate density threshold is lower!. Potentials only a little
deeper thanUK(r0)52120 MeV would not be compatible
with the mass of the Hulse-Taylor pulsar, for the underlyi
theory of matter used here. There is a mechanical instab
for the Maxwell case that is initiated by the central densit
for which the pressure remains constant. In this case not e
the necessarycondition for stability,dM/dec.0, is not sat-
isfied. ~The mass plateaudM/dec5 const in Fig. 13 is
mapped onto the single point at the top of the dashed cu
in Fig. 13. The section of the dashed curve in Fig. 14
which R is a decreasing function ofM is the unstable region
for which dM/dec,0.! Such unstable regions are abse
when the phase transition is treated using Gibbs’ conditio

FIG. 11. Mass-energy distribution according to whether
mixed phase is treated by the Maxwell construction~dashed line!,
or so as to respect the continuity of both chemical potentials~solid
line!.
3-9
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We notice two distinct behaviors of the Maxwell com
pared to the Gibbs curves of Fig. 14. The limiting massand
radius are either nearly the same or the radius is quite dif
ent. Note the solid curve forU52130 for which the radius
of the limiting mass star is;13 km for the Maxwell con-
struction and 9 km for Gibbs. In fact, since a star samp
matter at all densities below its central density, and since
Maxwell prescription is incorrect at densities even low
than the first onset of the new phase as estimated by M
well, the Maxwell prescription, when it approximately agre
with Gibbs, does so only accidentally~see Figs. 2 and 3!.

The mass-radius relation for several sequences is sh
in Fig. 14. Comparison is made in each case with the co
sponding Maxwell construction for the phase transition. I
clear that the radius especially and the limiting mass

FIG. 12. The composition of the maximum mass neutron s
with a mass ofM51.555 M ( . Note that while protons are th
dominant species at the center of the star, overall, they are a m
ity population.

FIG. 13. The mass sequence for kaon condensed neutron
treated by the Maxwell construction~dashed line!, or so as to re-
spect the continuity of both chemical potentials~solid line!.
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sharp functions ofUK(r0). For the preferred value o
UK(r0)52120 MeV, radii are similar to neutron star
without the condensate. There appears to be a sharp bre
behavior ofM vs R for UK(r0),2120 MeV. However the
behavior is actually continuous but depends sensitively
UK(r0): a pure quark core develops with decreasing val
of the optical potential below;2120 MeV and this cause
the change of the radius fromR'12.5 km toR'8 km for
UK(r0)52140 MeV.

B. Geometrical structure in the mixed phase

Neutron star matter in the normal phase is necessa
highly isospin asymmetric since charge neutrality is impos
by the weakness of the gravitational field compared to
Coulomb force. However, since kaons are bosons, they
all occupy the zero momentum state. Consequently, w
the two phases, normal and kaon condensed are in p
equilibrium, the normal phase can come closer to isos
symmetry as can be seen in Fig. 7. This is achieved
charge exchange as driven by the isospin restoring force
ing in part from the Fermi energies and in part from t
coupling of ther meson to the nucleon isospin. Naturall
the possibility of achieving symmetry varies as the prop
tion of the kaon phase. Regions of normal matter will
positively charged while regions of the kaon condens
phase will be negatively charged. Charge neutrality is g
bally achieved in this way, but not locally. As was discuss
in Ref. @2#, regions of like charge will tend to be broken u
into small regions while the surface interface energy w
resist. The competition is resolved by formation of a Co
lomb lattice much as nuclei embedded in an electron g
The difference here is that it is two phases of nuclear ma
that are involved. The rarer phase will occupy lattice si
embedded in the dominant phase. As the proportion
phases changes, the total energy consisting of volume,
face and Coulomb energies will be minimized by a seque

r

or-

ars

FIG. 14. The mass-radius relation for kaon condensed neu
stars using a Maxwell construction~dashed line! or Gibbs condition
~solid line!. Note different terminations forU52130.
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of geometrical forms at the lattice sites, which we idealize
drops, rods and slabs, just as for nuclear matter embedd
a background of free electrons and neutrons@41#.

Relevant details of the structure calculation can be fou
in Refs.@11,12#. In the present situation, the physical qua
tities that determine the geometrical structure are show
Figs. 15 and 16. Of course a calculation of the geome
structure, which results from a competition between C
lomb and surface energies, requires a knowledge of the
face tensions at the interface between the phases. This
not known although a calculation is in progress@42#. What
we do know is that~1! the sizes, spacings and the sum
Coulomb and surface energies scale ass1/3. ~2! To first ap-
proximation, the locations of the transition from one geom

FIG. 15. Charge densities in the normal and kaon conden
phase as a function of the volume fraction of the latter.

FIG. 16. Bulk energy densities of normal and kaon phases
function of the volume fraction of the kaon phase, the surface
sion s which is assumed to be proportional to their difference, a
the sum of Coulomb and surface energy density.
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ric phase to another does not depend ons. The reason for
this is that the sum of Coulomb and surface energy dens
is small compared to the bulk energy density~cf. Fig. 16!.
~3! The threshold density of the mixed phase and the den
at which it ends is not disturbed by our uncertainty ins
because the sum of Coulomb and surface energies van
at the end points@Fig. 16; see Eq.~2! in Ref. @11# #. ~4! The
structured phase lies lower in energy than the unstructu
~see near the end of Introduction of Ref.@13#.! For the above
reasons the dimensions shown in Fig. 18 provide a guide
the locations of phases should be quite accurate.

The charge densities carried by the two phases and
volume fraction of the kaon phase is shown in Fig. 17 a

FIG. 18. DiameterD of objects~drops, rods, slabs! of the rarer
phase immersed in the dominant phase, located at lattice
spacedS apart.

ed

a
n-
d

FIG. 17. Charge densities in the normal and kaon conden
fractions of the mixed phase in the limiting mass star of the c
U(r0)52120 MeV. Volume fraction of kaon phase is also plo
ted.
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function of radial coordinate in the star. Outside of 5 k
matter is in the pure nuclear phase and it is chargeless
proton population being balanced by electrons. In the ide
ized geometry of shapes, the kaon phase will first form at
threshold density of condensation as spheres spaced
apart. As the fraction of kaon phase increases, the spa
will decrease and eventually the spheres will merge to fo
rods and then slabs. As the volume fraction of the ka
phase comes to dominate, slabs of normal phase will
present in a background of kaon phase, and the role of
two phases is interchanged. The diameter and spacing o
geometrical forms of the crystal lattice is shown in Fig.
for the limiting mass star. The location of the boundaries
the various phases can be seen in Fig. 19 for stars of var
mass.

These are rather remarkable properties of the mi
phase, which in the model star, occupies the inner 5 km.
filled with geometrical forms of varying shapes and spacin
according to depth in the star. The charge density within
geometrical objects and the background phase is opposi
sign and varying in magnitude with depth. Finally the effe
tive mass of the nucleons is radically different in the tw
phases as can be seen in Fig. 20. All of these features
have their effect on transport properties and possibly
Glitch phenomena. Glitches are thought to correspond
changes induced in the moment of inertia of the star a
massive number of superfluid vortex lines undergo shifts
the location of the sites in the solid regions to which they
pinned @43#. The relocation occurs unpredictably as the
stantaneous location of the vortices carrying the angular
mentum come out of equilibrium with decreasing spin of t
star and create stresses that are relieved by the massiv
pinnings. The thin crust is a location at which the vort
lines can be pinned. But in the present model, the vor
lines do not thread through the entire star, pinned at each
on the crust, but are pinned at one end on the interior c
talline mixed phase. The extent of this region varies se
tively as the mass of the star, perhaps accounting for

FIG. 19. Radial boundaries between phases are shown f
range of stellar masses.
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wide variety in glitch phenomena observed in different p
sars.

V. SUMMARY

We have discussed the properties of kaon condensatio
neutron star matter when it is of first order. As is general
any phase transition in a substance having more than a s
conserved charge, the mixed phase does occupy a finite
tent in the star, and in that region is quite rich in phenome
First, a Coulomb lattice of rare phase immersed in the do
nant one will form, having various geometries at the latt
sites, according to the pressure. This feature is commo
nuclear systems having a mixed phase~independent of the
phase transition! so long as the temperature is low on th
nuclear scale. Second, nucleons have different mass dep
ing on whether they are in the objects at the lattice sites, o
the background medium. Third, the objects at the lattice s
have opposite charge compared to the background. Thus
mixed phase region, which we calculate to occupy a reg
of a few kilometers in extent, is highly heterogeneous. W
believe this will be an important factor in determining th
transport properties of this region. Moreover, the solid
gion, if present, is likely to play a role in the pulsar glitc
phenomenon and its extent in the core, being very sens
to stellar mass, may account for the variety of glitch ph
nomena observed in different pulsars. Insofar, we have
included the hyperon degrees of freedom and effects fr
the deconfinement phase transition. More elaborate work
mains to be done.
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a FIG. 20. Nucleon effective mass in the normal and kaon c
densed phase as a function of radial location in the limiting m
star.
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