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First order Bose condensation in asymmetric nuclear matter and in neutron stars is studied, with particular
reference to kaon condensation. We demonstrate explicitly why the Maxwell construction fails to assure
equilibrium in multicomponent substances. Gibbs conditions and conservation laws require that for phase
equilibrium, the charge density must have opposite sign in the two phases of isospin asymmetric nuclear
matter. The mixed phase will therefore form a Coulomb lattice with the rare phase occupying lattice sites in the
dominant phase. Moreover, the kaon condensed phase differs from the normal phase, not by the mere presence
of kaons in the first, but also by a difference in the nucleon effective masses. The mixed phase region, which
occupies a large radial extent amounting to some kilometers in our model neutron stars, is thus highly hetero-
geneous. It should be particularly interesting in connection with the pulsar glitch phenomenon as well as
transport propertiegS0556-28189)04507-0

PACS numbses): 26.60:+c, 13.75.Jz, 97.60.Gb, 97.60.Jd

[. INTRODUCTION The deconfinement phase transition f@rstable matter has
been treated recently in some detail taking account of equi-
Many phase transitions may occur in superdense mattelibrium in all phases[1,2,9-13. (The Gibbs criteria was
Among the possible new phases that have been considereded in Refs[14,15 in heavy-ion physics where it was es-
over the past few years are pion and kaon condensed arsgntial for the distillation of strangeneks.
guark deconfined matter. Transitions from the normal to any The possibility of kaon condensation was discussed al-
of these high-density phases may be of first or second ordeready some years ago in the context of hyperonized neutron
The order depends in part on the strength of coupling constar mattef16]. But the real impetus for the recent interest
stants. If of first order, especially interesting phenomena ocwas provoked by the paper of Kaplan and Nel§b#| who
cur in isospin asymmetric nuclear matter, including spatiallysuggested the interaction of the” with the nuclear medium
ordered regions of the normal and new phase in the range &hay reduce its mass sufficiently, so that, as a boson, it may
densities for which both phases are in equilibri[tr-3]. replace electrons as the neutralizing agent in charge neutral
In early work on pion condensation, the region of phasénatter. The Maxwell construction was again used in previ-
coexistence was found by use of the Maxwell constructiorPS Work on first order kaon condensatidi8—21.
(sometimes with reference to Van der Waal's equation of In _the present paper we _stuo_ly the kaon condensed ph_ase
state: cf. Refs[4—g]). The Maxwell construction is valid for as afirst order phase transition in neutron star matter. This

simple substances—those withly oneindependent compo- will serve as a general example of a Bose condensate
pie y P P (whether pion or kaon Unlike the previously cited work, we
nent, like water, or pure neutron mati@vhich nowhere ex-

ist9 M Hihi fructi that assure compliance with Gibbs criteria for equilibrium. Just as
ists). However, as used{his construction can assure tha in the case of the deconfinement phase transition, we find

only one chemical potential is common to the two phasesy,at the two phases in equilibrium are oppositely charged,
whereas asymmetric nuclear matter, such as neutron Stg{,,gh in sum, neutral, as ought to be so for stellar material.
matter, has two independent componefitee baryon and consequently, the total energy, including Coulomb and sur-
electric charge Consequently the construction cannot sat-fzce energies, is minimized by a lattice arrangement of the
isfy Gibbs criteria that all chemical potentials as well as presygre phase immersed in the dominfibt-3]. The difference
sure and temperature be common to both phases in equilietween normal and kaon condensed phases is especially il-
rium. In short, the states studied were unstable. ~lustrated by the fact that not only are kaons present in the
Similarly the deconfinement transition was treated injatter, but the nucleon masses are strongly modified from
early work beginning in the 1970s with the same assumptheir values in the normal phase or in vacuum. Even in the
tions and methods and without regard to equilibridim  gpatial regions of the mixed phase occupied by the normal or
some cases without regard to beta equilibrium in the pur@ondensed phase, the nucleons have different masses accord-
phases and in others without regard to phase equilibriuming to the phas¢22]. The high degree of inhomogeneity in
the mixed phase occupied as it is by a lattice structure, the
localization of opposite charge in the phase occupying the
ITo be sure, the Maxwell construction could be generalized. Bufattice sites as compared with that of the background phase
“equal areas” would be replaced by “equal volumes,” and “tan- and the very different nucleon effective masses in the two
gent slope” by “tangent surface” in a space oft 1 dimensions, phases, will likely affect the transport and superfluid proper-
wheren denotes the number of independent components. ties of neutron stars.
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The paper is organized as follows: in Sec. Il we introducewhere the vector fields are coupled via the standard form
the model Lagrangian which is based on the relativistic o
mean-field model for the nucleon-nucleon interactions and a D,=3d,+ig,kV,+19,k kR, (4)

kaon-nucleon interaction motivated from one-boson ex- )
change. We discuss the equation of state and especially tHd'€n the vector fields are coupled to a conserved current

difference between a Maxwell construction and Gibbs conWhich is consistent with Ward identities. The fof#) results
dition as well as the properties of the mixed phase in Sec. I11in another coupling term in the Lagrangié$) of the form

Consequences for the stellar properties are derivgd in Sec. 262 V. VEK*K ®)
IV, both for global features as well as for the resulting geo- oK T p

metrical structures inside neutron stars. Our results are su

. ) Th addition to the standard Yukawa coupling term which
marized in Sec. V.

gives a nonlinear dependence of the kaon optical potential
with density.
Il. RELATIVISTIC MEAN-FIELD MODEL WITH KAONS The scalar field is coupled to the kaon by analogy to the

In the approach presented here, we use a relativistie1lnlmal coupling scheme of the vector fields

nuclear field theory solved in the mean-field approximation.
The interaction between baryons is mediated by the ex-

change of scalar and vector mesons. This picture is consign addition to the standard linear Yukawa coupling term, it

tently extended to include the kaons. The model is similar tQjives also a quadratic coupling term to the scalar field in the
the one used for describing the properties of the H dibaryon agrangian of the form

in nuclear matter which is known to be thermodynamically
consisten{23]. The coupling schemes applied for the kaon (g,k0)°K*K. @)
are in analogy to the one we used for the H dibarj/24.

We start by summarizing briefly the relativistic mean- This term is small compared to the linear Yukawa coupling

m’IE:mK_ga'KO-' (6)

field model for nucleons. The Lagrangian is given by term as it is suppressed lgyx /(2my). Nevertheless, it will
simplify the equations of motion considerably as we will
L=V N ¥, 0" = Mg+ GonT— Gun YV e — Gon R, Y show in the following.
N N 20 N Gon T Gun Yl GpNTNE )TN The equation of motion for the kaon can be written as
1 1
+ 50,00 0= Mmoo’ =U(0) = 7V, V- [D, D +mg?]K=0. (8)
1 1. . 1 .. . The poles of the kaon propagator can then be determined by
+SMLV, VA= 2R, REH SR, R, (1)

— w2+ m2+ K2+ 1wk ,K,p)=0, 9

whereV,,=4,V,—d,V, . The scalar meson is denoted by

o, the vector mesom by V,, and the isovectop meson by where theK ™ self-energy in mattefthe space components of

R, . The scalar self-interactiorid(o) are taken to b¢25] the vector field vanislv;=R;=0) is given by
1 , 1 . HK((D,E,P):_ZwK(ngV0+ng;Kﬁo)_(ngVo
U(o)=zbmy(gono)°+ 7 C(gono)™ 2) -, )
+9,k7kR0) "= 2Mk G,k 0+ (Qok )
The model parameters can be algebraically determined by (10

five bulk properties of nuclear mattg3]. Here, for illustra-
tive purposes, we choose one of the parameter sets used
[26] with the nuclear matter properties: E/A n . -
—-16.3 MeV, po=0.153 i3, agm=32.5 MeV, K condensatiori.e., fork=0) for theK

=240 MeV, andm*/m=0.78. Other parameterizations will e _ _

not change the overall feature of kaon condensation as dis- @k =Mk~ Gk~ Guk Vo~ GpkRos, (1)

cussed in this paper. , ___which is linear in the meson fields. HerRy 3 denotes the
Now we discuss the inclusion of the kaon-nucleon interime.jike Lorentz component and the isospin 3-component.
action terms. There are two main schemes for including efThere appear additional source terms in the equation of mo-

fects of kaon condensation in neutron star matter. One US§R)n for the meson fields if a kaon condensate is present
terms derived from chiral perturbation theory—the other

couples the kaon to meson fields. We choose to take thmfrg:gaN[ps-—me(gUNg)Z_C(gUNU)ﬂ.;_ngKm*}; K*K,
latter approach so that nucleon and kaon interactions are

treated on the same footing as pointed out above. The kaon iﬁ“iVo=ng(Pp+Pn) — 29 k(0K + Gk Vot 9,kRo 2 K* K,
then coupled to the meson fields using minimal coupling

2 _ *
M:Ro3=9,n(Pp— Pn) — 20,k (wk + 9wk Vot 9,kRo3z) K*K.
Li=DiK* DK —my?K*K, 3 pros S o pICTRCT Bl 7O S (12)

almd depends on the in-medium kaon energy. It is
spraightforward to derive the dispersion relation fewave

025803-2



FIRST ORDER KAON CONDENSATE PHYSICAL REVIEW ®0 025803

Note that the equation of motion for nucleons are unchangeds just the familiar expression known from relativistic mean
The conserved current associated with the kaons is derivefield theory for nucleons and leptons only. Hence, the equa-
by using tion of state will be considerably softened if the kaon con-
densate is present. The pressure is modified only indirectly
through the change of the meson fields by the additional
kaon source terms which enter into the equations of motion
(16). The total charge is then

IHK* 9K

K_.
J#—|

(K* L IL

=K*ig,K—(id,K*)K—2g,V, K*K

ot e AN=Pp—Pe™ Pp> (21)
—-29,« kR, K*K. (13
g g dk=Pp— Pe= Pu—PK (22)

In the mean-field approximation, the€™ density is given by | . ,
in the normal and in the kaon condensed phase, respectively.

PK= —J§=2(wK+ 9ok Vot 9,kRoIK*K. (14) The above relations do not fix the amplitude of the kaon
condensat&* K. The charged kaon amplitude is zero unless
For swave condensation we can use the dispersion relatiothe condition
(11) to get an expression for the scalar density of the kaon
WK = UK-= Me (23
2MEK*K =2(wk+ gk Vot 9,kRoaK*K=px, (15
K (@k*8ukVoT pkRog pe: (19 can be fulfilled. Generally the electrochemical potential in-
which comes out to be the same as the vector density. Thigéases as the baryon density increases, since this will usu-
relation holds only folk=0 which is the case for cold neu- ally mean that the proton density increases. Moreover, the

tron star matter ang-wave condensation. It is a result of our s_ e_ffec?\ée mfass in the m%d'“”? der::reases wEh mr(]:rledasmg
choice of the scalar coupling schert@. For the negatively ~9€nsity. Therefore at some density the above threshold con-

charged kaon the equations of motion are then simplified t ition may be fulfilled. Since all kaons can_condense in the
owest energy state, they become energetically more favor-

M20=gynl ps— bMy(Gon)?— c(Fona) 3]+ Gk Pk » able than_electrons_ as the neutrali_zing agent of p_ositive
charge. With further increase of density and decrease in kaon
miVozng(PpJFPn)—ngPK, energywg , the elec'groch(_ammal potential will decrease and
the electron population will decrease.
2R For the isospin partner of th€~, the K°, the condition
MRy 3= g,n(Po—Pn) — . (16) spin p ' ' '
P03~ Gpn(Pp Pn) = pkP for condensation to happen readék®) =0. Hence, if there
The total energy density is given by is no isovector potential for the kaons, tK&8 can only ap-
pear after charged kaons have appeared and the electro-
e=entex (17) chemical potential hits zero. This seems quite unlikely and,

o to our knowledge, was therefore completely ignored in pre-
and has a contribution from the kaon condensate. Thgjoyus works. Nevertheless, the isospin potential of the nucle-
nucleon part consists of the standard tefefs Ref. [3]) ons shift the energy of th&® below the one of th&~ in

1 b 1 neutron-rich matter so that
— T m2 24 3 E 4, T 2\/2
€N mg;o + 3 mN(gUNU) + 4 (goNU) + 2 meO

=3 )
. _ w(K°)=w(K’)+29pKRo,s=w(K*)—Z?nLZK(pn—pp)-
4 ki p
+ -m?R2 .+ ' de3k\/k2+m-*2. 18
2 » 03 i:zN,l (2m)%Jo ' 18 24

) o A strong isovector potential is supported by coupled channel
The sum is over nucleons and leptons. In principle it couldsg|cylations for th&k ~ [27] which shifts the effective energy
extend over baryons of the octet, but we neglect the highegs the K- up by approximately 100 MeV at a density pf
members in .the present study. The kaon contribution to the 3p,. This would imply that the effective energy for the
energy density reads is about 200 MeV lower than the one for tKe in neutron
XYkl % matter at that density. In our calculations, we find indeed that
€= 2M TKTK=mypyc. (19 K° condensation can happen if the isovector coupling con-
%:ant is chosen as strong as the nucleon[see Eq(25) in
the following]. For the sake of simplicity we ignore it in the
following but note that it is clear from our discussion thek
1,, b , C 1, condensation should be taken into account in a more realistic
p=—5m;0?- §mN(go_Na') - Z(gUNa) + EmwvO calculation.
The Lagrangian for the kaon&) describes the kaon-
1, 1 - K2 20 Euc[eon intelractiongs W?” as thg Ikaon-kacindintﬁractioln. TBe
+-m°'Ris+= —_— 20 ~ in a nuclear medium is certainly a coupled channel prob-
2770 B (2m)3 o K+ mi lem due to the opening of e, A7 channels and cannot

The kaon does not contribute directly to the pressure as it i
a (s-wave) Bose condensate so that the total pressure

Vi ki
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be treated on the mean-field level. Coupled channel calcula- A. Maxwell versus Gibbs

tions at finite density, first done by Kodi28], yield an at- The standard thermodynamic rule for two phases in ther-

tractive potential for theK™ at normal nuplear density of modynamical equilibrium is given by the Gibbs condition
aboutUy-(po)=—100 MeV. Waaset al. find a value of

Uk-(po)=—120 MeV [29]. Kaonic data support the con- p'=p", wl=ux', T=T" (27
clusion that there is a highly attractive kaon optical potential
in dense nuclear matt¢80]. Because the kaon is a boson it which simply states that the two phases are in mechanical,
does not add directly to the pressure; it forms a Bose conehemical and thermal equilibrium. This is basic thermody-
densate in theswave with zero momenturil7]. This is  namics and can be found in textbooks. For the special case of
contrary to pion condensation which condenses javeave  only one chemical potential, the resulting equatiph{x,T)
with a finite momentum. A self-consistent treatment of the=p''(x,T) has a unique solution fq. It is often found by
in-medium self energy of the pion prevents pion condensause of a Maxwell construction in one form or another. For
tion [31]. A coupled channel calculation including the modi- example, the common tangent method, is based on the fact
fied self-energy of the kaon has been studiedi3®] and it that u=de/dp=dE/dN. Write the equation of state in the
was found that the kaon still sees an attractive potential &form e=e(p). The segment of the common tangent,
high density. =—po+ mop touching the equation of state once in each
On the mean-field level considered here, the three kaophase describes the mixed phase with common and constant
coupling constants,x , g,k , andg,k can be fixed to kaon-  values ofp, and u,, independent of the proportion of the
nucleon scattering lengths. The in-medium potentials for theéwo phases. Clearly, the Maxwell construction can assure

K™ are given byG-parity, i.e., by switching the sign of the that only a single chemical potential is common to both
vector potential. This gives similar results for tié optical  phases.

potential compared to the coupled channel calculatiGg$ However, neutron star matter has two chemical potentials,
We choose to couple the vector fields according to the,, andu,., each of which must be equal in the two phases
simple quark and isospin counting rule to assure equilibrium. Hence, a Maxwell constructiamnot
be used as it will produce a discontinuity in one of the
1 chemical potentials and will describe an unstable state—one
ng=§ng and g,k=9,n- (25  for which there is a potential difference at the boundary be-

tween phases. This general fact concerning phase transitions
with more than one conserved charge inside neutron stars
The scalar coupling constant is fixed to the optical potentialvas realized only a few years affb2]. It was shown how to
of the K™ at py: assure equilibrium in substances of an arbitrary number of
conserved charges, that conservation laws cannot be locally
(26) imposed but only globally over the entire region of mixed
phase, how internal forces redistribute conserved charges be-
tween equilibrium phases so as to minimize the energy, and
The kaon potential is fixed at normal nuclear density anchow, in the case that the electric charge is among the con-
varies as a function of the density served charges, a Coulomb lattice will be formed.

We solve the equations of motion in three different ways  Conservation laws and Gibbs conditions can be satisfied
corresponding to the three possible solutiofis: for pure  simultaneously for substances of more than one conserved
nuclear matter without kaong2) for pure kaon condensed charge by applying the conservation Iawonly in aglobal
matter, and3) for the mixed phase. The latter one is found rather than docal sense[1,2]. Thus for neutron star matter
by solving for solution1) and(2) separately and scanning which has two conserved charges, the Gibbs conditions and
through the electrochemical potential until the pressures igonservation of electric charge read
the two phases for the same chemical potentials are equal.

Initially, values for the meson fields are taken randomly. The Pn( g s tte) = Pr( tg o) (28)
solution found at a certain baryochemical potential is then

used for th'e next step. We compare then the pressure of the Urota= (1= X)An( &8 s o) + XAk (g te) =0,  (29)
three solutions and take the one with the highest pressure. It

solut!on for the mixed. phase gives (thermodynamically This pair of equations can be solved fog, andu, for any
consistentvolume fraction between zero and one. volume proportion of kaon phase in the interval (0,1).
Therefore the chemical potentials are functions of proportion
x and therefore also are all other properties of the two
phases, including the common pressure. This is only a math-

In the following we discuss the equation of state includingematical proof that in general, properties will vary as the
kaons emphasizing the difference between the hitherto agsroportion. Why and how they vary depends on how the
plied Maxwell construction and the thermodynamic consis4nternal driving forces can exploit the degrees of freedom
tent Gibbs condition. Then we present our results for the twdone less than the number of independent chemical poten-
phases in the mixed phase. tials) so as to minimize the total energg].

Uk(po) = —9skT(po) — 9wk Volpo)-

IIl. EQUATION OF STATE WITH A KAON CONDENSATE
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. . . FIG. 2. The pressure versus the baryochemical potential for a
FIG. 1. The two chemical potentials, the electrochemical poten- . : i )
. . y M Il hed lin mpared to the Gibbs condi-
tial and the baryochemical potential for the caséc(po) axwell construction(dashed ling compared : :

. " - i id line). i ition is th d icall
=—120 MeV using the Gibbs conditigisolid line) and a Maxwell ggbl(so“d ling). The Gibbs condition is thermodynamically more
construction(dashed ling The large electric potential difference '

that occurs for the Maxwell construction gives rise to an instability.Sure at the same baryochemical potential. Using the Gibbs
o . conditions(27), the solid curve results which has always a
_ The total baryon density in the mixed phase correspondpigher pressure compared to the Maxwell construction being
ing to the solution of the above pair of equations for charggne thermodynamically favored one. The change in the slope
neutral matter in phase equilibrium is given as a function ofy¢ the crossover of the Maxwell construction is smeared out.
x by The pressure difference between the two cases depends on
the equation of state and the optical potential of the kaon. In
Niotar= (1= X)NN(1B s e) + XNk (1B, e), (30)  addition, it is also sensitive to finite size corrections. Here,
we discuss only bulk matter. Coulomb energy and surface
wheren denotes baryon number density. A similar equationenergy will reduce the pressure in the mixed phase. For the
holds for the energy density. It will be noted that the pressurenixed phase of normal nuclear matter and nuclei in the crust
equality (28) cannot be solved simultaneously with condi- of the neutron star, this correction is on the order of
tions of local charge neutrality, qy(us.ue)=0, 10 MeV/int. It depends on the surface tension which is
Ok (us,me) =0, since three conditions must be satisfied withunknown for a kaon condensed phase immersed in dense
only two variables. nuclear matter and will shift the curve for the Gibbs condi-
Figure 1 shows the behavior of the chemical potentialgion case to slightly lower values. But because the sum of
using Gibbs and Maxwell construction for comparison. TheCoulomb energy and surface energy vanishes at the bound-
vertical dotted lines indicate the region of the mixed phasearies of the mixed phagef. Eq.(2) in Ref.[11] ], the bound-
when using the Gibbs condition implemented for charge neuaries are unaffected. We will discuss the geometric features
trality as described above. The electrochemical potential inwhen kaons are condensing in more detail later.
creases in the pure hadronic phase as the density of neutronsThe differences between the two descriptions, Maxwell
and protons increase. However, at the critical density foland Gibbs, are most striking for the relevant observable for
kaon condensation the electrochemical potential becomesrgeutron star calculations: the equation of state as plotted in
decreasing function of density as kaons replace electrons iRig. 3. The solid line shows the equation of state for the
their role of neutralizing the charge on protons. We note thahormal hadronic phase of neutron star matter, the dotted line
when the conservation of electric charge is imposed as the one for pure kaon condensed matter. The Maxwell con-
global constraint, as described above and in R2f, the struction results in a region of constant pressisid hori-
electrochemical potential is continuous, in contrast to thezontal line connecting the two different equation of states.
case of the Maxwell construction. In the Maxwell construc- Applying the Gibbs condition causes two major differences
tion, the electrochemical potential drops fromu, compared to the Maxwell construction. First, the region of
=240 MeV tou,=167 MeV at the phase boundary result- constant pressure vanishes and there is a continuous increase
ing in a huge difference in the Fermi energy of the leptonsof the pressure. Second, the density range of the mixed phase
between the two phases. There needs to be an additional much wider, it starts at a lower density and ends at a much
force to prevent the electrons moving from the phase withhigher density. Hence, the mixed phase can well be the
the higher chemical potential to the other which is com-dominant portion of a neutron star.
pletely absent in a bulk treatment. The behavior of the thermodynamic potential, the pres-
A Maxwell construction is often implemented by looking sure, and the two chemical potentials over the mixed phase
at the thermodynamical potential of interest, here the pressegion using the Gibbs condition is summarized in Fig. 4.
sure, as a function of the chemical potential as depicted iThe baryochemical potential as well as the pressure are con-
Fig. 2. The crossing of the curve is the point of equal prestinuously rising with density. The electrochemical potential
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FIG. 3. The equation of state for a pure nuclear matsetid
line), pure kaon mattefdotted line for Uy(py) = —140 MeV. The
Maxwell construction is shown by the horizontal line and the Gibbs
solution by the dashed-dotted line.

FIG. 5. The equation of state for various choices of the optical
potential of the kaon. Note that the order of the phase transition
changes from first to second betwddp=100 and 80 MeV.

increases until the mixed phase starts, then it is continuously We comment here on the coupling schemes that have
decreasing with density. There is now no jump in any ofbeen employed in studies of the kaon condensate. As previ-
these observables and none stays constant over the mixedsly noted, we couple the kaon directly to the meson fields.
phase region. In particular, the scalar meson is coupled in a minimal
scheme as in Eq6). Coupling of kaon to meson fields was
B. Dependence on parameters also employed in Ref$34,35. However the scalar coupling

was implemented there through *=m2—g,«o. In con-

The form of _the equation of state deper_lds sensitively OMrast to our scheme, the kaon effective mass is reduced from
the chosen optical potential of the kaon. Figure 5 shows th s vacuum value through the scalar field by only half as

equations of state for optical potentials of the kaon at norma#nuch (in leading order. As a consequence, even though
nuclear matter density between80 and—140 MeV. For much stronger optical potentials result from the coupling

Uk(po)=—80 MeV, there is no mixed phase and the phaseConstants used in RefE34,35, namelyU(py)~ 180 MeV,

transition is of second order. For a deeper optical potential, a -

. ) . s compared with those favored by Ko and Waas
mixed phase appears as'plotted in dashgd—dotted Ilngs. TI&(—E‘ al.[zs% of U(py) = 100- 120 MeVX/vhicEﬂvz\}e also favor,
deepgr the optlcal potential of the kaon 1S, th? lower is thethe phase transition found was weak and of second order.
density the mixed phase starts and the wider is the range qjhe order of the phase transition and the critical densities

the mixed phase. The equation of state is considerably .S(.)fE' rresponding to several parameterizations of nuclear matter
ened by the presence of the kaon condensate. The CI’ItICg n be found in Table I. For the parameter set with/m

dgnsny for the onset of thg kaon condensed phase is summa-, 79 (GL70) we find that the phase transition is of first
rized for various kaon optical potentials in Table I. For the

_ B . order for an optical potential olUx=—-120 MeV and
c_ase_sUK(pO)— 80 MeVand—90 MeV the phase transi deeper. For the parameter set TM1 the phase transition is of
tion is of second order.

second order over the range of optical potentials shown and
600 . . . one has to go to deeper optical potential to get a first order

—— -m, MeV] phase transition. This elucidates the sensitivity to the chosen
—_ ——= K, [Mev] nuclear parameterization.
C?E ----- p [MeV fm™] The Pauli principle practically assures that hyperons will
S A be present in dense charge neutral matter. Their effect will be
> 400 Uy=-120 MeV i i
D K to quench the growth of the electron chemical potential and
=, therefore either to raise the threshold density at which kaon
Q condensation occurs, or to preempt condensation altogether
5’200 7 TS [16]. Whether kaon condensation can actually occur there-
g // S~ \/' fore depends upon whether negative or neutral hyperons
= / TN form a large part of the baryon population of charge neutral
/ /.—“ ~ . .
/ L S matter at several times nuclear matter. This in turn depends
000 "0'3 08 09 1o 15 on two factors, neither of which is under strong control. One
Density p [fm_3] is the strength of the coupling constants of hyperons to the

scalar, vector and isovector mesons as compared to the
FIG. 4. The pressure, the electrochemical potential, and thé@ucleon couplings. Only the coupling constants for thean
baryochemical potential are plotted over the mixed phase regioke constrained from hyperonic data and the extrapolated
using the Gibbs condition. value of theA binding in nuclear mattef26,36. The other
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TABLE I. The critical density for the appearance of the kaon condensed phase for different kaon optical
potentials and parameter s¢fdM1 is taken from[38], GL70 with m*/m=0.70 from[26]).

Uk(po) (MeV) -80 -90 —-100 -110 -120 —130 —140 -150
GL78: pe/po 45 42 3.8 3.4 2.9 2.4 1.8 1.2
GL70: pe/po 3.9 3.7 35 3.2 3.0 2.8 2.6 2.3
T™ML: pc/po 5.2 438 43 4.0 3.6 3.4 3.1 2.9

factor that effects to some degree the hyperon fraction is thdensity at the order of a few percent. Note that the overall
assumed compression modulus and effective nucleon massrautron density in the mixed phase is the sum of the two
saturation density of symmetric nuclear maftgv]. At the  contributions from the normal and the kaon phase which
same time, as we see in Table I, the order and thresholchakes it even more puzzling. The neutron population even
density of kaon condensation also are rendered uncertain loes not change when the pure kaon phase is reached. Nev-
the imprecision with which the properties of ordinary nuclearertheless, comparison with previous work on kaon conden-
matter are known. So as to emphasize the interesting rolgation also indicates that the neutron population does not
that kaonganayplay in neutron stars, we have omitted hyper-change very much once kaon condensation sets in. From
ons completely. At the present time, we are unable to saffables 3 and 4 in Ref39] one can read off the neutron
with any degree of confidence whether kaon condensatiodensity and finds that it changes at the level of a few percent
will occur before it is preempted by the ultimate phase tran-up to moderate densities. This holds also for the calculations
sition in the density and temperature domain of neutrordone by Fujiiet al. [20]. The neutron density actually de-
stars—deconfinement. These effects should be studied icreases first after kaons have appeared then it rises again for

more detail in forthcoming work. larger densities. The actual change in the neutron density is
less than 10% up to a density ef5p, after kaons have
C. Mixed phase properties condensed40].

. . . : Figure 7 shows the population in the mixed phase for the
R L\J/}:i%r\i,:jlrlL ﬁ:omemmti?(g dfonr?;\ggghg]va; g(‘)emtvlveote?h%siﬁzrgttwo phases separately as a function of volume proportion
?0 erties. We will focus gn the casé, — _520 I\>/IIeV in of condensed phase. The normal phase population is denoted
tphispsectio'n Sy = as |, the kaon phase population as Il. Ber0 the proton
; ' . Spopulation in the normal phase is small and neutrality is
Figure 6 shows the populations of the nucleons, lepton achieved by a balance with the sum of the lepton popula-
and kaons for the fagd"(f")z —120 Mev. The remark- ions. This corresponds to local neutrality in the pure phase.
able feature is the. frozen neutron density once kaons starf, wever with a growing fraction of condensed phase, charge
to Coﬁd?”se- AS it is more favorable to prod_uce_ kaons Ir?1eutrality is achieved more economically between the two
association with protons, the neutron density just Stay%hases in equilibrium as a global constraint—the proton
(near!y) constant over th_e whole density range shown start, opulation increases to near equality with neutrons as the
ing with the critical density. The lepton populations decreas‘%roportion of condensed phase increases, while the lepton
as theK™ appears as the new neutralizing agent. ;

The neutron density seems to be frozen once kaons aIOIOep(r)pulatmns decrease to the vanishing point. Isospin symme-

. ) o ; is thus closely achieved in the normal phase. This behav-
in the system as viewed on a logarithmical scale, but it ac-
tually varies slowly, going up and then down slightly with

1.0 |5 U=—120 MeV
10° . : . S :
s~ 08 | sy
€ | K™~
""; 107 é 0.6 ou
= g ni
S 204p
= <] | ]
3 o nt___ -7
2 10% 02 -7
L O e PL o\
0.0 [=e==s== -
00 02 04 06 08 1.0
10° LLEi . . LT Volume fraction y
00 03 06 09 1.2
Density p (fm™) FIG. 7. The population as a function of volume fraction of kaon

condensed phase. Normal phase is denoted by | and condensed
FIG. 6. The population as a function of the nucleon density. Thephase by Il. Note the finite charge density in the condensed phase

neutron density stays nearly constant once kaon condensation afiegative and normal phasépositive which vanish only on the
pears. boundariesy=1 or 0.
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ior is expected and explained in RE2] as a general feature 1000
of the action of the isospin driving force toward symmetry in =~
phase transitions of asymmetric nuclear matter. < 800} Uy=-120 MeV
The population behaviors in the condensed phase are dif- g
ferent. We can understand this as follows: compare the en- g 600 |
ergy of neutron and of a protdd- pair, whose chemical 5 2
potentials are the same. They are respectively % 400 | g \ §
c ) . g
n=En= Vm*2+k|2:,n+ngVO_gpNRO,3! (31 2 g ixed phaﬁ\g
§ 200 g T "~
Mn= wg-TEp (i}
1 0O.O 03 06 09 1.2
= mK_ gO'Ko-_ §ngVO_ gpNRO,3 Density p (fm_s)
Im*2+ k2 FIG. 8. The effective nucleon mass as a function of the nucleon
yme kF’p+ FonVot GpnRos, density. Shown by vertical lines is the onset and offset of the mixed

- 2 phase.
:mK_go.K0'+ m +kpr+ §ngV0. (32)

ing with density. The nucleons have different effective
From these two expressions pf, we have masses due to the different mean-fields in the two phases in
equilibrium. Hence, the nucleons cannot move freely be-
tween the two phases and a phase boundary can develop. In
Ref. [19] the nucleons in the two phases were treated only
implicitly through a phenomenological equation of state.
from which it is clear thakg ,>kg , when the sum of the They did not appear as dynamical degrees of freedom, so the
last two terms is positive. Sinc¥, is proportional to the two solutions could not be found.
density, whereaR; is proportional to the difference in iso-  Figure 9 depicts the analogue to Fig. 8 for the energy of
spin densities of proton and neutron, the sum will generallyjthe kaon. Note that the kaon is only a test particle in the
be positive, and is in the present case. Thapik,~ pairs are  nhucleon(norma) phase and appears only physically in the
preferred to neutrons. However, the symmetry restoring terrgondensed phase. The kaon energy decreases with density

in the energy will prevent an uninhibited growth of protons due to the attractive vector interaction with nucleons, but
compared to neutrons. kaons do not appear in the medium until the threshold con-

We have neglectek® condensation(as has everyone dition discussed above is satisfied. However, we can trace
else. It is clear that eventually there will be a competition the energy of a test kaon in the medium and it is shown in
betweenp-K~ pairs andn-K° pairs. It appears that with Fig. 9 as dashed-dotted line. Its energy as a test particle is
increasing density, the condensed phase will tend toward!so shown in the regions of the mixed phase that are occu-
symmetry in neutrons and protons and similar densitilof ~ Pied by the normal phase. When the kaon energy sinks to a
andK®, value satisfying the threshold condition, kaons begin to ap-

One striking question is, why should the nucleons not bePear, but because the phase transition is first order they first
the same in the two phases and why can they not move freegPPear in a small fraction of the total volume which is the
between normal and kaon condensed phases? The answek@Pn condensed phase in equilibrium with the normal phase.
that when the nucleons are treated as dynamical particleEhe energy of these medium modified kaons is less than that
they are different in the two phases. Their interaction with

1
ym* 2+ k|2:,p: ym*2+ k|2:,n+ gngVO_gpNROBi (33

the kaon field is what causes the decrease of the kaon effec- 500

tive mass with increasing density. The decrease in kaon mass N\

ultimately leads to the condensation of kaons. The interac- 400} N\ Ue=-120MeV

tion also changes the nature of a nucleon. Figure 8 illustrates 2 ) \

the dynamical nature of the nucleon: its effective mass is =3 300 | N

shown as a function of baryon density. Up tp 3 .

=0.45 fm ® there exists only one solution—the pure 2 % o\ E
. . . w200+ £ . s

nucleon phase. The effective mass decreases with density < 3 NN g

from its vacuum value down tm{ =510 MeV at the end of 8 £ NN

the pure normal phase-<(3p,). In the mixed phase, a second 100 - © mixed phase

solution appears at a much lower effective nucleon mass of

* . . . o 1 1 1
mN—196 MeV. The second solution is the nycleon effect!ve 00 03 06 09 12
mass in the kaon condensed phase fraction of the mixed
phase. The mixed phase endat0.97 fm 2 and only the
second solution continues, now changing slope and decreas-  FIG. 9. The kaon energy versus the nucleon density.

Density p (fm™®)
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p 900
— 4 = =
‘?E 1500 | U,=|-120 MeV /// ] 500 120 MeV
h 7/ e~ .
> e i -—— Mixed phase
= PR — g 700 |
> 1000 = ) 8 1 . '
a T‘;- e .‘E"_ ™ 600 :
2 L g £ '
3 500 2 : g > 500 | Tl
> mixed phase [} | Pure S
h = 4001 1 a0n phase
0 1 n n 1
00 03 06 09 12 15 w 300+
. -3
Density p [fm 7] 2004
FIG. 10. The energy density of normal phaselid) and kaon 100 I %o
condensed phagdashegl The total energy is the volume weighted s
sum (dash-dottej 0 — , ¥
0 5 10
of a test kaon in the normal phase. The two energies are r (km)

shown in the figure.
The most pronounced differences between the two phases FIG. 11. Mass-energy distribution according to whether the
is in the energy density and the charge density. As can pilixed phase is treated by t.he.MaxweII constrgct(dashed ling
read from Fig. 10, the energy density of the nucleon phas@' SO as to respect the continuity of both chemical poten¢sdid
(solid line at the onset of the mixed phase i '€
=460 MeV fm 3 while it amounts to e=1140
MeV fm™2 for the kaon condensed phastashed ling The
dashed-dotted line is the sum of the energy density of th
two phase according to their volume fractign

mixed phase. The central core of mixed phase is surrounded
y normal dense nuclear matter. For the particular value of
(po)=—120 MeV, the mixed phase extends to the center
of the star and the pure condensed phase does not appear.
e=(1—x)en(x)+ xex(x) (34) Depending on the kaon potentillk(pg), the pure kaon
condensed phase may not appear in the star, even for the star
and is continuously growing with density bt linearly, as  at the mass limit. Such is the case in the above illustration.
is the case in the Maxwell constructigek(y) denotes the However, for a potentiaUg(py)=—140 MeV, the pure
total energy density of the kaon phase and should be distirkaon condensed phase would form the core of stars with a
guished from Eq.(19)]. The nonconstant pressure is of mass above about 1.Bh,, and for the limiting mass star,

course associated with the nonlinearity. the condensed phase would extend to about 4.5 km.
The distribution of particles in the limiting mass star is
IV. STELLAR PROPERTIES dominated by the neutron in the normal phase outside 3 km

as can be seen from Fig. 12. Tike and proton are the
dominant species in the mixed phase core. Lepton popula-
We have already stressed how differently the computedions fall rapidly, as expected, as tke' becomes dominant.
equation of state and matter properties are, depending drowever, overall, the proton population is far less than the
whether the Maxwell construction is used to determiimee  neutron, and there appears little justification in referring to a
correctly the mixed phase of normal and condensed phasestar with a kaon condensate as a nucleon star.
or whether Gibbs criteria for equilibrium are fully respected.  Stellar sequences for several choices of the kaon potential
We start our discussion of the large scale properties of statdx(po) are shown in Fig. 13. Naturally the limiting mass
by illustrating the difference in the mass-energy distributiondecreases with increasing potential deftin which the con-
in a star depending on which method is used. Figure 1ensate density threshold is lowePotentials only a little
shows the distribution in the two cases. For the Maxwelldeeper thaty(pg) =—120 MeV would not be compatible
construction the energy density is discontinuous at the pamwith the mass of the Hulse-Taylor pulsar, for the underlying
ticular radius at which the pressure has the constant value dfieory of matter used here. There is a mechanical instability
the Maxwell construction. The discontinuity is analogous tofor the Maxwell case that is initiated by the central densities
the separation of the phases in a gravitational field that i§or which the pressure remains constant. In this case not even
characteristic of a substance having a single compq(fligat  the necessargondition for stability,dM/de.>0, is not sat-
the steam above water in,B). As we discussed earlier, isfied. (The mass plateadM/de.= const in Fig. 13 is
neutron star matter in beta equilibrium does not behave likenapped onto the single point at the top of the dashed curve
that: it has two independent components and all propertiesn Fig. 13. The section of the dashed curve in Fig. 14 for
are continuous from one phase to another. The distribution aivhich R is a decreasing function &fl is the unstable region
mass energy for such a star is the continuous curve with gor which dM/de.<0.) Such unstable regions are absent
discontinuity inslopebut notvalug at the boundary between when the phase transition is treated using Gibbs’ conditions.

A. Large scale features
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05 0
- Gibbs
2 SRR . Maxwell
=
0.1 14 - U=-100 MeV
2 ] ~ e
% ] /Y' ~ .\ E
V4
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3 -~ / we 3 3
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FIG. 12. The composition of the maximum mass neutron star
with a mass ofM=1.555Mg . Note that while protons are the FIG. 14. The mass-radius relation for kaon condensed neutron
dominant species at the center of the star, overall, they are a minostars using a Maxwell constructigdashed lingor Gibbs condition
ity population. (solid line). Note different terminations fod = —130.

We notice two distinct behaviors of the Maxwell com- sharp functions ofUy(po). For the preferred value of
pared to the Gibbs curves of Flg 14. The IImItlng massl UK(PO): —120 MeV, radii are similar to neutron stars

radius are either nearly the same or the radius is quite dlfferwnhout the condensate. There appears to be a Sharp break in
ent. Note the solid curve fdd = — 130 for which the radius behavior ofM vs R for UK(pO)< — 120 MeV. However the

of the limiting mass star is-13 km for the Maxwell con-  pehavior is actually continuous but depends sensitively on
struction and 9 km for GlbbS In faCt, SlnCQ a star S'ample%K(pO): a pure quark core deve|0ps with decreasing values
matter at all densities below its central density, and since thgf the optical potential below —120 MeV and this causes

Maxwell prescription is incorrect at densities even lowerihe change of the radius froR~12.5 km toR~8 km for
than the first onset of the new phase as estimated by Maij(pO): —140 MeV.

well, the Maxwell prescription, when it approximately agrees
with Gibbs, does so only accidentallgee Figs. 2 and)3
The mass-radius relation for several sequences is shown
in Fig. 14. Comparison is made in each case with the corre- Neutron star matter in the normal phase is necessarily
sponding Maxwell construction for the phase transition. It ishighly isospin asymmetric since charge neutrality is imposed
clear that the radius especially and the limiting mass ar&y the weakness of the gravitational field compared to the
Coulomb force. However, since kaons are bosons, they can
2 all occupy the zero momentum state. Consequently, when
l the two phases, normal and kaon condensed are in phase
equilibrium, the normal phase can come closer to isospin
120 MeV ——fa==s symmetry as can be seen in Fig. 7. This is achieved by
charge exchange as driven by the isospin restoring force aris-
ing in part from the Fermi energies and in part from the
coupling of thep meson to the nucleon isospin. Naturally,
the possibility of achieving symmetry varies as the propor-
tion of the kaon phase. Regions of normal matter will be
positively charged while regions of the kaon condensed
phase will be negatively charged. Charge neutrality is glo-
bally achieved in this way, but not locally. As was discussed
in Ref.[2], regions of like charge will tend to be broken up
| K = 240 MeV into small regions while the surface interface energy will
o —rrr — resist. The competition is resolved by formation of a Cou-
50 100 1000 4000 lomb lattice much as nuclei embedded in an electron gas.
s (Mev/fm3) The difference here is that it is two phases of nuclear matter
c that are involved. The rarer phase will occupy lattice sites
FIG. 13. The mass sequence for kaon condensed neutron stsggnbedded in the dominant phase. As the proportion of
treated by the Maxwell constructioilashed ling or so as to re- phases changes, the total energy consisting of volume, sur-
spect the continuity of both chemical potenti¢slid line). face and Coulomb energies will be minimized by a sequence

B. Geometrical structure in the mixed phase

U= -100 MeV —=

-130 MeV

© 1.

s 140 MeV
S~

b

0.5

o)
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FIG. 15. Charge densities in the normal and kaon condensed FIG. 17. Charge densities in the normal and kaon condensed
phase as a function of the volume fraction of the latter. fractions of the mixed phase in the limiting mass star of the case
U(pg)=—120 MeV. Volume fraction of kaon phase is also plot-
ted.

of geometrical forms at the lattice sites, which we idealize as

drops, rods and slabs, just as for nuclear matter embedded in
ric phase to another does not dependcanThe reason for
a background of free electrons and neutrpf.

Relevant details of the structure calculation can be l‘ounglhIS is that the sum of Coulomb and surface energy densities

. L ' is small compared to the bulk energy dendity. Fig. 16.
in Refs.[11,17. In the present situation, the physical quan- . . .
tities that determine the geometrical structure are shown ir@ The threshold density of the mixed phase and the density

Figs. 15 and 16. O couse a calulton o e oeomenl 1) | #0101 Ssibed by s uceranyn
structure, which results from a competition between Cou- g

lomb and surface energies, requires a knowledge of the su?—t the end pointfFig. 16; see Eq(2) in Ref. [11]]. (4) The

face tension at the interface between the phases. This isstructured phase lies lower in energy than the unstructured

not known although a calculation is in progrdd®]. What (see near the .end of Introductiop of .REIB]') For_the abqve
we do know is that(1) the sizes, spacings and the sum of '€asons the dimensions shown in Fig. 18 provide a guide but

Coulomb and surface energies scalevdS. (2) To first ap- the locations of phases should be quite accurate.

o . i The charge densities carried by the two phases and the
proximation, the locations of the transition from one geomet- ? : R
volume fraction of the kaon phase is shown in Fig. 17 as a

2000 40
10004 M/M,=1.555
I a0-
o5 —_
i 2 & =
é 100E ----- N K = E
~ 1 e wn
> o (x 1/fm) - 201 -
[0 C
= 10 2 | \
= e A
] €c+s 104 — ™ ®
— 2 2~ gy &
] o o] o] @]
| = < 2 )
0 %] fost ©
1 T T T T < v 4 4
0 02 04 06 08 1 0 . | | T
X

FIG. 16. Bulk energy densities of normal and kaon phases as a
function of the volume fraction of the kaon phase, the surface ten- FIG. 18. DiameteiD of objects(drops, rods, slabf the rarer
sion o which is assumed to be proportional to their difference, andphase immersed in the dominant phase, located at lattice sites
the sum of Coulomb and surface energy density. spaceds apart.
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FIG. 19. Radial boundaries between phases are shown for a F|G. 20. Nucleon effective mass in the normal and kaon con-
range of stellar masses. densed phase as a function of radial location in the limiting mass
star.

function of radial coordinate in the star. Outside of 5 km,

matter is in the pure nuclear phase and it is chargeless, thgide variety in glitch phenomena observed in different pul-
proton population being balanced by electrons. In the idealsars.

ized geometry of shapes, the kaon phase will first form at the

threshold density of condensation as spheres spaced far V. SUMMARY

apart. As the fraction of kaon phase increases, the spacing . _ o
will decrease and eventually the spheres will merge to form e have discussed the properties of kaon condensation in
rods and then slabs. As the volume fraction of the kaod!€Ulron star matter when it is of first order. As is general for
phase comes to dominate, slabs of normal phase wil pany phase transition in a substance having more than a single

present in a background of kaon phase, and the role of thg2"Served charge, the mixed phase does occupy a finite ex-
' tent in the star, and in that region is quite rich in phenomena.

two pha§es is interchanged. The d|§met_er and spacing of t}?ﬁrst, a Coulomb lattice of rare phase immersed in the domi-
geome‘f'c‘?". forms of the crystal Iatt_lce is shown in F'.g' 18 ant one will form, having various geometries at the lattice
for the .I|m|t|ng mass star. The Iopathn of the boundarles'ositesl according to the pressure. This feature is common to
the various phases can be seen in Fig. 19 for stars of varioyg,cjear systems having a mixed phaselependent of the
mass. _ __phase transitionso long as the temperature is low on the
These are rather remarkable properties of the mixeghyclear scale. Second, nucleons have different mass depend-
phase, which in the model star, occupies the inner 5 km. It isng on whether they are in the objects at the lattice sites, or in
filled with geometrical forms of varying shapes and spacingsthe background medium. Third, the objects at the lattice sites
according to depth in the star. The charge density within théave opposite charge compared to the background. Thus the
geometrical objects and the background phase is opposite mixed phase region, which we calculate to occupy a region
sign and varying in magnitude with depth. Finally the effec-of a few kilometers in extent, is highly heterogeneous. We
tive mass of the nucleons is radically different in the twobelieve this will be an important factor in determining the
phases as can be seen in Fig. 20. All of these features muksansport properties of this region. Moreover, the solid re-
have their effect on transport properties and possibly omion, if present, is likely to play a role in the pulsar glitch
Glitch phenomena. Glitches are thought to correspond t@henomenon and its extent in the core, being very sensitive
changes induced in the moment of inertia of the star as # stellar mass, may account for the variety of glitch phe-
massive number of superfluid vortex lines undergo shifts iftomena observed in different pulsars. Insofar, we have not
the location of the sites in the solid regions to which they ardncluded the hyperon degrees of freedom and effects from
pinned[43]. The relocation occurs unpredictably as the in_the_deconflnement phase transition. More elaborate work re-
stantaneous location of the vortices carrying the angular mgh@ins to be done.
mentum come out of equilibrium with decreasing spin of the
star and create stresses that are relieved by the massive un-
pinnings. The thin crust is a location at which the vortex J.S.-B. acknowledges support by the Alexander von
lines can be pinned. But in the present model, the vortexumboldt-Stiftung. This work was supported by the Direc-
lines do not thread through the entire star, pinned at each endr, Office of Energy Research, Office of High Energy and
on the crust, but are pinned at one end on the interior crysNuclear Physics, Division of Nuclear Physics, of the U.S.
talline mixed phase. The extent of this region varies sensibepartment of Energy under Contract No. DE-ACO03-
tively as the mass of the star, perhaps accounting for th@6SF00098.
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