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Covariant confinement model for the study of the properties of light mesons
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We continue our studies of a relativistic quark model that includes a covariant model of confingmére.
absence of the confinement model, our model reduces to tk@®-8avor version of the Nambu—-Jona-Lasinio
(NJL) model] In previous works we have studied the radial excitations of the pigm,’ mixing, and w-¢
mixing. Here we extend our work to study tiemesons of the pseudoscalar, vector, and scalar nonets. In
addition, we provide some preliminary analysis of f®, and *P; axial-vector nonets and develop a formal-
ism that enables us to consid&®,-P; mixing of the strange axial-vector mesons. That is accomplished by
adding interactions to the NJL Lagrangian that contain gradients of the quark field. Once the parameters of the
model are fixed by fitting the energies of th€782), (1420, K(495), and¢(1020, we find the model has
significant predictive power. For example, the masses oKthg92), K¢ (1430), anda,(1260) are predicted
correctly. For the pseudoscalar nonet we find nineteen states below 2 GeV and for the vector nonet we have
eleven states with mass less than 2 GeV. On the whole, the pattern of radial excitations of the various mesons
is reproduced in our modelS0556-281®9)01108-5

PACS numbes): 12.39.Ki, 14.40-n, 14.65.Bt

I. INTRODUCTION n' — vy with satisfactory results. In the present study we
extend our analysis to the strange mesons, which requires
In a number of recent workisl—5] we have been devel- that we consider quarks and antiquarks of different constitu-
oping a relativistic quark model that includes a covariantent mass.
model of confinement. The Lagrangian of the model is Our work is organized as follows. In Sec. Il we comment
on our treatment of confinement. In Sec. 1l we discuss the
. 0 Gg 8 o = i pseudoscalar nonet. In Sec. IV, we provide a short discussion
L=0q(id—m")g+ Tizo [(a\'a)“+(qiysh'a)7] concerning the choice of parameters made for this work. In
- Sec. V we discuss the vector nonet of states, using ideal
Gy 8 o - _ mixing for the ¢ and w mesons. In Sec. VI, we consider the
- TE [@y*N' o)+ @y ysh'a)* ]+ Leonss scalar nonet of states and in Sec. VIl we describe ¥Re
=0 and *P; nonets of axial-vector mesons afB;-'P; mixing,
(1.2 as that mixing appears in the NJL model. Since the standard
NJL interaction hardly affectdP; states, in Sec. VIII we
where Lo, denotes our model of confinement. In B#.1)  consider an extended NJL model, with an additional chirally-
m° is the current quark mass matrisg®=diag?’,mg,md),  symmetric interaction that acts P, states. Finally, Sec. IX
the \; (i=1,...,8) are theGell-Mann matrices, andy  contains some further discussion and conclusions.
=/2/3l, with | being the unit matrix in flavor space. In some
calculations we have supplemented the Lagrangian of Eg.
(1.2) with the 't Hooft interactior[6]. We remark that in the
absence of our model of confinement, our Lagrangian is that For Euc"dean-space calculations we may write
of the Nambu—Jona-LasinidNJL) model[6].
In Ref. [1], we studiedw-¢ and -’ mixing and the
radial excitations of these mesons. Referefflewas con- Econf(x):f d4yﬁ(x)y“q(x)VC(x—y)E(y)qu(y),
cerned with the radial excitations of the pion and included a
detailed treatment ofr-a; mixing. Application was made to 2.
the decay of ther(1300 to the 7+ o and 7w+ p channels.
Referencd 3] concerned the form of th& matrices of our Where, in momentum-spac¥,® describes four-momentum
model. With the confinement model in place, it was showntransfer. However, for the Minkowski-space calculations re-
that theT matrix is represented only in terms of bound statesported here, we find it useful to neglect energy transfer by
as might be expected. That work also contains a rather déhe confining field in the meson rest frame. For example, if
tailed discussion of meson-quark vertex functions of the conwe start with VE(r)=«r exd—ur] and form the Fourier
fining model in the presence of singlet-octet andtransform, we have
pseudoscalar—axial-vector mixing. In Refd] and [5] we
calculated the rates for the decay8— yy, »— vy, and 1

VE(k—K')=—8m«k

Il. MODEL OF CONFINEMENT

4,LL2

[(R—R)24 PP [(R—R)2+ u?]?
(2.
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TABLE |. Psuedoscalar mesons. The pion states designated as
n 1S, have little pseudoscalar—axial-vector mixifig]. Here Gg
=12.46 GeV? for states other than the(138). Also, k=0 for the 20 F
m(138, and x=0.0575GeV for all other states. We usg - coe
~0.01 GeV andA;=0.622 GeV. SEUUUR | LTI 2eeeD
L == b= &=DD
Mass(Expt.) Mass(Theory Spectroscopic L ;..ID
Meson [MeV] [MeV] character 15 |:] 1t
7°:134.97°64-0.0006 L T == - =
m(138 . 138 11s, S | —
7~:139.56995 0.00035 >
1202 mixed 0] i
(1300 1300+ 100 1400 21, =
1539 mixed ©1.0 b v
1746 3's, = i e
7(1800 1795+ 10° 1805 mixed 5 —
K=:493.6770.016 1 i
K(495) K:497.672-0.031 495 15 i —
K (1460 1400-1460 1557 3s, 051 —
K(1830Y ~1830 1879 3's, i
aNeeds confirmation. =
bSee Ref[2] for a detailed study of this state. s
Here u is a small parameter used to soften the infrared sin- T K 1 W (D K*
gularities ofVC. If u is small enough, the potential approxi-
mates a linear potential with “string tensionk over the Pseudoscalar Vector
range ofr relevant to our problem. The potential of Eg.2) Mesons Mesons

may be put in a covariant forfi2], if we use the four-vectors
Tu Cru FIG. 1. Mass values for the mesons of the pseudoscalar and
k# andk’#, where . .

vector nonets are shown. The horizontal lines, rectangular boxes,

(k-P)P* and crosshatched regions show experimental values taken from Ref.

k#(P)=k*~ p2 (2.33 [8]. The dotted lines represent the mass values calculated in this
work. A smallD is placed near those states that are calculatddl as
and states or are so assigned in Table 12.2 of R&f.
oy L (k"-P)P#
K'H(P)=k"*— p2 ' (2.3 [2], we only comment upon the results here. In the confining
field, considered in isolation, we find a series of doublets.
since, wherP=0, we havek“=[0k] andk’#=[0K']. One state of each doublet corresponds to the pseudoscalar

The calculation of confining vertex functions using Eq. vertexiy° and the other corresponds to the axial-vector ver-
(2.2), and the calculation of vacuum polarization integralstex y°°, whenP=0. When we include the NJL interaction,
that incorporate such vertex functions, is described in detaibne member of each doublet moves down in energy. The
in Refs.[1-5] and we do not repeat that material here. Wemember of each doublet that moves down in energy to the
note that the equations for the vertex functions do not requirgreatest degree shows little mixing and can be identified as
a cutoff. In our calculation of the vertex functions we haveeither thew(1S), the w(2S), or the w(3S) state. The other
used momentum variables witk,,=2-4GeV and are, three states exhibit significant mixingThe details of our
therefore, able to describe states with many nodes. The regualculation for the pion and its radial excitations are given in
lator for the(divergeni vacuum polarization integrals) s, Ref. [2].) For the results of the calculations made in this
is such thatlk|<A;. Here we have used;=0.622Gev. WOrk, see Table I and Fig. 1. . _

For that value, the vacuum polarization integrals have the N Ref.[1] we studiedzn-7’ mixing and the radial exci-
correct spectral representation upRt®=4 Ge\2. If we wish  tations of that system of states. In that case, we included both
to calculate at larger values &2, we need to increas&s. singlet-octet and pseudoscallar—amal-yector_ mixing, leading
Our results are stable when such an increase is made, hol the study of quarkT matrices of dimension four. The
ever, the coupling constants of the model have to be readdeneral form of the equation for thematrix is
justed to produce the same spectrum of states.
(1-GIHT=-G. (3.9
Ill. THE PSEUDOSCALAR NONET

Since we have studied the radial excitations of the pionThe form of the matrice§ andJ may be found in the Ap-
including pseudoscalar—axial-vector mixing, in some detaipendix of Ref[7]. [Note, however, that the sign of our func-
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2000 - states andss- 6 for the strength in the singlet states. In this
work we used=2.0 GeV ?, rather than the value of 4.0
GeV 2used in Ref[1]. (Details of these calculations may be
found in that referencg.

We now turn to a study of th& meson. In this case, we
have not included pseudoscalar—axial-vector mixing, so that
q q we only have to generalize our calculations of the vertex

functions and polarization functionEg(P,k) andJPP(P?),

1000 to the case of different mass values for the up, down, and
strange quarkgHere, we takem,=mgy.) To carry out this
program, we define

1000 +

T(PY) (GeV?)

-2000 A L 1 L 1 1 L )
0.0 05 10 15 2.0 25 3.0 3.5 4.0

k,+m
P? (GeV?) (+)py_ a"a
AL (0= 5 (3.2
FIG. 2. The eigenvalue of the largest magnitude forThmeatrix
calculated in our study of thg-»’ system. We find states with the and
energies 0.551, 1.039, 1.204, 1.406, 1.530, 1.543, 1.726, 1.749, .
1.813, and 1.819 GeV, when the parameters of Table Il are used. -y k,+m,
Ay (_k)zz—mb’ (3.9

tions JPA(P?) and J*A(P?) is the opposite of that used in o N o R
Ref. [7].] The T matrix of Eq.(3.1) has singularities at the with k§=[E,(k),k] and kf=[—Ey(k),k]. Here E,(k)
energies of the bound states of the quark and antiquark. |H:[|22+ mg]llzl etc. The vertex function for pseudosca|ar me-
Fig. 2 we show the eigenvalue of the matrix with the  sons is given by the equation

largest magnitude that is found at each valuePdf (The

calculations reported here differ from those of Réf, since = .
we now usem,="565MeV, rather than the value 480 MeV  !'sab(P.K)= s~ 'f
used in that work. We have also usgd=0.01 GeV rather

than the value.=0.02 GeV used previouslyln Fig. 2 we X Sp(— P2+ k') y,]VE(k—K"), (3.9
see ten states below 2.0 GeV. The mass values of these state
are shown in Fig. 1 as dotted lines. The calculated energievsy er ar’ ()0
are 0.551, 1.039, 1.204, 1.406, 1.530, 1.543, 1.726, 1.74%y multiplying Eq. (3.4) from the left by ysA;"’(k) and
1.803, and 1.819 in GeV units. We have us@s from the right by A{)(—k) and forming the trace. If we
=12.46 GeV for the strength of the interaction in the octet neglect coupling betweeRq ,, andT's ,p,, we find

4kr -
(27)4[7"551( P/2+K")['5a5(P.k")

eS,(P)=[P—m,+ie] !, etc. The analysis proceeds

. d3k’ B(k,K)T2 (P |k'|)VE(k—K")
PR =1 [ S B Ranl PO ACI) 9
(2m) PO—E, (k') —EL(k")
with
C 1 " " " " C L M M
B(k,k")= - - - —. {mamp[E4(K)Ep(K") + Ep(K)Ea(k’") +2k- K" —2E,(K")EL(K")
2E4(K")Ep(K")[Mamp+ E4(K)Ep(K) + k7]
— 2E4(K)Ep(K) — 2k?— 2k' 2]+ M2 E4(K)Ea(k") —K-K' ]+ M2 Ep(K)Ep(k' ) —k-K']
— 2[(Ea(K)Ep(K) +k?)(Ea(K" ) Ep(K") +k'?)]—2m2m3}. (3.6
Note thatl's, -pn(P,Kk) satisfies the equation
. d3k’ B(k,K)Tz., (P |k'|)VCE(k—K")
Fs?,;b(PO,IkI):Hf 3 ( sl = X a( - (3.7
(2m) PO+ EL (k') +EL(K")
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These equations are much simpler wheg=m,. In that
case, we have

ok ok’ | mP—2ER)E(K)
+ 0 =1-
Ty (PO[K])=1 f(zwﬁ E(K)E(K')
s~ (PO, K" )VE(R—K’
B JK']) 9( ) (3.9
PO—2E(K")
and
(e [ 2ERERY
+/p0 =
I's " (PO|K) 1+f(277)3[ E(KE(K')
Iy (PR VE-F
T (PR Ve ). (3.9

PO+ 2E(K')

We see from Eqs(3.8) and (3.9) that these are significant

relativistic kinematic corrections tVC(IZ— IZ’) that are rep-
resented by the terms in square brackets.
For m,#m,, we define the polarization function

. pp d*k _
—|Jab(P)=—2ncj WTr[lsa(Plerk)

XiT g ap( P, K)iSp( — P/2+K)i ys],
(3.10

where the factor of 2 arises from the flavor trace. We obtai

d3k [EL(K)Ep(K) + k24 m,my]
(2m)°  PO—E,(K)—Ey(K)

PP = —2ncf

rd- (PO |k
% 5,ab£ | —)|) 7 (3.1])
Ea(k)Ep(k)

if we neglect the contribution from th& g ,(P,k) term.
Note, however, that for the study of th&€138), we use the
form [2]

d3k
(2m)*

1 1

PO_2E(K) P%+2E(K)|
(3.12

since we have neglected confinement in that case.

JPP(PZ):—4nJ

PHYSICAL REVIEW C60 025202

TABLE II. Parameters used in this work—see Sec. IV. The first
three of these parameters are not varied when fitting data. The pa-
rametersGy and Gy, are used in the study ofP;-P; mixing of
strange axial-vector mesonsSee Eq.(8.1).] The parameteis is
used in the study of- ' mixing.

n=0.010 GeV

A3=0.622 GeV
m,=0.364 GeV
ms=0.565 GeV
«k=0.055 GeV
Gy=12.46 GeV?
Gs=12.46 GeV?
5=2.0GeV?

Gc=78.13GeV? Gya=8.00GeV?

However, we do see that after fitting the mass ofKl{d95),
we obtain the 2S, and 3'S, states in the vicinity of the
K(1460) andK(1830) states.

IV. CHOICE OF PARAMETERS

In this section, we indicate how we have chosen the pa-
rameters for our calculation. There are ten parameters, but
we only search for the best values of seven of the<gs,

Gy, Kk Gk, Gka, 6 and mg. We fix my=my
=0.364 GeV, A;=0.622 GeV, andu=0.010 GeV. (The
value of 0.364 GeV for the mass of the up and down quarks
was used in the extensive study reported in Réf.and we
adopt that value hereldeally, we should solve the Bethe-
rWSaIpeter equation in conjunction with the Schwinger-Dyson
equation to obtain the quark self-energy. We have carried out
that program in one of our papers using a Euclidean momen-
tum space[9]. Since we perform our calculations in
Minkowski space, that program is extremely difficult to
implement. Therefore, we adopt a more phenomenological
approach in our Minkowski-space calculations and use con-
stant values for the constituent quark masses. We note that
solutions in Euclidean space of the coupled Schwinger-
Dyson and Bethe-Salpeter equations have been made using
the global color mode[10]. The constituent quark masses
found in that model are rather similar to the ones used here,
m,=my=0.364 GeV andn,=0.565 GeV.

We obtainGg, Gy, x, andmg by the following proce-
dure. We use the energies of thé1S) and w(2S) states to
fix Gy=12.46 GeV 2 and x=0.055 Ge\?. We then use the
mass of the(1020 to fix mg at 0.565 GeV. Finally, we fix
Gs at 12.46 GeV? by fitting the mass of th& (495). The

For the kaon and its radially-excited states, the mass vaParameterssx and Gy, are determined in our study of the

ues may be obtained from the solution of the equation
Gs'—Jus (P)=0, (3.13

where nowm,=m, andmy=mg. The results of our calcu-

K, andb; mesons and their specification will be described at
a later point in our discussiofiThe various parameters used
in this work are listed in Table Il for ease of reference.

V. THE VECTOR NONET OF MESONS

lations for theK meson are given in Table I, where we also
provide mass values for the pion and its radial excitations. The treatment of the vector nonet of mesons is simpler

We note that the mass of tikg1460) andK (1830) are quite
uncertain and these states need further confirmaft&in

than that of the pseudoscalar nonet, since we may use ideal
mixing for the w and ¢ mesons. As noted earlier, theand
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TABLE lll. Vector mesons. HereG,=12.46 GeV?2 m,
=0.364 GeV,m;=0.565 GeV,A;=0.622 GeV, u=0.01 GeV, 08
and x=0.055 Ge\.

04

Mass (Expt.) Mass(Theory  Spectroscopic <
Meson [MeV] [MeV] character S ooF
(7822 781+0.12 782 133, °é:
(14202 1419+31 1449 233, = 04p
(1600 1649+24 1591 13D,
1766 33%s, o8|
1828 2°D,
0.0 0.5 1.0 15 20 25 3.0 3.5 4.0
$(10202 1019.413-0.008 1015 B, , )
#(1680 1680+20 1749 233, P (GeV)
K*(892) 891.5&0.24 870 1°s, FIG. 3. The functionl,,(P?) is shown. The horizontal line rep-
K*(1410) 1412-12 1590 2%s, resentsG, *=(12.46 GeV'?) 1. The intersections of that line and
K* (1680) 1714-20 1732 1°D, the curve representingy,(P?) provide the solutions of the equation
1893 33s, Gyt-J,(P?=0.

aThese states are used to fix three parameters of the mo@egl; ther, the D state is found just above theS3tate, etc. Be-
ms, and .. cause of the short range of the NJL interaction, fii,
states are hardly affected by that interaction.

The treatment of thep meson is similar. We define
JEY(P) in analogy toJ/{”(P) of Eq. (5.2) and then define

¢ mesons were discussed in Rf]. We have repeated those
calculations with the parameters used in this wok;
=12.46 GeV?, k=0.055 GeV, and »=0.010 GeV. The
results are given in Table IIl and included in Fig. 1. We see

v _ _=uv V/ p2
that the £D, state of thew found in this work coincides in Js"(P)=—9*"(P)Js(P) (5.9
energy with the state designated33, in Table 12.2 of Ref.
[8]. and J ,(P?)=2J¥(P?). Figure 4 shows the solution of the
We define a vector vertexia the equation equation
d* Gyl—J,(P?)=0. (5.6)

F"(P,k)=3/“—ij (2:)4[798(P/2+ k)TH(P,k)

X S(—P/2+k") y,VE(k—k')], (5.1 "

where 3“= y#— P“P/P2, The solution of this equation is e now need to generalize the results given in REfto

described in Ref{1]. We now define the tensor

y again considek,, of Eq. (2.3 and recall the definition of*,

—iJf;V(P)z(—l)ncf %Tr[iSU(P/ZnL k) S i pupIP2. 57
XTX(P,K)iS,(— P/2+Kk) %], 52 We also define

for the up quark and put

34" (P)==3""(P)J|(P?), (5.3 "t

with gt'=g*"—P#P"/P2. We then define J,(P?) 0af
= ZJL’(PZ). The mass of the and the masses of its radially-
excited states are obtained by solving the equation

J(FY) (GeV?)

Gy1-J,(P»)=0. (5.4) ol
The solution of this equation is exhibited in Fig. 3, where the 08
horizontal line representG,'=(12.46 GeV?) ' The el
mass values obtained from E¢.4) are exhibited in Table e Tos 1o 15 20 25 30 35 o
[ll. It may be seen in Fig. 3 that theS’state in the confining ) P? (GeV?)

field is accompanied by thell state.(The splitting of these
states is quite small, indicating that a very small tensor force FIG. 4. The functionJ ,(P?) is shown. The horizontal line rep-
is generated by our Lorentz-vector confinement modklir- resentsG, '=(12.46 GeV?) 1. (See caption to Fig. 3.
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The mass values obtained in this manner are given in Table

treat the case of differing quark and antiquark masses. We
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G _ —K(my+my)
Y= — (5.8 yi (PR)=—F——"Ti3(Pk (511
k2 2mamb
. A - and
We see thak-P=1y, ., -P=k-vy, (=0. The sek”, !, and
P# is useful in setting up the equations for the vertex func- y;‘(P,k)=F§;b(P,k). (5.12
tions.
We now generalize E¢5.1) to read A rather lengthy calculation yields coupled equations for
yi~ and y4 . For a=1,2 we have, withk=|k| and k’
Thy(Pk)=7 —'f<z alyS(PkOTE(PK) =1
X Sy(— P12+ K')y,]VE(k—K' (5.9 “T(PK)=C,+ > | dK taar (KK 7, (PK)
> V. ' Yo (PIOZCT 2, PO~ Eo(K') ~Ey(K) -
where we have introduced the possibility tihat is unequal (5.13
to m,. We also define functionB;,,(P,k) andl';,,(P.K)  Here
in the frame wher®=0,
K2(my+m;)2
A RTE(PKAL(—K) Ci= a2 (5.14
. . . 2m,my[ E(K)Ep(k) +k?—mamy]
=T (P RKAL (AL (—K) nd
+T 5 ap(PRASY () vt AGH(=K). C,=1. (5.19
(5.10 ) ., .
Now we use the notatiol,=E,(k), E;=E,(k’), etc., to
We introduce two additional functions write
Kk’ " W 2 012
ti(k, k)= - ai(k,k")| (ELEL+K'2)(E.Ep+k?) —m,my| ELE,+ELE] +K?+Kk'2—m,m,
E.Ei[E.Ep+k2—mamy]

+a,(k,k" YKk’

lEE’ 1E’E
2 a=b 2 a

1 2 ’ 1 2 ’
b |~ 5 MaEnEh— 2 MEELE, , (5.16

1 2 1 2
mymy, -+ Ema—i- Emb

k2k’2  [ELE[+K'2+mam,]
ti(k, K )= - - [ag(k.k') —ay(k,k')], (5.17)
AmampELEp [ELEL+K2—m,my]

12

k'“mymy
tou(k,K") = TEb[ao(k k") —ax(k,k")], (5.18
and
k2
to(K k") = = {ai(k,k)[E4Ep+EaEf+ BB+ EpEf]+[ag(kK")
4E.E[[E,Ep+k2+mmy]
+ay(k,k")[(EEp+K?) (ELEL+K'2)+ mumy(E,Ep+ ELEL + K2+ K2+ m,mp)]}. (5.19
|
In these equations We also introduce the tensor
’ 1 1 A . d4k . oy
ai(k,k")= @3 fﬁldx Ve(k—k')x',  (5.20 —iJE(P)= —2an WTr[lsa( P2+ Kk)T4(P,k)

with x=cosé. XiSp(—P2+k)¥"] (5.2)
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100 K* 0 K* +
o8| [K3] (K51
0.6 |-
04 L 0
< a
> 02f - 0 0
3 a, . ay fy
~ 00r f8
@ o2f 0
=7 o4l
- iex 10
06 [KB] [Ko]
0.8 |-
10 ) ) R | . , FIG. 6. States of the scalar nonet are shown.
’ 0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0
P* (GeV?) which further complicates the pictuyeTherefore, in the

FIG. 5. The functionl((P?) is shown. The vertical lines rep- pr*esent work, we will Concentra,fe on the prope_rties of the
resent the energies of the bound states in the confining field. Ther}éO _andao mes_f’r?s- To study thléo st{.:ltes_ we aga!n need to
is a 13D, slightly above the #S, state and a 2D, state just define the confining vertex and polarization functions for un-
above the FS, state. The horizontal line represen@,?  €dual masses of the quark and antiquark. We define

=(12.46 GeV?) L. The intersections of that line with the curve T'5,(P,k) to be the solution of the equation
representingl!(P?) yields the solutions of the equatioB,*

fJL’S P2)=0. (Note that theD states are hardly affected by the d%k’

NJL interaction. For example, the®D; state is found between the ng( Pk)=1—i f — [ y*Sa(P2+ k')Fg’b(p,k’)
two vertical lines neaP?=2.9 GeV? when the NJL interaction is (2m)

taken into account.The energies of th&* mesons found in this

— ’ Clil — I’
manner are given in Table Ill and shown in Fig. 1. X Sp(—Pi2+k )YP]V (k=k"). (6.2)
and put We also introducd’¢ ;, andT'g 1,
JEE(P)=—TG*(P)J3n(P?). (5.22 N L
: : ALRTS(P KA (—K)
We obtain R R
=T (PROA (KAL) (k) (6.2)
W p2 __chf d3k 2
an(P9)=—3 W{ (Mg +my) and
XT'1 ap(P,K)+2(mumy+ K2+ E,Ep) ) )
. AG (= RTS(PROALT(K)
*oa PRI EE TP E, £y 23 =T52(PRAL(—RIAL(K). 6.3

where the factor of 2 originates from the flavor trace.

We are now in a position to study th& mesons. In Fig.
5 we exhibit!(P?) and include a horizontal line represent-
ing G\71=(12.46 GeV?) 1 In this manner we find states r;,;b( P%,k)
with the energies 0.870, 1.590, 1.732, and 1.893 GeV, where

We obtain the equation

the third state is & state—see Table Ill and Fig. 1. With no —1_ 1 f k’2dk’fl dx Aukk’x) 1
new parameters, we find that the energy ofktg892) is fit (27)? “1 E (K)EL(K") B(K)
rather well, while our state at 1.590 GeV is too high to pro-
vide a good fit theK*(1410). On the other hand, if the i (POk)VE(K—K')
K*(1680) is indeed &D, state[8], we fit its energy quite x—2 - — (6.4
well. (See Table 12.2 of Ref8].) PO—E,(k’)—Ep(k’)
VI. THE SCALAR NONET with x=cosé,
The scalar nonet of states is depicted in Fig. 6. We have

studied the nonstrange isoscalar states, in the presence of . L

y 8 B(K)=[~Ea(KE,(K)—K2+mm,] (6.5

singlet-octet mixing, in Ref.11]. The situation is made com-
plex by the very strong coupling of the scalar-isoscalar states

to the wm andKK channels(It has also been suggested that
there is a 0" glueball state with energy about 1.5 GeV, and

025202-7
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Aq(k,K'x)= [Ea(IZ'>Eb<|2'>+E'Z][EauZ)Eb(EHEz]—mamb[EauZ)Eb(IZHEa<E'>Eb<IZ'>+|22+IZ'2—mamb

Further,

Igan(PO k) =1~
r

The result simplifies iimy,=m,, such that

(R T U 1,01,

— 5 Ba(KEp(K") = 5 Ea(K ) Ep(K) | =5 MaEp(K')Ep(K) = 5 MyEa(K) Ea(K') +K-K' | mamy+ S mz+ o ¢
(6.6)

1 1 Akk',x) 1 Tgi(PK)HVE(k—K')
ka'de'f dx 15 3 S —, 6.7)

21) —1 E.(k")EuK') B(k) P0+Ea(k’)+Eb(k’)

whereA, (k,k’,x) is obtained fromA;(k,k’,x) by the replacements, (k) — — E,(k) andEy(k)— — Ep(K).

Ask'2dk’ [(2k'2k?Vo(k,k'))+m?kk' V,(k,k")] TS (P,k") 68

r;—(P,k)=1+4wf EE

where

11 Lo
Vi(k,k')zzf dx P(x)VE(k—k"). (6.9
-1
Here P;(x) is a Legendre function. We do not include
F;;b(P,k) in our calculations, since the effect of including

this function is small.
As a next step, we define

d*k
—iJaSb(PZ)=(—2)nCJ WTlr[isa(F>/2+ k)

XTS(P,K)iSp(— P/2+Kk)]1, (6.10

K?E2(K') PO—2E(K')

include a line representings *=(12.46 GeV'?) L. The in-
tersection of that line with the line representing the function
Jﬁd(PZ) determines the energy of the statg$lS), ay(29),
anday(3S). These energies are given in Table IV.

In Fig. 8 we show the functiodfs(Pz) and a horizontal
line representingGst. We find K} states at 1.412 GeV,
1.738 GeV, and 1.999 GeV\(See Table I\V). There are two
states given in the data tabld8], the K§(1430) and
K&(1950). We find a 2P, state between these states, sug-
gesting that the<§ (1950) may be a 3P, state.[Note that
we fit the mass of th&§ (1430) without the introduction of
any additional parametets.

VIl. AXIAL-VECTOR NONETS

where the factor of 2 again arises from the flavor trace. We

obtain

d*k [EL(K)Ep(K)+k2—m,my]

5, (PP)=— 2an

(2m)? E.(K)Ey(K)
T'sap(P.K) I'san(P.k)
PO—E,(k)—Ep(k)  P°+E,(K)+Ep(k)
(6.11)
This result is quite simple, ifn,=m,
d®k k2
J¥(P?)= —4an R
(2m)° E2(k)
ré(Pk)y I's™(Pk
| Ls a)— s j. (6.12
PO—2E(k) P°+2E(k)

In Fig. 9 we exhibit the*P; and P, axial-vector nonets,
as described in the constituent quark model. When using the
NJL model in relativistic calculations, it is somewhat more

1.0 -
08|
06|
04|

02|

0.0

0.2

S oPY (GeV?)

04

-06

-0.8 |

-1.0 " L L L L L ) L )
15 2.0 25 3.0 3.5 4.0

P? (GeV?)

FIG. 7. The functionJ54(P?) is shown. The horizontal line
representsGg '=(12.46 GeV'9) 1. (See Table IV for masses of

We showJﬁ’d(Pz) for the equal mass case in Fig. 7 and thea, mesons.
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TABLE IV. Mass values of scalar mesons. See Table Il for a list
of parameters. No parameters are varied in these fits to the data.

Mass (Expt.) Mass(Theory Spectroscopic
Meson [MeV] [MeV] character

K& (1430) 1429+4+5 1416 1%P,

1738 23pP,
K&(1950f  1945+10+20 1999 3%P,
a,(980) 983.5-0.9 1063 1°P,
ag(14509 1450+50 1556 2%P,

1857 3%p,

aNeeds confirmation.

convenient to characterize the nonets by the NJL interaction

for that nonet. For example, we will use the NJL interaction

that gives rise to the verticeg*ys to calculate the properties shown.
of what is usually called théP; nonet. At a later point in the
discussion, we will introduce another interaction that we use

to perform dynamical calculations for what is thE; nonet

in the constituent quark model. Since, the verigkys acts
to a small degree in'P, states, we do not have an exact
separation into’P; and P, states. However, our procedure

is particularly convenient when we perform fully relativistic

calculations using the NJL model. This aspect of our calcu-
lations will become more apparent as we continue our pre-

sentation. Although the axial current is not conserved, we T, (P,k)=D,+ E dk’

FA(P.K)=

PHYSICAL REVIEW C 60 025202

K3 Ka
0
a
a, .; af f?
f1
K, K3
(@)
Kp Kb
bO
b; ! by hS
8
h1
=0
Kb Kb
(b)

FIG. 9. The P, and P, nonets of axial-vector mesons are

[1*Sa(PI2+ K )T4(P k')

i f d*k’
—i
Y Ys (2m)*

X Sy(—P/2+K')y,]VE(k—K"). (7.2

For «=1,2, we have

m,(k,k')r;;
Ea(k") —Ep(k’)

(P.k")

need not consider vertices that depend upénvhen work- =12
ing in the meson rest frame. Thus, we consider the vertex (7.3
associated with the matri¥*vys and defineI‘;I(P,k) and with
T'A5(P.k), such that
D= oM (7.4
ALPRTR o PRIAL (= K) " LB+ K2 mymy '
=T Lab(PROK“ALT (K) ysA LT (—K) and
+T A 2an(PROAL () 72 ysA L (= K). (7.0) D,=1. (7.5

Here we have puE,=E,(Kk), E.= EZ;(IZ), etc. We have

We note thafﬁ(P,k) satisfies the equation

1.0 -
08|
06|
04|

0.2

0.0 -
0.2 |-

04

L (P?) (GeV?)

06

1.0 1 L 1 L L

0.0 0.5 1.0 15 2.0 25
P? (GeVd)

3.0

3.5

4.0

t1a(k,k")=

FIG. 8. The functionJSs(Pz) is shown. The horizontal line rep-

resentsGg '=
K§ mesons.

(12.46 GeV'?) 1. (See Table IV for masses of the

025202-9
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KE.E[[EaEp+k2+mum,]
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1 ' 1 ’ 1 2 ’ 1 2 ’
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- IZ’ 2( my— mb) [Ez;Ek’)+ EIZ_ mamb]

tio(k,K') = — -
2E4Ey [E,Ep+ K2+ mym,]
X[ag(k,k")—ay(k,k")], (7.7
KK')= K'*(m,—m,) KK’ K.k, (7.8
t21( I )_T‘;Eé[aﬂ( ] ) a‘2( l )]! ( )
and
EIZ
too(k,k")= {aa(k,k")

AELE{[E,Ep+k?—m,my]

X[ELEp+E.Ef + ELEL+ EpEL]+[ag(k, k')

+a5(k,k")J[(EaEp+K?) (EZEL+K'2)

—mumy(E,Ep+ ELE] + K2+ K'2—m,mp)]}.
(7.9

Note that whemtm,=m,, the inhomogeneous terid,=0.
That feature has its origin in the fact that we can write

£ u
A’}’M’)’ — M +H

5= YL kYsT 75
k2

(7.10

and note thaft(k,s')kv(—k,—s)=0 in the equal-mass
case. The remaining matrix;' , ys governs the interaction
in 3P, states.

We will also need to define

— iR P2)=(—2)ncf ik4
' (2m)
X TiSa(P/2+K)T4 4p(P.K)
XiSy(—P2+K) " ys]. (7.11)
We write
Inn(P)=—T*"(P)I5u(P?), (7.12
with §#*(P)=g*"— P*P"/P?, and find that

—2n. [ d3k

A —
Jab( PZ)_ 3 (277.)3

{—K2(my—mp)T 2 1 ap(P.K)

+2(—mumy+ K2+ E.Ep) T A 5a0(P.K)}

1
X .
EaEb[ PO_ Ea_ Eb]

(7.13

Using this formalism, we obtained the vaIuesJ@g(Pz)

given in Fig. 10. We interpret the figure as follows. The paira,(1260)

of vertical lines at about 2.5 Gé\and 3.4 GeVY represent
the energies of the 3P, and 11P; states and the 3P, and

2 1P, states, respectively, in the absence of the NJL interac

PHYSICAL REVIEW C60 025202

P L(PY (GeV?)

1.0 1 TP P T N I
0.0 0.5 1.0 15 20 25 3.0 35 4.0

P? (GeV?)

FIG. 10. The function)!;(P?) is shown. The first pair of verti-
cal lines at about 2.5 Géndicate the energies of the3P,; and
1 P, states in the confining field with the ®P; state having a
lower energy. The second pair of vertical lines show the positions
of the 23P; and 2P, states in the confining field. The horizontal
line representG,*=(12.46 GeV?) ' Note that only the’P;
states move down in energy to any significant degree, when the NJL
interaction is taken into account.

tion. It is then found that the $P; moves down to 1.41 GeV
and the 2°P; state moves down to 1.75 GeV when the NJL
interaction is considered. On the other hand, thP] and
2 1p, states move hardly at all from their original position.
(One may say that the twtP, states are “trapped” between
the pairs of vertical line$.This behavior follows from the
structure of the NJL model, since there is no interaction term
that acts on théP, states, except for the second term in Eq.
(7.10, which yields quite small effects. Since it is known
that there is significantP; and *P; mixing for the strange
axial-vector meson§l2], we need to modify the NJL La-
grangian to deal with this problem. We take up that matter in
Sec. VIII.

For the equal mass case, thB; and P, states are un-
coupled. Therefore, we can use the equationIfQE(P,k)
and the values aJ*(P?) for the equal mass case, to find the
energies of the,; meson and its radially-excited states. We
find a state at 1239 MeV which can be identified as the
a,(1260. (That state is assigned an energy of 1230
+40MeV in the data tableE8].) The radial excitations of
thea,, 2 P, and 33P; states, are at 1600 and 1895 MeV,
respectively(See Fig. 1 and Table YNote that this analysis
is quite consistent with the fact that tiwg(1235, which is
assigned an energy of 12310 MeV in the data tableg8],
is essentially degenerate with the(1260. [Recall that the
a,(1260 has an energy of 123040 MeV in the data tables

TABLE V. Mass values of the; mesons.

Mass(Expt. Mass(Theory) Spectroscopic
Meson [MeV] [MeV] character
123@ 40 1220 13P,
1600 2%p,
1895 3%p,

025202-10
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and 1239 MeV in our calculationsThis aforementioned de- with E;=1 andE,=0. This equation is the same as that
generacy appears in the NJL model, since there is ngiven previously forl, ~ except thaiD, is replaced byE,
P;-"Py mixing for my=my, which is the case for the angp, is replaced byE,. Note that, since the homogeneous

3 <
Py a; mesons and théP; b, mesons. equations fol'4 andI'4 are the same, these functions will
have singularities at the same energies. These energies rep-

VIIl. AN EXTENDED NJL MODEL FOR THE STUDY resent the energies of the bound states in the confining field
OF 3P,-1P; MIXING CIL_
set up byV=(k—k').
The NJL model has only a very weak interaction®iR, We now define four polarization functions. First, we in-

states, as may be seen in Fig. 10. Whatever interaction existoduce
arises from the small coupling of thkP, states to the’P; &K
states that appears in the coupled equationd"ﬁ;iab and —iJff(Pz)ab:(—z)ncf —
T A 2ap given in the last sectior{We recall that the coupling (2)
term andD, vanish whemrm,=m,,.) . =
Since it is believed that théP; and 1P, states are mixed XTS(P/21 k)T ap(P.K)
with a mixing angle of about 45° in the case of the strange XiSy(— P2+ K)k"ys], (8.5
axial-vector mesongl2], we wish to extend the NJL model
to treat such coupling. The natural choice for such a generand put
alization is an interaction Lagrangian that preserves the chi-
ral symmetry of the original Lagrangian: I (P)ap=—T*"(P)JPy(P?). (8.9

Gk & o We find thatJ},(P?) does not depend updig 5y,
Lin= g2 24 [N, Q) (15,00 a)

. . JA ( PZ) f d3k k2
—(qQ\'ysia —ig, On' . 8.1 n(FH)==—7-n - -
(OA"ys519,Q)(—10,9N vs0)] (8.1) 3 %) 2m? E(RELR)

Such an interaction actually appears in a natural fashion, if . _
we consider a gradient expansion of the effective quark in- X[Ea(k)Eb(k)+k +Mmam; ] TE7.(P.K)
teraction.(One can envision a series of terms which have pPO_E (R)—E (IZ) B,Labit
varying numbers of gradienjdn Eq. (8.1 we have inserted a b
a factor of 1M? so thatG, has the same dimension &s; 8.7)

and G,,. For our convenience, we takd=1.0 GeV, al-

though any other value will do. We also define

It is now natural to consider an additional vertex equation d%k
with an inhomogeneous terRt'ys. Thus, we define —iJ’l’“z”(Pz)ab=(—2)ncf 2n°
— N d*k’ . —
T8 ap( Pk =kAys i f a7 SaPI2HK) X THISo(PI2+ 10T a6(P k)
B XiSp(—PI2+Kk) ¥ vs]. (8.9
XTE p(P,K' —P2+k’
8,ab(P.K")Sp( )%,] With
X VCE(k—k") (8.2 .
I3 (P)ap=—T*"(P)IAP?), 8.9
and also write
we obtain

AT (P AL (= K) _ 3
A p2 2N d’k 2 +-
J1(P9)= 3 W{_k (Ma—mp)I'g 1 4p(P,K)

=T'g 1ap(P.RKFAL(K) ysA L (—K)
+T8 5an(PROAL(K) v cysAL ) (—K). (8.3 +2(—mamy+ K2+ E.Ep) T g 5a0(P.K)}

1

We obtain the equation X o ,
EaEb[P - Ea_ Eb]

(8.10
e
I'g a,an(P.K) which is of the form of Eq.(7.13 with the replace-
,twr(k,k’)FE,;,ab(P,k’) menL Carap(P.K)=TE1ap(P.K)  and  Tazan(P.K)
PO—Ea(k')—Ep(k') ~Ta2a(P.). -
a b We also note thal,(P?) =J7%(P?), where the definition
(8.4 of Jél(Pz) is straightforward. The polarization function

025202-11



CELENZA, HUANG, WANG, AND SHAKIN

0.10 -
0.08 |-
0.06 |
0.04
0.02 |-

0.00 F
-0.02 |

FLPY) (GeV?)

-0.04
-0.06

-0.08

-0.10 L I I ) )
0.0 05 1.0 15 20 25 3.0 3.5 4.0

P? (GeV?)

FIG. 11. The functiorl}y(P?)/M? is shown. The intersection of
that curve with the horizontal line representing’s,z1
=(78.13 GeV'?) " yields the(uncoupled spectrum shown in Fig.
14(a). (HereM=1.0GeV.)

J5,(P?) may be identified with our result fat,,(P?) given
in Eq. (7.13. We also see thaly;, J7, andJ5, will have
singularities at the same valuesRf. Values ofJ}}(P?) are
given in Fig. 11 and]’l*z(Pz) is shown in Fig. 12.

We now define & matrix for the coupled®P;-1P; sys-
tem, which we organize in a matrix form,

o (THP) TEP)| (ks
T=thrs 99| iy 16| e
(8.11

and put T{/(P)=—g*'T1y(P?), TiJ(P)=—g*'T1P?),
T5(P)=—g""Ty( P?), and T5(P)=—g"*"Ty P?).
We introduce the matrices

S 8
= 1
0 -Gy (8.12
JN(PHIMZ I (PHIM
J(P? :( "y 12 , 8.1
P=lopom ey | @13
and
0.010 -
R 0.005 |
s
]
<}
NE 0.000 |-
1y
<—:F -0.005 |-
-0.010 ) | | " 1 " 1 1 L )
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0
P? (GeV?d)

FIG. 12. The function J4(P?)/M is shown. (Here M
=1.0 GeV.)

PHYSICAL REVIEW C60 025202

2 2
e[ T e
We then have the matrix equation
T(P)=G-GJ(P?)T(P?), (8.19
or
[1+GI(P?)]T(P?) =G, (8.16
so thatT(P?)=D}(P?)G, with
S by
VY12 V22! (8_17)
Thus
T1AP%)= —Gvdc.;:;’%;;)/l\/l ! @19
and
ol P?)= _GV“;;;‘(]%E)P M @20
where

detD(P?)=[1—GJ}y(P?)IM?|[1— G55 P?)/M]
(8.21)

We may obtain the spectrum of the coupled system from the
equation

— GGy [ I PHIMTZ

detD(P?)=0. (8.22

Alternately, we may bring th& matrix to diagonal form at
each value oP?, such that

Ty(P? 0
M(¢>T<P2)Ml<¢>=( 1(0 : TZ(Pz)), (8.23
with
M(¢)= Z?:i _Czlsnf), (8.24

where ¢ is a function of P2. Resonances or bound states
appear as singularities df (P?) and T,(P?).

We may first consider the case whe}éz(PZ):O. We
determine the parametddy by fitting the energy of the
b;(1235) meson by solving the equation

(8.29

where J7;,4(P?) is J7y(P?) calculated in the equal-mass
case withm,=m,=0.364 GeV.(See Fig. 13.Here we are

G- Jlfl;ud( P?)=0,
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FIG. 13. The functionJi\lyud(Pz) is shown. Herem,=m,
=0.364 GeV. The horizontal line representsGy*
=(78.13 GeV'?) 1. The intersection of that line with curve repre-
sentingJ’flMd(Pz) yields the mass values for the mesons given in
Table VI. Here we assume ideal mixing.

assuming that we have ideal mixing for the mesons. We
find thatG,=78.13 GeV ? yields the mass values given in
Table VI.

We now consider the’P; and 'P; K; mesons in the

uncoupled case. The mass values obtained from the solution

of the equations

G- J3(P?)=0 (8.26)
and
Gy1—J35(P?)=0 (8.27)

are given in Figs. 14) and 14b), respectively(Recall that
J7, and J5, are defined withm,=m, and m,=m; in this
case)

We now proceed to discussP;-P; mixing for the

PHYSICAL REVIEW C 60 025202

20F  eeee cons
[ .. e
B vees sees Te(2)  eeee
15}
% B ssse e
o | =
A1.0
= i
o5 (@ (b) (c) (d)
I Axial-vector mesons

FIG. 14. (a) The mass values obtained from the solution of the
equationG, *—J3,(P?)=0 are represented by dotted lines. Here
G=78.13GeV?2 We find states with mass values of 1.35, 1.59,
1.73, 1.84, and 2.00 Ge\(b) The mass values obtained from the
solution of the equatiorG,*—J5,(P?)=0 are shown as dotted
lines.(HereG, = 12.46 GeV 2.) We find states with mass values of
1.43,1.59, 1.75, 1.84, and 2.01 GeV. Note nmg(PZ) is the same
asJi(P?) shown in Fig. 10(c) The states of th&, meson, cal-
culated withG=78.13 GeV? and Gx,=8.00 GeV 2, are com-
pared to the data. Here we include the mixing due to the polariza-
tion functionsJf,(P?) andJ5,(P?), as well as that due to the direct

strange axial-vector mesons. Our first observation is thagoupling parametrized by, . (See Table VI, (d) Masses of the

J3(P?) is quite small and leads to relatively little mixing.
We note that if we do not use the energy of th€1235) to
fix Gx, we may putGy=93.0 GeV 2 and provide a rather
good fit to the masses of th€; mesons. However, we con-
tinue to maintainG,=78.13 GeV2 and consider another
model for 3P;-1P; mixing. We replace the matri@ of Eq.
(8.12 by

Gk

G:
Gka

(8.28

GKA
Gy /-

TABLE VI. Mass values for théd; mesons under the assump-
tion of ideal mixing.[See Fig. 14d).] Herem,=m,=0.364 GeV.

Mass (Expt.) Mass(Theory) Spectroscopic
Meson [MeV] [MeV] character
b,(1235) 123110 123@ 1P,
1587 2P,
1876 3p,

aThis state is used to fiG=78.13 GeV?2

b, mesons(See Table V).

It is clear thatGy, couples the®P; and P, channels di-
rectly. (The equations for th& matrix have to be modified
appropriately. We find thatG,,=8.00 GeV 2 gives rise to
the K, energies given in Table VII and shown in Fig.(&}

We now turn to a discussion of the mixing angle, cou-
pling constant, and form factors, as defined in our covariant
formulation. Near a singularity of,(P?) at P?=m? we may
define

- [
(K'[T(P?)[k)= —FL(k") o2 Fi(k),  (8.29
my
with
k“ys N .
FA(KI=01| 75— cosp—Fyssing|. (830

In Eqg. (8.30, g4 is a coupling constant.
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TABLE VII. Theoretical and experimental values of the masses TABLE VIIl. Mass values ofssaxial-vector mesons in the case
of the axial-vectoiK; mesons. See Eqé3.30 and(8.31) for defi- of ideal mixing. Herem,=m,=0.565 GeV.
nitions of the coupling constant and mixing angle.

Mass(Theory) Spectroscopic
Mass(Expt) Mass(Theory  Mixing Meson [MeV] character
Meson [MeV] [MeV] angle ¢ 01 f 1600 1%,
K,(1270) 127510 1274 -15.2°  8.60 1902 23p,
K,(1400) 14027 1483 40.9° 3.13 L
K,(1650) 1656:50 1594 hy 1468 11P1
1722 1871 2Py
1722
1838

where J’flss(Pz) also hasm,=m,=m,. Mass values ob-
3Fit by the choiceGy,=8.0GeV 2 whenM=1.0GeV.[See Eq.  tained in this manner are given in Table VIII. It is uncertain
(8.29.] as to whether ideal mixing is appropriate for theandh;
bThese are doublets weakly coupled to quarks. mesons and an analysis similar to that made for #he’
system, with a reduced attraction in singlet states, may be

We may also modify the vertex form factdf4(k), to ~ most appropriate(Recall that in our study ofy-»" mixing,
include the effects of confinement using the methods deveWe usedGs-J for the interaction in singlet states agg; for
oped in Ref[3]. [With that procedure, we are able to show the interaction in the octet statgg].)

that T(P?) is represented by bound states only, if the poten-

tial V© is absolutely confining. Note that we have already IX. DISCUSSION
modified the vacuum polarization integrals to include con-
finement effectd. To include confinement effects in the nu-
merator of theT matrix of Eq.(8.29, we replace Eq(8.30

In this work we have calculated the energy of fifty-four
gq states using the parameters listed in Table Il. The param-
etersA3, wu, andm, were fixed at the outset and,, Gg,

by [3] Gy, and k were adjusted to fit the masses of th€782),
F“(P K) (1420, K(495), and®(1020. There are three other param-
E4(P.k)=g; BT'COS¢_FK(Pak)Si”¢ , eters,d, Gk, andGg,. The parametep was chosen when

fitting the (547 and ' (958) mass values. That parameter
(8.3 is meant to take into account the effect of the gluon fields
upon the singlet statg®. The value ofGy was introduced to
create a significant interaction in tH®, states an@y, was
introduced to create significantP;-'P; mixing for the

wherePzsz. The mixing angle g, is given in Table VI
for the first two states of Fig. 1d). However, that angle is

particular to our method of calculation and does not corre il h h h
spond to the angle introduced to describe mixing®f and ~ Strange axial-vector mesondVithout such terms, the stan-

1p, octets in Ref[12], for example dard NJL interaction has a very small interaction iR,
L . . 1 . .

One interesting feature of the;(1270) and thé<,(1400) states and quite smaflP;-'P, ”?'X'”g-) We note that the
esons i ta rey ha g predominant decaycharfITELTS 22 osh e o ur ey B e
nels. For example, the decay width #6§(1400)—K* + m is ]E) : HE* (14300, o (19600, andK?* p892
much larger than the width foK;(1400)—K+p. On the [OF states such as thig ( ), 21(1260), andK*(892)
other hand, the<,(1270) decays predominantly 16+ p require no parameter fitting. Our prediction for the mass of
with weaker decay to th&* + 7 channel. This feature sug- € 20(980) is too high by about 80 MeV. However, the
gests approximately equal mixtures ¥, and 1P, states in nonstrange scalar states are kﬂown to have quite strong cou-
theseK; mesons, as discussed by Suzuki, for exanipl, ~ Pling to channels such asm, KK, and 77, so that one can
where a single mixing angle is used for tHg(1270) and €xpect a significant shift in energy arising from the real part
K,(1400). However, in the case of composite mesons, thef the meson self-energy that describes the decay to the vari-
mixing angle isP?-dependent, as is the case in our wdflo ~ Ous open channefd 1,13. o
use the formalism used in RefL2], one must assume that A particular advantage of our formalism is that we com-
the K;(1270) andK,(1400) are elementary particlgs. bine qh|ral symmetry, covariance, and a mod_el of conflr_1e—

Finally, we calculate the mass values for $&@states of ~ment in the same model. While our Lagrangian has chiral
the f; andh; mesons, under the assumption of ideal mixing.Symmetry, the approximations made in our Minkowski-space

For thef, we consider the equation calculations violate chiral symmetry to some degree. Since
the properties of ther(138) are very sensitive to small vio-
G;l—J’;zSS(Pz):O, (8.32 lation of chiral symmetry, we neglect confinement in that

case. Alternately, the pion may be studied in a Euclidean
where J’Z*ZSS(PZ) hasm,=m,=ms. For theh; meson, we momentum space, where it is easier to maintain exact chiral

solve symmetry in the presence of a model of confinenj&mt
1A 5 In the present work, we have not emphasized the covari-
Gy —J11sdP9)=0, (8.33 ance of our formulation. That feature played an important
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role in our studies of the decays of th€1300 to w+ o and  K*(1410) seen in Fig. 5 is quite a similar feature to that

7+ p channeld2]. For example, if them(1300 is taken to  exhibited in Fig. 14 of Ref[16], where theoretical and ex-

be at rest, the final-state mesots p, or ) have finite  perimental values for meson masses are shdim.Sec.

three-momentum. Therefore, to describe the confinement.2.2 of Ref[16], it is suggested that the low energy of the

vertex for these mesons, we have to make use of the covarp 3, K*(1410), when compared to the shell-model predic-

ance of the model. The decay amplitude then becomes indgon, may be due to the mixing of two states via decay chan-

pendent of the frame chosen for its evaluation. We have alsgels that lowers the energy of one state and increases the

shown that the various vacuum polarization functions, suckenergy of the other. Alternatively, we may suggest a large

asJP(P?), JY (P?), J%(P?), andJ},(P?), may be calcu- shift due to the real part of the meson self-energy that de-

lated in any Lorentz frame with the same result. scribes the effects due to the coupling of Kig(1410) to the
The extension of our Lagrangian to include gradient termssarious open channelsWe may note that our value for the

is a novel feature of our work. We consider this aspect of oufnass of theK % (1430), given in the data tables as 1412

work somewhat preliminary to a more complete study of the+ 6 MeV, is better than the predicted value given in Ref.

effects of such terms upon the full range of mesons. It ref16), which is about 170 MeV too small.

mains to be seen whether our model can explain the decay There are various projects that may be carried out in the

widths ofK;(1270) andk;(1400) to various open channels, fyture. For example, we may extend our work to study the

such aK* + 7 andK + 7. tensor mesons. Also a more complete treatment of the prop-
There exist several approaches to the study of light meerties of thek; mesons may be made. Clearly, a very large

sons. A model for the calculation of radial excitations of number of meson decay widths may be calculated at one

mesons in a generalized NJL is presented in Ref|. Also,  quark-loop order in our model.

extensive studies of hadron properties have been made using

the global color model and we list several useful works in

Ref.[15]. In addition, there is a body of work that makes use ACKNOWLEDGMENTS

of the potential models of the kind that are used in the study

of heavy mesons. That body of work is reviewed in Ref. This work was supported in part by a grant from the Na-
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