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Event-by-event fluctuations in collective quantities
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We discuss an event-by-event fluctuation analysis of particle production in heavy ion collisions. We com-
pare different approaches to the evaluation of the event-by-event dynamical fluctuations in quantities defined
on groups of particles, such quantities as mean transverse momentum, transverse momentum spectra slope,
strength of anisotropic flow, etc. The direct computation of the dynamical fluctuations and the subevent method
are discussed in more detail. We also show how the fluctuations in different variables can be related to each
other.[S0556-281®9)03508-4

PACS numbgs): 25.75.Gz, 24.60.Ky, 25.75.Ld

[. INTRODUCTION: STATISTICAL, DYNAMICAL, The purpose of this paper is to present and discuss differ-
AND EVENT-BY-EVENT FLUCTUATIONS ent approaches to the evaluation of dynamical fluctuations, in
particularEbE fluctuationsOften in the discussion we refer
Any physical quantity measured in an experiment is subi0 the fluctuations in the thermalized system. Note, however,
ject to fluctuations. In general, these fluctuations depend ofpat the techniques we propose to use for the evaluation of
the properties of the system and may contain important indynamical fluctuations do not require the system to be in
formation about that system. In the context of heavy ionthermal equilibrium. We also address the limitations in ex-
collisions, the system under consideration is a dense and h#fgcting observables of physical relevance. Here we concen-
fireball consisting of hadronic and/or possibly partonic mat-trate on fluctuations of the mean transverse momentum, since
ter. The obvious challenge is to positively identify the exis-experimental data for these fluctuations are already available
tence of a state of partonic matter early on in the life of thel5]. Also, fluctuations of the transverse momentum may be
fireball. The study of fluctuations may help in this task con-related to fluctuations of the temperature, which in turn may
siderably. First of all, fluctuations of a thermal system areProvide important information about the properties of the
directly related to its various susceptibiliti¢s], which in ~ System under studjl—5].
turn are good indicators of possible phase changes. For ex- In Sec. Il we present several methods of fluctuation analy-
ample, the extraction of the system heat capacity from temses and illustrate them in terms of a simple toy model. We
perature fluctuations has recently been proposefRird].  also discuss how these methods are related to each other and
Also, large event-by-event fluctuations may indicate the ext0 approaches already presented in the literature. In the next
istence of distinct event classes, e.g., one with and one withsections we turn to the specific case of fluctuations of the
out a quark gluon plasma. mean transverse momentum. We shall discuss the relation
Fluctuations have contributions of a different nature. Firstoetween fluctuations ifp;) and the temperature. We finally
there are “trivial” fluctuations due to a finite number of address the question as to what extent the heat capacity of
particles used to define a particular observable in a giveithe system and the collision energy or centrality dependence
event. Examples of such observables are the mean transvei§ereof can be extracted from these fluctuations.
momentum(p,), where the average is taken over all particles

in a given event, the strength of anisotropic flow, the ratios || £\ ALUATION OF ELUCTUATIONS: “DIRECT”

qf multiplicitie_s_of diﬁe_re_nt_ particle species,_et_c. Fluctua- AND “SUBEVENT” METHODS
tions due to finite multiplicity we shall cabtatistical fluc-
tuations. Statistical fluctuations can be evaluated by consid- A. Definitions

ering the production of all particles as totally independent. |, this paper we consider fluctuations in collective quan-
All other fluctuations are of dynamical origin and shall be tities, the quantities defined on groups of particles. Such a
calleddynamicalfluctuations. Dynamical fluctuations can be group could be, for example, particles in some rapidity re-
subdivided into two classesa) fluctuations which do not gion. It is useful to start with collectivaverage(or inten-
change event by evefsuch as two-particle correlations due gj e quantities, which in rather general form can be defined
to Bose-Einstein statistics or due to resonance decays

(b) fluctuations which occur on an event-by-event basis. The

last ones we call event-by-eveEbE) fluctuations. Ex-

amples of those are fluctuations in the ratio of charged to Z X;
neutral particle multiplicities due to creation of regions of X=(X)= ——, (1)
DCC or the fluctuations in anisotropic flow due to creations M

of regions with “unusually” soft/hard equation of state.

Also, the occurrence of jets may give rise to event-by-evenwhereM is the particle multiplicity. The sum is taken over
fluctuations, e.g., in the higp tail of the transverse momen- all particles in an event, and is a variable that is defined for
tum distribution. each particle. For example, takinxg= pt2/(2m), wherep; is
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the particle transverse momentum ands the particle mass, and the normalized probability density to find a particle with
would yield for X an estimator for thénonrelativistio tem-  a givenx=p?/(2m) is
perature; takingk=cog2(¢—Vgp) ], Wwhere (@—Vgp) is the

particle azimuthal angle with respect to the reaction plane, dw 1 —x
would give the strength of elliptic flowy,. We use the same ax —exp = 4
notation(- - -) for an average over all particles in an event of T T

a quantity defined on a particle, and also for an average over

all events of a quantity defined on an event. Thém,)) Each event in this example is a random selectioMapar-
would mean the average over all events(pf), the mean ticles from a thermal bath. For simplicity we assume tMat
values ofp, derived in each event. For an inclusive mean'S constant.

value (an average over the inclusive single particle distripu- N order to get an estimate for the temperature of the

tion) we reserve the notation. For example, the inclusive system one needs to fit the slope of fedistribution. Ap-

- o plication of a maximum likelihood method yields the best
mean transverse momentum we denot@@swhich in gen-  octimator forT:

eral does not necessarily coincide w{tp;)).
The fluctuations in quantitX are defined by 2
X;
T 0= 007 (0=t T 0= < P > ©

Note thato aynam defined in this way can be negative pro- which is just the result of the equipartition theorem in two
vided thataf(’Stat refers to the statistical fluctuations in the dimensiond (E)/M=2(T/2)].

totally “uncorrelated” particle production scenario, as de- The statistical fluctuations in the quantify(the fluctua-
fined above. Dynamic&nd/or kinematicgscan suppress the tions due to finite multiplicityM, under the assumption of
fluctuations in comparison to the case of the independerihdependent particle productipoan be directly calculated:
particle production. Note, however, that the contribution to

Ui.dynam due toevent-by-event fluctuatioris always posi- S x. 2 S x 2

tive. =~ =
Within a given event sample all three contributions-p, 0% gqa= (TH—(T)?= I “\ v

statistical fluctuations, event-by-event fluctuations, and dy-

namical, not EbE, fluctuations, scale differently with the 02 il

event multiplicity (see alsd6,7]). This property can be used = (6)

as an additional criteria in the experimental separation of

different contributiong[8]. Statistical fluctuations scale as 2 T =2 a ) ) ) o
Ux «u*1/M, whereM is the event multiplicity. Event-by- whereoy = (Xx—X)“ is the variance of the inclusive distri-
event fluctuationsr% ¢, do not depend on multiplicity. The bution inx. For a thermal distributiort4) one hasx=T, X
non-EbE dynamlcal fluctuations could have in general two= 2T2 and UT st —T2. 1t follows that

terms, one which does not depend on multiplicity and the

second one, which is similar to the statistical fluctuations (AT)%,, o2 o2 1
scales as<1/M. The part which does not depend on multi- ZS‘atE Tostat_ Zxinel = )
plicity is mainly due to Bose-Einstein correlations and two- T T2 MT2 M

particle final state interactions. We will argue below that the

subevent method permits us to eliminate this part from the For practical applications it is very important to know the
total fluctuations. The second part is due to resondjete  accuracy in the calculation af;. The direct calculation of
decays, momentum conservation, etc. Taking all facts tothe variance OfO'T,O'Zz, is straightforward, but rather
gether, it means that, provided the multiplicity mdependenli
part of dynamical non-EbE fluctuations is eliminated, e.g., imple[11]:
by the subevent method, the multiplicity independent part 01S P

o2 is only of event-by-event origin. B

engthy. For a large number of event$>1) the answer is

4
. 20'T:>0_2 oT ey oT ®
A —— ~ — ~ .
B. “Direct” method T Ney 7T 2Ney 7T 2N,

Let us start with a simple example of a two-dimensional
nonrelativistic ideal gas in thermal equilibrium at tempera-

ture T. In this case the particle transverse momentum distri- Yt is sufficient here to assume that the distributiorxidoes not

bution is depend on the event multiplicity. If this is not the case, it would
mean a known source of event-by-event fluctuatidlostuations in
dan '{ ptz ) multiplicity), which in principle should be analyzed separately. See
—xexp ——=/, (3) also[9,10] for a more detailed treatment of the multiplicity fluctua-
dp? 2mT tions.
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In this paper we consider mostly the case when statistical ®.= NZDM) — /22 11
fluctuations are much larger than the dynamical ones. In this K= V(ZKM) \/2: (D
caseor~ o grand where
o 1 —
St (9) Z=>, 7, z=x—X, (12

g, . :
T 2Ng V2N M '

andx is the quantity under study, for example, the transverse
C. “Subevent” method momentum. In order to compar®, and (T<2x>,dynam results,

It is simpler to use the subevent method for the calculaVe first derive a useful formula. We start with the definition

tion of the EbE fluctuations. Just recollect that we are inter® ®x, given by Eq.(11). Multiplying both sides of the
ested in the fluctuations which affect the entire event. If oneequation by ((Z*)/(M)+ \/?), and taking into account that
subdivides such an event into two subsystems, which we cafP, is the difference between two almost equal quantities

below subeventa andb, the quantities defined on these two (\/(z%)/(M)~ \/?E Oy inc), ONE gets
subevents should be correlated: '

~ 2 .
(Ta (T (To=(To)) = ([(ATa)stact (AT) gynan] 2y in™ Pu(N(Z) M)+ 0 inc)
X[ (ATp) start (AT) aynand) = (V(Z2M) = 0 ina) ((Z2)/ (M) + 0 i)
= G'ZI',dynam (10) = <ZZ>/< M > - o-)z(,incl' (13)

Note that in th ¢ an ideal here the fluctuai To proceed further we need the assumption that multiplicity
ote that In ne case ot an 1deal gas, where the Tluctualiong 1 o rrelated with the distributions & Under this as-

are entirely of statistical nature, the above correlator woul umption,
yield zero.
The subevent method permits one to avoid some problem? ) — — —

of the “direct” computation of EbE fluctuations. In particu- (£ >_02. :<M>(X_X) H(M(M = D)X —X)(X;—X))
lar the problems related to the separation of the EbE fluctua¢M) = XN (M)
tions from other dynamical effects, such as Bose-Einstein
correlations(the HBT effec. It is not possible to avoid the
HBT correlations in the direct approach and one can only (M(M—1)) - o
perform a rather complicated estimate of its contribution =T<(xi—x)(xj—x))
(see, for exampld5]). In the subevent method one can de- (M)
fine the subevents on different regions, so that particles from ~ 2

; . <M>U<x> dynam (14
two regions are not correlatgih the HBT sensg and the '
problem simply disappears. For example, one can define sulyye end up with the formulésee alsd18])
events on rapidity regions separated by 0.1 unit of rapidity.
The same trick can be used to get rid of the “two-track 2 M

. . . . . . . T(x) dynan{ >
resolution” problem which is quite serious in many experi- O, ~ ‘ .
ments. In addition, using the subevent method it is also pos-
sible to study how the “proton temperature” is correlated
with the “pion temperature” and many other interesting . ) 2
guestions. Unfortunately, we do not know any simple way Ofpomts_ of :?eh t.W%. anallysels UZ'"@Xh and g'(xl),qynam'h-rh_e .
avoiding the correlations due to energy-momentum conserqlé'am'tyw Ich 1S |rect3_/ re ated to the underlying physics IS
vation (see also the discussion of this questioi@,13). {x),dynam- IN this sense it is preferable. On the other hand, if

Another way to look at the correlations using the subevenP€ Wants to compare different systems in order to see if the
method is to compare widths of the distributions i, ( Underlying physics is the same, and evefsigstems differ

—T,) and in (T,+T,). While the first distribution is gov- only by the total multiplicity, then one has to take into ac-

erned mostly by statistical fluctuations, the second one corfount that the correlations scale inversely proportional to the

tains dynamical fluctuations as well. The difference in the€Vent multiplicity. In this sense the multiplication of

width of the distributions would yield the dynamical fluctua- “{x),dynambY (in this case, observednultiplicity allows one

tions (see the calculations within the toy model below in thist0 check if the physics is changing. This is the advantage of
section. the d, approach(as well as any other approach dealing with

the quantity proportional tW<2x>,dynan{M>)- But one should
be careful when comparird), measured by different experi-
ments, and even by the same experiment but under different

2
Ty, incl

(19

2Ux,incl

From this formula one can see both the strong and weak

D. Relations to other methods

The function®d, is frequently used in the literatufd4—  conditions and/or analysis cut®, is scaled by th@bserved
17,5] for the event-by-event fluctuations study. It is definedmultiplicity. It means that even for the same event sample it
as would depend, for example, on the track selection cuts.
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FIG. 1. Reconstructed dynamical fluctuations far 5=0.03 and(b) 5§=0.1.

It is clear from the definitioril) that correlations between responsible for the strength of the fluctuations. The trans-
the average collective quantitie§X,X,)) and the corre- verse momentum of each particle is generated in accordance
sponding fluctuations(in other words, autocorrelations to the distribution
(XaXa)) can be rewritten using the usual two-particle corre-

lations (the same as, for example, the second factorial mo- dn 2, 2
ment used in the study of intermittency or the above dis- ‘ _Phy

. . : ; : (17)
cussed quantity®,). In this sense the correlations in dpydpy 2mT

collective variables provide no additional information com-
pared to the two-particle correlations. Details and subtleties . ~ .
of the relation between the two particle correlations and th sing the data generated for=0.05 GeV ands=0.03 and

event-by-event observables have been discussed recently n=0.1(the.f|rst one |s.close to the limit of our sensitivity to
[9,10. the dynamical fluctuations for such a data) se¢ calculate

It should be noted, on the other hand, that it can be muct'® dynamical fluctuationgin accordance with Eq2)] for
more convenient to work with collective variables. The €aCh group of 500 events. The results are presented in Fig. 1
“signal-to-background” ratio, i.e.,0qynaml ™ in these together with a fit to a constant. The fit values should be

» 1.€.,0dynam! O stat

variables generally grows agVl, whereM is the multiplic-  compared to the input values oo, T?=5%12

ity. The reason for this is that fluctuations in “background” =(0.03/12=0.75<10"* and (0.1§/12=0.833< 10", re-
distribution scale as/M while the “signal” (strength of Spectively. A good agreement between the input and the re-
flow, change irp;, etc) would depend linearly on multiplic- constructed values is observed. It is remarkable that the
ity. A good “signal-to-background” ratio can be very impor- method is sensitive to fluctuations which one would not ex-
tant in order to select “unusual” events, i.e., the events withP€ct judging only from the single particle spectrum. The dis-
particular strong/weak signélemperature, strength of flow, tribution in p for the case of5=0.1 is presented in Fig. 2
etc). Another advantage of using the quantities defined on a

group of particles is a practical one related to computing o106 = 5752772
time. The computation of the two particle correlation func- .g‘ X/ndf = 57.52/
. . . . . L Constant = 13.590 £ 0.0002
tion in the traditional way using events with multiplicity of a 2 103 5 -
k . ope = -10.01 + 0.004
few hundred or even a few thousand particles does require a =]
lot of computing time. 104
E. Toy model 103

Let us conclude this section by employing a toy Monte 102
Carlo event generator in order to illustrate how the above-
discussed formulas work. In this toy model we generate a 10
few sets of 4000 events each; all events are of the same
multiplicity M =1000. The different sets are generated for 1
different event-by-event fluctuations in temperature, which is 11l
distributed in accordance with 0 04 08 12 16 2

T=T[1+8(r—0.5], (16)

FIG. 2. Particle distribution irpf together with an exponential
wherer is a random number if0,1], and § is a parameter fit.
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FIG. 3. Subevent method. Correlations betwd@grandT,,. (a) Scatter andb) profile plots.

together with an exponential fit. Not only is no deviation ags 2 dynam:[(4_33)2_(3_21)2]><10—6/4:0_211>< 105
from an exponential distribution visible, but the fit quality is gg\2,

very good,x?/ndf=57/72. Quantitative analysis of the dynamical fluctuations using

The next figurgs, Figs. 3-5, are for iIIustr'ation of the sub—Eq. (10) is presented in Fig. 5. The observed strength of the
event method. Figure 3 shows the correlation between te orrelation o2 =(0.205+0.011)x 10" ° GeV? should
T,dynam . .

peratures measured in two subevents. Already from the scat- ~

ter plot one can see that the two quantities are correlatedd® compared with the input value @ff 4 ..=(T3)%/12

which is the consequence of the introduced event-by-everit (0.05x0.1)%/12=0.208<10 > Ge\~.

fluctuations. The profile plot, which shows the average tem-

perature of the subevebtas a function of the temperature

observed in the subevemt looks even more convincing. IIl. CORRELATIONS BETWEEN DIFFERENT

One can see that the temperature values reconstructed on tWoCOLLECTIVE VARIABLES: RELATIONS BETWEEN

different subevents are closely correlated. Such an observa- FLUCTUATIONS

tion unambiguously indicates a presence of dynamical corre-

lations in the data. Often the fluctuations in different variables are tightly
Another way to study if the temperature values are correconnected with each other. For example, let us consider fluc-

lated is to look at the distributions inT(—T,) and (T, tuations in the mean transverse momentyn) and fluctua-

+Ty), as discussed above. These distributions are presentéidns in the effective temperaturgnore precisely, in the

in Fig. 4. One can see that the distribution im,¢Ty), slope parameter of the transverse momentum distribution

containing only statistical fluctuations, is significantly nar- We assume thafp;) is uniquely defined by this parameter.

rower than the distribution inT(;+ Ty,), which has both sta- Then one can writé(p,))=F({T)). Assuming that the fluc-

tistical and dynamical fluctuations. Using just the rms valueguations are of Gaussian nature, arguments from the theory

from the plots, one can estimate the dynamical fluctuationsf error propagation give

700 L Entries 4000 700 R Entries 4000
- (G) Mean 0.00002 - (b) Mean 0.09995
i RMS  0.00321 i RMS  0.00433
525 |- 525 |-
350 [ 350 [
175 | 175 |
o L ' o L |
-0.02 -0.01 0 0.01 0.02 0.08 0.09 0.1 0.11 0.12
T,-T, (GeV) T,+T, (GeV)

FIG. 4. Subevent methoda) Distribution inT,—T, and(b) T,+T,.
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x*/ndf = 8.904/7
Constant = (2.054 0.11)X 1078 Such measurements, if possible, can provide very important
information about the equation of state, and can be used to
+ detect the phase transitions where the heat capacity could
_*_ undergo very rapid change. The possibility to get such infor-
, + | mation becomes one of the major attractions of event-by-
+ + event physics. It was assumed[i&3] that the temperature
fluctuations can be evaluated using an event-by-event analy-
sis of the transverse momentum spectra. In this section we
question this particular possibility. Our conclusion is ttigt
the required temperature fluctuatioctcennotbe measured us-

S
=

0 L : ‘ ing the information on only particle transverse momentum,
0 1000 2000 3000 4000 and (2) even if the transverse spectra slope fluctuations are
event number sensitive to phase transition, such a relation is more compli-
FIG. 5. Subevent method(T,—(T))(To—(Te))=02 gnam ~ CLEd than suggested by HGO). _ _
calculated on the 500 event subsamplesder0.1. Our arguments are based on the following observations.

Let us consider a two-dimensional ideal gas at temperature

T. We would like to usév particles to define the temperature
by measuring; spectra. For simplicityM is fixed. An esti-
mate of the temperature would be

O (p,),dynam

T (p,),dynani— | F’ (<T>) | OT,dynani W

P

- ‘— o1 s 19 S (p2+p2i2m)
F((Ty) | T T My (=T 21)

In reality, thep, spectra of most particles lie in between

two limiting cases((pt»oc\/m (nonrelativistic ideal gas The event-by-event fluctuations incan be easily estimated.

and ((p;))o(T) (ultrarelativistic ideal gags It follows then They are
that ( O'T)z_ O'T,stat)z_ 1 1 22
(M (M M Cy’
O (p,),dynam oT
W:(O-E’_Dm- (19) taking into account that the heat capacity of a systerviof

particles of a two-dimensional ideal gas @&,=2(M/2)
) ) =M. This formula coincides with Eq20). Now let us take
One can apply this relation to recent measuremgisin 5 hree-dimensional ideal gas, but use only two components
this paper the limits on EbE fluctuations @) was estab-  4f the particle momentump(, and p,) for an estimate of the
lished aso,, /{(py))<0.01. According to our conclusion it temperature. It is obvious that the fluctuationsTiguantita-
means thatr;/(T)<0.02 (conservative estimateNote that tively do not change compared to the two-dimensional case,
the mean multiplicity used in this experiment is of the orderbut now they clearly do not provide us with knowledge of
of (M)~250 and the statistical fluctuations in the temperathe heat capacity. The heat capacity has change\to
ture are of the order of; g,/ (T)~1/y(M)~0.07. =3/2M. One can continue with such arguments, adding to
The relation between effective temperature and meaithe consideration internal degrees of freedom: the observed
transverse momentum becomes less transparent if at the tinflactuations remain the same while the heat capacity contin-
of thermal freeze-out sizable energy/momentum dependentes to change. Thus, our conclusion on the possibility to
mean field potentials are present. This could be due to masxcess the system heat capacity by measuring the fluctua-
changes as proposed in the context of chiral symmetry regions in transverse momentum slopes is rather pessimistic.
toration or simply due to long range interactions among theHowever, if the fraction of the heat capacity that actually is
particles. In this case the relation between transverse mdseing measured remains constant, one could still hope to see
mentum and temperaturé;(T), depends on the detailed rapid changes in that quantity as the system goes through a
structure of the mean field forces at play. phase transition. So it is definitely interesting to measure an
excitation function of the mean transverse momentum

fluctuations?
IV. CAN WE REALLY MEASURE C,, USING p,

SPECTRA?

It has been proposed i[2—4] to measure temperature 2Unfortunately, it is not known at present how narrow the transi-
fluctuations in order to access the heat capacity of the sysion region might be. Another way to look for the phase transition is
tem: to investigate the centrality dependence of the fluctuations.
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V. SUMMARY It has been proposed to measure the heat capacity of a
system by studying the dynamical temperature fluctuations.

We have studied event-by-event fluctuations with the di- .
rect method and have introduced a new way to determin;\-,Ne have shown that the heat capacity cannot be measured
r

fluctuations with the subevent method. A suitable choice of ©M the temperature fluctuat|ops. Howeyer,_|t cannof[ be ex-
subevents and the possible combination of particles within §'uded that by carefully measuring an excitation function and

subevent or between subevents trivially allows to excluddhe related fluctuations a possible phase transition would
some dynamical correlations like the HBT correlations ormanifest itself in increased fluctuations ir{rearrow energy

experimental effects like two-particle resolution effects. ~ €gion.
The relationship to theb, variable has been discussed.
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