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Solution of the Bethe-Salpeter equation for pion-nucleon scattering
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A relativistic description of pion-nucleon scattering based on the four-dimensional Bethe-Salpeter equation
is presented. The kernel of the equation consists aihd u-channel nucleon and(1232) pole diagrams, as
well asp ando exchange in thé channel. The Bethe-Salpeter equation is solved by means of a Wick rotation,
and good fits are obtained to teeandp-wave N phase shifts up to 360 MeV pion laboratory energy. The
coupling constants determined by the fits are consistent with the commonly accepted values in the literature.
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[. INTRODUCTION region of energies and to be able to investigate the nature of
resonances, the potential must be iterated to all orders. This
Pion-nucleon ¢N) scattering is an important example of has been done recent{t1-1§ in models based on three-
a strong interaction, and as such plays a significant role inlimensional3D) approximations to the Bethe-Salpe(BS)
many nuclear reactions involving pions, the most interestingequation/19]. Phenomenological form factors are required at
example in recent years being pion photoproduction. It ighe vertices in order to provide convergence, and so in gen-
generally accepted that the fundamental theory of strong ineral more free parameters are needed than in tree-level mod-
teractions is quantum chromodynam{€CD), and therefore els, which can give good results without any form factors
a theory describingrN scattering should ideally be derived [8].
from QCD. However, due to the nonperturbative nature of There are several other approaches b scattering in the
confinement, QCD has not been amiable to solutions for lowiterature which give results of a similar quality. The meson-
and intermediate energies, and hence it is necessary to use @xchange model of ‘da [20] uses the solitary boson ex-
effective theory. In principle the effective theory should bechange method to regularize self-energy diagrams instead of
as close as possible to the fundamental one, and so shoulding form factors, and gives good descriptions of batt
satisfy the same symmetries, in particular chiral symmetryandNN scattering with the same set of parameters. Sato and
which is known to be important for low-energy physics. Lee constructed a meson-exchange model using an effective
Therefore, in place of the QCD Lagrangian a chirally- Hamiltonian[21], while Ellis and Tand22] used chiral per-
invariant hadronic Lagrangian is used, where the degrees afirbation theory. Quark models have also been used to de-
freedom are mesons and baryons rather than quarks and glseribewN scatterind 23—25. Fuda[4] developed a Poincare
ons. For low energies it is expected that the detailed quarknvariant front form model ofrN scattering, in which the
structure of hadrons is relatively unimportant, and that it ispotentials were assumed to be separable. This model was
only at very high energies that explicit quark degrees of freetater extended5] to a pion laboratory kinetic energy of 1
dom are essential. The great success of meson-exchan@eV, giving an excellent description of the phase shifts and
models for nucleon-nucleorN(N) scattering in the descrip- inelasticities in thes, p, andd waves.
tion of NN phase shifts is an example of this. The exactmN«— 7N amplitude for a given Lagrangian
A number of dynamical models offN scattering have can in principle be obtained from the full BS equation, with
been developed over the past few years. Most begin with &lly dressed propagators in theN intermediate state, and a
potential which is iterated in a Lippman-Schwinger-type potential consisting of all one- and two-patrticle irreducible
equation to give the scattering amplitude, from which theconnected diagrams. By definition this exact amplitude
phase shifts and observables are obtained. This method ewould satisfy both crossing and chiral symmetry, and have
sures that two-body unitarity is respected, and that multiplehe correct one-body limitan equation is said to have the
scattering effects are taken into account. The simplest modsne-body limit if it correctly reduces to either the Klein-
els use separable potentidls-5], in which the parameters Gordon or Dirac equation if the mass of either of the par-
have no physical meaning, and furthermore, different sets dicles becomes infinitely heayyUnfortunately, at present it
parameters are used in each partial wave. While these modatsimpossible to construct the potential for the full BS equa-
provide good descriptions of theN phase shifts, they pro- tion, as it would contain an infinite number of Feynman dia-
vide no information about the interaction process. An altergrams. Consequently the potential and propagators must be
native is to derive a potential from a Lagrangian which de-approximated in some way. The simplest and most com-
scribes the couplings between the various mesons ansonly used approximation involves replacing the dressed
baryons. In tree-level mode|$—10], the potential is unita- propagators in the intermediate states with bare propagators
rized using theK matrix approximation, which relies on the with poles at the physical masses, and truncating the poten-
assumption that for low energies thematrix is equal to the tial so that it contains only the lowest-order diagrams, i.e.,
potential. While this method can provide a good descriptiorthe tree-level diagrams. The resulting equation is generally
of the wN data at low energies, in order to cover a largerreferred to as the ladder BS equation. There are some prob-
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lems with this equation, such as it does not have the corregood description of all the- and p-wave phase shifts, it is
one-body limit[26]. Also some symmetries present in the necessary to include in the potentgalandu-channelN and
approximate potential, such as crossing and chiral symmetry) (1232) poles, and in additiorchannelp and o exchange
may be violated in the solution of the BS equat|@7]. diagrams. All of the recenttN meson-exchange models
The BS equation for therN scattering amplitude is a have included these diagrams, although $zhet al. re-
covariant four-dimensional integral equation, in which theplaced thep and o exchange diagrams with correlated two-
integration is over the relative energy and relative momenpion exchang¢l5]. The model of Schiz was later extended
tum of the 7N intermediate state. It is the presence of the[16] to include the coupling to therA, #N, andoN chan-
relative energy as an integration variable that is responsiblgels, and included the* (1535) pole diagrams in the poten-
for the complicated singularity structure of the kernel. Fre-tial. Pascalutsa and Tjon included the Roper resongtice
quently the BS equation is reduced to a 3D integral equatio@nd later also included th&;; and D,3 resonances as el-
in order to avoid the difficulties involved in the handling of ementary particle poles in the potentidB]. We do not in-
the singularities of the kernel. This is achieved by approxi-clude the Roper or any other higher baryon resonances, or
mating the kernel in such a way that the integration over the¢oupling to channels other thamN, as these contributions
relative energy can be carried out explicitly, resulting in a 3Dare expected to be small for elastitN scattering and at pion
integral equation. There are an infinite number of 3D reducenergies below the Roper resonance. Here we are mainly
tions of the BS equatiof28], all of which satisfy relativistic ~ interested in7N scattering below the two-pion production
elastic two-body unitarity. There is no overwhelming reasonthreshold(around 360 MeV pion laboratory eneigy
to choose one particular 3D approximation over any other. The organization of this paper is as follows. In Sec. Il we
Some of the 3D equations are chosen so as to overconate the Bethe-Salpeter equation and give expressions for
problems caused by approximating the full BS equation witithe dressed vertices and propagators. The Lagrangian and
the ladder approximation. For example, the “smooth propaform factors used in our model, and the choice of spin-3/2
gator” [29], used by Pearce and Jennig4d] and Jale[20],  propagator for thed(1232), are discussed in Sec. Ill. The
attempts to restore chiral symmetry. However, other prob¥enormalization procedure is outlined in Sec. IV, and we
lems are introduced when the dimensionality is reduced fronthen proceed to describe our method of solving the BS equa-
4D to 3D. Pascalutsa and Tjga7] have shown that when tion in Sec. V. Here we also discuss the analytic structure of
the nucleon self-energy is calculated using most of the comthe BS equation. In Sec. VI we present results of fits to the
monly used 3D propagators, there are differences in th&M95 partial wave analysis of Arnét al.[33] from thresh-
renormalization between the positive and negative energgld up to 360 MeV pion laboratory energy. We compare the
states, which is an indication that charge conjugation angoupling constants obtained in the present work to those ob-
CPT symmetries are violated. Another problem is that theréained using models ofrN scattering based on three-
are significant differences in the half-off-shell amplitudes agdimensional reductions of the BS equation. We also discuss
calculated by different 3D reductions of the BS equationhow the phase shifts are built up from the individual dia-
[14], even when they all give the same results on-shell. Thigrams in the potential, and calculate the renormalized pion
could have significant implications, in that it is the off-shell cutoff mass in order to examine the effect of dressing on the
behavior that is important when theN amplitude is used as 7NN form factor. Next we consider a second model which
input into the calculation of other nuclear reactions, such agliffers from the first in the parametrization of the form fac-
pion-nucleus scattering, pion production in nucleon-nucleoriors. We conclude this section by presenting results for the
collisions, or pion photoproduction. phase shifts up to 600 MeV. Finally, in Sec. VII we present
In the present investigation we describe a relativisticsome concluding remarks.
model of wN scattering in which the BS equation is solved
diregtly'i.n four dimensions. In this way we can gvoid the Il. THE BS EQUATION FOR =N SCATTERING
ambiguities encountered in reducing the BS equation to three
dimensions. This we hope will give us coupling constants We consider the scattering process
that could be compared to those extracted from QCD mod-
els, as it has b_een shown that thgre are conS|derabI¢ differ- m(pL)+N(pl) —m(p.) +N(py), 1)
ences in coupling constants obtained using 3D equations as
compared to the BS equati¢80]. More important is the fact i i
that our7N amplitude can be gaugd@1] to give a photo- Where_ p, and py represent_ the incoming four-momen_ta of
production amplitude that satisfies unitarity and gauge infhe pion and nucleon, whil@; and py are the outgoing

variance. four-momenta. The total four-momentuifis given by
To our knowledge there are currently no models based on
the BS equation that give tre andp-wave 7N phase shifts P=p,+pPn=P,+ PN, (2

in good agreement with the empirical data. The only previ-
ous meson-exchange model folN scattering to have used
the four-dimensional BS equation was that of Nieland an
Tjon[32]. Since the potential consisted only of tikehannel
nucleon pole diagram, this model could only give tRg; . L )
phase shifts in agreement with experiment. In order to get a d=z(Pn—Px) 9 =2(PN—P2)- 3

nd the relative four-momenta in the initial and final states
re defined as
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is related to the total energys by P=(4/s,0). In addition,
the Mandelstam variablas andt are given in terms of the
relative momenta as

In the center-of-mas&.m.) frame the total four-momentum @- -

|
|||

S
<
g

’ 2 = + b)
u=(g+q’)% t=(q—q’)> 4 @— _ z @ dg’ @
Having defined the kinematics, the Bethe-Salpeter equa-
tion [19] for the wN«— N amplitude T(q’,q;P) can be @ - +2"" \
written as N AL M B dg
T ! P _V ! P I jd4 NV ’ N-P =TT —— - T — e —
(q 1q1 )_ (q 1q1 )_ (277_)4 q (q 1q ’ ) = + (@

X G "P)T(q",q;P), 5
(A5 PIT(A",a:P) © FIG. 1. Graphical representation @) the BS equation for the

full T matrix, (b) the potential(c) the T matrix in terms of nonpole

whereVis the potential. The two-bodyN propagatoiG .y and pole parts, ant) the BS equation for the nonpolematrix.

is the product of the pion and nucleon propagators, i.e.,

wherel g anddg are the dresse@NB vertex and dressed
1 P/2+¢+my baryon propagator, respectively. The nonpole part ofthe
(P2—q)2—m?+ie (P2+q)2—m’+ie’ matrix Typ is the solution of the BS equation with a potential
(6) consisting of the sum of the- andt-channel poles, i.e.,

GWN(q; P):

wherem,. andmy are the charge-averaged pion and nucleon " a-P)=V " g P)— i f d4a"Vv )
masses. In principle both the nucleon and pion propagators N(G7,0:P)=Viel "6 P) (2m)* a"Vield'.a%P)
in the 7N intermediate states should be dressed. However,

since here we are only requiring that two-body unitarity be XGan(0":P)The(d",a:P). ©
maintained, we have replaced the dressed nucleon and pi . : .
propagators, with bare propagators with poles at the physic%bgguolns(a’ (7, (8), and(9) are shown diagrammatically

nucleon and pion masses.

The potentialV(q’,q;P) is constructed from the sum of
s, t-, andu-channel pole diagramsee Sec. Il It is well
known that when as-channel pole is included in the poten- i
tial of the ladder BS equation, or one of its 3D approxima- I oan(@P)=TQn(a; P)— (277)4f d*q"TQ(a"; P)
tions, the solution of the BS equation also contains an

The dressedrNN vertex is given in terms of the bare
vertex and nonpole part of the matrix as(see Fig. 2

s-channel pole diagram, in which the propagator and vertices X G (9" P)The(Q”, 0 P). (10)
are dressef34]. The potential can be divided into the sum of i
nonpole and pole contributions The bare and dressed nucleon propagators are
V(a',q;P)=Vyp(d',q; P) dP(P)=[P—m+ie] Y, (1D)
+2 TR Py (PIT Re(a;P), (7) dn(P)=[P—m{)—S\(P)+ie] 7, (12
B

wherem(?) is the bare nucleon mass. Also, the nucleon self-
whereI'\Qg is the baremNB vertex, andd{y’ is the bare energys,(P) is given by

propagator for baryorB. At present the only baryons we

include in the potential are the nucleon ah(t1232), and so ] 1 4. 1(0)

we haveB=N,A. The pole part of Eq(7) consists of the —iZN(P) =~ (27)4[ d*q I';zn(a; P)

sum ofs-channel baryon pole diagrams whigs, the non-

pole part of the potential, contains tlie andt-channel ex- xGwN(q;P)FLNN(q;P), (13

change diagrams. With the potential having this form, the
solution of the BS equation can be written in a similar wayand is illustrated in Fig. 3. Making use of EL0), the
as nucleon self-energy can be written as

T(a",9;P)=Tne(q",0; P) C) ="‘ +

+> I'ls(q';P)dg(P)T na(a;P), (8
EB ~nig(d'iP)da(P)T'ie(GiP),  (8) FIG. 2. The equation for the dressedNB vertex.
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FIG. 3. The baryon self-energy.

1
—~iSn(P)=~ (ZW)J d*q I{in(a;P)

X G P)T QL (q;P) -

i
+ Wf dq’d*q ' Q(a’;P)
X G, n(Q";P)Typ(d",0;P)G (a5 P)
XTGP (14 EE e S

The first term in the right-hand-side of E{.4) corresponds
to the one-pion loop dressing of the nucleon, while the sec- FIG. 4. The diagrams included in the potential of the BS equa-
ond term is the contribution arising from the iteration of thetion.
nonpole part of the potential in the BS equatiave refer to

this term as the nonpole contribution to the self-engrgy
Since in therrN intermediate states we have approximated
the dressed nucleon propagator by a bare nucleon propagator
with a pole at the physical nucleon mass, we avoid having to

" )
solve a non-linear Schwinger-Dyson equation for theWherel’bN’ Ys. m p,, ando are the fields for the nucleon,

nucleon self-energy. There are similar expressions to quelta, pion, rho, and sigma, respectively. The derivative cou-

(10) and (13) for the dressedrNA vertex and thed self- plings of the pion field to the other mesons and baryons
ener however. we do not calculate them exolicitly. for ENSUres that chiral symmetry is satisfied at tree-level. In the
reasgxic, given in’Sec IV plctty, 7NA Lagrangian, T is the transition operator between

isospin-3/2 and -1/2 states, arg is a parameter that can be
adjusted, and its value will be considered when we discuss
Il. THE POTENTIAL our choice for theA propagator.
Ideally, all of the coupling constants should be fixed using
The potential, or driving term, which is iterated to all jnformation from other sources, rather than leaving them as
orders in the BS equation to obtain an amplitude satisfyingree parameters. Out of all of the coupling constants appear-
two-body unitarity, consists of all the tree-level Feynmaning in the Lagrangian given in E¢15), the 7NN coupling is
diagrams contributing to the processl— mN, derived from  the pest knowrtalthough even therNN coupling constant is
the interaction Lagrangian under consideration. In this secnot without controversy35,36). We use the value advo-
tion we discuss the Lagrangian used, the coupling constanig;ieq by the Nijmegen grog7], i.e., 92 /A7=13.5. The

in this Lagrangian, and the choice of form factors which argemaining coupling constants can be determined in a variety
necessary to obtain convergence. We also look at the pogjs gifferent ways, but there are some discrepancies.

sible different forms of spin-3/2 propagators that can be used A yajue for themwNA coupling constant can be obtained

for the A. by calculating the width for the decay— #N. The coupling
constant is chosen such that the width is equal to its experi-
A. The Lagrangian mental value.'Assuming 'that the §elf—energy is dominated
, - i by the one-pion loop diagram, it is found thb},NAMw
The tre_e-le_vel dlag_rams shown_ in Fig. 4 are obtained from. 0.36 gives the correct width. This result makes use of the
the following interaction Lagrangian: width calculated on the rea axis, however, it has been

shown that there are differences between widths calculated

gO"IT7T

2m_

od,m ot (15

L‘mswlwg,y“r d, Py on the real axis and in the complex pldi38]. A somewhat
M smaller value forf .y, is found using the quark-model rela-
fna— tion [39]
+ wX(g/.LV+XA7M7v)T¢N"9V7T+H'C'
m 2
g 72l m, 5 16
K, "NAT 25 2my 97NN (16)

+gpNNl/lN%T' ’ylup,u—'—sza-Mva,upV ‘ﬂN

. which gives f2,,/47=0.21 when the Nijmegen value is
T 9prap (3, 7XT)+ gonnNUNT used forg,.nn- This smaller value has also been shown to be
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consistent with the width of th& [40], provided that higher- o 1 1
order mesonic corrections to the self-energy are included (P%?) 0p=0up— 3YaYp™ W(lﬁ)’ap;ﬁ' PaYgsh),
along with the one-pion loop term. (18)

We now consider thg exchange diagram, which depends
only on the producgizgpmgpNN, as well as«,,, the ratio 1 Pabp 1
of the tensor to vectopNN coupling constants. There are a (P}’f)aﬁ=§yayﬁ— —+ F(K&’yapB‘F PaYgh),
number of different ways of determining a value fyy, as P P
originally discussed by Sakurpd1]. If it is assumed that the
isospin-odd7N scattering length is dominated by the tree-
level p exchange diagram, thegﬁ/4rr=3.1 is obtained. Al- (7)%/22) _PaPg (20)
ternatively, it can be assumed that themeson couples to o> p? ’
both pions and nucleons with the same strengthiversal-
ity), which means thag,=g,,,=9,nn. An estimation of o 1
9, Can be obtained from the decay-2m, which gives (PZl)aBZS_F)Z(papB_byapB)v (21)

92,./4m=2.84. A very similar value oy /A7=27 is

given by the Kawarabayashi-Suzuki-RiazGEBin-Fayyazuddin 1
(KSRF) relation[42], which is obtained from current algebra (Pllz)aﬂzs_pz(ppﬂﬁ_ PaPp)- (22

12
and PCAC, and states that>=2g>_ f2, wheref =93

MeV is the pion decay constant. There is some controvers;f_h RS ¢ then b itten in t f th .
about the value ok, . The vector meson dominance model € propagator can then be writien in terms ot the spin

(VMD) gives «,=3.7 [43], while Hohler and Pietarinen projection operators defined above, as

(19

found k,=6.6 from am7—NN partial wave analysif44]. p+m, 2

Although the scalair meson does not seem to exist in Puu(pP)= ﬁpw— —2(p+ mA)P%’ZZ
nature t-channelo exchange is included imN models as an pT—my+ie 3my
effective interaction, representing higher-order processes not
explicitly included in the potential, such as correlated 2 + (P pl2). (23
exchange in the scalar-isoscalar channel. There are therefore V3m,

no reliable determinations of the mass of theneson or the _ _ _
magnitudegor signg of the eNN and o coupling con-  The spin-1/2 background could be considered as being un-

stants. The mass is usually taken to be aroumd 40 6m_.  Physical, since th&(1232) is known experimentally to be a
particle with spin-3/2.

Williams introduced a propagator proportional to the

B. The A propagator spin-3/2 projection operatg#6]
There is an ambiguity as to the choice of propagator for a
particle with spin-3/2, and a number of different propagators P _ p+my 32 o4
have been introduceld5-48. One way of deriving a spin- il P)= p2—m2 +i 67) : (24)

3/2 propagator is to begin with the free Lagrangian for a

massive spin-3/2 field49]. The propagator obtained from The williams and RS propagators are identical when/thie

this Lagrangian has, in its most general form, a pole part angn-mass-shell, since the spin-1/2 components in the RS
a nonpole part. The pole part is unique while the nonpoleyropagator are only present when theis off-mass-shell.
part depends on a complex parameteiWhen the form of  Also, when the Williams propagator is used there are no
the 7NA vertex is chosen correctly, tf®matrix and physi-  contributions to thewN«— =N amplitude arising from the
cal quantities are independent 6f [50]. Taking A=—1  parts of thewNA vertices proportional ta,, .

gives the simplest form for the propagator, and is commonly  There have been attempts to %ix on theoretical grounds.

called the Rarita-SchwingéRS) propagator: Peccei43] suggested that the choigge = — 1/4 ensures that
there is no direct coupling to the spin-1/2 components of the
P. (p)= p+my 9o 17 y RS propagator, but it was later shoWsil] that the spin-1/2
wy p?—mi+ie| “T 37T components are always present, and cannot be removed by

choosing a particular value af, . Nathet al.[49] suggested

that x,=—1 should be used if therNA vertex is to be
) consistent with the principles of second quantization.

The 1p2 factor in the Williams propagator can cause nu-

merical difficulties[7,13]. Pascaluts§47] used the Hamil-
It is known that the RS propagator contains background otonian path-integral formulation to investigate the interacting
off-mass-shell spin-1/2 components, along with the spin-3/Zpin-3/2 field and constructed a theory in which there is no
componen{see, e.g., Ref51]). This becomes evident when coupling to the spin-1/2 components. For the case ofsthe
the RS propagator is written in terms of spin projection op-and u-channel tree-level amplitudes forN scattering, the
erators, which are denoted Wﬂ , and are given by52,51 7NA vertex corresponds to the usuaNA vertex with x,

2

1
- m(hpv_ %I%)‘ﬁp#pv
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=0, and theA propagator is the same as the Williams propa-where A is the cutoff mass, and is an integer. Different
gator but multiplied bypzlmi . This extra factor op? inthe  forms of f(g%) have been used in the various modelsmdf
numerator fixes the problems caused by th# 1érm in the  scattering. An example igl3,14

spin-3/2 projection operator.

We consider two possibilities for th& propagator(i) the N (A2—m?)? "
Rarita-Schwinger propagator and genexr®A vertex, with fu(a) = (A°—m?)?+(m?’—q?)?] ~
Xx as a free parameter afid) the Pascalutsa propagator and
vertex. In both cases th& is treated as a stable particle in The main difference between the two form factbysindf,
the potential, and the width is generated dynamically, sincéies in the analytic structure in the compley plane (note
the bares-channelA pole diagram is dressed when the BS q2=qg_q2)_ The functionf, has two poles along the reay
equation is solved. axis at

(28)

C. Form factors go= i(\/A2+ qz— i€), (29

The integrals in Eq95), (9), (10), and(14) are divergent, ) .
and so a regularization scheme must be implemented in ord&fhile fii has four poles in the complex, plane, located at
to obtain finite results. As is commonly done in meson- ————— >
exchange models, we introduce form factors at each interac- Qo= VAZ£i(A*—m?*)+ ¢ (30
tion vertex. These form factors represent the extended struc-
ture of the particles involved, and will ensure that all The form factors used by Pearce and Jennirigg have a
integrals are convergent by suppressing contributions at highery similar structure td,, in the complexg plane. We note
momenta. Since at present it is not possible to calculate th&atfi (%) always has poles in each of the four quadrants of
appropriate form factors directly from QCD, phenomeno-thedo complex plane, irrespective of the value of(except
logical functions are usually chosen as the form factorswhenA?=m?). We should also mention thf(q?) with n
which have no connection to the underlying quark dynamics=1 could be considered as the propagator for a scalar par-
A consequence of this is that free parameters, the cutoficle with massA, while f,(g%) with n=1 corresponds to
masses that govern the range of suppression, are introductte propagator for a resonance with massand a width
into the model. proportional to A2—m?). It has been shown that when a

In meson-exchange models of tieN interaction, the form factor has the form of a propagator for a resonance with
form factors depend only on the four-momentum squared of constant width, there is a violation of unitarity at all ener-
the exchange particles. This cannot be donerhh models ~ dies, which only becomes evident when a four-dimensional
because, for example, the form factors would provide ndormulation is used53].
convergence for the-channel pole diagrams. We therefore As an example of the problems caused by this violation of
follow Pearce and Jenning41], and make the assumption Uunitarity, we can consider the dressed nucleon propagator. If
that the cutoff function associated with each vertex is a prodthe one-pion loop self-energy diagram is calculated using
uct of form factors that depend on the four-momentumform factors similar tof(q%) at each vertex, it turns out that
squared of each particle present at the vertex.dlhevertex ~ the dressed nucleon has a width. This is of course unphysi-

is therefore given by cal, since the nucleon is well known to be stable particle. As
a result, form factors with poles in the compley plane
Fabc=fabc(q§,q§,q§)vabc, (25 cannot be used to regularize loop diagrams in 4D models.

_ . . . Therefore, here we use form factors of the famin which
where Vg, is the coupling operator obtained from the inter- case the unitarity violations do not occur.

action Lagrangian, Eq15), and the associated form factor is
of the separable form IV. RENORMALIZATION
2 N2 2 2 2 2

fand(d3,05.9c) = fa(a2) fu(ap) fe(dg). (26) As shown in Sec. Il, the bare vertices and propagators
. appearing in thes-channel pole diagrams in the potential

The four-momenta squared of the legs of the vertices argeqome dressed when the potential is iterated in the BS
denoted byq,, g, andqg . I2t is conventional to choose the g ation. A renormalization procedure therefore must be car-
normalization such that(m®) =1, wherem is the mass of (jeq out in order to fix the bare parameters such that the
the corresponding particle. Therefore, at the unphysical poinflenormalized quantities are equal to their physical values.

when all three legs of a vertex are on-mass-shell, the corresince we include form factors at all vertices, the bare masses
sponding product of form factors is equal to one. and coupling constants are finite.

The scalar function$(g?) can essentially be chosen in an
ad hocmanner, since very little is known about the off-mass-
shell behavior of the form factors. One possible choice is the
multipole form factor The 7NN vertex renormalization consta#ty is defined
5 ain in the usual way: the barerNN vertgx Qiffers from the
f (qz):( —-m ) 27) dressed vertex by only a constant, whictZig,, when sand-

! A°—q?) wiched between Dirac spinors and all external legs are

A. The dressed@NN vertex
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placed on-mass-shell. Therefore the vertex renormalization m© = mu — uu m2 39
constant is defined by the relation N M 2 (M), 39
_ — d - -1
U(P)T n(d; P)u(a) =Zu(P) T Rin(a: Pu(a), Zon=| 1— 2my S 8%(s) _ (40)
(3D ds s=m?

with P2=m?, and g? taken such that all three legs of the

In this way we can include both the one-loop and the non-
vertex are on-mass-shell.

pole contributions to the mass shift and wave function renor-
malizationZ,y in a way consistent with the scattering for-
B. The dressed nucleon propagator mulation of the BS equation.
We now turn to the renormalization of the dressed
nucleon propagator. First, Lorentz invariance requires that C. Renormalization of the BS equation
the nucleon self-energy can be written as the sum of a vector

and scalar part, i.e. In the =N amplitude there should be factors ¢, for

each of the external nucleon legs, which result from the ap-
2n(P)=PA(s)+ myB(s), (32)  plication of LSZ reduction54] on the #N«— =N Green’s
function. However, since we are not performing any explicit
whereA(s) andB(s) are functions of only. In order to fix Sz reduction, and we are assuming that the nucleon propa-
the bare nucleon mass, we require that the dressed propaggators in the kernel of the BS equation are bare propagators
tor has a pole at the physical nucleon mass, i.e., with physical masses, the factors ¢,y are not generated,
. PPN and the NN and 7NA couplings are effective coupling
l'msz (P)=0. (33 constants that should be set equal to the physical coupling
SN constants. The only exception is with teehannel pole dia-
Jgrams. In this case, the solution of the BS equation generates
news-channel pole amplitudes in which the baryon propaga-
tors and7NB vertices are dressed. This implies that bare
m®=my[1-A(m3)—B(m3)]. (34 ~masses and coupling constants should be used in the
s-channel pole diagrams in the potential.
The residue of the dressed nucleon propagator at the nucleon In order that therN amplitude has a pole at the physical
pole is defined as the nucleon wave-function renormalizatiomucleon mass, and that the residue at this pole is equal to the

This requirement gives the following expression for the bar
nucleon mass in terms of the functioAsand B:

constantZ,y, i.e., square of the physicatrNN coupling constant, the bare
_ nucleon mass must be fixed by E§9), and the barerNN
IlmZ(P_mN)dN(P):ZZN1 (35 coupling constant fixed using
s—>mN —
98uN= Zin VZang R - (41)

which gives[31]

Hereg(%, is the barerNN coupling constant, ang®y, is

the renormalized coupling constant, which is set equal to the

“experimental” 77NN coupling constant by fixing the value

of g'Q correctly.

,. d ,. d In principle, a similar renormalization procedure should

AT (my) = 5gAS) , BI(my) = 5B(s) : be carried out for the\. However, the pole in th& matrix
s=mg s=mg corresponding to the dressed occurs in the complexs

37 plane, since the dressédhas a width. Therefore, in order to

fix the barerNA coupling constant, it would be necessary to

The above expressions enable the renormalization ConSta'Hﬁalwically continue the BS equation into the compkex
to be c_:a_lculated ea_sily for the case of one—pion loop dreSSin%lane[Ss] Rather than doing this, here bathf® and f(9)
since it is not hard in this case to wrili(P) in terms of the are treated as free parameters. éinceﬁggapartial wanAis

functionsA(s) andB(s). However, if the nonpole contribu- dominated by the-channelA pole diagram, the bara pa-

tions to the nucleon self-energy are taken into account, then . : i
this would not be the simplest method of calculation. wefameters are essentially fixed by tRg; phase shifts. The

) iU o ) position at which the phase shifts go through 90° is deter-
introduce the scalar quantifyy’(s), which is defined as the  ined by the bare mass, and the width of the resonance is
nucleon self-energy sandwiched between Dirac spinors, i.eyg|ated to the barerNA coupling constant.

Zon={1—A(m3)—2m3[ A" (m{)+B' (M) 1} 2, (36)

where

EEU(S):U(P)EN(P)U(P): VSA(S) +myB(s),  (38) V. SOLVING THE BS EQUATION

sinceP=0in the c.m. system. Taking no(;[)e of Eq84), (36), To calculate quantities such as phase shifts and scattering
and(37), the renormalization constants’ andZy can be  |engths, we solve Eq5), i.e., the BS equation with the po-
written in terms of3\'(s) as tential consisting of thes- and u-channelN and A poles as
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well ast-channelp ando exchange. In addition, the dressed
7NN vertex and nucleon self-energy need to be calculate

so that the nucleon renormalization procedure can be per-

formed.

A. Partial wave expansion

The nucleon propagator present in thd& intermediate

PHYSICAL REVIEW C 60 024608

o T GP) = VA’ giP)

i !

— (27)4 E d4qrr V"W(q' q";P)
w

" =u,v

X GYW (" P)TY'"U(q",q; P), (49)

states can be separated into positive and negative energyith w=u, v. There is a similar set of two coupled equations

component$55], which allows us to writeG . in terms of
projection operators

G.n(0;P) =G "(qo,0;8) A *(q) — GYY(do, ;A (— 1),

(42)
whereG" andG" are given by
G™(0o.qis)= o -
O Eq sl2+qp—Eqtie
X ! (43
(Vsl2—qg)?—wi+ie’
G™(do ai5) = -
O Eq sI2+qotEq—ie
1
(44)

X 1
(Vsl2—qo)?— wi+ie

with Eq= g2+ mg and w,=+q>+m2. The positive and

negative energy projection operators can be written in term

of Dirac spinors as

At (@) =2 ur(a)ur(a), (45)
AT(@)== 2 v(@)vi(a). (46)
The normalization of these spinors is defined by

uf (@ur(a) =V (@) (q) =1.

The expansion given above in E@2) is substituted into
the BS equation. Multiplying the BS equation from the left
and right by Dirac spinors yields a pair of coupled integral
equations. If we introduce the notatiosuppressing the
Dirac indice$

TW(q',q;P)=u(q")T(q’,q;P)u(q), (47)

TY(q',q;P)=v(—q")T(q’,q;P)u(q), (48)

and similarly for the potential, the BS equation can be writ-
ten as two coupled equations fof" and TVY:

for the amplitudesT"¥ and TYY, which are required along

with T" and T'" in the calculation o) andZ,y.

We now reduce the number of dimensions from 4 to 2, by
removing the angular dependence using a partial wave ex-
pansion. Including spinor indices again, we can write each
amplitude in the form

AV, P) = x] AV, q;P) Xy » (50)

wherew andw’ are eitheru or v, andy, is a Pauli spinor.
The amplitudeAW’_W can be expanded in terms of partial
wave amplitudes\, " as

AY'™(q5,9';d0,0;5)

=N Mim DAL
jm

96.0":60. &)V im(Q),

(51)

where q=[a|, q'=[q'| and N(q',q)=—(2m)*(q’a) *.
ilso, the generalized Legendre polynomials are given by

Him(@= 2 (AM3mgim)Yim (Dxm, (52
mimg

which are eigenstates of the magnitude of the total angular-
momentum operataj?, its z component),, the magnitude

of the orbital angular-momentum operatof, and the mag-
nitude of the spin operatd®?. The partial wave amplitude
can be written in terms of the original amplitude as

w'w
A,

] (dp,9":d0,0;S)

=—— fdd'ddy.*jm@')Z\W’W(qa,q’:qo,q;s>
N(a’,q)

X Wrjm(Q). (53

Applying the partial wave decomposition to the BS equation
and making use of the orthogonality of the generalized Leg-
endre polynomials, we obtain
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TH(d5,0"00,0;) Q= on(q)=—si2— JqZ+mi+ie,  (59)

which corresponds to the negative energy nucleon pole. If
Js>2m,, it is possible forw_ to be in the first quadrant for

=V}ii(d0,4";90,4;9)

. N vy 0<q"<hay, Whereqh,=\/s/4—m>. The positive energy
+ 2 %d%fo dq”Vij(do.0";do.a":S) nucleon polew;; can move into the third quadrant fafs
W_’“"’ B >2my . Therefore, if we stay below c.m. energies of,
XGW"W"(qg,qH;S)TwT]_UI(qg,q";qqu;S% (54)  we only need to pick up the residues from the positive en-
B ergy pion propagator pole. The residues @f'(qy,q";s)
TV (00.0':00.9;S) andG**(dg,q";s) atag=w,(q") are
= — m 1
=V\7,(96,9';do.0;S) GUYq";s)=— —— , (59
! lll 0 0 e q ) 2Eqquu (\/g_ Eqrr_wqrr+i€)
P> %dqééfo dg” V', (a6.9"95.9";5) _ my 1
vy Gredd";s)=— (60)

wWwW " W’ " 1 2E ZORY (\/§+E n— W //) .
XGY"(qp,9";9) T} (5,9 9o, q: 9)- (59) e e

_ We now consider the singularities of all the diagrams

Note that the amplitudat,\,”l‘fj is diagonal inl, i.e.,I=1", due  present in the potential. First, note that the partial wave po-

. . . 10 tentials have the form
to parity conservation, however, amplitudes suchA#é., entials have the fo

which involve transitions between positive and negative en- -
ergy nucleon states, are not diagonal.ifach partial wave  Vii(qq.q';qg ,q"-s):—f
amplitudeT" is labeled by the orbital angular momentiim N(q",q") /-1
the total angular momentuin wherej=1+ 3, and the total

' dx( P,(x)f¥4(s,t,u)

isospinl, with 1 =% or I =3, LA P () f(s t,u) |, (61)
que'qu
B. Analytic structure
— 1 " _
At this stage it is necessary to examine the analytic Struc\/ﬁ‘fj,(qé,q’;qg q//.s):%f dx q—P|(x)f§"(s,t,u)
ture of the partial wave BS equations. We will carry out a N(g',q") /-1 \eg

Wick rotation[56], and analytically continue theN ampli- )
H ! n H . —

fcude in theqp and g var!ables. from the real axis to the_ +q—P|,(x)f§"(s,t,u) ’ (62)
imaginary axis. Before doing this, we must examine the sin- €q
gularity structure of the kernels of Eq&4) and(55) in the
qo plane, to make sure that there are no poles or cuts th@&herex=&’-&” and e;=E4+my. The forms of the partial
could interfere with the Wick rotation. The residues of any\yave potentials corresponding " andV'! are very simi-
poles present in the first and third quadrants need to bg,, o Egs.(61) and (62), respectively. For thes-channel
picked up, since we rotate th# integration contour from . ww 2 o

. . ) o . . . ___baryon pole diagrams we havg " e«1/(s—mg) with i
the real axis to the imaginary axis in an anticlockwise direc-" 1.2 Theref th | Ivtic structure in t
tion. The presence of form factors in the potential ensures_I ' .I ere 0(;6' debonéiﬂay 'Cls r?c;re in hé C%m'
that the kernel is well behaved asymptotically, and as a resu ex plane produced by t annel pole diagrams is due to

the form factors on the external pion and nucleon legs, which

there is no contribution from the contour at infinity. There il look hortly. H for th dt-ch |
are three sources of analytic structure that we need to exanit® Wil 100 at shortly. However, for ther- andt-channe
€'""oc1/(z—m?), wherez=u or t, and so

ine: (i) the wN intermediate statdji) the potential, in which ~diagrams we hav.
there are poles from the both the exchange particle propagane functionsf"" in this case depend oy . After carrying

tors and the form factors, ar(di) the #N T matrix itself. out thex integration in Eqs(61) and(62), the partial wave
The poles of therN two-body propagato6“(qg,q”;s) potentials corresponding to the and t-channel pole dia-
in the complexqg, plane are located at grams will involve terms such as
Qo= wn(0")=—s/2+ g2 +mi—~ie,  (56) | Got 740)° = (A’ +7q")?—m’+ie €3
. (do+ 7dp)>—(q' = 7q")’~m*+ie/’
dh=w;(q)=\s27 (Jg'Z+m’~ie),  (57) o

where m is the mass of the exchanged particle, and
corresponding to the positive energy nucleon pole, and thg=1 (—1) for the u-channel {-channel poles. Terms such
positive and negative energy pion poles, respectivelyas these generate logarithmic branch cuts irgthglane. For
G"(q3,9";s) has poles atjj=w_, , and at the u-channel pole diagrams, the branch points are at
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ag= _q(f)i[,/(qriq")2+ mé—ie], (64) curs in theqg plane of T(q",q;P) which appears in the in-
tegrand of the BS equation. As the BS equation is iterated a
whereB=N or A. The analytic structure for thechannel hierarchy of branch cuts are generated. Higher order branch
exchange diagrams is very similar, namely, there are branchts arise from the pinching between lower order branch cuts

points at and the singularities of theN intermediate state and poten-
tial. The positions of most of these cuts dependgipnand
quqéi[m_ i, (65 SO do not cross the integration contour when bothghand
qo axes are rotated. However, some of the higher order
whereA=p or o. branch cuts do not depend gg and so are not removed by

Notice that in Eqgs.(64) and (65) the positions of the @ Wick rotation. If any pair of these cuts in thg plane
branch points in the, plane depend on the external variable Protrude into both the first and third quadrants simulta-
a5 unlike the poles of therN intermediate state. Singulari- N€OUSly, @ simple Wick rotation becomes no longer possible.
ties that depend ony, are removed by the Wick rotation, Also, smgu!anues pmchmg thgy integration contour can
since as well as rotating thg, integration contour from the produce cuts in the/s pIape, ie., _thresholds. If these thresh-
real to the imaginary axis, we analytically continue thi olds are generated by singularities other than those from the

: . . S, form factors, they correspond to physical processes. The
amplitude to the imaginary axis oy, . The branch cuts move :
) . owest-energy physical thresholds are at
away from the integration contour as we rotate from the rea
to the imaginary axis, and in fact the branch points always \/§=m +m
. . . N T
stay a distancen away from the integration contour, where
m is the mass of the exchange particle.
Next we consider the singularities of the form factors. The
form factors corresponding to the external pion and nucleon Js= my+2m,_,
legs haventh order poles at

do=—Vs/l2= (Vg +A§—ie), (66) , | _ |
However, if a cut in the/s plane is generated by the pinch-
. vl ing of a form factor pole and another singularity, the thresh-
9= Vsf2:+ qFALe), 67 old is unphysical, since the cutoff mass does not correspond
to the mass of a physical particle. Some examples of the

when the functional form given in EqR7) is used. The order \nyhysical thresholds generated by the BS equation include
of the poles depends on the choice for the form factor pow-

s=my+2m_,

Js=my+m_+m,.

ers, i.e.,,n, and ny. To guarantee that these form factor \/ngN+ m,,
poles do not interfere with the Wick rotation, we require that

they do not move into the first or third quadrants of tije Vs=my+A
plane. This means that we must hays<2A ., and \/s

<2Ay. Note that if form factors of the type given in Eq. Vs=Ap+A,,

(28) were being used, there would be poles from each form

factor in both the first and third quadrants. JYs=my+m, +A,.

As a next step we look at the singularities in the form
factors corresponding to the exchange particles. For th&/e therefore have to make sure that the cutoff masses are
u-channel exchange diagrams there are branch points at chosen to be large enough so that the unphysical thresholds
occur above the highest c.m. energy for which we will solve
r——qh=[V(a' =q")2+ A2—ie], 68 the BS equation.
do %o=lvia’=a") s lel 69 In summary, the BS equation can be solved#d{ scat-
tering with our choice of form factors using a Wick rotation,
provided that the cutoff masses are not too small. There are
three conditions on the minimum values of the cutoff
w_ P e A massesi) there are no form factor poles in the first or third
d5=do*[V(a'+q")*+Ax~ie], (69 quadrants of they plane, (i) any cuts produced by the
) pinching between form factor poles and other singularities
whereA=p or 0. All of these branch points are removed by are also not in the first or third quadrants, and findiiy all
the Wick rotation, due to thg, dependence. unphysical thresholds, which are generated by the form fac-
The remaining source of singularities which must be Con-torsy are far away from the energy region in which we are
sidered is thel matrix, i.e., the solution of the BS equation. interested. The minimum values for the cutoff masses that
This can be done by looking at what happens as the potentighn be used in the BS equation are given in Table I. Here we
is iterated in the BS equation. Singularities in tfieplane of  have assumed that the two-pion production threshold is the
T(q',q;P) are generated by pairs of poles pinching tfie  maximum c.m. energy for which we will solve the BS equa-
integration contour. This analytic structure therefore also oction.

where agairB=N or A. Finally for thet-channel diagrams
there are branch points at
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TABLE I. The minimum allowed values of the cutoff masses in from the form factors in each quadrant of th@ plane.
terms of the nucleon and pion masses.

C. Wick rotation

Cutoff mass Minimum value
Having looked at the analytic structure of the kernel of the
A My+3m, partial wave BS equation, we are now in a position to per-
Ay M+ 3m;, form a Wick rotation on Eqs(54) and (55), by making the
Ar (my+3m,)/2 substitutions
A, (my+m,)/2
A, (my+m_)/2 do—idy, dg—idg, (70

and picking up the residues from any poles in the first or
If form factors of the type given in Eq28) are used, itis third quadrants of the compley plane. After Wick rotation,
not possible to prevent the form factor singularities fromthe partial wave BS equation becomes a system of four
interfering with the Wick rotation by making any appropriate coupled integral equations. The first two equations for the
choices for the cutoff masses. There will always be polesalf-off-shell T matrix are

u

Thi(i96.a":d0,0:5) = Viji(idg,0':d0, 0iS)
-2 ddéfo da” Vi (i95,a'5i05,9":5)G" " (iag,q":9) T/ (195,97 00,0;S)
w’'=uyv 7%
_ 2 quaxdq// V|u|vaJ”| (iq(/)'q/;w;(qn),q//;S)G\r,(VE/'SWH(q//;S)T:A:’l’jul (w:(q//),q/l;ao,as)' (71)
w’=u,v

T/ (id6,9'500,0:5)= V), (id5.,0";0o,;S)

- 2> dQSfO dq” V)Y, (i96.9'5i95,9":9)G"" (iqg,q";9) T/, (1950”00, S)

w’'=uyv Y~

2 OQmaxdqu V?/’W”’; (IQ6 ,Q’;w;(qﬁ)aqﬂiS)G‘r'g,sw"(q";S)T}Nyl;ju, (w:(qn)’qn;ao -&5)- (72)

w”=u,v

In the above we have put the pion and nucleon in the initiations develops an imaginary part. This is due to a logarithmic
state on-mass-shell. The on-shell relative momenta are daingularity moving into the integration region, and must be
noted byq, andq, and are given by handled carefully to ensure numerically stable results. We do
this by carrying out a subtraction similar to Rg57]. There
— 1 P 5 \/_2 5 are no additional singularities caused by the form factors
QO:§( qQ°+my— Vg +mz) (73 pelow the two-pion production threshold, provided the cutoff
masses are chosen to be larger than the values given in
and Table l.
Above \s=2(m,+m,) a cut in theqy plane, generated
— [s—(my+m,)2][s— (my—m,_)?] by the pinching of the integration contour between the
q= \/ 4s . (74 positive-energy pion pole and the meson propagator,
moves into the first quadrant. Therefore, above this value of
There are two additional equatiofissually referred to as the the c.m. energy, it would become necessary to take this ad-
“auxiliary equations’) which are necessary in order to have ditional singularity into account when carrying out the Wick
a closed system of equations to solve: they are Efg.and  fotation. Here we consider c.m. energies belgs~=2(m,
(72) with iqg replaced withw ! (q'). +m,).
Finally, it is necessary to look at each term present in the
potentials to check whether there are any remaining singu-
larities after Wick rotation. For energies above the pion pro- ) ]
duction threshold, the-channel nucleon pole present in the  In order to determine therN phase shifts, the on-shell
potential in the one-dimensional parts of the auxiliary equaamplitudeT}jf(qo,q;qo,q;s) needs to be calculated. This is

D. Calculation of the phase shifts
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done by analytic continuation of the half-off-shell amplitude  TABLE Il. The coupling constants and particle masses obtained
to the on-shell point. In practice, the on-sh&limatrix is  using the Rarita-SchwingdRS) and PascalutséPas A propaga-
obtained using Eq(71), with both the incoming and outgo- tors. The quantities in boldface were varied in the fits. All masses
ing particles on-mass shell. B are in GeV.

The wN two-body propagatoB,eyq”;s) has a pole when
the plon and nucleon are propagating on-shell, which occurs

Coupllng constants RS Pas

for g"=gq. This pole is related to the two-body unitarity cut. 95nw/4m 135 135
For energies above theN threshold we need to take care of 953&@477 1.80 121
this pole so as to obtain equations that can be solved numeriz /4 0.365 0.741
cally. We achieve this by writingse{q";s) in terms of a f(on)li/477 0.37 0.193
principal-value part and an imaginary on-shell contribution, XA -0.11
ie., g, 2|4Am 2.88 2.73
K, 2.66 4.11
my P GomnGonnld -0.41 —-3.80
GlYq";s)=— NG
2Eqwq (VS™Eq—aq) Masses
AL PO 75 M 0.939 0.939
2qys m® 1.34 1.72
1.232 1.232
whereP denotes that the principal-value prescription shouldm(O) 2305 260
be used when thg" integration is performed. m, 0.138 0.138
The 7N phase shiftsg;, anq the |nelast|p|ties_yy,j| are  m 0.769 0.769
obtained from the on-shell partial waWematrix using m, 0.65 0.69
G = —s{ py € -1 Ay 3.17 4.90
Tij1 (90,900, :S) = A\ 2ig ) (76) AA P 220
1.77 1.76
The behavior at threshold is more conveniently described nA 367 306
terms of scattering lengths and volumes, which are deflneg 1.30 4.26
by the effective range expansion
H2l+1 _ 1 1 ‘"2 ;
q cotdy;, —;“Jr >Mid +oee (77 from the VPl SM95 partial wave analydi83]. We carry out

one fit using the Rarita-Schwingdrpropagator, and another
Here ay; is the scattering length and;, is the effective usin_g the Pascalutsa propagator_. The_coupling constants and
range. particle masses for both fits are listed in Table Il. The result-
ing scattering lengths and volumes are given in Table Ill, and
the phase shifts are shown in Fig. 5. We see that the BS
equation gives a good description of théN phase shifts.

A. Fits to the empirical #N data Notice that the results for the phase shifts in Bhg partial

We begin this section by listing the free parameters in ouvave are better when the Rarita-Schwingepropagator is

model. The five cutoff massea\(, Ay, A, A,, andA ) sed. .

are free, but are constrained to be larger than the minimum AS ¢an be seen in Table I, the values®f..gony de-
values given in Table I. Due to the uncertainty in the valued€'Mined from both fits have negative signs, which means
of the coupling constants other thgpyy, We permitf _ya ,

Xas 9, K, @NAQ, - -9,nn tO Vary freely. The mass of the TABLE lll. Scattering lengths and volumes obtained from the
meson, the bara massm{”’, and the barerNA coupling ~ BS equation in units ofn;®*Y  compared to results from the
constann‘gf) )4 are also allowed to vary freely, althought? ~ SM95[33] and KH80[58] =N partial wave analyses.

and f(3), are essentially fixed by thBy; phase shifts. The

VI. NUMERICAL RESULTS

bare nucleon mass’ and the barerNN coupling constant 1212 BS RS BS (Pa3 SM9S KHB8O
g'Qy are not free parameters, but are determined by the Sy, 0.177 0.172 0.175 0.173
renormalization procedure outlined in Sec. IV. We use the S, —-0.101 —0.105 —-0.087 —-0.101
valuen,=1 for all the form factor powers, however it turns Py, —-0.083 —0.058 —0.068 —0.081
out that this choice is not crucial to the quality of the fit. Pis —-0.032 —-0.031 —0.022 —0.030
The free parameters are determinegfrfits to thes and Pay —-0.041 —0.041 —0.039 —0.045
p wave single-energy phase shifts up to 360 MeV pion labo- p_, 0.178 0.187 0.209 0.214

ratory energy, as well as the scattering lengths and volu
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FIG. 5. The phase shifts ob-
tained from the BS equation
shown versus the pion laboratory
B (Vo) YA S energy, using the Rarita-
SchwingerA propagator(—) and
PascalutsaA propagator (— —).

0 50 100

i Pss e Data points from the VPl SM95
120 partial wave analysis are also
100 shown.
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that theo contribution is repulsive in thewaves and attrac- —0.41<x,<—0.11. All the models listed give similar val-
tive in thep waves, as was also found in Refi$5,17. Note  ues forg?, and the values oy} all lie in the range 2.5
that we have used a low value for theNN coupling con- <g§/477<3.36. Our values are consistent with the KSRF
stant, i.e.,g2,\/47=13.5. We have repeated the fits using relation[42] and the value found from the width of the pi-
g%\n/47=14.3 and found that the results are very similar toonic decay of thep meson. There is a large range of values
those shown in Fig. 5. Also, there are no significant differ-for «,, which vary between 1.44 and 6.6. Our valuergf
ences between the coupling constants obtained from the fits 2.66 using the RS propagator is smaller than the VMD
using ngNN/477=13.5 andngNN/4rr=14.3. result ofx,=3.7, and we get a value slightly larger than the
In Table IV we compare our coupling constants to thoseVMD result (x,=4.11) when we use the Pascalutda
extracted frommN models based on thi€-matrix approxi- propagator. This suggests that within the uncertainty from
mation and 3D reductions of the BS equation. Our couplinghe A propagator, we are consistent with vector meson domi-
constants are in general consistent with those obtained fromance.
other models ofrN scattering. We note thdfy /4 is in While we are to get a better fit to theN phase shifts
the range 0.35 to 0.43 for all equations, except for the BSusing the Rarita-Schwingek propagator than when using
equation when the Pascalut§gpropagator is used, in which the Pascalutsa propagator, this does not necessarily suggest
case therNA coupling constant is about twice as large asthat the Rarita-Schwinger propagator is the correct spin-3/2
the commonly accepted value. Our valuexgfis similar to ~ propagator. Other processes not included in the present
those found in other models, and they are all in the rangénodel can give attractive contributions to tiRg; partial
wave, such as the coupling to th\ channel or the inclu-
TABLE IV. Comparison between coupling constants obtainedsion of theN* (1440) resonance into the potential. More im-
from the Bethe-Salpete(BS), equal-time (ET), smooth (Sm), portant is the observation that the different choices forAhe
Blankenbecler-SugdBbS), KadyshevskyKa) equations, and tree- propagator give rise to differences in the coupling constants.

level (Tr) calculations. This highlights the importance of having a better understand-
ing of how to construct propagators for higher-spin particles.
f2naldm Xa g;/Am  k,  Equation Ref. Having compared results using two different choices for the
0.365 011 88 266 BSRS this work A prqpagator, hereafter we restrict ourselves to the Rarita-
0.741 273 426 BSPag thiswork  SChWinger propagator.
0.35 -0.3 25 3.7 ET [17] o _
0.43 285 18 ET [18] B. Contributions to the phase shifts
0.36 -0.12 3.13 2.25 Sm [11] In Fig. 6 we show how the total phase shifts are built up
0.36 —-0.41 290 144 BbS [11] from the contributions of the individual Feynman diagrams
0.40 -0.21 3.36 6.6 Ka [14] in the potential. Theai-channel nucleon pole is strongest in
0.36 -0.31 3.03 3.16 Tr [11] the S3; and P55 partial waves, but also gives important con-
0.36 3.1 27 Tr [18] tributions toP,3 and P5;. The s-channel nucleon pole gen-

erates the repulsion in thHe;; phase shifts, and gives a very
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small contribution taS;;. Theu-channelA diagram plays a pole and thep exchange diagram. o
very important role in all partial waves excepy; and Pas, The u-channel nucleon pole is strong and repulsive in the
as it gives a large repulsive contribution 8,, and gives 13 @nd Ps; partial waves. In fact, by itself, tha-channel
strong attractive contributions t8;;, P;s, and Ps;. The nucleon pole almost gives the corréty; phase shifts. How-

s-channelA pole diagram dominates th®;; phase shifts, but ever, thep exchang_e diagram gives a large repylsive contri-
also gives an important contribution to tig, partial wave, bution to Py, causing the phase shifts to deviate strongly

and a tiny contribution tc,,. The contributions from the from the phase shift analysis. The attraction provided by the

; u-channelA pole to P3; almost cancels the contribution
s-channelA pole 10 S, and Py, result from the spin-1/2 o0 hjetely. Similarly, theP,s phase shifts are far too repul-

components of the Rarita-Schwinger propagator. fhex-  gjye without the strong attraction produced by thehannel
change contributions are largest in thevaves, but are also  p pole. TheP4; phase shifts are of course dominated by the

significant in thep waves except foPg3. Likewise, o €x- g channelA pole, with the background contribution prima-
change is stronger in thewaves than th@ waves, although rily coming from theu-channel nucleon pole.

the o exchange contributions are quite small in all partial

waves. :
. . C. Dressing of themwNN vertex
The S;; phase shifts are dominated pyexchange and the _ 9 ﬁ _
u-channelA pole. By itself, the attraction generated py As can be seen in Table Il, the cutoff masses we obtain

exchange is far too strong, but is partially cancelled by thdurn out to be quite large. This results in the dressing being

repulsiveu-channelA pole. Except for the-channel nucleon  Very significant, as is evident from the large size of the bare

pole, all of the diagrams contributing to ti$g; phase shifts N andA masses. In view of the significance of the dressing,

are repulsive. The largest contributions to this repulsiorit is interesting to examine the effect of dressing on N

come fromp exchange and the spin-1/2 components of thdform factor. When both nucleons in the bardIN vertex are

s-channelA pole. placed on-mass-shell, the bar& N vertex only involves the
The s-channel nucleon pole causes g phase shifts to  pion form factor, and is given by

be negative at low energies. The attraction that causes the (o) T

phase shifts to change sign is dominated byutehannelA I7Kin (0o, 8:8) = (a7)V Znn(do,a;S), (78
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wheres= mlz\‘ , andqf, is the four-momentum squared of the ~ TABLE V. The coupling constants and particle masses resulting

pion. The bare pion form factor is from fits to thewrN data_ using different_ values wa- The param-
eters from the model | fit using the Rarita-Schwinger propagator are
A2—m2\ " also shown for comparison. The quantities in boldface were varied
fﬂ(qi) = =7 , (79 in the fits. All masses are in GeV. Particle masses not given are the
A2—q? same as those given in Table II.

and we taken,=1. The renormalized pion form factor can Coupling constants n_=2 n_=4 n,=10 Model (RS
then be introduced as

g2anldm 135 13.5 13.5 13.5
o FEL&N(qo,q;S) gé?,&ﬁ/% 4.23 4.68 5.98 1.80
D) =Zinoo | 80)  fiyul4m 0365 0365 0.371 0.365
(o, 8iS) [, £02 /470 017 020  0.196 0.37
Xa -0.13 -0.24 -0.8 -0.11
which has the property thaf(m2)=1, and wherey, andq ~ 9;/47 267 263 2.80 2.88
are related to the pion four-momentum squared by Kp 2.18 2.03 2.15 2.66
Yo mnDonnlAT 086 039 048  —0.41
_ 1 2 2
Clo—z—mN(mN—qw), (8))  Masses
m{® 1.18 1.14 1.11 1.34
1 ) q’ m{®) 1.495  1.492  1.435 2.305
=5V m_ﬁl_‘l ' (82) m, 088 062  0.64 0.65
A, 1.34 1.85 273 1.77

In Eq. (80) we have taken th&,, partial wave of the quan-

tities I'7\n(do.0:S) andV 7 n(Go.0;S). By comparing the  from fits to the on-shell=N data, corresponding to the
slope of the functiorf(g?) atq%=0 with a monopole form  choicesn.=2, n,=4, andn,=10. The resulting phase
factor with cutoff mass\Y, we can obtain a value for the shifts are all of the same quality as the results using the
renormalized pion cutoff mass. We find tha,l\i Rarita-SchwingerA propagator shown in Fig. 5. The cou-
=1.22 GeV, which is softer than the bare pion form factorpling constants resulting from the three model Il fits are
(recall thatA ,=1.77 GeV. This is consistent with previous similar to the coupling constants obtained using model I,
calculations[59-61], which have found that dressed form although «, is smaller in model Il than in model I, and
factors are softer than the corresponding bare form factorsg, ,-9,nn has a positive sign, whereas in model | it is nega-
We can introduce the quantitk, as a measure of the tive. As with model I, there are no significant changes to the
variation between the renormalized pion form factorq?;;t quality of the fits or values of the coupling constants ob-
=m? andg2=0, i.e., tained when the fits are repeated usifg,,/47=14.3 as
the physicalwrNN coupling constant.
A,=1—1%0). (83 The main difference between the two models is that in
model Il the effect of dressing is not as significant as in
We find thatA _=1.3%), which indicates that our dressed model I. The bare baryon masses are much closer to the
7NN form factor is a very slowly varying function of the physical masses. The renormalized pion cutoff masses and
pion mass. Our value oA, is somewhat smaller than the values ofA . for model Il are given in Table VI. We see that
value of 3% obtained using other methdég]. the values ofAi are smaller than in model I, and are close to
the value ofAR~0.8 GeV advocated by some auth{és].

. . The values ofA . are consistent with previous calculations
With the choice of form factors we have used so(feare- [62] of the difference betweefﬁ(mz) and fR(0).

after referred to as mode), Ithe effect of dressing is signifi-
cant. We now consider the case where there is a form factor
only on the pion(referred to as model)ll which is arrived at
from the parametrization of form factors used in model | by In order to see what happens at energies above the 2
taking the limit A,—» for h=N, A, p, ande. With this  production threshold, we show the phase shifts up to 600
choice of form factor there is only one cutoff mass, rather
than 5, and so the number of free parameters is reduced by
All intermediate states contain the pion propagator, an
therefore a cutoff function still appears in all loop diagrams

D. Different choice of form factors

E. Above the 2 production threshold

4. TABLE V1. The renormalized pion cutoff massas’ (in GeV)
dar'ld values ofA , (expressed as percentages

. . . n,=2 n,=4 n,=10
to provide convergence. In model Il the pion form factor is
used to vary the off-mass-shell behavior of the pion. This inA® 0.874 0.868 0.822
principle could be constrained by the soft-pion theorems. A _ 2.47% 2.51% 2.79%

In Table V we show three sets of parameters obtained
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FIG. 7. The phase shifts ob-
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MeV pion laboratory energy in Fig. 7. The results from nance into the potential would be necessary to improve the
model Il were obtained using,.=4. In the P;; and P33 P44 phase shifts above 450 MeV.
partial waves both models give almost identical results, but
there are some differences between models | and Il in the VII. CONCLUSION
higher energy region in the other partial waves.

Both theP,5; and P53, phase shifts are quite good over the
full range of energies, which is a reflection of the fact that
below 600 MeV there are no resonances in these parti

waves and the inelasticity is negligible. We require a Iittlenucleons the\ (1232 and thep and o mesons. The poten-
more attraction at the higher energies in 8@ and Pss  yj5) optained from this Lagrangian consists sf and

partial waves, while a significant amount of additional attrac-,_-hannelN and A pole diagrams as well @schannelp and

tion is required forS,, above 300 MeV, and foPy; above ;. exchanges. Convergence of all integrals is guaranteed by
around 450 MeV. the use of cutoff functions associated with each vertex. Two
It is not unexpected that there are some discrepancies iflifferent parametrizations of the cutoff functions were con-
the higher energy region. Here tBg, andPy; partial waves  sidered: in model | the cutoff function was taken to be a
exhibit resonance behavior not included in the presenproduct of form factors depending on the four-momentum
model. There are a number of modifications that could b&quared of each particle present at the vertex. In model Il the
made to our model in order to improve the agreement withcutoff function was taken to depend only on the pion four-
experiment for this larger energy range. First, it may be necmomentum squared. The parameters of the potential were
essary for three-body unitarity to be satisfied. Amongst otheadjusted to fit the empirica andp-wave phase shifts up to
things, this will involve replacing the nucleon propagator ina pion laboratory kinetic energy of 360 MeV. Both models
the N intermediate states with a dressed propagator. Exgive good fits to therN scattering data, and the resulting
tending the model to include the coupling to inelastic chancoupling constants are consistent with the commonly ac-
nels and the possible addition of explicit nucleon resonancesepted values extracted from other observables.
into the potential will be essential at energies above 360 While most of our results were for the Rarita-Schwinger
MeV. To fully understand therN amplitude at these ener- A propagator, we compared the results of fits performed us-
gies, the coupling to inelastic channels must first be includedng the Rarita-Schwinger and Pascalutsa propagators for the
and if the fit to the phase shifts is still unsatisfactory, explicitcase of the model | form factors. The differences in the cou-
bareN* baryon poles may need to be included in the potenpling constants obtained suggests that a complete under-
tial. standing of the baryon resonances with higher spin is not
The S;; partial wave would be improved by the inclusion possible without having unique higher-spin propagators.
of the coupling to theyN channel, and als&,; resonances The good fits to the on-shettN data for energies below
such as theN*(1535) andN* (1650) may need to be in- 360 MeV suggests that a model of thé\ interaction based
cluded in the potential. The coupling to theA and oN on the Bethe-Salpeter equation could form the basis for the
channels and possibly the inclusion of tNé& (1440) reso- analysis of pion photoproduction by the propéfl) gaug-

In this work we have presented a description of pion-
nucleon scattering based on the four-dimensional Bethe-
alpeter equation. The kernel of the equation is based on a
hiral Lagrangian that includes in addition to pions and
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ing of the Lagrangiari31], and the analysis of the baryon Dashen poini64|, and the changes in theN sigma term as
resonances near and above the threshold for pion productioone goes from the Weinberg point, where the four-momenta
In fact, by extending the calculations to pion energies up taf the pions is zero, to the Cheng-Dashen point, where the
600 MeV, we observe that in partial waves that do not havéjions are on-mass-shell. This question is presently being ex-
large inelasticities and do not exhibit evidence of baryonamined and could shed some light on the inconsistencies
states, both our models give good representations of the datgetween the “observed®  andoy as extracted from QCD
For partial waves with large inelasticity there is also evi-models.
dence for baryon resonances, and as a result we need 1o |t js clear from the work presented here that constraints on
include first the coupling to inelastic channels, and then inthe coupling constants and form factors need to be improved
clude bare baryon states into the potential if necessary.  pefore it can be established whether or not the present po-
Although we have not included full three-body unitarity, tential includes all the physics ofN scattering at low ener-
which would require the dressing of the nucleon propagatorgies. We are of the opinion that such constraints, particularly

three-body unitarity resulting from the fact that we have noth55ed models.

carried out any three-dimensional reduction, and as such our
potentials depend on the relative energy. The inclusion of the
dressed nucleon in theN intermediate states will increase
the number of coupled channels, and is under investigation.

By calculating off-mass-shelirN amplitudes using the We acknowledge the financial support of the Australian
Bethe-Salpeter equation we can examine the low energResearch Council. We are also indebted to the South Austra-
theorems, and study the questions associated with the anian Center for Parallel Computing for access to their com-
lytic continuation of the physicalrN data to the Cheng- puting facilities.
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