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Solution of the Bethe-Salpeter equation for pion-nucleon scattering
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A relativistic description of pion-nucleon scattering based on the four-dimensional Bethe-Salpeter equation
is presented. The kernel of the equation consists ofs- andu-channel nucleon andD(1232) pole diagrams, as
well asr ands exchange in thet channel. The Bethe-Salpeter equation is solved by means of a Wick rotation,
and good fits are obtained to thes- andp-wavepN phase shifts up to 360 MeV pion laboratory energy. The
coupling constants determined by the fits are consistent with the commonly accepted values in the literature.
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I. INTRODUCTION

Pion-nucleon (pN) scattering is an important example
a strong interaction, and as such plays a significant role
many nuclear reactions involving pions, the most interest
example in recent years being pion photoproduction. I
generally accepted that the fundamental theory of strong
teractions is quantum chromodynamics~QCD!, and therefore
a theory describingpN scattering should ideally be derive
from QCD. However, due to the nonperturbative nature
confinement, QCD has not been amiable to solutions for
and intermediate energies, and hence it is necessary to u
effective theory. In principle the effective theory should
as close as possible to the fundamental one, and so sh
satisfy the same symmetries, in particular chiral symme
which is known to be important for low-energy physic
Therefore, in place of the QCD Lagrangian a chiral
invariant hadronic Lagrangian is used, where the degree
freedom are mesons and baryons rather than quarks and
ons. For low energies it is expected that the detailed qu
structure of hadrons is relatively unimportant, and that i
only at very high energies that explicit quark degrees of fr
dom are essential. The great success of meson-exch
models for nucleon-nucleon (NN) scattering in the descrip
tion of NN phase shifts is an example of this.

A number of dynamical models ofpN scattering have
been developed over the past few years. Most begin wi
potential which is iterated in a Lippman-Schwinger-ty
equation to give the scattering amplitude, from which t
phase shifts and observables are obtained. This method
sures that two-body unitarity is respected, and that mult
scattering effects are taken into account. The simplest m
els use separable potentials@1–5#, in which the parameters
have no physical meaning, and furthermore, different set
parameters are used in each partial wave. While these mo
provide good descriptions of thepN phase shifts, they pro
vide no information about the interaction process. An alt
native is to derive a potential from a Lagrangian which d
scribes the couplings between the various mesons
baryons. In tree-level models@6–10#, the potential is unita-
rized using theK matrix approximation, which relies on th
assumption that for low energies theK matrix is equal to the
potential. While this method can provide a good descript
of the pN data at low energies, in order to cover a larg
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region of energies and to be able to investigate the natur
resonances, the potential must be iterated to all orders.
has been done recently@11–18# in models based on three
dimensional~3D! approximations to the Bethe-Salpeter~BS!
equation@19#. Phenomenological form factors are required
the vertices in order to provide convergence, and so in g
eral more free parameters are needed than in tree-level m
els, which can give good results without any form facto
@8#.

There are several other approaches topN scattering in the
literature which give results of a similar quality. The meso
exchange model of Ja¨de @20# uses the solitary boson ex
change method to regularize self-energy diagrams instea
using form factors, and gives good descriptions of bothpN
andNN scattering with the same set of parameters. Sato
Lee constructed a meson-exchange model using an effe
Hamiltonian@21#, while Ellis and Tang@22# used chiral per-
turbation theory. Quark models have also been used to
scribepN scattering@23–25#. Fuda@4# developed a Poincare´
invariant front form model ofpN scattering, in which the
potentials were assumed to be separable. This model
later extended@5# to a pion laboratory kinetic energy of
GeV, giving an excellent description of the phase shifts a
inelasticities in thes, p, andd waves.

The exactpN—pN amplitude for a given Lagrangian
can in principle be obtained from the full BS equation, wi
fully dressed propagators in thepN intermediate state, and
potential consisting of all one- and two-particle irreducib
connected diagrams. By definition this exact amplitu
would satisfy both crossing and chiral symmetry, and ha
the correct one-body limit~an equation is said to have th
one-body limit if it correctly reduces to either the Klein
Gordon or Dirac equation if the mass of either of the p
ticles becomes infinitely heavy!. Unfortunately, at present i
is impossible to construct the potential for the full BS equ
tion, as it would contain an infinite number of Feynman d
grams. Consequently the potential and propagators mus
approximated in some way. The simplest and most co
monly used approximation involves replacing the dres
propagators in the intermediate states with bare propaga
with poles at the physical masses, and truncating the po
tial so that it contains only the lowest-order diagrams, i
the tree-level diagrams. The resulting equation is gener
referred to as the ladder BS equation. There are some p
©1999 The American Physical Society08-1
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A. D. LAHIFF AND I. R. AFNAN PHYSICAL REVIEW C 60 024608
lems with this equation, such as it does not have the cor
one-body limit @26#. Also some symmetries present in th
approximate potential, such as crossing and chiral symme
may be violated in the solution of the BS equation@27#.

The BS equation for thepN scattering amplitude is a
covariant four-dimensional integral equation, in which t
integration is over the relative energy and relative mom
tum of thepN intermediate state. It is the presence of t
relative energy as an integration variable that is respons
for the complicated singularity structure of the kernel. F
quently the BS equation is reduced to a 3D integral equa
in order to avoid the difficulties involved in the handling
the singularities of the kernel. This is achieved by appro
mating the kernel in such a way that the integration over
relative energy can be carried out explicitly, resulting in a
integral equation. There are an infinite number of 3D red
tions of the BS equation@28#, all of which satisfy relativistic
elastic two-body unitarity. There is no overwhelming reas
to choose one particular 3D approximation over any oth
Some of the 3D equations are chosen so as to overc
problems caused by approximating the full BS equation w
the ladder approximation. For example, the ‘‘smooth pro
gator’’ @29#, used by Pearce and Jennings@11# and Ja¨de @20#,
attempts to restore chiral symmetry. However, other pr
lems are introduced when the dimensionality is reduced fr
4D to 3D. Pascalutsa and Tjon@17# have shown that when
the nucleon self-energy is calculated using most of the c
monly used 3D propagators, there are differences in
renormalization between the positive and negative ene
states, which is an indication that charge conjugation
CPT symmetries are violated. Another problem is that th
are significant differences in the half-off-shell amplitudes
calculated by different 3D reductions of the BS equat
@14#, even when they all give the same results on-shell. T
could have significant implications, in that it is the off-she
behavior that is important when thepN amplitude is used as
input into the calculation of other nuclear reactions, such
pion-nucleus scattering, pion production in nucleon-nucle
collisions, or pion photoproduction.

In the present investigation we describe a relativis
model ofpN scattering in which the BS equation is solve
directly in four dimensions. In this way we can avoid th
ambiguities encountered in reducing the BS equation to th
dimensions. This we hope will give us coupling consta
that could be compared to those extracted from QCD m
els, as it has been shown that there are considerable d
ences in coupling constants obtained using 3D equation
compared to the BS equation@30#. More important is the fact
that ourpN amplitude can be gauged@31# to give a photo-
production amplitude that satisfies unitarity and gauge
variance.

To our knowledge there are currently no models based
the BS equation that give thes- andp-wavepN phase shifts
in good agreement with the empirical data. The only pre
ous meson-exchange model forpN scattering to have use
the four-dimensional BS equation was that of Nieland a
Tjon @32#. Since the potential consisted only of theu-channel
nucleon pole diagram, this model could only give theP33
phase shifts in agreement with experiment. In order to g
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good description of all thes- and p-wave phase shifts, it is
necessary to include in the potentials- andu-channelN and
D(1232) poles, and in additiont-channelr ands exchange
diagrams. All of the recentpN meson-exchange mode
have included these diagrams, although Schu¨tz et al. re-
placed ther ands exchange diagrams with correlated tw
pion exchange@15#. The model of Schu¨tz was later extended
@16# to include the coupling to thepD, hN, andsN chan-
nels, and included theN* (1535) pole diagrams in the poten
tial. Pascalutsa and Tjon included the Roper resonance@17#,
and later also included theS11 and D13 resonances as el
ementary particle poles in the potential@18#. We do not in-
clude the Roper or any other higher baryon resonances
coupling to channels other thanpN, as these contributions
are expected to be small for elasticpN scattering and at pion
energies below the Roper resonance. Here we are ma
interested inpN scattering below the two-pion productio
threshold~around 360 MeV pion laboratory energy!.

The organization of this paper is as follows. In Sec. II w
state the Bethe-Salpeter equation and give expressions
the dressed vertices and propagators. The Lagrangian
form factors used in our model, and the choice of spin-
propagator for theD(1232), are discussed in Sec. III. Th
renormalization procedure is outlined in Sec. IV, and
then proceed to describe our method of solving the BS eq
tion in Sec. V. Here we also discuss the analytic structure
the BS equation. In Sec. VI we present results of fits to
SM95 partial wave analysis of Arndtet al. @33# from thresh-
old up to 360 MeV pion laboratory energy. We compare t
coupling constants obtained in the present work to those
tained using models ofpN scattering based on three
dimensional reductions of the BS equation. We also disc
how the phase shifts are built up from the individual d
grams in the potential, and calculate the renormalized p
cutoff mass in order to examine the effect of dressing on
pNN form factor. Next we consider a second model whi
differs from the first in the parametrization of the form fa
tors. We conclude this section by presenting results for
phase shifts up to 600 MeV. Finally, in Sec. VII we prese
some concluding remarks.

II. THE BS EQUATION FOR pN SCATTERING

We consider the scattering process

p~pp8 !1N~pN8 !—p~pp!1N~pN!, ~1!

where pp and pN represent the incoming four-momenta
the pion and nucleon, whilepp8 and pN8 are the outgoing
four-momenta. The total four-momentumP is given by

P5pp1pN5pp8 1pN8 , ~2!

and the relative four-momenta in the initial and final sta
are defined as

q5 1
2 ~pN2pp!, q85 1

2 ~pN8 2pp8 !. ~3!
8-2
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SOLUTION OF THE BETHE-SALPETER EQUATION FOR . . . PHYSICAL REVIEW C60 024608
In the center-of-mass~c.m.! frame the total four-momentum
is related to the total energyAs by P5(As,0). In addition,
the Mandelstam variablesu and t are given in terms of the
relative momenta as

u5~q1q8!2, t5~q2q8!2. ~4!

Having defined the kinematics, the Bethe-Salpeter eq
tion @19# for the pN—pN amplitude T(q8,q;P) can be
written as

T~q8,q;P!5V~q8,q;P!2
i

~2p!4E d4q9V~q8,q9;P!

3GpN~q9;P!T~q9,q;P!, ~5!

whereV is the potential. The two-bodypN propagatorGpN
is the product of the pion and nucleon propagators, i.e.,

GpN~q;P!5
1

~P/22q!22mp
2 1 i e

P” /21q”1mN

~P/21q!22mN
2 1 i e

,

~6!

wheremp andmN are the charge-averaged pion and nucle
masses. In principle both the nucleon and pion propaga
in the pN intermediate states should be dressed. Howe
since here we are only requiring that two-body unitarity
maintained, we have replaced the dressed nucleon and
propagators, with bare propagators with poles at the phys
nucleon and pion masses.

The potentialV(q8,q;P) is constructed from the sum o
s-, t-, andu-channel pole diagrams~see Sec. III!. It is well
known that when ans-channel pole is included in the poten
tial of the ladder BS equation, or one of its 3D approxim
tions, the solution of the BS equation also contains
s-channel pole diagram, in which the propagator and verti
are dressed@34#. The potential can be divided into the sum
nonpole and pole contributions

V~q8,q;P!5VNP~q8,q;P!

1(
B

GpNB
(0)† ~q8;P!dB

(0)~P!GpNB
(0) ~q;P!, ~7!

where GpNB
(0) is the barepNB vertex, anddB

(0) is the bare
propagator for baryonB. At present the only baryons w
include in the potential are the nucleon andD(1232), and so
we haveB5N,D. The pole part of Eq.~7! consists of the
sum ofs-channel baryon pole diagrams whileVNP, the non-
pole part of the potential, contains theu- and t-channel ex-
change diagrams. With the potential having this form,
solution of the BS equation can be written in a similar w
as

T~q8,q;P!5TNP~q8,q;P!

1(
B

GpNB
† ~q8;P!dB~P!GpNB~q;P!, ~8!
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whereGpNB anddB are the dressedpNB vertex and dressed
baryon propagator, respectively. The nonpole part of thT
matrix TNP is the solution of the BS equation with a potenti
consisting of the sum of theu- and t-channel poles, i.e.,

TNP~q8,q;P!5VNP~q8,q;P!2
i

~2p!4E d4q9VNP~q8,q9;P!

3GpN~q9;P!TNP~q9,q;P!. ~9!

Equations~5!, ~7!, ~8!, and ~9! are shown diagrammatically
in Fig. 1.

The dressedpNN vertex is given in terms of the bar
vertex and nonpole part of theT matrix as~see Fig. 2!

GpNN~q;P!5GpNN
(0) ~q;P!2

i

~2p!4E d4q9GpNN
(0) ~q9;P!

3GpN~q9;P!TNP~q9,q;P!. ~10!

The bare and dressed nucleon propagators are

dN
(0)~P!5@P” 2mN

(0)1 i e#21, ~11!

dN~P!5@P” 2mN
(0)2SN~P!1 i e#21, ~12!

wheremN
(0) is the bare nucleon mass. Also, the nucleon s

energySN(P) is given by

2 iSN~P!52
1

~2p!4E d4q GpNN
(0) ~q;P!

3GpN~q;P!GpNN
† ~q;P!, ~13!

and is illustrated in Fig. 3. Making use of Eq.~10!, the
nucleon self-energy can be written as

FIG. 1. Graphical representation of:~a! the BS equation for the
full T matrix, ~b! the potential,~c! theT matrix in terms of nonpole
and pole parts, and~d! the BS equation for the nonpoleT matrix.

FIG. 2. The equation for the dressedpNB vertex.
8-3
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A. D. LAHIFF AND I. R. AFNAN PHYSICAL REVIEW C 60 024608
2 iSN~P!52
1

~2p!4E d4q GpNN
(0) ~q;P!

3GpN~q;P!GpNN
(0)† ~q;P!

1
i

~2p!8E d4q8d4q GpNN
(0) ~q8;P!

3GpN~q8;P!TNP~q8,q;P!GpN~q;P!

3GpNN
(0)† ~q;P!. ~14!

The first term in the right-hand-side of Eq.~14! corresponds
to the one-pion loop dressing of the nucleon, while the s
ond term is the contribution arising from the iteration of t
nonpole part of the potential in the BS equation~we refer to
this term as the nonpole contribution to the self-energ!.
Since in thepN intermediate states we have approxima
the dressed nucleon propagator by a bare nucleon propa
with a pole at the physical nucleon mass, we avoid having
solve a non-linear Schwinger-Dyson equation for t
nucleon self-energy. There are similar expressions to E
~10! and ~13! for the dressedpND vertex and theD self-
energy, however, we do not calculate them explicitly,
reasons given in Sec. IV.

III. THE POTENTIAL

The potential, or driving term, which is iterated to a
orders in the BS equation to obtain an amplitude satisfy
two-body unitarity, consists of all the tree-level Feynm
diagrams contributing to the processpN—pN, derived from
the interaction Lagrangian under consideration. In this s
tion we discuss the Lagrangian used, the coupling const
in this Lagrangian, and the choice of form factors which a
necessary to obtain convergence. We also look at the
sible different forms of spin-3/2 propagators that can be u
for the D.

A. The Lagrangian

The tree-level diagrams shown in Fig. 4 are obtained fr
the following interaction Lagrangian:

Lint5
gpNN

2mN
c̄Ng5gmt•]mpcN

1
f pND

mp
c̄D

m~gmn1xDgmgn!TcN•]np1H.c.

1grNNc̄N
1
2 t•S gmrm1

kr

2mN
smn]mrnDcN

1grpprm
•~]mp3p!1gsNNc̄NcNs

FIG. 3. The baryon self-energy.
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2mp
s]mp•]mp, ~15!

wherecN , cD
m , p, rm , ands are the fields for the nucleon

delta, pion, rho, and sigma, respectively. The derivative c
plings of the pion field to the other mesons and baryo
ensures that chiral symmetry is satisfied at tree-level. In
pND Lagrangian, T is the transition operator betwee
isospin-3/2 and -1/2 states, andxD is a parameter that can b
adjusted, and its value will be considered when we disc
our choice for theD propagator.

Ideally, all of the coupling constants should be fixed usi
information from other sources, rather than leaving them
free parameters. Out of all of the coupling constants app
ing in the Lagrangian given in Eq.~15!, thepNN coupling is
the best known~although even thepNN coupling constant is
not without controversy@35,36#!. We use the value advo
cated by the Nijmegen group@37#, i.e., gpNN

2 /4p513.5. The
remaining coupling constants can be determined in a var
of different ways, but there are some discrepancies.

A value for thepND coupling constant can be obtaine
by calculating the width for the decayD˜pN. The coupling
constant is chosen such that the width is equal to its exp
mental value. Assuming that theD self-energy is dominated
by the one-pion loop diagram, it is found thatf pND

2 /4p
50.36 gives the correct width. This result makes use of
width calculated on the reals axis, however, it has bee
shown that there are differences between widths calcula
on the real axis and in the complex plane@38#. A somewhat
smaller value forf pND is found using the quark-model rela
tion @39#

f pND
2 5

72

25S mp

2mN
D 2

gpNN
2 , ~16!

which gives f pND
2 /4p50.21 when the Nijmegen value i

used forgpNN . This smaller value has also been shown to

FIG. 4. The diagrams included in the potential of the BS eq
tion.
8-4
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SOLUTION OF THE BETHE-SALPETER EQUATION FOR . . . PHYSICAL REVIEW C60 024608
consistent with the width of theD @40#, provided that higher-
order mesonic corrections to theD self-energy are included
along with the one-pion loop term.

We now consider ther exchange diagram, which depen
only on the productgr

2[grppgrNN , as well askr , the ratio
of the tensor to vectorrNN coupling constants. There are
number of different ways of determining a value forgr , as
originally discussed by Sakurai@41#. If it is assumed that the
isospin-oddpN scattering length is dominated by the tre
level r exchange diagram, thengr

2/4p53.1 is obtained. Al-
ternatively, it can be assumed that ther meson couples to
both pions and nucleons with the same strength~universal-
ity!, which means thatgr5grpp5grNN . An estimation of
grpp can be obtained from the decayr˜2p, which gives

grpp
2 /4p52.84. A very similar value ofgrpp

2 /4p52.7 is
given by the Kawarabayashi-Suzuki-Riazuddin-Fayyazud
~KSRF! relation@42#, which is obtained from current algebr
and PCAC, and states thatmr

252grpp
2 f p

2 , where f p593
MeV is the pion decay constant. There is some controve
about the value ofkr . The vector meson dominance mod
~VMD ! gives kr53.7 @43#, while Höhler and Pietarinen

found kr56.6 from app2NN̄ partial wave analysis@44#.
Although the scalars meson does not seem to exist

nature,t-channels exchange is included inpN models as an
effective interaction, representing higher-order processes
explicitly included in the potential, such as correlated 2p
exchange in the scalar-isoscalar channel. There are ther
no reliable determinations of the mass of thes meson or the
magnitudes~or signs! of the sNN and spp coupling con-
stants. The mass is usually taken to be around 4mp to 6mp .

B. The D propagator

There is an ambiguity as to the choice of propagator fo
particle with spin-3/2, and a number of different propagat
have been introduced@45–48#. One way of deriving a spin-
3/2 propagator is to begin with the free Lagrangian fo
massive spin-3/2 field@49#. The propagator obtained from
this Lagrangian has, in its most general form, a pole part
a nonpole part. The pole part is unique while the nonp
part depends on a complex parameterA. When the form of
the pND vertex is chosen correctly, theS matrix and physi-
cal quantities are independent ofA @50#. Taking A521
gives the simplest form for the propagator, and is commo
called the Rarita-Schwinger~RS! propagator:

Pmn~p!5
p”1mD

p22mD
2 1 i e

Fgmn2
1

3
gmgn

2
1

3mD
~gmpn2gnpm!2

2

3mD
2

pmpnG . ~17!

It is known that the RS propagator contains background
off-mass-shell spin-1/2 components, along with the spin-
component~see, e.g., Ref.@51#!. This becomes evident whe
the RS propagator is written in terms of spin projection o
erators, which are denoted byP i j

J , and are given by@52,51#
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~P 3/2!ab5gab2
1

3
gagb2

1

3p2 ~p”gapb1pagbp” !,

~18!

~P 11
1/2!ab5

1

3
gagb2

papb

p2
1

1

3p2~p”gapb1pagbp” !,

~19!

~P 22
1/2!ab5

papb

p2
, ~20!

~P 21
1/2!ab5

1

A3p2
~papb2p”gapb!, ~21!

~P 12
1/2!ab5

1

A3p2
~p” pagb2papb!. ~22!

The RS propagator can then be written in terms of the s
projection operators defined above, as

Pmn~p!5
p”1mD

p22mD
2 1 i e

P 3/22
2

3mD
2 ~p”1mD!P 22

1/2

1
1

A3mD

~P 12
1/21P 21

1/2!. ~23!

The spin-1/2 background could be considered as being
physical, since theD(1232) is known experimentally to be
particle with spin-3/2.

Williams introduced a propagator proportional to th
spin-3/2 projection operator@46#

Pmn~p!5
p”1mD

p22mD
2 1 i e

P 3/2. ~24!

The Williams and RS propagators are identical when theD is
on-mass-shell, since the spin-1/2 components in the
propagator are only present when theD is off-mass-shell.
Also, when the Williams propagator is used there are
contributions to thepN—pN amplitude arising from the
parts of thepND vertices proportional toxD .

There have been attempts to fixxD on theoretical grounds
Peccei@43# suggested that the choicexD521/4 ensures tha
there is no direct coupling to the spin-1/2 components of
RS propagator, but it was later shown@51# that the spin-1/2
components are always present, and cannot be remove
choosing a particular value ofxD . Nathet al. @49# suggested
that xD521 should be used if thepND vertex is to be
consistent with the principles of second quantization.

The 1/p2 factor in the Williams propagator can cause n
merical difficulties@7,13#. Pascalutsa@47# used the Hamil-
tonian path-integral formulation to investigate the interact
spin-3/2 field and constructed a theory in which there is
coupling to the spin-1/2 components. For the case of ths-
and u-channel tree-level amplitudes forpN scattering, the
pND vertex corresponds to the usualpND vertex with xD
8-5
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A. D. LAHIFF AND I. R. AFNAN PHYSICAL REVIEW C 60 024608
50, and theD propagator is the same as the Williams prop
gator but multiplied byp2/mD

2 . This extra factor ofp2 in the
numerator fixes the problems caused by the 1/p2 term in the
spin-3/2 projection operator.

We consider two possibilities for theD propagator:~i! the
Rarita-Schwinger propagator and generalpND vertex, with
xD as a free parameter and~ii ! the Pascalutsa propagator a
vertex. In both cases theD is treated as a stable particle
the potential, and the width is generated dynamically, si
the bares-channelD pole diagram is dressed when the B
equation is solved.

C. Form factors

The integrals in Eqs.~5!, ~9!, ~10!, and~14! are divergent,
and so a regularization scheme must be implemented in o
to obtain finite results. As is commonly done in meso
exchange models, we introduce form factors at each inte
tion vertex. These form factors represent the extended st
ture of the particles involved, and will ensure that
integrals are convergent by suppressing contributions at
momenta. Since at present it is not possible to calculate
appropriate form factors directly from QCD, phenomen
logical functions are usually chosen as the form facto
which have no connection to the underlying quark dynam
A consequence of this is that free parameters, the cu
masses that govern the range of suppression, are introd
into the model.

In meson-exchange models of theNN interaction, the
form factors depend only on the four-momentum squared
the exchange particles. This cannot be done inpN models
because, for example, the form factors would provide
convergence for thes-channel pole diagrams. We therefo
follow Pearce and Jennings@11#, and make the assumptio
that the cutoff function associated with each vertex is a pr
uct of form factors that depend on the four-momentu
squared of each particle present at the vertex. Theabc vertex
is therefore given by

Gabc5 f abc~qa
2 ,qb

2 ,qc
2!Vabc , ~25!

whereVabc is the coupling operator obtained from the inte
action Lagrangian, Eq.~15!, and the associated form factor
of the separable form

f abc~qa
2 ,qb

2 ,qc
2!5 f a~qa

2! f b~qb
2! f c~qc

2!. ~26!

The four-momenta squared of the legs of the vertices
denoted byqa

2 , qb
2 , andqc

2 . It is conventional to choose th
normalization such thatf (m2)51, wherem is the mass of
the corresponding particle. Therefore, at the unphysical p
when all three legs of a vertex are on-mass-shell, the co
sponding product of form factors is equal to one.

The scalar functionsf (q2) can essentially be chosen in a
ad hocmanner, since very little is known about the off-mas
shell behavior of the form factors. One possible choice is
multipole form factor

f I~q2!5S L22m2

L22q2 D n

, ~27!
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whereL is the cutoff mass, andn is an integer. Different
forms of f (q2) have been used in the various models ofpN
scattering. An example is@13,14#

f II~q2!5S ~L22m2!2

~L22m2!21~m22q2!2D n

. ~28!

The main difference between the two form factorsf I and f II
lies in the analytic structure in the complexq0 plane ~note
q25q0

22q2). The functionf I has two poles along the realq0

axis at

q056~AL21q22 i e!, ~29!

while f II has four poles in the complexq0 plane, located at

q056AL26 i ~L22m2!1q2. ~30!

The form factors used by Pearce and Jennings@11# have a
very similar structure tof II in the complexq0 plane. We note
that f II(q

2) always has poles in each of the four quadrants
theq0 complex plane, irrespective of the value ofL ~except
whenL25m2). We should also mention thatf I(q

2) with n
51 could be considered as the propagator for a scalar
ticle with massL, while f II(q

2) with n51 corresponds to
the propagator for a resonance with massL, and a width
proportional to (L22m2). It has been shown that when
form factor has the form of a propagator for a resonance w
a constant width, there is a violation of unitarity at all ene
gies, which only becomes evident when a four-dimensio
formulation is used@53#.

As an example of the problems caused by this violation
unitarity, we can consider the dressed nucleon propagato
the one-pion loop self-energy diagram is calculated us
form factors similar tof II(q

2) at each vertex, it turns out tha
the dressed nucleon has a width. This is of course unph
cal, since the nucleon is well known to be stable particle.
a result, form factors with poles in the complexq0 plane
cannot be used to regularize loop diagrams in 4D mod
Therefore, here we use form factors of the formf I , in which
case the unitarity violations do not occur.

IV. RENORMALIZATION

As shown in Sec. II, the bare vertices and propagat
appearing in thes-channel pole diagrams in the potenti
become dressed when the potential is iterated in the
equation. A renormalization procedure therefore must be
ried out in order to fix the bare parameters such that
renormalized quantities are equal to their physical valu
Since we include form factors at all vertices, the bare mas
and coupling constants are finite.

A. The dressedpNN vertex

The pNN vertex renormalization constantZ1N is defined
in the usual way: the barepNN vertex differs from the
dressed vertex by only a constant, which isZ1N , when sand-
wiched between Dirac spinors and all external legs
8-6



tio

e

ed
th
ct

a

ar

le
tio

ta
in

-
he
e

i.e

on-
or-
r-

ap-

cit
pa-
tors
,

ling

ates
ga-
re
the

al
the

e

the
e

ld

o
to

ter-
is

ring
-

SOLUTION OF THE BETHE-SALPETER EQUATION FOR . . . PHYSICAL REVIEW C60 024608
placed on-mass-shell. Therefore the vertex renormaliza
constant is defined by the relation

ū~P!GpNN~q;P!u~q!5Z1N
21ū~P!GpNN

(0) ~q;P!u~q!,
~31!

with P25mN
2 , and q2 taken such that all three legs of th

vertex are on-mass-shell.

B. The dressed nucleon propagator

We now turn to the renormalization of the dress
nucleon propagator. First, Lorentz invariance requires
the nucleon self-energy can be written as the sum of a ve
and scalar part, i.e.,

SN~P!5P” A~s!1mNB~s!, ~32!

whereA(s) andB(s) are functions ofs only. In order to fix
the bare nucleon mass, we require that the dressed prop
tor has a pole at the physical nucleon mass, i.e.,

lim
s˜mN

2

dN
21~P!50. ~33!

This requirement gives the following expression for the b
nucleon mass in terms of the functionsA andB:

mN
(0)5mN@12A~mN

2 !2B~mN
2 !#. ~34!

The residue of the dressed nucleon propagator at the nuc
pole is defined as the nucleon wave-function renormaliza
constantZ2N , i.e.,

lim
s˜mN

2

~P” 2mN!dN~P!5Z2N , ~35!

which gives@31#

Z2N5$12A~mN
2 !22mN

2 @A8~mN
2 !1B8~mN

2 !#%21, ~36!

where

A8~mN
2 !5

d

ds
A~s!U

s5m
N
2
, B8~mN

2 !5
d

ds
B~s!U

s5m
N
2
.

~37!

The above expressions enable the renormalization cons
to be calculated easily for the case of one-pion loop dress
since it is not hard in this case to writeSN(P) in terms of the
functionsA(s) andB(s). However, if the nonpole contribu
tions to the nucleon self-energy are taken into account, t
this would not be the simplest method of calculation. W

introduce the scalar quantitySN
ūu(s), which is defined as the

nucleon self-energy sandwiched between Dirac spinors,

SN
ūu~s!5ū~P!SN~P!u~P!5AsA~s!1mNB~s!, ~38!

sinceP50 in the c.m. system. Taking note of Eqs.~34!, ~36!,
and~37!, the renormalization constantsmN

(0) andZ2N can be

written in terms ofSN
ūu(s) as
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mN
(0)5mN2SN

ūu~mN
2 !, ~39!

Z2N5F122mN

d

ds
SN

ūu~s!U
s5m

N
2 G21

. ~40!

In this way we can include both the one-loop and the n
pole contributions to the mass shift and wave function ren
malizationZ2N in a way consistent with the scattering fo
mulation of the BS equation.

C. Renormalization of the BS equation

In the pN amplitude there should be factors ofAZ2N for
each of the external nucleon legs, which result from the
plication of LSZ reduction@54# on the pN—pN Green’s
function. However, since we are not performing any expli
LSZ reduction, and we are assuming that the nucleon pro
gators in the kernel of the BS equation are bare propaga
with physical masses, the factors ofAZ2N are not generated
and thepNN and pND couplings are effective coupling
constants that should be set equal to the physical coup
constants. The only exception is with thes-channel pole dia-
grams. In this case, the solution of the BS equation gener
news-channel pole amplitudes in which the baryon propa
tors andpNB vertices are dressed. This implies that ba
masses and coupling constants should be used in
s-channel pole diagrams in the potential.

In order that thepN amplitude has a pole at the physic
nucleon mass, and that the residue at this pole is equal to
square of the physicalpNN coupling constant, the bar
nucleon mass must be fixed by Eq.~39!, and the barepNN
coupling constant fixed using

gpNN
R 5Z1N

21AZ2NgpNN
(0) . ~41!

HeregpNN
(0) is the barepNN coupling constant, andgpNN

R is
the renormalized coupling constant, which is set equal to
‘‘experimental’’ pNN coupling constant by fixing the valu
of gpNN

(0) correctly.
In principle, a similar renormalization procedure shou

be carried out for theD. However, the pole in theT matrix
corresponding to the dressedD occurs in the complexs
plane, since the dressedD has a width. Therefore, in order t
fix the barepND coupling constant, it would be necessary
analytically continue the BS equation into the complexs
plane@38#. Rather than doing this, here bothmD

(0) and f pND
(0)

are treated as free parameters. Since theP33 partial wave is
dominated by thes-channelD pole diagram, the bareD pa-
rameters are essentially fixed by theP33 phase shifts. The
position at which the phase shifts go through 90° is de
mined by the bareD mass, and the width of the resonance
related to the barepND coupling constant.

V. SOLVING THE BS EQUATION

To calculate quantities such as phase shifts and scatte
lengths, we solve Eq.~5!, i.e., the BS equation with the po
tential consisting of thes- and u-channelN and D poles as
8-7
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well ast-channelr ands exchange. In addition, the dresse
pNN vertex and nucleon self-energy need to be calcula
so that the nucleon renormalization procedure can be
formed.

A. Partial wave expansion

The nucleon propagator present in thepN intermediate
states can be separated into positive and negative en
components@55#, which allows us to writeGpN in terms of
projection operators

GpN~q;P!5Gūu~q0 ,q;s!L1~q!2Gv̄v~q0 ,q;s!L2~2q!,
~42!

whereGūu andGv̄v are given by

Gūu~q0 ,q;s!5
mN

Eq

1

As/21q02Eq1 i e

3
1

~As/22q0!22vq
21 i e

, ~43!

Gv̄v~q0 ,q;s!5
mN

Eq

1

As/21q01Eq2 i e

3
1

~As/22q0!22vq
21 i e

, ~44!

with Eq5Aq21mN
2 and vq5Aq21mp

2 . The positive and
negative energy projection operators can be written in te
of Dirac spinors as

L1~q!5(
r

ur~q!ūr~q!, ~45!

L2~q!52(
r

v r~q!v̄ r~q!. ~46!

The normalization of these spinors is defined
ur

†(q)ur(q)5v r
†(q)v r(q)51.

The expansion given above in Eq.~42! is substituted into
the BS equation. Multiplying the BS equation from the le
and right by Dirac spinors yields a pair of coupled integ
equations. If we introduce the notation~suppressing the
Dirac indices!

Tūu~q8,q;P!5ū~q8!T~q8,q;P!u~q!, ~47!

Tv̄u~q8,q;P!5 v̄~2q8!T~q8,q;P!u~q!, ~48!

and similarly for the potential, the BS equation can be w
ten as two coupled equations forTūu andTv̄u:
02460
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Tw̄u~q8,q;P!5Vw̄u~q8,q;P!

2
i

~2p!4 (
w95u,v

E d4q9 Vw̄w9~q8,q9;P!

3Gw̄9w9~q9;P!Tw̄9u~q9,q;P!, ~49!

with w5u, v. There is a similar set of two coupled equatio
for the amplitudesTūv and Tv̄v, which are required along
with Tūu andTv̄u in the calculation ofmN

(0) andZ2N .
We now reduce the number of dimensions from 4 to 2,

removing the angular dependence using a partial wave
pansion. Including spinor indices again, we can write ea
amplitude in the form

Al8l
w̄8w

~q8,q;P!5xl8
† Ãw̄8w~q8,q;P!xl , ~50!

wherew andw8 are eitheru or v, andxl is a Pauli spinor.

The amplitudeÃw̄8w can be expanded in terms of parti

wave amplitudesAll 8 j
w̄8w as

Ãw̄8w~q08 ,q8;q0 ,q;s!

5N~q8,q! (
l l 8 jm

Yl jm~ q̂!All 8 j
w̄8w

~q08 ,q8;q0 ,q;s!Y l 8 jm
†

~ q̂!,

~51!

where q5uqu, q85uq8u and N(q8,q)52(2p)4(q8q)21.
Also, the generalized Legendre polynomials are given by

Yl jm~ q̂!5 (
mlms

~ lml
1
2 msu jm!Ylml

~ q̂!xms
, ~52!

which are eigenstates of the magnitude of the total angu
momentum operatorJ2, its z componentJz , the magnitude
of the orbital angular-momentum operatorL2, and the mag-
nitude of the spin operatorS2. The partial wave amplitude
can be written in terms of the original amplitude as

All 8 j
w̄8w

~q08 ,q8;q0 ,q;s!

5
1

N~q8,q!
E dq̂8 dq̂ Y l jm

† ~ q̂8!Ãw̄8w~q08 ,q8;q0 ,q;s!

3Yl 8 jm~ q̂!. ~53!

Applying the partial wave decomposition to the BS equat
and making use of the orthogonality of the generalized L
endre polynomials, we obtain
8-8
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Tl jI
ūu~q08 ,q8;q0 ,q;s!

5Vl jI
ūu~q08 ,q8;q0 ,q;s!

1 i (
w95u,v

E
2`

`

dq09E
0

`

dq9 Vll 8 j I
ūw9 ~q08 ,q8;q09 ,q9;s!

3Gw̄9w9~q09 ,q9;s!Tl 8 l j I
w̄9u

~q09 ,q9;q0 ,q;s!, ~54!

Tl 8 l j I
v̄u

~q08 ,q8;q0 ,q;s!

5Vl 8 l j I
v̄u

~q08 ,q8;q0 ,q;s!

1 i (
w95u,v

E
2`

`

dq09E
0

`

dq9 Vl 8 l j I
v̄w9 ~q08 ,q8;q09 ,q9;s!

3Gw̄9w9~q09 ,q9;s!Tl 8 l j I
w̄9u

~q09 ,q9;q0 ,q;s!. ~55!

Note that the amplitudeAll 8 j
ūu is diagonal inl, i.e., l 5 l 8, due

to parity conservation, however, amplitudes such asAll 8 j
ūv ,

which involve transitions between positive and negative
ergy nucleon states, are not diagonal inl. Each partial wave
amplitudeTūu is labeled by the orbital angular momentuml,
the total angular momentumj, where j 5 l 6 1

2 , and the total
isospinI, with I 5 1

2 or I 5 3
2 .

B. Analytic structure

At this stage it is necessary to examine the analytic str
ture of the partial wave BS equations. We will carry out
Wick rotation@56#, and analytically continue thepN ampli-
tude in theq08 and q09 variables from the real axis to th
imaginary axis. Before doing this, we must examine the s
gularity structure of the kernels of Eqs.~54! and ~55! in the
q09 plane, to make sure that there are no poles or cuts
could interfere with the Wick rotation. The residues of a
poles present in the first and third quadrants need to
picked up, since we rotate theq09 integration contour from
the real axis to the imaginary axis in an anticlockwise dir
tion. The presence of form factors in the potential ensu
that the kernel is well behaved asymptotically, and as a re
there is no contribution from the contour at infinity. The
are three sources of analytic structure that we need to ex
ine: ~i! thepN intermediate state,~ii ! the potential, in which
there are poles from the both the exchange particle prop
tors and the form factors, and~iii ! the pN T matrix itself.

The poles of thepN two-body propagatorGūu(q09 ,q9;s)
in the complexq09 plane are located at

q095vN
1~q9![2As/21Aq921mN

2 2 i e, ~56!

q095vp
6~q9![As/27~Aq921mp

2 2 i e!, ~57!

corresponding to the positive energy nucleon pole, and
positive and negative energy pion poles, respectiv
Gv̄v(q09 ,q9;s) has poles atq095vp

6 , and at
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q095vN
2~q9![2As/22Aq921mN

2 1 i e, ~58!

which corresponds to the negative energy nucleon pole
As.2mp it is possible forvp

1 to be in the first quadrant fo
0,q9,qmax9 , whereqmax9 5As/42mp

2 . The positive energy
nucleon polevN

1 can move into the third quadrant forAs
.2mN . Therefore, if we stay below c.m. energies of 2mN ,
we only need to pick up the residues from the positive
ergy pion propagator pole. The residues ofGūu(q09 ,q9;s)

andGv̄v(q09 ,q9;s) at q095vp
1(q9) are

Gres
ūu~q9;s!52

mN

2Eq9vq9

1

~As2Eq92vq91 i e!
, ~59!

Gres
v̄v~q9;s!52

mN

2Eq9vq9

1

~As1Eq92vq9!
. ~60!

We now consider the singularities of all the diagram
present in the potential. First, note that the partial wave
tentials have the form

Vl jI
ūu~q08 ,q8;q09 ,q9;s!5

p

N~q8,q9!
E

21

1

dxS Pl~x! f 1
ūu~s,t,u!

1
q8q9

eq8eq9

Pl 61~x! f 2
ūu~s,t,u!D , ~61!

Vll 8 j I
ūv

~q08 ,q8;q09 ,q9;s!5
p

N~q8,q9!
E

21

1

dxSq9

eq9

Pl~x! f 1
ūv~s,t,u!

1
q8

eq8

Pl 8~x! f 2
ūv~s,t,u!D , ~62!

wherex5q̂8•q̂9 andeq5Eq1mN . The forms of the partial
wave potentials corresponding toVv̄v andVv̄u are very simi-
lar to Eqs. ~61! and ~62!, respectively. For thes-channel

baryon pole diagrams we havef i
w̄w}1/(s2mB

2) with i
51,2. Therefore, the only analytic structure in theq09 com-
plex plane produced by thes-channel pole diagrams is due t
the form factors on the external pion and nucleon legs, wh
we will look at shortly. However, for theu- and t-channel

diagrams we havef i
w̄w}1/(z2m2), wherez5u or t, and so

the functionsf i
w̄w in this case depend onq09 . After carrying

out thex integration in Eqs.~61! and ~62!, the partial wave
potentials corresponding to theu- and t-channel pole dia-
grams will involve terms such as

lnS ~q081hq09!22~q81hq9!22m21 i e

~q081hq09!22~q82hq9!22m21 i e
D , ~63!

where m is the mass of the exchanged particle, a
h51 ~21! for the u-channel (t-channel! poles. Terms such
as these generate logarithmic branch cuts in theq09 plane. For
the u-channel pole diagrams, the branch points are at
8-9
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q0952q086@A~q86q9!21mB
22 i e#, ~64!

whereB5N or D. The analytic structure for thet-channel
exchange diagrams is very similar, namely, there are bra
points at

q095q086@A~q86q9!21mA
22 i e#, ~65!

whereA5r or s.
Notice that in Eqs.~64! and ~65! the positions of the

branch points in theq09 plane depend on the external variab
q08 , unlike the poles of thepN intermediate state. Singular
ties that depend onq08 are removed by the Wick rotation
since as well as rotating theq09 integration contour from the
real to the imaginary axis, we analytically continue thepN
amplitude to the imaginary axis inq08 . The branch cuts move
away from the integration contour as we rotate from the r
to the imaginary axis, and in fact the branch points alwa
stay a distancem away from the integration contour, wher
m is the mass of the exchange particle.

Next we consider the singularities of the form factors. T
form factors corresponding to the external pion and nucl
legs haventh order poles at

q0952As/26~Aq921LN
2 2 i e!, ~66!

q095As/26~Aq921Lp
2 2 i e!, ~67!

when the functional form given in Eq.~27! is used. The order
of the poles depends on the choice for the form factor po
ers, i.e.,np and nN . To guarantee that these form fact
poles do not interfere with the Wick rotation, we require th
they do not move into the first or third quadrants of theq09
plane. This means that we must haveAs,2Lp and As
,2LN . Note that if form factors of the type given in Eq
~28! were being used, there would be poles from each fo
factor in both the first and third quadrants.

As a next step we look at the singularities in the fo
factors corresponding to the exchange particles. For
u-channel exchange diagrams there are branch points a

q0952q086@A~q86q9!21LB
22 i e#, ~68!

where againB5N or D. Finally for the t-channel diagrams
there are branch points at

q095q086@A~q86q9!21LA
22 i e#, ~69!

whereA5r or s. All of these branch points are removed b
the Wick rotation, due to theq08 dependence.

The remaining source of singularities which must be c
sidered is theT matrix, i.e., the solution of the BS equatio
This can be done by looking at what happens as the pote
is iterated in the BS equation. Singularities in theq08 plane of
T(q8,q;P) are generated by pairs of poles pinching theq09
integration contour. This analytic structure therefore also
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curs in theq09 plane ofT(q9,q;P) which appears in the in-
tegrand of the BS equation. As the BS equation is iterate
hierarchy of branch cuts are generated. Higher order bra
cuts arise from the pinching between lower order branch c
and the singularities of thepN intermediate state and poten
tial. The positions of most of these cuts depends onq08 , and
so do not cross the integration contour when both theq08 and
q09 axes are rotated. However, some of the higher or
branch cuts do not depend onq08 and so are not removed b
a Wick rotation. If any pair of these cuts in theq09 plane
protrude into both the first and third quadrants simul
neously, a simple Wick rotation becomes no longer possi

Also, singularities pinching theq09 integration contour can
produce cuts in theAs plane, i.e., thresholds. If these thres
olds are generated by singularities other than those from
form factors, they correspond to physical processes.
lowest-energy physical thresholds are at

As5mN1mp ,

As5mN12mp ,

As5mD12mp ,

As5mN1mp1ms .

However, if a cut in theAs plane is generated by the pinch
ing of a form factor pole and another singularity, the thres
old is unphysical, since the cutoff mass does not corresp
to the mass of a physical particle. Some examples of
unphysical thresholds generated by the BS equation incl

As5LN1mp ,

As5mN1Lp ,

As5LN1Lp ,

As5mN1mp1Ls .

We therefore have to make sure that the cutoff masses
chosen to be large enough so that the unphysical thresh
occur above the highest c.m. energy for which we will so
the BS equation.

In summary, the BS equation can be solved forpN scat-
tering with our choice of form factors using a Wick rotatio
provided that the cutoff masses are not too small. There
three conditions on the minimum values of the cuto
masses:~i! there are no form factor poles in the first or thi
quadrants of theq09 plane, ~ii ! any cuts produced by the
pinching between form factor poles and other singularit
are also not in the first or third quadrants, and finally~iii ! all
unphysical thresholds, which are generated by the form
tors, are far away from the energy region in which we a
interested. The minimum values for the cutoff masses t
can be used in the BS equation are given in Table I. Here
have assumed that the two-pion production threshold is
maximum c.m. energy for which we will solve the BS equ
tion.
8-10
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If form factors of the type given in Eq.~28! are used, it is
not possible to prevent the form factor singularities fro
interfering with the Wick rotation by making any appropria
choices for the cutoff masses. There will always be po

TABLE I. The minimum allowed values of the cutoff masses
terms of the nucleon and pion masses.

Cutoff mass Minimum value

LN mN13mp

LD mN13mp

Lp (mN13mp)/2
Lr (mN1mp)/2
Ls (mN1mp)/2
tia
d

ve

th
g
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from the form factors in each quadrant of theq09 plane.

C. Wick rotation

Having looked at the analytic structure of the kernel of t
partial wave BS equation, we are now in a position to p
form a Wick rotation on Eqs.~54! and ~55!, by making the
substitutions

q08˜ iq08 , q09˜ iq09 , ~70!

and picking up the residues from any poles in the first
third quadrants of the complexq09 plane. After Wick rotation,
the partial wave BS equation becomes a system of f
coupled integral equations. The first two equations for
half-off-shell T matrix are
Tl jI
ūu~ iq08 ,q8;q̄0 ,q̄;s!5Vl jI

ūu~ iq08 ,q8;q̄0 ,q̄;s!

2 (
w95u,v

E
2`

`

dq09E
0

`

dq9 Vll 8 j I
ūw9 ~ iq08 ,q8; iq09 ,q9;s!Gw̄9w9~ iq09 ,q9;s!Tl 8 l j I

w̄9u
~ iq09 ,q9;q̄0 ,q̄;s!

2 (
w95u,v

E
0

qmax9
dq9 Vll 8 j I

ūw9
„iq08 ,q8;vp

1~q9!,q9;s…Gres
w̄9w9~q9;s!Tl 8 l j I

w̄9u
„vp

1~q9!,q9;q̄0 ,q̄;s…, ~71!

Tl 8 l j I
v̄u

~ iq08 ,q8;q̄0 ,q̄;s!5Vl 8 l j I
v̄u

~ iq08 ,q8;q̄0 ,q̄;s!

2 (
w95u,v

E
2`

`

dq09E
0

`

dq9 Vl 8 l j I
v̄w9 ~ iq08 ,q8; iq09 ,q9;s!Gw̄9w9~ iq09 ,q9;s!Tl 8 l j I

w̄9u
~ iq09 ,q9;q̄0 ,q̄;s!

2 (
w95u,v

E
0

qmax9
dq9 Vl 8 l j I

v̄w9
„iq08 ,q8;vp

1~q9!,q9;s…Gres
w̄9w9~q9;s!Tl 8 l j I

w̄9u
„vp

1~q9!,q9;q̄0 ,q̄;s…. ~72!
ic
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In the above we have put the pion and nucleon in the ini
state on-mass-shell. The on-shell relative momenta are
noted byq̄0 and q̄, and are given by

q̄05
1

2
~Aq̄21mN

2 2Aq̄21mp
2 ! ~73!

and

q̄5A@s2~mN1mp!2#@s2~mN2mp!2#

4s
. ~74!

There are two additional equations~usually referred to as the
‘‘auxiliary equations’’! which are necessary in order to ha
a closed system of equations to solve: they are Eqs.~71! and
~72! with iq08 replaced withvp

1(q8).
Finally, it is necessary to look at each term present in

potentials to check whether there are any remaining sin
larities after Wick rotation. For energies above the pion p
duction threshold, theu-channel nucleon pole present in th
potential in the one-dimensional parts of the auxiliary eq
l
e-

e
u-
-

-

tions develops an imaginary part. This is due to a logarithm
singularity moving into the integration region, and must
handled carefully to ensure numerically stable results. We
this by carrying out a subtraction similar to Ref.@57#. There
are no additional singularities caused by the form fact
below the two-pion production threshold, provided the cut
masses are chosen to be larger than the values give
Table I.

Above As52(ms1mp) a cut in theq09 plane, generated
by the pinching of the integration contour between t
positive-energy pion pole and thes meson propagator
moves into the first quadrant. Therefore, above this value
the c.m. energy, it would become necessary to take this
ditional singularity into account when carrying out the Wic
rotation. Here we consider c.m. energies belowAs52(ms

1mp).

D. Calculation of the phase shifts

In order to determine thepN phase shifts, the on-she

amplitudeTl jI
ūu(q̄0 ,q̄;q̄0 ,q̄;s) needs to be calculated. This
8-11
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done by analytic continuation of the half-off-shell amplitu
to the on-shell point. In practice, the on-shellT matrix is
obtained using Eq.~71!, with both the incoming and outgo
ing particles on-mass shell.

ThepN two-body propagatorGres
ūu(q9;s) has a pole when

the pion and nucleon are propagating on-shell, which occ
for q95q̄. This pole is related to the two-body unitarity cu
For energies above thepN threshold we need to take care
this pole so as to obtain equations that can be solved num

cally. We achieve this by writingGres
ūu(q9;s) in terms of a

principal-value part and an imaginary on-shell contributio
i.e.,

Gres
ūu~q9;s!52

mN

2Eq9vq9

P
~As2Eq92vq9!

1
ipmN

2q̄As
d~q92q̄!, ~75!

whereP denotes that the principal-value prescription sho
be used when theq9 integration is performed.

The pN phase shiftsd l j I and the inelasticitiesh l j I are
obtained from the on-shell partial waveT matrix using

Tl jI
ūu~ q̄0 ,q̄;q̄0 ,q̄;s!5

2q̄As

mNp2S h l j I e
2id l j I 21

2i q̄
D . ~76!

The behavior at threshold is more conveniently describe
terms of scattering lengths and volumes, which are defi
by the effective range expansion

q̄2l 11 cotd l j I 5
1

al jI
1

1

2
r l j I q̄

21•••. ~77!

Here al jI is the scattering length andr l j I is the effective
range.

VI. NUMERICAL RESULTS

A. Fits to the empirical pN data

We begin this section by listing the free parameters in
model. The five cutoff masses (LN , LD , Lp , Lr , andLs)
are free, but are constrained to be larger than the minim
values given in Table I. Due to the uncertainty in the valu
of the coupling constants other thangpNN , we permitf pND ,
xD , gr , kr, andgsppgsNN to vary freely. The mass of thes
meson, the bareD massmD

(0) , and the barepND coupling
constantf pND

(0) are also allowed to vary freely, althoughmD
(0)

and f pND
(0) are essentially fixed by theP33 phase shifts. The

bare nucleon massmN
(0) and the barepNN coupling constant

gpNN
(0) are not free parameters, but are determined by

renormalization procedure outlined in Sec. IV. We use
valuena51 for all the form factor powers, however it turn
out that this choice is not crucial to the quality of the fit.

The free parameters are determined inx2 fits to thes and
p wave single-energy phase shifts up to 360 MeV pion la
ratory energy, as well as the scattering lengths and volum
02460
rs

ri-

,

d

in
d

r

m
s

e
e

-
s,

from the VPI SM95 partial wave analysis@33#. We carry out
one fit using the Rarita-SchwingerD propagator, and anothe
using the Pascalutsa propagator. The coupling constants
particle masses for both fits are listed in Table II. The res
ing scattering lengths and volumes are given in Table III, a
the phase shifts are shown in Fig. 5. We see that the
equation gives a good description of thepN phase shifts.
Notice that the results for the phase shifts in theP11 partial
wave are better when the Rarita-SchwingerD propagator is
used.

As can be seen in Table II, the values ofgsppgsNN de-
termined from both fits have negative signs, which mea

TABLE II. The coupling constants and particle masses obtain
using the Rarita-Schwinger~RS! and Pascalutsa~Pas! D propaga-
tors. The quantities in boldface were varied in the fits. All mas
are in GeV.

Coupling constants RS Pas

gpNN
2 /4p 13.5 13.5

gpNN
(0)2 /4p 1.80 12.1

f pND
2 /4p 0.365 0.741

f pND
(0)2 /4p 0.37 0.193

xD 20.11
gr

2/4p 2.88 2.73
kr 2.66 4.11
gsppgsNN/4p 20.41 23.80

Masses

mN 0.939 0.939
mN

(0) 1.34 1.72
mD 1.232 1.232
mD

(0) 2.305 2.60
mp 0.138 0.138
mr 0.769 0.769
ms 0.65 0.69

LN 3.17 4.90
LD 4.56 3.20
Lp 1.77 1.76
Lr 3.67 3.06
Ls 1.30 4.26

TABLE III. Scattering lengths and volumes obtained from t
BS equation in units ofmp

2(2l 11) , compared to results from the
SM95 @33# and KH80@58# pN partial wave analyses.

l 2I 2 j BS ~RS! BS ~Pas! SM95 KH80

S11 0.177 0.172 0.175 0.173
S31 20.101 20.105 20.087 20.101
P11 20.083 20.058 20.068 20.081
P13 20.032 20.031 20.022 20.030
P31 20.041 20.041 20.039 20.045
P33 0.178 0.187 0.209 0.214
8-12
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FIG. 5. The phase shifts ob
tained from the BS equation
shown versus the pion laborator
energy, using the Rarita
SchwingerD propagator~—! and
PascalutsaD propagator ~– –!.
Data points from the VPI SM95
partial wave analysis are als
shown.
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that thes contribution is repulsive in thes waves and attrac
tive in thep waves, as was also found in Refs.@15,17#. Note
that we have used a low value for thepNN coupling con-
stant, i.e.,gpNN

2 /4p513.5. We have repeated the fits usi
gpNN

2 /4p514.3 and found that the results are very similar
those shown in Fig. 5. Also, there are no significant diff
ences between the coupling constants obtained from the
usinggpNN

2 /4p513.5 andgpNN
2 /4p514.3.

In Table IV we compare our coupling constants to tho
extracted frompN models based on theK-matrix approxi-
mation and 3D reductions of the BS equation. Our coupl
constants are in general consistent with those obtained f
other models ofpN scattering. We note thatf pND

2 /4p is in
the range 0.35 to 0.43 for all equations, except for the
equation when the PascalutsaD propagator is used, in which
case thepND coupling constant is about twice as large
the commonly accepted value. Our value ofxD is similar to
those found in other models, and they are all in the ra

TABLE IV. Comparison between coupling constants obtain
from the Bethe-Salpeter~BS!, equal-time ~ET!, smooth ~Sm!,
Blankenbecler-Sugar~BbS!, Kadyshevsky~Ka! equations, and tree
level ~Tr! calculations.

f pND
2 /4p xD gr

2/4p kr Equation Ref.

0.365 20.11 2.88 2.66 BS~RS! this work
0.741 2.73 4.26 BS~Pas! this work
0.35 20.3 2.5 3.7 ET @17#

0.43 2.85 1.8 ET @18#

0.36 20.12 3.13 2.25 Sm @11#

0.36 20.41 2.90 1.44 BbS @11#

0.40 20.21 3.36 6.6 Ka @14#

0.36 20.31 3.03 3.16 Tr @11#

0.36 3.1 2.7 Tr @18#
02460
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20.41,xD,20.11. All the models listed give similar val
ues for gr

2 , and the values ofgr
2 all lie in the range 2.5

,gr
2/4p,3.36. Our values are consistent with the KSR

relation @42# and the value found from the width of the p
onic decay of ther meson. There is a large range of valu
for kr , which vary between 1.44 and 6.6. Our value ofkr

52.66 using the RS propagator is smaller than the VM
result ofkr53.7, and we get a value slightly larger than t
VMD result (kr54.11) when we use the PascalutsaD
propagator. This suggests that within the uncertainty fr
theD propagator, we are consistent with vector meson do
nance.

While we are to get a better fit to thepN phase shifts
using the Rarita-SchwingerD propagator than when usin
the Pascalutsa propagator, this does not necessarily su
that the Rarita-Schwinger propagator is the correct spin-
propagator. Other processes not included in the pre
model can give attractive contributions to theP11 partial
wave, such as the coupling to thepD channel or the inclu-
sion of theN* (1440) resonance into the potential. More im
portant is the observation that the different choices for theD
propagator give rise to differences in the coupling consta
This highlights the importance of having a better understa
ing of how to construct propagators for higher-spin particl
Having compared results using two different choices for
D propagator, hereafter we restrict ourselves to the Rar
Schwinger propagator.

B. Contributions to the phase shifts

In Fig. 6 we show how the total phase shifts are built
from the contributions of the individual Feynman diagram
in the potential. Theu-channel nucleon pole is strongest
the S31 andP33 partial waves, but also gives important co
tributions toP13 and P31. The s-channel nucleon pole gen
erates the repulsion in theP11 phase shifts, and gives a ver
8-13
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FIG. 6. Contributions to the
pN phase shifts as each diagra
is added to the potential, in the
following order:u-channelN pole
~– –!, s-channel N pole ~- -!,
t-channel s exchange (•••),
t-channel r exchange ~-•),
u-channel D pole ~–-!, and
s-channelD pole ~—!.
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small contribution toS11. Theu-channelD diagram plays a
very important role in all partial waves exceptS31 andP33,
as it gives a large repulsive contribution toS11, and gives
strong attractive contributions toP11, P13, and P31. The
s-channelD pole diagram dominates theP33 phase shifts, but
also gives an important contribution to theS31 partial wave,
and a tiny contribution toP31. The contributions from the
s-channelD pole to S31 and P31 result from the spin-1/2
components of the Rarita-Schwinger propagator. Ther ex-
change contributions are largest in thes waves, but are also
significant in thep waves except forP33. Likewise, s ex-
change is stronger in thes waves than thep waves, although
the s exchange contributions are quite small in all part
waves.

TheS11 phase shifts are dominated byr exchange and the
u-channelD pole. By itself, the attraction generated byr
exchange is far too strong, but is partially cancelled by
repulsiveu-channelD pole. Except for theu-channel nucleon
pole, all of the diagrams contributing to theS31 phase shifts
are repulsive. The largest contributions to this repuls
come fromr exchange and the spin-1/2 components of
s-channelD pole.

Thes-channel nucleon pole causes theP11 phase shifts to
be negative at low energies. The attraction that causes
phase shifts to change sign is dominated by theu-channelD
02460
l

e

n
e

he

pole and ther exchange diagram.
Theu-channel nucleon pole is strong and repulsive in

P13 and P31 partial waves. In fact, by itself, theu-channel
nucleon pole almost gives the correctP31 phase shifts. How-
ever, ther exchange diagram gives a large repulsive con
bution to P31, causing the phase shifts to deviate strong
from the phase shift analysis. The attraction provided by
u-channelD pole to P31 almost cancels ther contribution
completely. Similarly, theP13 phase shifts are far too repu
sive without the strong attraction produced by theu-channel
D pole. TheP33 phase shifts are of course dominated by t
s-channelD pole, with the background contribution prima
rily coming from theu-channel nucleon pole.

C. Dressing of thepNN vertex

As can be seen in Table II, the cutoff masses we obt
turn out to be quite large. This results in the dressing be
very significant, as is evident from the large size of the b
N andD masses. In view of the significance of the dressi
it is interesting to examine the effect of dressing on thepNN
form factor. When both nucleons in the barepNN vertex are
placed on-mass-shell, the barepNN vertex only involves the
pion form factor, and is given by

GpNN
(0)ūu~q0 ,q;s!5 f p~qp

2 !V pNN
ūu ~q0 ,q;s!, ~78!
8-14
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wheres5mN
2 , andqp

2 is the four-momentum squared of th
pion. The bare pion form factor is

f p~qp
2 !5S Lp

2 2mp
2

Lp
2 2qp

2 D np

, ~79!

and we takenp51. The renormalized pion form factor ca
then be introduced as

f p
R~qp

2 !5Z1N

GpNN
ūu ~q0 ,q;s!

V pNN
ūu ~q0 ,q;s!

U
P11

, ~80!

which has the property thatf p
R(mp

2 )51, and whereq0 andq
are related to the pion four-momentum squared by

q05
1

2mN
~mN

2 2qp
2 !, ~81!

q5
1

2
Aqp

2 S qp
2

mN
2

24D . ~82!

In Eq. ~80! we have taken theP11 partial wave of the quan

tities GpNN
ūu (q0 ,q;s) andV pNN

ūu (q0 ,q;s). By comparing the
slope of the functionf p

R(qp
2 ) at qp

2 50 with a monopole form
factor with cutoff massLp

R , we can obtain a value for th
renormalized pion cutoff mass. We find thatLp

R

51.22 GeV, which is softer than the bare pion form fac
~recall thatLp51.77 GeV!. This is consistent with previou
calculations@59–61#, which have found that dressed for
factors are softer than the corresponding bare form facto

We can introduce the quantityDp as a measure of th
variation between the renormalized pion form factor atqp

2

5mp
2 andqp

2 50, i.e.,

Dp512 f p
R~0!. ~83!

We find thatDp51.3%, which indicates that our dresse
pNN form factor is a very slowly varying function of th
pion mass. Our value ofDp is somewhat smaller than th
value of 3% obtained using other methods@62#.

D. Different choice of form factors

With the choice of form factors we have used so far~here-
after referred to as model I!, the effect of dressing is signifi
cant. We now consider the case where there is a form fa
only on the pion~referred to as model II!, which is arrived at
from the parametrization of form factors used in model I
taking the limit Lh˜` for h5N, D, r, and s. With this
choice of form factor there is only one cutoff mass, rath
than 5, and so the number of free parameters is reduced
All intermediate states contain the pion propagator, a
therefore a cutoff function still appears in all loop diagram
to provide convergence. In model II the pion form factor
used to vary the off-mass-shell behavior of the pion. This
principle could be constrained by the soft-pion theorems

In Table V we show three sets of parameters obtai
02460
r
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from fits to the on-shellpN data, corresponding to th
choices np52, np54, and np510. The resulting phase
shifts are all of the same quality as the results using
Rarita-SchwingerD propagator shown in Fig. 5. The cou
pling constants resulting from the three model II fits a
similar to the coupling constants obtained using mode
although kr is smaller in model II than in model I, and
gsppgsNN has a positive sign, whereas in model I it is neg
tive. As with model I, there are no significant changes to
quality of the fits or values of the coupling constants o
tained when the fits are repeated usinggpNN

2 /4p514.3 as
the physicalpNN coupling constant.

The main difference between the two models is that
model II the effect of dressing is not as significant as
model I. The bare baryon masses are much closer to
physical masses. The renormalized pion cutoff masses
values ofDp for model II are given in Table VI. We see tha
the values ofLp

R are smaller than in model I, and are close
the value ofLp

R'0.8 GeV advocated by some authors@63#.
The values ofDp are consistent with previous calculation
@62# of the difference betweenf p

R(mp
2 ) and f p

R(0).

E. Above the 2p production threshold

In order to see what happens at energies above thep
production threshold, we show the phase shifts up to 6

TABLE V. The coupling constants and particle masses result
from fits to thepN data using different values ofnp . The param-
eters from the model I fit using the Rarita-Schwinger propagator
also shown for comparison. The quantities in boldface were va
in the fits. All masses are in GeV. Particle masses not given are
same as those given in Table II.

Coupling constants np52 np54 np510 Model I ~RS!

gpNN
2 /4p 13.5 13.5 13.5 13.5

gpNN
(0)2 /4p 4.23 4.68 5.98 1.80

f pND
2 /4p 0.365 0.365 0.371 0.365

f pND
(0)2 /4p 0.17 0.20 0.196 0.37

xD 20.13 20.24 20.18 20.11
gr

2/4p 2.67 2.63 2.80 2.88
kr 2.18 2.03 2.15 2.66
gsppgsNN/4p 0.86 0.39 0.48 20.41

Masses

mN
(0) 1.18 1.14 1.11 1.34

mD
(0) 1.495 1.492 1.435 2.305

ms 0.88 0.62 0.64 0.65
Lp 1.34 1.85 2.73 1.77

TABLE VI. The renormalized pion cutoff massesLp
R ~in GeV!

and values ofDp ~expressed as percentages!.

np52 np54 np510

Lp
R 0.874 0.868 0.822

Dp 2.47% 2.51% 2.79%
8-15
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FIG. 7. The phase shifts ob
tained from the BS equation ar
shown versus the pion laborator
energy up to 600 MeV, for models
I ~—! and II ~– –!.
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the
MeV pion laboratory energy in Fig. 7. The results fro
model II were obtained usingnp54. In the P11 and P33

partial waves both models give almost identical results,
there are some differences between models I and II in
higher energy region in the other partial waves.

Both theP13 andP31 phase shifts are quite good over th
full range of energies, which is a reflection of the fact th
below 600 MeV there are no resonances in these pa
waves and the inelasticity is negligible. We require a lit
more attraction at the higher energies in theS31 and P33

partial waves, while a significant amount of additional attra
tion is required forS11 above 300 MeV, and forP11 above
around 450 MeV.

It is not unexpected that there are some discrepancie
the higher energy region. Here theS11 andP11 partial waves
exhibit resonance behavior not included in the pres
model. There are a number of modifications that could
made to our model in order to improve the agreement w
experiment for this larger energy range. First, it may be n
essary for three-body unitarity to be satisfied. Amongst ot
things, this will involve replacing the nucleon propagator
the pN intermediate states with a dressed propagator.
tending the model to include the coupling to inelastic ch
nels and the possible addition of explicit nucleon resonan
into the potential will be essential at energies above 3
MeV. To fully understand thepN amplitude at these ener
gies, the coupling to inelastic channels must first be includ
and if the fit to the phase shifts is still unsatisfactory, expli
bareN* baryon poles may need to be included in the pot
tial.

TheS11 partial wave would be improved by the inclusio
of the coupling to thehN channel, and alsoS11 resonances
such as theN* (1535) andN* (1650) may need to be in
cluded in the potential. The coupling to thepD and sN
channels and possibly the inclusion of theN* (1440) reso-
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nance into the potential would be necessary to improve
P11 phase shifts above 450 MeV.

VII. CONCLUSION

In this work we have presented a description of pio
nucleon scattering based on the four-dimensional Be
Salpeter equation. The kernel of the equation is based o
chiral Lagrangian that includes in addition to pions a
nucleons, theD~1232! and ther ands mesons. The poten
tial obtained from this Lagrangian consists ofs- and
u-channelN andD pole diagrams as well ast-channelr and
s exchanges. Convergence of all integrals is guaranteed
the use of cutoff functions associated with each vertex. T
different parametrizations of the cutoff functions were co
sidered: in model I the cutoff function was taken to be
product of form factors depending on the four-momentu
squared of each particle present at the vertex. In model II
cutoff function was taken to depend only on the pion fou
momentum squared. The parameters of the potential w
adjusted to fit the empiricals- andp-wave phase shifts up to
a pion laboratory kinetic energy of 360 MeV. Both mode
give good fits to thepN scattering data, and the resultin
coupling constants are consistent with the commonly
cepted values extracted from other observables.

While most of our results were for the Rarita-Schwing
D propagator, we compared the results of fits performed
ing the Rarita-Schwinger and Pascalutsa propagators for
case of the model I form factors. The differences in the c
pling constants obtained suggests that a complete un
standing of the baryon resonances with higher spin is
possible without having unique higher-spin propagators.

The good fits to the on-shellpN data for energies below
360 MeV suggests that a model of thepN interaction based
on the Bethe-Salpeter equation could form the basis for
analysis of pion photoproduction by the properU(1) gaug-
8-16
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ing of the Lagrangian@31#, and the analysis of the baryo
resonances near and above the threshold for pion produc
In fact, by extending the calculations to pion energies up
600 MeV, we observe that in partial waves that do not ha
large inelasticities and do not exhibit evidence of bary
states, both our models give good representations of the
For partial waves with large inelasticity there is also e
dence for baryon resonances, and as a result we nee
include first the coupling to inelastic channels, and then
clude bare baryon states into the potential if necessary.

Although we have not included full three-body unitarit
which would require the dressing of the nucleon propaga
andpNN vertices, we have included those contributions
three-body unitarity resulting from the fact that we have n
carried out any three-dimensional reduction, and as such
potentials depend on the relative energy. The inclusion of
dressed nucleon in thepN intermediate states will increas
the number of coupled channels, and is under investigat

By calculating off-mass-shellpN amplitudes using the
Bethe-Salpeter equation we can examine the low ene
theorems, and study the questions associated with the
lytic continuation of the physicalpN data to the Cheng
.
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Dashen point@64#, and the changes in thepN sigma term as
one goes from the Weinberg point, where the four-mome
of the pions is zero, to the Cheng-Dashen point, where
pions are on-mass-shell. This question is presently being
amined and could shed some light on the inconsisten
between the ‘‘observed’’SN andsN as extracted from QCD
models.

It is clear from the work presented here that constraints
the coupling constants and form factors need to be impro
before it can be established whether or not the present
tential includes all the physics ofpN scattering at low ener-
gies. We are of the opinion that such constraints, particula
on the coupling constants, should come from QCD or QC
based models.
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