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The properties of isospin-asymmetric nuclear matter have been investigated in the framework of the ex-
tended Brueckner-Hartree-Fock approximation at zero temperature. Self-consistent calculations using the Ar-
gonneV,, interaction are reported for several values of the asymmetry paragetéd —Z)/A, ranging from
symmetric nuclear matter to pure neutron matter. The binding energy per nucleon fulfif# thev in the
whole asymmetry range. The symmetry energy is calculated for different densities and discussed in comparison
with other predictions. At the saturation point it is in fairly good agreement with the empirical value. The
present approximation, based on the Landau definition of quasiparticle energy, is investigated in terms of the
Hugenholtz—Van Hove theorem, which is proved to be fulfilled with a good accuracy at various asymmetries.
The isospin dependence of the single-particle properties is discussed, including mean field, effective mass, and
mean free path of neutrons and protons. The isospin effects in nuclear physics and nuclear astrophysics are
briefly discussed.S0556-28189)03108-9

PACS numbdps): 25.70-z, 13.75.Cs, 21.65.f, 24.10.Cn

I. INTRODUCTION Beside the bulk propertig€0S), the authors of Ref12]
focused also on the single-partidle.p) properties of neu-

Within the general interest for the equation of std®S  trons and protons in isospin-asymmetric nuclear medium.
of nuclear matter in nuclear physics as well as in nucleaifhe neutron and proton s.p. potentials were calculfted
astrophysics, increasing attention is currently paid to the¢o the lowest order in the Brueckner reaction matiBHF
isospin degree of freedom. approximation, using the so-calledontinuous choic¢l15].

The EOS of isospin asymmetric nuclear matter plays aVotivated by the renewed interest in this subject, in the
central role for our understanding of astrophysical phenompresent paper we report an extension of the calculations of
ena like supernova explosions, neutron stars structure, x-ragef.[12], along the following lines. First, in the calculations
bursts, neutron stars merging, and possiplsay bursts. The we make use of a different realistic nucleon-nuclediNj
study of asymmetric nuclear matter represents also the firgotential, i.e., the full Argonn¥,, potential[16], which en-
step for a microscopic theory of the structure of nuclei farables us to take into account a larger number of partial waves
from the valley of beta stability. This “terra incognita” is with respect to the calculatigii2] with the separable Paris
going to be explored in the near future thanks to a new genpotential. These additional partial waves{B<6) give a
eration of experimental facilities with high intensity radioac- non-negligible contribution both to the EOS and the nucleon
tive ion beams. Moreover, dynamical simulations of colli- mean field, expecially in the high-density region, which is
sions between neutron-rich nuclei show that the mainelevant for applications in astrophysics as well as in heavy-
reaction mechanisms including fragmentation are quite serien physics.
sitive to the density dependence of the nuclear symmetry Second, the Bethe-Goldstone equation is now solved for
energy[1,2]. Such calculations mainly make use of phenom-the complexG matrix. This enables us to calculate the com-
enological Skyrme-like forces where the symmetry energy aplex nuclear mean field and some closely related quantities
high density can also be in strong disagreement with the onguch as the optical potential and the mean free path.
extracted from the microscopic predictions. Third, according to the Landau definition of quasiparticle

On a microscopic basis the EOS of asymmetric nucleaenergy(for an extended discussion see Réf7]) in the cal-
matter has been studied within the variational approacleulations of the mass operatgnucleon self-energyand
[3-5] as well as relativisti¢6—11] and nonrelativistid12]  single-particle properties, we go beyond the BHF approxi-
Brueckner-Bethe-GoldstongBBG) theory. Within the mation by including some higher-order correlation contribu-
Brueckner-Hartree-FockBHF) approximation to the BBG tions. In particular, in the present work, we include the so-
theory a systematic study of isospin effects on the EOS o€alled rearrangementterm M,, which is a second-order
asymmetric nuclear matter has been carried out in R€l,  diagram in theG matrix and accounts for particle-hole exci-
where a separable versiph3] of the Paris potentidll4] was  tations in nuclear matter ground state. Next we consider also
adopted to describe the two-body nuclear force. therenormalizationcontributions of the third and forth order

in the G matrix, which account for the partial depletion of
the neutron and proton Fermi seas due to the nuclear corre-
*Permanent address: Institute of Modern Physics, Lanzhoudations[18]. It has been shown, in the case of pure neutron
China. matter[19] and also symmetric nuclear mat{&0], that the
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new terms give a large contribution to s.p. properties like the

mean field and the nucleon effective mass. We will refer toM(k) _ |N\O N m N M:O Lo
the present approach to compute nuclear s.p. properties ¢

the extended Brueckner-Hartree-Fo(E&BHF) approxima-

tion [19,2Q.

As is well known, the BHF approximation largely violates
the Hugenholtz—Van HovéHVH) theorem[21], which ba- o . ,
sically measures the consistency of a given order of approx€rature is given by the step functiétk —kg) (uncorrelated
mation in a perturbative approach. In symmetric nuclear matground state The s.p. enerdy
ter, the inclusion of the rearrangement contribution greatly £2k2
improves the fulfilment of the HVH theorerf22]. In the e(k)= ﬁ"‘u(k) 3
present work, we study this problem in the case of asymmet-
ric nuclear matter, within the EBHF approximation.

FIG. 1. Hole-line expansion of s.p. potential.

appearing in the energy denominator of Ef, involves the

auxiliary potential U(k), which controls the convergence

Il. EBHF AND NUCLEON SELF-ENERGY FOR rate of the hole-line expansion. Within the BHF approxima-
ASYMMETRIC NUCLEAR MATTER tion the neutron and proton s.p. auxiliary potentials are cal-

culated from the real part of the on-shell antisymmetri@ed

In this section the formalism of the Brueckner-Bethe- atrix via the relation
Goldstone(BBG) theory is described for the case of asym-
metry nuclear mattef12,23. The proton and the neutron _ , , , ,
Fermi momenta are related to their corresponding densities U(k)_%,: n(k")Re(kK'|G (k) + (k') ]lkk')a.  (4)
pp andp, by the relations

Here we adopt the continuous choidbs] for the auxiliary

Kp= i(l—ﬁ)prm, s.p. potenti_al. In this context it has the ph_ysic_al meaning _of
2 the mean field that each nucleon feels during its propagation
between two successive scatterings.
372 13 In the BHF approximation, Egs(l), (3), and (4) are
kg= T(1+B)P} , solved self-consistently for a given total densgitand asym-

metry B. Then the energy per particle is evaluated at the
lowest order(two hole-line diagramsof the BBG hole-line

wherep=py+ py is the total density, ang= (pn — pp)/p the expansionsee Ref[23] for the case of asymmetric matter

asymmetry parameter determining the neutron ex¢fesm

Now on we assump,=p). o
The starting point in BBG theory is the Brueckner reac- A. Mass operator and quasiparticle energy

tion matrix G, which in the case of asymmetric nuclear mat-  One of the main purposes of the present paper is to cal-

ter depends also on the isospin components of the two cokulate s.p. properties of neutrons and protons in asymmetric

liding nucleons. Theés matrix satisfies the Bethe-Goldstone matter going beyond the BHF approximation. To this end we

equation, introduce the mass operatd5,24]
G(p,B:w)=vnn M7(K,0) =V"(K,0) +iW'(K, o), )
[k1k2) Q(Ky, ko) (kikyl which is a complex quantity and can be identified with the
+UNN D G(p.Bw), potential energy felt by a neutronr€n) or a proton ¢

Kk, @— €(ky) —e(ky) +in ) R _ :
=p) with momentunk and energyw in asymmetric nuclear

(1) matter(hereafter we will write out explicitly the isospin in-
dex 7). In the same spirit of the BBG theory, the mass op-

wherevyy is the two-body nuclear interaction, aadis the  erator M"(k,w) can be expanded in a perturbation series

starting energy. Heré&=(k,o,7) denotes s.p. momentum, according to the number of hole lin¢&5] and the various

spin, and isospiz components, respectively. terms of this expansion can be represented by means of

The G matrix can be considered as an in-medium effec-Goldstone diagrams a few of which are shown in Fig. 1.

tive interaction between two nucleons. The surrounding In analogy with the case of symmetric nuclear matter, the

nucleons renormalize the baheN interaction via the Pauli neutron and proton quasiparticle energi€gk) are the so-

blocking and the nuclear mean field. The Pauli operator, delutions of the energy-momentum relation

fined as 212

E’(k)= ——+VTk,E"(k)], (6)
Q(ky,kz)=[1=n(ky)][1-n(ky)], 2 2m
prevents two nucleons in intermediate states from scattering
into states inside their respective Fermi seas.rBk) we lin the present work, we assume the neutron and proton rest

denote the Fermi distribution function, which at zero tem-masses equal to their average vaine
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" ! E3(k)=Ef(k)+Z5(K)V3[k,E7(K)]
2k2
M (k) = + = S HVIKEI(0]+ Z3(k VIIKEL(K)], (9)
where
n n
-1
FIG. 2. The first-order hole-line expansion of neutron s.p. po- Ty —1 1 _ i T T

w=EI(K)

i.e., E'(k) is obtained from the on-shell values of the realjs an approximation of theuasiparticle strengttor asym-
part of the mass operator. _ _ metric nuclear matter
To the lowest order in the hole-line expansion the mass

. . . . J -1
operator is given bydiagrams of Fig. 2 ZT(k)=[1— —[VT(k,w)]] . (11)
Jo 0=E7(K)
Mik,w)=2 X n7(k')(kK'|G™ [w+e™ (k')]kk )a
o k'o' C. The renormalization contributions to the s.p. energy
=S M (K.) @ Due to many-body correlations the two Fermi seas are
i 10)- partially depleted, and the correlated momentum distribu-
tions n’(k) differ from the uncorrelated ones”(k)= 6(k
In this approximation the quasiparticle energ§(k) coin- —k;).. Tq account for this physical effect, one cqnsiders the
cides with the BHF s.p. energy given by Eq8),(4), i.e.,  contribution M3(k,») (last diagram in Fig. JL given by
E{(k)=€"(K). 1519
B. The rearrangement contribution to the s.p. energy Malk,)= _2 HZU' k2 (CkNG

The next contribution to the perturbative expansion of the
mass operator is given by the so-calledrrangementerm
Mz(k,@) [15]. The associated Goldstone diagrams ar€nereh’ refers to “hole” state with momentum smaller
shown in Fig. 3.M7 is a second-order diagram in tf@ 4 -nk” and
matrix and accounts for particle-hole excitations in nuclear '

X[w+e (h)]|kh' )4, (12)

matter. Its expression, extended to asymmetric nuclear mat- oo a
ter, reads wz (h)=—|=—M7 (h',0) ,
w=¢€T (h")
T l ! ’ ’
Ma(k,w)=5 > > [1-n"(k )]kEk n"(kyn™ (ky) is at the lowest order the depletion of neutfpnoton Fermi
Tk v sea[15,18, i.e., ] (h’) is the probability that a neutron
" [(KK'|G™ [€7(ky) + €™ (ko) ]| Kika)al? (proton hole-state (| <kZ') is empty. Let us consider now
w+e (k) —€(ky) — e (k) —i7 the sum
, M7(k,w)=MI(k,0)+M3j(k,o)
=2 M3 (k) )
=2 X [1-«5(h)]
where €7(k) is the s.p. spectrum in BHF approximation, mohe
given by Egs.(3), (4). In this approximation for the mass X(kh'|G™ [w+ €™ (h')]|kh')a
operatoffi.e.,M7(k,w)=M](k, ) + M7(k,®)] the quasipar-
ticle energy(6) is given by the approximate relation :2 E ﬁ;’(h/)<kh/|6n’[a}+ET’(h,mkh,)A
7_/ hlo_l
n n (13)
Myk) = n + a‘ ﬁg'(h’)z[l—xg'(h’)] being the second-order approxima-
tion for the correlated momentum distributiol.?(k,w) is
N 0 the so-calledrenormalizedBHF approximation for the off-

shell mass operatdcompare to Eq(7)].
FIG. 3. The second-order hole-line expansion of neutron s.p. An accurate approximation consists in using the average
potential. value of the depletion, which is
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=5 (h'=0.75%). (14  Where
Then Eqs(12), (13) yield Zi(k)= { 1— 2 (1- KT’)%(VT’[k,w]
M3k, w)~— 2 «" M (k,w), (15 -1
" Vi [I«w])] . (19
Wik o)~3 1= MF (ko). (9 vmEY

In the following we refer to this approximation for the qua-
From the similar considerations, a renormalization correcSiparticle energy as the extended Brueckner-Hartree-Fock
tion should also be brought from the four hole-line terms to(EBHF) approximation/18—-20.
the second-order contribution t@l; in order to take into

account the fact that the hole-stdtgin Eq. (8) is partially D. Partial wave expansion and angular averaging

empty (see also Ref[18] for symmetric nuclear matter After the usual angular averaging on the Pauli operator

Along the same lines of the previous correction one gets thand the energy denominat$26,22, the Bethe-Goldstone

renormalized M, which is approximately given by equation can be expanded in partial waves,
MI(k,w)=> [1—x" IM5 (ko). (17) G.(9.9".P.w)=va(a,9")

The renormalized contributions can also be traced to the +— Z q"?dq"v o1(9,9")

functional dependence of tHeé matrix on the quasiparticle L

occupation numbers within the Landau theory of Fermi lig- <QTT'(q~,p)>

uids. It can be shown, in fact, that taking the functional de- ; :

rivative of the binding energyat two hole-line level in- w—ef; (q",P)+in

cludes also the terms of third and fourth order in the self-

energy, the effect of which has just been discussed. Taking XGlL, (0".q",Pw), (20

into account all the corrections discussed above, from&q.
one can get the following expression for the qua&parﬂclé"’hereq (ky—K2)/2 and P=k;+k, are the relative mo-

energy[18]: mentum and total momentum, respectlvelg12 (9",P)
£2K2 =(e"(ky)+€” (kp)) is the angle average of the energy de-
Es(k)= 5 T VilkE1(k) ]+ Z3(k) nominator. The angular-averaged Pauli operator is
(i) for 7= 7" (neutron-neutron or proton-protpn
X — T’VTT’ k,ET k mln(l’g,r) |f 5720
; { K 1 [ 1( )] <QTT(q,P)>= (216‘)

0 otherwise,

+(1-«")VZ [KE(K)]} (18) (ii) for 7# 7' (neutron-proton or proton-neutrpn

1
E[min(lygp)_l'min(lafn)] if gnz_gpvgna_l

(Q7'(q,P))= (21b
0 otherwise,
where
PZ/4+ 02— (k{)?
~ Pq
The mass operatofd ; and M, become
f Fk'2dK’ singd6GI7,[q,0,P,w+ €™ (k')], (229
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, 2(1+
M3 (K,w)=

—Z‘Sk”’) D (2J+1)f fqdquﬁl—nf'(m)]
ar

all’

: GI7[a.q.P.ef3 (g ,P)]?
xf q'2dq (R (@' ,P))———== = —. (22b)
w+ e (VP2+20°—k?) —e5 (q',P)—iy
The integrations ofj andP in the expression o, are limited to
1 ’ 1 ’ .
meo{o, k—z(kﬁk;), E(kg—k)} if  k<kf
Amin= (239
1\/ 2 T\2 T 7'\2 1 7 H T
max 5V 2k = 2(kp)?+ (ki —ki )% S(k+kp)| if k>kE
1o
qmax:k+ E(kF+kF )s (23b)

and

! 1 ’
max{2(k—q), v2k>+2(kZ)2—4q?] if a=5(k+kg)
Pmin= 1 (244
2lq—k| if k>§(k+k;’)

Poma=MiN[2(k+q), (KZ+kZ)]. (24b)

The angular averaging of the anti-Pauli opera‘&ﬁf’(kl,kZ)EnT(kl)nT'(kz) can be written as
(i) for =17, i.e., neutron-neutron or proton-proton

min(1l,7,) if #,=0

R™(q,P))= . 25
(R7(a,P) 0 otherwise, (253
(ii) for 7# 7', i.e., neutron-proton or proton-neutron
1
, —=[min(1,7,)+min(1, if =—p,,n,=—1
(R (q,P)) = 2[ ( ) (1,7n)] ) s Mp (25b)
0 otherwise,
|
wherep™= —¢&". consistently within the BHF approximatid3]. B(p,8) is
plotted as a function oB?, for three values of density. The
Ill. RESULTS numerical results lie on a linear fit performed with only the

We have performed a set of nuclear matter calculationdSt three values of the asymmetry parameter. This proves
for the asymmetric case within the EBHF approximation.that the empirical parabolic law
Three different densities have been selecigd2, py, and = 2
2po, beingpy=0.17 fni 3 the saturation denfi?y ofgymmet— B(p.B)=Blp.0)+ Eonlp) B (29
ric nuclear matter. For each density the whole range of asyntaken from the nuclear mass table can be extended up to the
metry parameter (&€ 8<1) has been spanned. The self- highest asymmetry of nuclear matter, in good agreement
consistent solution of the Bethe-Goldstone equation yieldingvith our previous BHF calculation with separable Paris po-
simultaneouslyG matrix and auxiliary potentialU (k) tential [12].
needed five iterations to reach a satisfactory convergence. Equation(25) can be considered as ti6## expansion of
The bare potential adopted as input in the calculation was thﬂ]e b|nd|ng energy truncated at the lowest order. On|y even
ArgonneVy, [16] with 24 channels up th =6. powers of the asymmetry paramej@may occur in the ex-
pansion for charge-independeéXiN interactions, such as the
ArgonneV,, used in the present work. 8% contribution

In Fig. 4 (left pane) we report the resultésymbolg for  might arise at the three hole-line order of the BBG expan-
the energy per nucleonB(p,B), as calculated self- sion. Unfortunately, no such calculation B(¢p,) has been

A. Symmetry energy
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FIG. 4. Left panel: Total binding energy per nucleon in the rangg88=<1 at three densities as compared with the paraboli¢gitaight
lines) obtained from the first three values 8f(0.0, 0.2, 0.4. Right panel: Density dependence of the symmetry energy of the present work
(solid curve using ArgonneV,, as bare interaction in comparison with other nonrelativistic calculations. The dashed curve is the result of
the lowest-order constrained variational calculation using Argdnneas bare interaction from Ref5]. The dotted and dot-dashed curves
are the results of the variational approach using Argovipeand ArgonneV,,+UVII, respectively, taken from Ref3].

done yet. However, it has been shown recently that the three?( o - gj), and (L-S)? terms of the nucleon-nucleon poten-
hole-line contribution to the binding energy of symmetric tial. Finally, spin-orbit correlations are not treated accurately,
nuclear matte{27] is rather small within the continuous as discussed in the same paf&dr All theseNN correlations
choice. Therefore, we do not expect a large deviation fromyre included in a self-consistent way in the BHF approach.
the parabolic law after including the three hole-line contri- ol the above-mentioned approximations could give large
bution. A deviation from the parabolic law could be expectedyncertainties in the calculated expectation value of the en-
at densities hlgher with reSpeCt to those considered in th@rgy in the h|gh density region_ The same discrepancy has

present papel5,7-9. also been observed in our previous calculations for asymmet-
The symmetry energy is defined as ric nuclear mattef12] and also in neutron matter calcula-
1[52B(p, ) tions[28]. . _ . .

Eqnlp)=>|—2— ) (27 From the previous discussion we guess that the nice

2| B £=0 agreement between our calculation and a lowest order con-

strained variational calculatidi®] is fortuitous. On the other

Due to the simpleB? law the symmetry energy can be hand, the agreement up j©~0.24 fm 2 with the varia-
equivalently calculated as the difference between the bindingonal calculation including three-body for¢8], also plotted
energy of pure neutron matter and symmetric nuclear mattein Fig. 4, is hardly understandable.
Esym(p) =B(p,1)—B(p,0), but one would refrain from using More recent versions of theN potential do not provide
that recipe at very high density. The results of our BHFany appreciable difference of the symmetry energy from the
calculations forEg,(p) are depicted by the continuous present calculation except the CD-Bonn potential as dis-
curve in the right panel of Fig. 4. In the same figure, wecussed in Ref[29]. All Brueckner calculations predict the
show the results from the variational approach using thesymmetry energy to increase with the nucleon density and no
same Argonné/,, potential[3]. saturation is observed up {©=0.5 fm 3 at variance with

The systematic disagreement displayed by the two manythe preceeding variational resulf8]. In the relativistic
body approaches has been believed to be a shortcoming ofean-field theory this behavior is easily understood in terms
the Brueckner approach in view of the fact that the BHFof the p-meson exchange, which leads to a repulsive sym-
result lies above the “variational” one. However, in RE3]  metry potential at all densitig4,9]. In order to try to explain
(and similar worky the variational expectation vallg,,, of  what happens in the nonrelativistic case, we report in Fig. 5
the Hamiltonian is calculated in a diagrammatic cluster exthe different contributions to the symmetry energy, plotted as
pansion(FHNC-SOQ, which is of course truncated to some a function of density. The kinetic contribution monotonically
order. To estimate the convergence of this diagrammatiincreases ap?® according to the free Fermi-gas model. In
cluster expansion, we plot, in the same figure, the results of the figure(right two panely the isoscalar and isovector con-
lowest-order constrained variational calculatiigl, which  tributions of the potential part are plotted separately. As al-
includes only two-body cluster contributions Eq,,. More-  ready found in the previous papfgt2], the most important
over, the variational trial wave function used in Ré&f] does  contribution to theT=0 component is due to the deuteron
not contain the correlations which arise froh?,  3S,-*D, coupled channels of the interaction, which exhibits
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FIG. 5. Symmetry energy vs density in BHF approximation. Left panel: total symmetry engegy) (kinetic (Kg,), and potential
(Vsym contributions(only ArgonneV,,). Middle panel: potential contribution from isospli=0 channels with Argonn¥,, (solid curve
and separable Parjdashed curvyepotentials. Right panel: potential contribution from isospial channels with Argonn¥, (solid curve
and separable Parigashed curvepotentials.

a maximum ap=0.3 fm 3. This peak can be traced back to is the average value of the real part of the ma@i' in the

the behavior of the two components: the attracfi$e chan-  neutron Fermi spherdf{’|<kD), and(G"™, (G"P) have

nel dominates at low energy whereas the repulsi@®  similar definitions. This approximation is suggested by the

dominates at high energy. Two terms compensate each.othgrmost linear dependence Wf andV? on 8 and, in fact, is

at the energyE=4E=200 Mev,i\évhereEF is the Fermi nmerically fulfilled with a good accuradgee also Fig. B

energy corresponding f=0.3 fm"~. The crossing point in momentum space is determined by the
occurrence of GPPy=(GP") for V{ and (G"Py=(G"") for

V] at a certain value of the momentum which does not de-

For asymmetric nuclear matter the neutron mass operatgrend upong. A signature of the inversion of the isospin

M" is different from the proton mass operatoh”. More-  effect at the crossing point could be found in those collective

over, as shown in Figs. 2 and[8ee also Eqd.7),(8)], both  observables measured in heavy-ion collisions which are sen-

of them can be split into two componentd:"=MPP+MP"  sitive to the momentum dependence of the mean field.

for protons andv"=M""+M"P for neutrons. In Fig. 6 the

on-shell values of the real part M7 are reported as a func-

tion of the s.p. momentum, for different values of the asym-

metry parameteg at fixed densityp=0.17 fm 3. The pro- 0

ton mean fieldvV}(k)=ReM}(k) becomes more attactive, —20

while the neutron mean field/(k)=ReM](k) becomes

more repulsive going from symmetricBE0) to neutron —40

(B=1) matter. Theg dependence of¥/; and VY is almost —-60

linear and nearly symmetric with respect to their common < 80

value atB=0. This result supports from a microscopic point >

of view the validity of the so-called Lane potentf&80]. It is —100 E

worth noticing(see Fig. 6, upper panglhat a crossing point 0

occurs for botiv} andV’, where the isospin effect on neu-

tron and proton mean field versyssis inverted. This behav-

ior of the neutron and proton mean fields can be understoocz

in terms of phase-space arguments, as already pointed out i€ —=20

Ref.[12]. To this end, we write the single-particle potentials, & 0

VI andV?, in terms of their componentg]” [defined ac- ;:'

cording to Eq.(7)]:

B. Single-particle energy

Proton s.p. potential Neutron s.p. potential

k) (MeV)

-10

-40

1 1
VE(k)=5(1-B)p(GP)+5(1+B)p(C™), (29

FIG. 6. Real parfupper panelsand imaginary partiower pan-
els) of the first-order single-particle potentidld, for proton (left
. pane) and neutror(right panel, respectively, as a function of mo-
where (GPP) is the average value of the real part of the entm for different asymmetry parameters at density

matrix GPP in the proton Fermi spherdi{’|<kP), (GP"™  =0.17 fm 2.

1 1
V(=5 (1= B)p(G")+5(1+H)p(C™), (29
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FIG. 7. Real partupper panelsand imaginary parlower panelgof the second-order single-particle potentislls for proton(left pane)
and neutror(right pane), respectively, as a function of momentum for different asymmetry parameters at deagitg7 fr 3.

The imaginary parwj of the mass operatdv ; is due to The isospin dependence of the second-order contribution
the virtual collisions of a single nucleon with a neutron or aM; is affected by the coupling between the nucleon hole
proton of the background, promoting it to a particle stat¢.  states and particle-hole excitatiofsee the bubble in Fig. 3
is vanishing below the Fermi momentudd due to the Pauli and Eq.(8)], which yields a nonlinear variation of the mixed
blocking. It is worth noticing that reducing the proton Fermi componentsM5™ and M3P vs B. The nonlinearity is much
momentum implies less Pauli blocking for protons. Thismore sizable forvV5" and W5P, which can be easily ex-
means that high asymmetric nuclear matter is less transpaplained as a phase-space effect as well, i.e., of the interplay
ent to the proton propagation. between the neutron and proton phase spaces as increasing

The second-order terms of the on-shell mass opeMfpr neutron excess.
are plotted in Fig. 7. The real pawt; (upper panelsgives
the contribution to the mean field due to the coupling of the ¢ Fermj energy and Hugenholtz-Van Hove theorem
single-particle motion with the ground-state particle-hole ex-
citations. As is well knownV7 is repulsive and reduces to a definit ¢ Darticl h i sec. | wh
large extent the pure BHF mean fidld which is too attrac- efinition o quasiparticie energy as snown in Sec. /, Whose

tive compared with the phenomenological optical otentialrelation fo the Brueckner theory is well establishied].
126] p P 9 P P Study of the Hugenholtz—Van HovgHVH) theorem[21]

The i . W ol | | tary t within the EBHF approximation could provide an additional
. '€ Imaginary parv; plays a role compiementary to support to a proper definition of the quasiparticle energy and,
Wj : it describes the virtual collisions of a single nucleon of 4t the same time, a more realistic evaluation of the Fermi

the background with an excited neutron or proton, making itenergy. Strictly speaking, the HVH theorem concerns only
to decay into a hole stat®V/; is vanishing above the Fermi symmetric nuclear matter at saturation poi=(0), and it
momentumke . states that the energy per nucleon must be exactly equal to

In order to focus on only the isospin dependence, we plothe Fermi energy. In the case of asymmetric nuclear matter
in Fig. 8 the mass operator as a function of theat k  (two-component systenat zero temperature, the HVH theo-
=0 fm~* except for the imaginary part &, for which a  rem can be generalized via the thermodynamic relation
value ofk above the Fermi momentum has to be taken.

The first-order contribution has the linear behavior for the E(p.B)  Plp.B) — \VPEP ngn

e + YPER(p.B) + Y "ER(p.B), (30)

real part as well as for the imaginary part as expected from A P
phase-space arguments. The slope|/WE"| is more pro-
nounced than that oW} since the neutron particle-hole P(p,B) being the pressure anP=p,/p andY"=p,/p the
excitations coupled to a proton in a particle state are mor@roton and neutron fractions, respectively. The Fermi energy
favored than the proton particle-hole excitations coupled to s calculated from the quasiparticle energy spectrum at Fermi
neutron(see also Fig. 6 surface according to Eq6). In Table | it is numerically

The EBHF approximation basically relies on the Landau
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FIG. 8. Different components of the first-ord@mper panelsand the second-ord€lower panel single-particle potentials at density
p=0.17 fm 2 for suitable values of momentum vs asymmetry parameters. For the real pastafidM,, and the imaginary part dil,,

the momentum i&=0, while for the real part oM, the momentum i&k=3 fm 1.

shown to what extent the HVH theorem is fulfilled by the include both the rearrangement and the renormalized contri-
EBHF approximation. The pressure has been calculated usutions(EBHF) if a satisfactory agreement within less than
ing the relationP(p, 8) = p?[JE(p,B)/dp]. In the fourth col-  10% is to be attainedlast column of Table)l This result is
umn the left-hand side of Ed30) is calculated for several in keeping with the uncertainty in the calculation of the pres-
asymmetrieg(density fixed atp=0.17 fm 3). One would sure because the binding energy curve is rather flat as a func-
notice that, despite the fact that the total density is fixed ation of density.

the empirical saturation value, our calculated saturation point

lies at higher density, because, as is well known, Brueckner IV. APPLICATIONS

theory with two-body force misses the empirical saturation .

density. The last three columns provide different approxima- A. Effective mass

tions for the right-hand side of E¢30). The pure BHF ap- The effective mass incorporates the nonlocal part of the

proximation by itself is far from fulfilling the HVH theorem. mean field which makes the local part less attractive for a
Including the unrenormalized ground-state correlatidmdi-  nucleon traveling with momentutk>0. It is defined as

cated by BHR- M, in the table, where the Fermi energy is " . .

calculated according to E¢Q), provides some improvement m> (k) _ E( dE (k)) (31)

but it is not enough to fulfill the HVH theorem. One needs to m m| dk ’

TABLE I. As a function of the asymmetry parametérst columr) the physical quantities involved in the
Hugenholtz—Van Hove theorem are reportedMeV): pressure ovep (second columy energy per nucleon
(third column), and “weighted” chemical potentials of asymmetric nuclear matter in different approxima-
tions, as discussed in the text?=Z/A andY"=N/A are the proton and neutron fractions, respectively. The
total density isp=0.17 fm 3.

YPER+Y'ER  YPER+YPER  YPER+YMER

B Plp E/A Plp+E/A BHF BHF+M, EBHF
0.0 —5.02 —15.92 —20.94 —34.27 —28.50 —19.28
0.2 —4.40 —14.73 —19.13 —32.29 —26.43 —17.35
0.4 —3.27 —11.36 —14.63 —26.28 —20.74 —12.42
0.6 0.08 —5.75 —5.67 —16.56 —11.44 —4.41
0.8 3.76 2.24 6.00 —2.40 2.07 7.42
1.0 8.91 12.83 21.74 16.28 19.67 22.39
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The first process is related to the imaginary partvbf, the

L2 p = 0.17fm™ | second one to the imaginary parthdf,, both of which have
¢  neutron effective mass been plotted in the lower panels of Figs. 6 and 7. But, in the
O proton effective mass case of asymmetric matter the collisions between like and

unlike nucleons yield contributions to the mean field which
are very different.
The mean free path, is given by
»(E)= #2k(E) 1
T om, ImMK(E)E]]’

wherem, is the so-callek mass, and is the single-particle
energy[35]. In Fig. 10 the protorfupper panelsand neutron

085 0.2 o4 0.6 08 1o (lower panels mean free paths calculated within the EBHF

(N-Z)/A approximation are shown for three values of the total den-
. sity. In each panel the values bf for several asymmetries
FIG. 9. Proton and neutron effective masses vs asymmetry pagre plotted as a function of single-particle energy. The most
rameter at density=0.17 fm °. The solid curves are results from qjevant effect of the isospin asymmetry is the increasing
the pure BHF calculation, while the dashed curves are calculateeeviation from the symmetric valuésolid lines, upward for

from the EBHF(including the renormalization contributions X\, and downward\ ., as increasing asymmetry. The nonva-
n pr .

, ) nishing values of neutron and proton mean free paths below
The momentum dependence wf* is characterized by the {neir respective Fermi energies are effects of ground-state

wide bump inside the Fermi sphere due to the high probabilgqrelations, which prevents a full occupancy of the Fermi
ity amplitude for particle-hole excitations near the_ Fermi SUr-gpheres. Comparing with the BHF calculation it turns out
face [15]. The effect of correlations is a flattening of the that the correlation effects tend to rise the asymptotic value
slope of the mean field around the Fermi energy, which im¢ the mean free path from about 3 fm up to about 4 fm at the
plies an enhancement 01_‘ the effe_ctive maslgau?th respect  gaturation density of symmetric nuclear maft).
to BHF value[19,20. This result is shown in Fig. 9, where |5 Fig 11 it is shown how the isospin dependence of the
an increase from 0.8 to 0.92 is observed for symmetriG, ersen develops as increasing nuclear matter densities at a
r)uclea_r matter at'the saturation density. Also shown in thgjyaq value of the energy. Except for very small asymmetries
figure is the isospin dependence of the neutkguper UV he gt of\, and\,, is not symmetric with respect to their
and proton(lower curve effective masses. In both the BHF common value aB=0. At any density the slope of the neu-
and EBHF calculationsmy; increases andn; decreases as ron inverse\ is less than the proton one. This effect can be
increasingB. Compared to the BHF approximation, the cor- yraced to the reduction, as increasing neutron excess, of the
rections of EBHF shiftmi andmy to higher values, a fea- proton particle-hole excitations contributing to the neutron
ture which can be traced to the depletions of the proton angptical potentialsee Figs. 6 and)7Moreover, the EBHR ,
neutron Fermi surfaces due to the ground-state correlationgeems to reach the asymptotic value of pure neutron matter
The value ofmy calculated from EBHF approaches its BHF much faster than in the uncorrelated case.
value as increasing since the correlations become smaller.  The most striking effect of the isospin-asymmetry is the
sizable reduction of the proton mean free path at high asym-
B. Mean free path metry. Accordingly, the nuclear surface would become more
. : . . __transparent to neutrons than protons in nucleon-induced re-
Information on the in-medium cross section or, equiva-yetions on nuclei near the neutron drip-line. This effect

lently, on the_ mean free path_ of a nucleon traveling inside 2vould be more pronounced at higher density as shown in
nuclear medium can be obtained from the transparency of ﬁig 11

nucleus measured irefe’ p) reactiong 32] and, in general,
from nucleon-induced reactions at low enef&g]. The un- o o
derlying assumption is that the behavior of a nucleon located C. Proton fraction in B-equilibrium matter

at the positionr in a nucleus is the same as a nucleon in  The core of a neutron star is expected to be formed by an
nuclear matter at density(r). Such an assumption is the Uncharged mixture of neutrons, protons, electrons, and
well-known local density approximatiofLDA) [34]. The Muons in equilibrium with respect to the weak interactions
mean free path is intimately related to the imaginary part of 3-Stable matter The concentrations of different particles
the optical potential or, equivalently, to the imaginary part of&"® then obtained under the requirements

the mean field. The latter comes from the collisions of a Bn— Mp=Me, Mu=He, (32
single nucleon with the background of neutrons and protons:
a nucleon with momenturk=kg can collide with a neutron Pp=Pet Py (33

or proton of its Fermi sea and promote it to a particle state,
or a nucleon with momenturk<<kg interacting with an ex- The difference between the neutron and proton chemical po-
cited neutron or proton can make it decay into a hole stateentials can be expressed as
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FIG. 10. The energy dependence of protopper panelsand neutror{lower panels mean free paths for different asymmetry parameters
at three densitiep=0.085 fm 3, p=0.17 fm 3, and p=0.34 fm 3. Only EBHF results are reported. The different kinds of lines
correspond to different asymmetry parameters with the same notation as in Fig. 6.

JB JB ter, it has been found that the onset of direct Urca processes
Mn™ Hp=" =p _Zﬁ (39 occurs at densitiep>0.54-0.65 fm3, depending on the
p p

nuclear interaction used to get the EQs®e Ref[28] for
In the parabolic approximation, E¢5), for the energy per Mmore details

partide of asymmetric nuclear matter, one has In Table I, we report our present calculations for the
_ oyP proton fractionYP(p) for B-stable matter in comparison with
Mo~ Hp=4Esyn(p)(1—2YP). (39 the one obtained with the separable Pésie Ref[12]) and

Therefore, the composition ¢f-stable matter, and in par- variatignal calculation of Ref{16] with the ArgonneV,,
ticular, the proton fraction’® present at a given density, is Potential plus the Urbana mod@lVil) three-body force. In
strongly dependent on the nuclear symmetry energy. Th_gwe calculations reported in Table I, muons have not been
proton fraction plays also a crucial role in the thermal evo-ncluded.
lution of neutron stars. In fact, if the proton fraction in the ~ Our purpose, in the present paper, is not an accurate de-
core of a neutron star is above a critical vaMB,,, the termination of the proton fraction in dense stellar matter.
so-called direct Urca processes can O@B_Ba_ If they Here, we aim to Study how the inclusion of contributions
occur, the direct Urca processes enhance the neutrino emigeyond the BHF to the chemical potentials could alter the
sion and neutron star cooling rate by a large factor compareBroton fraction in g-stable matter. In fact, to solve the
to the standard cooling scenario. The critical proton fraction3-equilibrium conditiong32),(33), the shift between neutron
has been estimatd@®6] to be in the range 11-15 %. In a and proton chemical potentia,[tsz,un—,u,p has to be evalu-
recent papef28], based on microscopic EOS of dense mat-ated. In Table Il the neutron and proton chemical potentials

T T T T T T T T T T T T
06F ,-0085fm™> [ p=017 fm™
o 05p proton 3
'E - —- neutron
& 0.4
<
< o3
0.2
1 1 1 1 1 1 1 1 1 1 1 1

0.1
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0
(N-2)/A

3

FIG. 11. Proton and neutron inverse mean free paths vs asymmetry parameter for three geadi@s fm 3, p=0.17 fm 3, and

p=0.34 fm 2 at a fixed single-particle enerdy’(k) =180 MeV from the EBHF calculation.
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TABLE II. Proton fraction in B-stable nuclear mattefno  with the ArgonneVy, interaction. The continuous choice has
muons vs the total baryonic density from different forces. The peen adopted for the auxiliary potential since it makes the
values reported are 19. The results in the second column are convergence of the hole-line expansion faster than the gap
taken from BL. Those in the third column have been given by A'choice [27]. Ranging the asymmetry parameter frgga-0
Fabrocini(private communication (symmetric nuclear mattgto 8=1 (pure neutron mattgit

pe Paris AV14+UVII Present was possible to check _thﬁ(p,,@) exhibits a linear depen-
dence ong? for baryonic densities as large as at least two
0.038 2.75 — times the saturation density. This result confirms the empiri-
0.076 2.80 1.85 2.40 cal law introduced in the mass formula of atomic nuclei and
0.11 3.09 2.48 2.74 also extends its validity up to the highest asymmetries. As a
0.14 3.48 2.96 3.03 consequence, the entire isospin effect is incorporated in the
0.17 3.70 3.37 3.32 symmetry energy. The calculation of the symmetry energy in
0.20 4.10 3.74 3.50 the BHF approximation shows a monotonic increase as a
0.30 4.90 3.67 4.07 function of baryonic density. Its value calculated at the satu-
0.40 5.79 3.56 457 ration density is about 28.7 MeV, in agreement with the
0.50 — 3.63 5.01 empirical one. The comparison with the variational predic-

tion is made rather difficult due to the contradictory results
still existing in this approach. An accurate determination of
and their difference, are reported for the different approxi- the symmetry energy is required for dynamical simulations
mations used in the present work. From the results reporte@f collisions between neutron-rich nuclei, where the collec-
in Table 11l we see that the chemical potential, approximatedive observables including collective flows, balance energy,
by the Fermi energy, in the EBHF is noticeably affected byand other quantities are expected to be sensitive to the isos-
the rearrangement and renormalization contributions. HowPin degree of freedorfil,2]. Ground-state correlations were
ever, their difference and consequently the proton fraction ighcluded in the mass operator up to the four hole-line order
almost unchanged with respect to the BHF approximationcontributions. Their effect on the single particle properties
The EBHF approximation provides neutron and protonhas been investigated. The first-order contribution to the
Fermi energies, which are in better agreement with the emmass operator displays a linear dependence on the asymme-
pirical values extracted from the mass table of atomic nuclefry parameter confirming a long-standing analysis by Lane

[39] than the BHF approximatiofiL2]. [30]. A new effect of the isospin degree of freedom appears
when the ground-state correlations induced by the second-
V. CONCLUSIONS order contribution are introduced in the mass operator. That

is a nonlinear effect due to the particle-hole excitations of,
In this paper we have reported the study of asymmetricsay, protons induced by the propagation of a neutron in the
nuclear matter within the Brueckner-Bethe-Goldstone apnuclear medium. This feature affects the isospin dependence
proach. The isospin effect on the equation of state has beesf single-particle properties such as mean field, effective
investigated by performing a set of calculations at the twamass, and the mean free path. Along with the symmetry
hole-line level of the BBG expansion for the energy per par<nergy the heavy-ion collisions with asymmetric nuclei
ticle B(p,8). The Bethe-Goldstone equation has been solvedould also probe the isospin dependence of mean free path

TABLE Ill. Proton and neutron chemical potentidlBermi energiescalculated in different approxima-
tions and compared with the symmetry energy. The results corresponding to four values of the asymmetry
parameteiB for each of the three densities are reported.

n ~ n ~

P B uP 7 o uP 7 o uP u" u  ABEgnm
(fm~3) BHF BHF+M, EBHF

0.2 -—-33.99 —-18.05 1594 —-30.44 —-14.18 16.26 —23.00 —6.92 16.08 16.22
0.085 04 -—-4298 —10.77 3220 —-39.75 —-7.01 3274 —3260 —0.16 3244 3245
0.6 —51.71 —-3.31 48.40 —49.26 0.15 49.41-43.24 567 4891 48.67
0.8 —61.32 3.68 65.00—-59.63 6.58 66.21-54.85 10.49 6534 64.90
0.2 —4594 —23.19 22.75—-40.45 —17.08 23.37 —31.01 —8.24 22.77 23.00
0.170 0.4 —58.08 —12.65 4543 —53.46 —6.72 46.74 —4430 125 4555 46.00
06 -—-71.73 —277 68.96 —68.10 272 70.82-59.60 9.39 68.99 69.00
0.8 —86.22 6.91 93.13-83.99 11.63 95.62—76.42 16.73 93.15 92.00
0.2 —-4753 —-16.11 31.42-38.89 -—-575 33.14 —24.04 7.12 3116 32.30
0.340 04 -6484 —-1.79 63.05 —-57.48 8.88 66.36—42.31 20.22 6253 64.59
06 —8275 1221 9496-77.17 2285 900.02—-62.44 32.35 9479 96.89
0.8 —103.15 25.48 128.63—99.87 35.52 135.39-86.32 42.95 129.27 129.18
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and effective mass, which play also an important role in thecrust. In fact, the proton chemical potential in asymmetric
collisional dynamics. nuclear matter is a very important ingredient in locating the
The EBHF approximation for asymmetric matter resultsinner boundary of the neutron star crust. However, the dif-
in a satisfactory fulfillment of the Hugenholtz—Van Hove ferencep = u"— 1P, and consequently the proton fraction in
theorem in all asymmetry range<Q3<1. This property g.stable matter, is almost unchanged in the EBHF approxi-
makes us more confident of the hole-line expansion of thenation with respect to the BHF approximation.
mass operator for calculating the single-particle properties
including the Fermi energy. We found that the neutron and
proton chemical potentials are largely affected by contribu-
tions beyond the BHF approximation. This could have far The authors are indebted to Professor A. Fabrocini for
reaching consequences for the physics of the neutron stamluable discussions.
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