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Asymmetric nuclear matter from an extended Brueckner-Hartree-Fock approach
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The properties of isospin-asymmetric nuclear matter have been investigated in the framework of the ex-
tended Brueckner-Hartree-Fock approximation at zero temperature. Self-consistent calculations using the Ar-
gonneV14 interaction are reported for several values of the asymmetry parameterb5(N2Z)/A, ranging from
symmetric nuclear matter to pure neutron matter. The binding energy per nucleon fulfills theb2 law in the
whole asymmetry range. The symmetry energy is calculated for different densities and discussed in comparison
with other predictions. At the saturation point it is in fairly good agreement with the empirical value. The
present approximation, based on the Landau definition of quasiparticle energy, is investigated in terms of the
Hugenholtz–Van Hove theorem, which is proved to be fulfilled with a good accuracy at various asymmetries.
The isospin dependence of the single-particle properties is discussed, including mean field, effective mass, and
mean free path of neutrons and protons. The isospin effects in nuclear physics and nuclear astrophysics are
briefly discussed.@S0556-2813~99!03108-8#

PACS number~s!: 25.70.2z, 13.75.Cs, 21.65.1f, 24.10.Cn
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I. INTRODUCTION

Within the general interest for the equation of state~EOS!
of nuclear matter in nuclear physics as well as in nucl
astrophysics, increasing attention is currently paid to
isospin degree of freedom.

The EOS of isospin asymmetric nuclear matter play
central role for our understanding of astrophysical pheno
ena like supernova explosions, neutron stars structure, x
bursts, neutron stars merging, and possiblyg-ray bursts. The
study of asymmetric nuclear matter represents also the
step for a microscopic theory of the structure of nuclei
from the valley of beta stability. This ‘‘terra incognita’’ is
going to be explored in the near future thanks to a new g
eration of experimental facilities with high intensity radioa
tive ion beams. Moreover, dynamical simulations of co
sions between neutron-rich nuclei show that the m
reaction mechanisms including fragmentation are quite s
sitive to the density dependence of the nuclear symm
energy@1,2#. Such calculations mainly make use of pheno
enological Skyrme-like forces where the symmetry energ
high density can also be in strong disagreement with the
extracted from the microscopic predictions.

On a microscopic basis the EOS of asymmetric nucl
matter has been studied within the variational appro
@3–5# as well as relativistic@6–11# and nonrelativistic@12#
Brueckner-Bethe-Goldstone~BBG! theory. Within the
Brueckner-Hartree-Fock~BHF! approximation to the BBG
theory a systematic study of isospin effects on the EOS
asymmetric nuclear matter has been carried out in Ref.@12#,
where a separable version@13# of the Paris potential@14# was
adopted to describe the two-body nuclear force.

*Permanent address: Institute of Modern Physics, Lanzh
China.
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Beside the bulk properties~EOS!, the authors of Ref.@12#
focused also on the single-particle~s.p.! properties of neu-
trons and protons in isospin-asymmetric nuclear mediu
The neutron and proton s.p. potentials were calculated@12#
to the lowest order in the Brueckner reaction matrix~BHF
approximation!, using the so-calledcontinuous choice@15#.
Motivated by the renewed interest in this subject, in t
present paper we report an extension of the calculation
Ref. @12#, along the following lines. First, in the calculation
we make use of a different realistic nucleon-nucleon (NN)
potential, i.e., the full ArgonneV14 potential@16#, which en-
ables us to take into account a larger number of partial wa
with respect to the calculation@12# with the separable Pari
potential. These additional partial waves (3<L<6) give a
non-negligible contribution both to the EOS and the nucle
mean field, expecially in the high-density region, which
relevant for applications in astrophysics as well as in hea
ion physics.

Second, the Bethe-Goldstone equation is now solved
the complexG matrix. This enables us to calculate the com
plex nuclear mean field and some closely related quant
such as the optical potential and the mean free path.

Third, according to the Landau definition of quasipartic
energy~for an extended discussion see Ref.@17#! in the cal-
culations of the mass operator~nucleon self-energy! and
single-particle properties, we go beyond the BHF appro
mation by including some higher-order correlation contrib
tions. In particular, in the present work, we include the s
called rearrangementterm M2, which is a second-orde
diagram in theG matrix and accounts for particle-hole exc
tations in nuclear matter ground state. Next we consider a
the renormalizationcontributions of the third and forth orde
in the G matrix, which account for the partial depletion o
the neutron and proton Fermi seas due to the nuclear co
lations @18#. It has been shown, in the case of pure neut
matter@19# and also symmetric nuclear matter@20#, that the
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new terms give a large contribution to s.p. properties like
mean field and the nucleon effective mass. We will refer
the present approach to compute nuclear s.p. propertie
the extended Brueckner-Hartree-Fock~EBHF! approxima-
tion @19,20#.

As is well known, the BHF approximation largely violate
the Hugenholtz–Van Hove~HVH! theorem@21#, which ba-
sically measures the consistency of a given order of appr
mation in a perturbative approach. In symmetric nuclear m
ter, the inclusion of the rearrangement contribution grea
improves the fulfillment of the HVH theorem@22#. In the
present work, we study this problem in the case of asymm
ric nuclear matter, within the EBHF approximation.

II. EBHF AND NUCLEON SELF-ENERGY FOR
ASYMMETRIC NUCLEAR MATTER

In this section the formalism of the Brueckner-Beth
Goldstone~BBG! theory is described for the case of asym
metry nuclear matter@12,23#. The proton and the neutro
Fermi momenta are related to their corresponding dens
rp andrn by the relations

kF
p5F3p2

2
~12b!rG1/3

,

kF
n5F3p2

2
~11b!rG1/3

,

wherer5rp1rn is the total density, andb5(rn2rp)/r the
asymmetry parameter determining the neutron excess~from
now on we assumern>rp).

The starting point in BBG theory is the Brueckner rea
tion matrixG, which in the case of asymmetric nuclear ma
ter depends also on the isospin components of the two
liding nucleons. TheG matrix satisfies the Bethe-Goldston
equation,

G~r,b;v!5vNN

1vNN(
k1k2

uk1k2&Q~k1 ,k2!^k1k2u
v2e~k1!2e~k2!1 ih

G~r,b;v!,

~1!

wherevNN is the two-body nuclear interaction, andv is the
starting energy. Herek[(kW ,s,t) denotes s.p. momentum
spin, and isospinz components, respectively.

The G matrix can be considered as an in-medium eff
tive interaction between two nucleons. The surround
nucleons renormalize the bareNN interaction via the Paul
blocking and the nuclear mean field. The Pauli operator,
fined as

Q~k1 ,k2!5@12n~k1!#@12n~k2!#, ~2!

prevents two nucleons in intermediate states from scatte
into states inside their respective Fermi seas. Byn(k) we
denote the Fermi distribution function, which at zero te
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perature is given by the step functionu(k2kF
t ) ~uncorrelated

ground state!. The s.p. energy1

e~k!5
\2k2

2m
1U~k! ~3!

appearing in the energy denominator of Eq.~1!, involves the
auxiliary potential U(k), which controls the convergenc
rate of the hole-line expansion. Within the BHF approxim
tion the neutron and proton s.p. auxiliary potentials are c
culated from the real part of the on-shell antisymmetrizedG
matrix via the relation

U~k!5(
k8

n~k8!Rê kk8uG@e~k!1e~k8!#ukk8&A . ~4!

Here we adopt the continuous choice@15# for the auxiliary
s.p. potential. In this context it has the physical meaning
the mean field that each nucleon feels during its propaga
between two successive scatterings.

In the BHF approximation, Eqs.~1!, ~3!, and ~4! are
solved self-consistently for a given total densityr and asym-
metry b. Then the energy per particle is evaluated at
lowest order~two hole-line diagrams! of the BBG hole-line
expansion~see Ref.@23# for the case of asymmetric matter!.

A. Mass operator and quasiparticle energy

One of the main purposes of the present paper is to
culate s.p. properties of neutrons and protons in asymme
matter going beyond the BHF approximation. To this end
introduce the mass operator@15,24#

M t~k,v!5Vt~k,v!1 iWt~k,v!, ~5!

which is a complex quantity and can be identified with t
potential energy felt by a neutron (t5n) or a proton (t
5p) with momentumkW and energyv in asymmetric nuclear
matter~hereafter we will write out explicitly the isospin in
dex t). In the same spirit of the BBG theory, the mass o
erator M t(k,v) can be expanded in a perturbation ser
according to the number of hole lines@25# and the various
terms of this expansion can be represented by mean
Goldstone diagrams a few of which are shown in Fig. 1.

In analogy with the case of symmetric nuclear matter,
neutron and proton quasiparticle energiesEt(k) are the so-
lutions of the energy-momentum relation

Et~k!5
\2k2

2m
1Vt@k,Et~k!#, ~6!

1In the present work, we assume the neutron and proton
masses equal to their average valuem.

FIG. 1. Hole-line expansion of s.p. potential.
5-2
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i.e., Et(k) is obtained from the on-shell values of the re
part of the mass operator.

To the lowest order in the hole-line expansion the m
operator is given by~diagrams of Fig. 2!

M1
t~k,v!5(

t8
(
kW8s8

nt8~k8!^kk8uGtt8@v1et8~k8!#ukk8&A

[(
t8

M1
tt8~k,v!. ~7!

In this approximation the quasiparticle energyE1
t(k) coin-

cides with the BHF s.p. energy given by Eqs.~3!,~4!, i.e.,
E1

t(k)5et(k).

B. The rearrangement contribution to the s.p. energy

The next contribution to the perturbative expansion of
mass operator is given by the so-calledrearrangementterm
M2

t(k,v) @15#. The associated Goldstone diagrams
shown in Fig. 3.M2

t is a second-order diagram in theG
matrix and accounts for particle-hole excitations in nucl
matter. Its expression, extended to asymmetric nuclear m
ter, reads

M2
t~k,v!5

1

2 (
t8

(
kW8s8

@12nt8~k8!# (
k1k2

nt~k1!nt8~k2!

3
u^kk8uGtt8@et~k1!1et8~k2!#uk1k2&Au2

v1et8~k8!2et~k1!2et8~k2!2 ih

[(
t8

M2
tt8~k,v!, ~8!

where et(k) is the s.p. spectrum in BHF approximatio
given by Eqs.~3!, ~4!. In this approximation for the mas
operator@i.e.,M t(k,v).M1

t(k,v)1M2
t(k,v)# the quasipar-

ticle energy~6! is given by the approximate relation

FIG. 2. The first-order hole-line expansion of neutron s.p.
tential.

FIG. 3. The second-order hole-line expansion of neutron
potential.
02460
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t~k!5E1

t~k!1Z2
t~k!V2

t@k,E1
t~k!#

5
\2k2

2m
1V1

t@k,E1
t~k!#1Z2

t~k!V2
t@k,E1

t~k!#, ~9!

where

Z2
t~k!5H 12

]

]v
@V1

t~k,v!1V2
t~k,v!#J

v5E
1
t (k)

21

~10!

is an approximation of thequasiparticle strengthfor asym-
metric nuclear matter

Zt~k!5H 12
]

]v
@Vt~k,v!#J

v5Et(k)

21

. ~11!

C. The renormalization contributions to the s.p. energy

Due to many-body correlations the two Fermi seas
partially depleted, and the correlated momentum distri
tions ñt(k) differ from the uncorrelated onesnt(k)5u(k
2kF

t ). To account for this physical effect, one considers
contribution M3

t(k,v) ~last diagram in Fig. 1! given by
@15,18#

M3
t~k,v!52(

t8
(

hW 8s8
k2

t8~h8!^kh8uGtt8

3@v1et8~h8!#ukh8&A , ~12!

where h8 refers to ‘‘hole’’ state with momentum smalle
thankF

t , and

k2
t8~h8!52F ]

]v
M1

t8~h8,v!G
v5et8(h8)

is at the lowest order the depletion of neutron~proton! Fermi

sea @15,18#, i.e., k2
t8(h8) is the probability that a neutron

~proton! hole-state (uhW 8u<kF
t8) is empty. Let us consider now

the sum

M̃1
t~k,v![M1

t~k,v!1M3
t~k,v!

5(
t8

(
hW 8s8

@12k2
t8~h8!#

3^kh8uGtt8@v1et8~h8!#ukh8&A

5(
t8

(
hW 8s8

ñ2
t8~h8!^kh8uGtt8@v1et8~h8!#ukh8&A

~13!

ñ2
t8(h8)5@12k2

t8(h8)# being the second-order approxim

tion for the correlated momentum distribution.M̃1
t(k,v) is

the so-calledrenormalizedBHF approximation for the off-
shell mass operator@compare to Eq.~7!#.

An accurate approximation consists in using the aver
value of the depletion, which is

-

p.
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kt85k2
t8~h850.75kF

t8!. ~14!

Then Eqs.~12!, ~13! yield

M3
t~k,v!'2(

t8
kt8M1

tt8~k,v!, ~15!

M̃1
t~k,v!'(

t8
@12kt8#M1

tt8~k,v!. ~16!

From the similar considerations, a renormalization corr
tion should also be brought from the four hole-line terms
the second-order contribution toM2

t in order to take into
account the fact that the hole-statek1 in Eq. ~8! is partially
empty ~see also Ref.@18# for symmetric nuclear matter!.
Along the same lines of the previous correction one gets
renormalized M2, which is approximately given by

M̃2
t~k,v!5(

t8
@12kt8#M2

tt8~k,v!. ~17!

The renormalized contributions can also be traced to
functional dependence of theG matrix on the quasiparticle
occupation numbers within the Landau theory of Fermi l
uids. It can be shown, in fact, that taking the functional d
rivative of the binding energy~at two hole-line level! in-
cludes also the terms of third and fourth order in the s
energy, the effect of which has just been discussed. Ta
into account all the corrections discussed above, from Eq~6!
one can get the following expression for the quasipart
energy@18#:

E3
t~k!5

\2k2

2m
1V1

t@k,E1
t~k!#1Z3

t~k!

3(
t8

$2kt8V1
tt8@k,E1

t~k!#

1~12kt8!V2
tt8@k,E1

t~k!#% ~18!
02460
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where

Z3
t~k!5H 12(

t8
~12kt8!

]

]v
~V1

tt8@k,v#

1V2
tt8@k,v#!J

v5E
1
t (k)

21

. ~19!

In the following we refer to this approximation for the qu
siparticle energy as the extended Brueckner-Hartree-F
~EBHF! approximation@18–20#.

D. Partial wave expansion and angular averaging

After the usual angular averaging on the Pauli opera
and the energy denominator@26,22#, the Bethe-Goldstone
equation can be expanded in partial waves,

GaLL8
tt8 ~q,q8,P,v!5vaLL8~q,q8!

1
2

p (
L9

E q92dq9vaLL9~q,q9!

3
^Qtt8~q9,P!&

v2e12
tt8~q9,P!1 ih

3GaL9L8
tt8 ~q9,q8,P,v!, ~20!

where qW 5(kW12kW2)/2 and PW 5kW11kW2 are the relative mo-

mentum and total momentum, respectively.e12
tt8(q9,P)

5^et(k1)1et8(k2)& is the angle average of the energy d
nominator. The angular-averaged Pauli operator is

~i! for t5t8 ~neutron-neutron or proton-proton!,

^Qtt~q,P!&5H min~1,jt! if jt>0

0 otherwise,
~21a!

~ii ! for tÞt8 ~neutron-proton or proton-neutron!,
^Qtt8~q,P!&5H 1

2
@min~1,jp!1min~1,jn!# if jn>2jp ,jn>21

0 otherwise,

~21b!

where

jt5
P2/41q22~kF

t !2

Pq
.

The mass operatorsM1 andM2 become

M1
tt8~k,v!5

11dt,t8
2p (

aL
~2J11!E

0

kF
t8

k82dk8 sinuduGaLL
tt8 @q,q,P,v1et8~k8!#, ~22a!
5-4



ASYMMETRIC NUCLEAR MATTER FROM AN EXTENDED . . . PHYSICAL REVIEW C60 024605
M2
tt8~k,v!5

2~11dt,t8!

p2k
(

aLL8
~2J11!E E qdqPdP@12nt8~AP2/212q22k2!#

3E q82dq8^Rtt8~q8,P!&
uGaLL8

tt8 @q,q8,P,e12
tt8~q8,P!#u2

v1et8~AP2/212q22k2!2e12
tt8~q8,P!2 ih

. ~22b!

The integrations ofq andP in the expression ofM2 are limited to

qmin5H maxF0, k2
1

2
~kF

t 1kF
t8!,

1

2
~kF

t82k!G if k<kF
t

maxF1

2
A2k222~kF

t !21~kF
t 2kF

t8!2,
1

2
~k1kF

t8!G if k.kF
t

~23a!

qmax5k1
1

2
~kF

t 1kF
t8!, ~23b!

and

Pmin5H max@2~k2q!, A2k212~kF
t8!224q2# if q<

1

2
~k1kF

t8!

2uq2ku if k.
1

2
~k1kF

t8!

~24a!

Pmax5min@2~k1q!, ~kF
t 1kF

t8!#. ~24b!

The angular averaging of the anti-Pauli operatorRtt8(k1 ,k2)[nt(k1)nt8(k2) can be written as
~i! for t5t8, i.e., neutron-neutron or proton-proton

^Rtt~q,P!&5H min~1,ht! if ht>0

0 otherwise,
~25a!

~ii ! for tÞt8, i.e., neutron-proton or proton-neutron

^Rtt8~q,P!&5H 1

2
@min~1,hp!1min~1,hn!# if hp>2hn ,hp>21

0 otherwise,

~25b!
on
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III. RESULTS

We have performed a set of nuclear matter calculati
for the asymmetric case within the EBHF approximatio
Three different densities have been selected:r0/2, r0, and
2r0, beingr050.17 fm23 the saturation density of symme
ric nuclear matter. For each density the whole range of as
metry parameter (0<b<1) has been spanned. The se
consistent solution of the Bethe-Goldstone equation yield
simultaneously G matrix and auxiliary potentialUt(k)
needed five iterations to reach a satisfactory converge
The bare potential adopted as input in the calculation was
ArgonneV14 @16# with 24 channels up toL56.

A. Symmetry energy

In Fig. 4 ~left panel! we report the results~symbols! for
the energy per nucleonB(r,b), as calculated self-
02460
s
.

-

g

e.
he

consistently within the BHF approximation@23#. B(r,b) is
plotted as a function ofb2, for three values of density. Th
numerical results lie on a linear fit performed with only th
first three values of the asymmetry parameter. This pro
that the empirical parabolic law

B~r,b!5B~r,0!1Esym~r!b2, ~26!

taken from the nuclear mass table can be extended up to
highest asymmetry of nuclear matter, in good agreem
with our previous BHF calculation with separable Paris p
tential @12#.

Equation~25! can be considered as theb2 expansion of
the binding energy truncated at the lowest order. Only e
powers of the asymmetry parameterb may occur in the ex-
pansion for charge-independentNN interactions, such as th
Argonne V14 used in the present work. Ab4 contribution
might arise at the three hole-line order of the BBG expa
sion. Unfortunately, no such calculation forB(r,b) has been
5-5
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FIG. 4. Left panel: Total binding energy per nucleon in the range 0<b2<1 at three densities as compared with the parabolic fits~straight
lines! obtained from the first three values ofb ~0.0, 0.2, 0.4!. Right panel: Density dependence of the symmetry energy of the present
~solid curve! using ArgonneV14 as bare interaction in comparison with other nonrelativistic calculations. The dashed curve is the re
the lowest-order constrained variational calculation using ArgonneV14 as bare interaction from Ref.@5#. The dotted and dot-dashed curve
are the results of the variational approach using ArgonneV14 and ArgonneV141UVII, respectively, taken from Ref.@3#.
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done yet. However, it has been shown recently that the th
hole-line contribution to the binding energy of symmet
nuclear matter@27# is rather small within the continuou
choice. Therefore, we do not expect a large deviation fr
the parabolic law after including the three hole-line con
bution. A deviation from the parabolic law could be expect
at densities higher with respect to those considered in
present paper@5,7–9#.

The symmetry energy is defined as

Esym~r!5
1

2 F]2B~r,b!

]b2 G
b50

. ~27!

Due to the simpleb2 law the symmetry energy can b
equivalently calculated as the difference between the bind
energy of pure neutron matter and symmetric nuclear ma
Esym(r)5B(r,1)2B(r,0), but one would refrain from using
that recipe at very high density. The results of our BH
calculations for Esym(r) are depicted by the continuou
curve in the right panel of Fig. 4. In the same figure, w
show the results from the variational approach using
same ArgonneV14 potential@3#.

The systematic disagreement displayed by the two ma
body approaches has been believed to be a shortcomin
the Brueckner approach in view of the fact that the BH
result lies above the ‘‘variational’’ one. However, in Ref.@3#
~and similar works!, the variational expectation valueEvar of
the Hamiltonian is calculated in a diagrammatic cluster
pansion~FHNC-SOC!, which is of course truncated to som
order. To estimate the convergence of this diagramm
cluster expansion, we plot, in the same figure, the results
lowest-order constrained variational calculation@5#, which
includes only two-body cluster contributions toEvar. More-
over, the variational trial wave function used in Ref.@3# does
not contain the correlations which arise fromL2,
02460
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-
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L2(s i•s j ), and (L•S)2 terms of the nucleon-nucleon poten
tial. Finally, spin-orbit correlations are not treated accurate
as discussed in the same paper@3#. All theseNN correlations
are included in a self-consistent way in the BHF approa
All the above-mentioned approximations could give lar
uncertainties in the calculated expectation value of the
ergy in the high density region. The same discrepancy
also been observed in our previous calculations for asymm
ric nuclear matter@12# and also in neutron matter calcula
tions @28#.

From the previous discussion we guess that the n
agreement between our calculation and a lowest order c
strained variational calculation@5# is fortuitous. On the other
hand, the agreement up tor;0.24 fm23 with the varia-
tional calculation including three-body force@3#, also plotted
in Fig. 4, is hardly understandable.

More recent versions of theNN potential do not provide
any appreciable difference of the symmetry energy from
present calculation except the CD-Bonn potential as d
cussed in Ref.@29#. All Brueckner calculations predict the
symmetry energy to increase with the nucleon density and
saturation is observed up tor50.5 fm23 at variance with
the preceeding variational results@3#. In the relativistic
mean-field theory this behavior is easily understood in ter
of the r-meson exchange, which leads to a repulsive sy
metry potential at all densities@1,9#. In order to try to explain
what happens in the nonrelativistic case, we report in Fig
the different contributions to the symmetry energy, plotted
a function of density. The kinetic contribution monotonical
increases asr2/3 according to the free Fermi-gas model.
the figure~right two panels!, the isoscalar and isovector con
tributions of the potential part are plotted separately. As
ready found in the previous paper@12#, the most important
contribution to theT50 component is due to the deutero
3S1-3D1 coupled channels of the interaction, which exhib
5-6
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FIG. 5. Symmetry energy vs density in BHF approximation. Left panel: total symmetry energy (Esym), kinetic (Ksym), and potential
(Vsym) contributions~only ArgonneV14!. Middle panel: potential contribution from isospinT50 channels with ArgonneV14 ~solid curve!
and separable Paris~dashed curve! potentials. Right panel: potential contribution from isospinT51 channels with ArgonneV14 ~solid curve!
and separable Paris~dashed curve! potentials.
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a maximum atr.0.3 fm23. This peak can be traced back
the behavior of the two components: the attractive3S1 chan-
nel dominates at low energy whereas the repulsive3D1
dominates at high energy. Two terms compensate each o
at the energyE.4EF.200 MeV, whereEF is the Fermi
energy corresponding tor.0.3 fm23.

B. Single-particle energy

For asymmetric nuclear matter the neutron mass oper
Mn is different from the proton mass operatorM p. More-
over, as shown in Figs. 2 and 3@see also Eqs.~7!,~8!#, both
of them can be split into two components:M p5M pp1M pn

for protons andMn5Mnn1Mnp for neutrons. In Fig. 6 the
on-shell values of the real part ofM1

t are reported as a func
tion of the s.p. momentum, for different values of the asy
metry parameterb at fixed densityr50.17 fm23. The pro-
ton mean fieldV1

p(k)[ReM1
p(k) becomes more attactive

while the neutron mean fieldV1
n(k)[ReM1

n(k) becomes
more repulsive going from symmetric (b50) to neutron
(b51) matter. Theb dependence ofV1

n and V1
p is almost

linear and nearly symmetric with respect to their comm
value atb50. This result supports from a microscopic poi
of view the validity of the so-called Lane potential@30#. It is
worth noticing~see Fig. 6, upper panels! that a crossing poin
occurs for bothV1

p andV1
n , where the isospin effect on neu

tron and proton mean field versusb is inverted. This behav-
ior of the neutron and proton mean fields can be underst
in terms of phase-space arguments, as already pointed o
Ref. @12#. To this end, we write the single-particle potentia

V1
n and V1

p , in terms of their componentsV1
tt8 @defined ac-

cording to Eq.~7!#:

V1
p~k!.

1

2
~12b!r^Gpp&1

1

2
~11b!r^Gpn&, ~28!

V1
n~k!.

1

2
~12b!r^Gnp&1

1

2
~11b!r^Gnn&, ~29!

where ^Gpp& is the average value of the real part of t
matrix Gpp in the proton Fermi sphere (uhW 8u<kF

p), ^Gpn&
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,

is the average value of the real part of the matrixGpn in the

neutron Fermi sphere (uhW 8u<kF
n), and ^Gnn&, ^Gnp& have

similar definitions. This approximation is suggested by t
almost linear dependence ofV1

n andV1
p on b and, in fact, is

numerically fulfilled with a good accuracy~see also Fig. 8!.
The crossing point in momentum space is determined by
occurrence of̂ Gpp&5^Gpn& for V1

p and ^Gnp&5^Gnn& for
V1

n at a certain value of the momentum which does not
pend uponb. A signature of the inversion of the isospi
effect at the crossing point could be found in those collect
observables measured in heavy-ion collisions which are s
sitive to the momentum dependence of the mean field.

FIG. 6. Real part~upper panels! and imaginary part~lower pan-
els! of the first-order single-particle potentialsM1 for proton ~left
panel! and neutron~right panel!, respectively, as a function of mo
mentum for different asymmetry parameters at densityr
50.17 fm23.
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FIG. 7. Real part~upper panels! and imaginary part~lower panels! of the second-order single-particle potentialsM2 for proton~left panel!
and neutron~right panel!, respectively, as a function of momentum for different asymmetry parameters at densityr50.17 fm23.
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The imaginary partW1
t of the mass operatorM1

t is due to
the virtual collisions of a single nucleon with a neutron o
proton of the background, promoting it to a particle state.W1

t

is vanishing below the Fermi momentumkF
t due to the Pauli

blocking. It is worth noticing that reducing the proton Ferm
momentum implies less Pauli blocking for protons. Th
means that high asymmetric nuclear matter is less trans
ent to the proton propagation.

The second-order terms of the on-shell mass operatorM2
t

are plotted in Fig. 7. The real partV2
t ~upper panels! gives

the contribution to the mean field due to the coupling of
single-particle motion with the ground-state particle-hole
citations. As is well known,V2

t is repulsive and reduces to
large extent the pure BHF mean fieldV1

t which is too attrac-
tive compared with the phenomenological optical poten
@26#.

The imaginary partW2
t plays a role complementary t

W1
t : it describes the virtual collisions of a single nucleon

the background with an excited neutron or proton, makin
to decay into a hole state.W2

t is vanishing above the Ferm
momentumkF

t .
In order to focus on only the isospin dependence, we p

in Fig. 8 the mass operator as a function of theb at k
50 fm21 except for the imaginary part ofM1 for which a
value ofk above the Fermi momentum has to be taken.

The first-order contribution has the linear behavior for t
real part as well as for the imaginary part as expected fr
phase-space arguments. The slope ofuW1

pnu is more pro-
nounced than that ofuW1

npu since the neutron particle-hol
excitations coupled to a proton in a particle state are m
favored than the proton particle-hole excitations coupled
neutron~see also Fig. 6!.
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The isospin dependence of the second-order contribu
M2

t is affected by the coupling between the nucleon h
states and particle-hole excitations@see the bubble in Fig. 3
and Eq.~8!#, which yields a nonlinear variation of the mixe
componentsM2

pn and M2
np vs b. The nonlinearity is much

more sizable forV2
pn and W2

np , which can be easily ex-
plained as a phase-space effect as well, i.e., of the inter
between the neutron and proton phase spaces as incre
neutron excess.

C. Fermi energy and Hugenholtz–Van Hove theorem

The EBHF approximation basically relies on the Land
definition of quasiparticle energy as shown in Sec. I, who
relation to the Brueckner theory is well established@31#.
Study of the Hugenholtz–Van Hove~HVH! theorem@21#
within the EBHF approximation could provide an addition
support to a proper definition of the quasiparticle energy a
at the same time, a more realistic evaluation of the Fe
energy. Strictly speaking, the HVH theorem concerns o
symmetric nuclear matter at saturation point (P50), and it
states that the energy per nucleon must be exactly equ
the Fermi energy. In the case of asymmetric nuclear ma
~two-component system! at zero temperature, the HVH theo
rem can be generalized via the thermodynamic relation

E~r,b!

A
1

P~r,b!

r
5YpEF

p~r,b!1YnEF
n~r,b!, ~30!

P(r,b) being the pressure andYp5rp /r andYn5rn /r the
proton and neutron fractions, respectively. The Fermi ene
is calculated from the quasiparticle energy spectrum at Fe
surface according to Eq.~6!. In Table I it is numerically
5-8
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FIG. 8. Different components of the first-order~upper panels! and the second-order~lower panels! single-particle potentials at densit
r50.17 fm23 for suitable values of momentum vs asymmetry parameters. For the real part ofM1 andM2, and the imaginary part ofM2,
the momentum isk50, while for the real part ofM1 the momentum isk53 fm21.
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shown to what extent the HVH theorem is fulfilled by th
EBHF approximation. The pressure has been calculated
ing the relationP(r,b)5r2@]E(r,b)/]r#. In the fourth col-
umn the left-hand side of Eq.~30! is calculated for severa
asymmetries~density fixed atr50.17 fm23). One would
notice that, despite the fact that the total density is fixed
the empirical saturation value, our calculated saturation p
lies at higher density, because, as is well known, Brueck
theory with two-body force misses the empirical saturat
density. The last three columns provide different approxim
tions for the right-hand side of Eq.~30!. The pure BHF ap-
proximation by itself is far from fulfilling the HVH theorem
Including the unrenormalized ground-state correlations~indi-
cated by BHF1M2 in the table!, where the Fermi energy i
calculated according to Eq.~9!, provides some improvemen
but it is not enough to fulfill the HVH theorem. One needs
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include both the rearrangement and the renormalized co
butions~EBHF! if a satisfactory agreement within less tha
10% is to be attained~last column of Table I!. This result is
in keeping with the uncertainty in the calculation of the pre
sure because the binding energy curve is rather flat as a f
tion of density.

IV. APPLICATIONS

A. Effective mass

The effective mass incorporates the nonlocal part of
mean field which makes the local part less attractive fo
nucleon traveling with momentumk.0. It is defined as

mt* ~k!

m
5

k

mS dEt~k!

dk D 21

. ~31!
e

ma-
he
TABLE I. As a function of the asymmetry parameter~first column! the physical quantities involved in th
Hugenholtz–Van Hove theorem are reported~in MeV!: pressure overr ~second column!, energy per nucleon
~third column!, and ‘‘weighted’’ chemical potentials of asymmetric nuclear matter in different approxi
tions, as discussed in the text.Yp5Z/A andYn5N/A are the proton and neutron fractions, respectively. T
total density isr50.17 fm23.

YpEF
p1YnEF

n YpEF
p1YnEF

n YpEF
p1YnEF

n

b P/r E/A P/r1E/A BHF BHF1M2 EBHF

0.0 25.02 215.92 220.94 234.27 228.50 219.28
0.2 24.40 214.73 219.13 232.29 226.43 217.35
0.4 23.27 211.36 214.63 226.28 220.74 212.42
0.6 0.08 25.75 25.67 216.56 211.44 24.41
0.8 3.76 2.24 6.00 22.40 2.07 7.42
1.0 8.91 12.83 21.74 16.28 19.67 22.39
5-9
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The momentum dependence ofm* is characterized by the
wide bump inside the Fermi sphere due to the high proba
ity amplitude for particle-hole excitations near the Fermi s
face @15#. The effect of correlations is a flattening of th
slope of the mean field around the Fermi energy, which
plies an enhancement of the effective mass atkF with respect
to BHF value@19,20#. This result is shown in Fig. 9, wher
an increase from 0.8 to 0.92 is observed for symme
nuclear matter at the saturation density. Also shown in
figure is the isospin dependence of the neutron~upper curve!
and proton~lower curve! effective masses. In both the BH
and EBHF calculations,mn* increases andmp* decreases a
increasingb. Compared to the BHF approximation, the co
rections of EBHF shiftmn* andmp* to higher values, a fea
ture which can be traced to the depletions of the proton
neutron Fermi surfaces due to the ground-state correlati
The value ofmp* calculated from EBHF approaches its BH
value as increasingb since the correlations become smalle

B. Mean free path

Information on the in-medium cross section or, equiv
lently, on the mean free path of a nucleon traveling insid
nuclear medium can be obtained from the transparency
nucleus measured in (e,e8p) reactions@32# and, in general,
from nucleon-induced reactions at low energy@33#. The un-
derlying assumption is that the behavior of a nucleon loca
at the positionrW in a nucleus is the same as a nucleon
nuclear matter at densityr(rW). Such an assumption is th
well-known local density approximation~LDA ! @34#. The
mean free path is intimately related to the imaginary par
the optical potential or, equivalently, to the imaginary part
the mean field. The latter comes from the collisions o
single nucleon with the background of neutrons and proto
a nucleon with momentumk>kF can collide with a neutron
or proton of its Fermi sea and promote it to a particle sta
or a nucleon with momentumk<kF interacting with an ex-
cited neutron or proton can make it decay into a hole st

FIG. 9. Proton and neutron effective masses vs asymmetry
rameter at densityr50.17 fm23. The solid curves are results from
the pure BHF calculation, while the dashed curves are calcul
from the EBHF~including the renormalization contributions!.
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The first process is related to the imaginary part ofM1, the
second one to the imaginary part ofM2, both of which have
been plotted in the lower panels of Figs. 6 and 7. But, in
case of asymmetric matter the collisions between like a
unlike nucleons yield contributions to the mean field whi
are very different.

The mean free pathlt is given by

lt~E!5
\2k~E!

2m̃t

1

uIm M t@k~E!,E#u
,

wherem̃t is the so-calledk mass, andE is the single-particle
energy@35#. In Fig. 10 the proton~upper panels! and neutron
~lower panels! mean free paths calculated within the EBH
approximation are shown for three values of the total d
sity. In each panel the values oflt for several asymmetries
are plotted as a function of single-particle energy. The m
relevant effect of the isospin asymmetry is the increas
deviation from the symmetric values~solid lines!, upward for
ln and downwardlp , as increasing asymmetry. The nonv
nishing values of neutron and proton mean free paths be
their respective Fermi energies are effects of ground-s
correlations, which prevents a full occupancy of the Fer
spheres. Comparing with the BHF calculation it turns o
that the correlation effects tend to rise the asymptotic va
of the mean free path from about 3 fm up to about 4 fm at
saturation density of symmetric nuclear matter@20#.

In Fig. 11 it is shown how the isospin dependence of
inversel develops as increasing nuclear matter densities
fixed value of the energy. Except for very small asymmetr
the shift oflp andln is not symmetric with respect to the
common value atb50. At any density the slope of the neu
tron inversel is less than the proton one. This effect can
traced to the reduction, as increasing neutron excess, o
proton particle-hole excitations contributing to the neutr
optical potential~see Figs. 6 and 7!. Moreover, the EBHFln
seems to reach the asymptotic value of pure neutron ma
much faster than in the uncorrelated case.

The most striking effect of the isospin-asymmetry is t
sizable reduction of the proton mean free path at high as
metry. Accordingly, the nuclear surface would become m
transparent to neutrons than protons in nucleon-induced
actions on nuclei near the neutron drip-line. This effe
would be more pronounced at higher density as shown
Fig. 11.

C. Proton fraction in b-equilibrium matter

The core of a neutron star is expected to be formed by
uncharged mixture of neutrons, protons, electrons,
muons in equilibrium with respect to the weak interactio
(b-stable matter!. The concentrations of different particle
are then obtained under the requirements

mn2mp5me , mm5me , ~32!

rp5re1rm . ~33!

The difference between the neutron and proton chemical
tentials can be expressed as

a-

ed
5-10
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FIG. 10. The energy dependence of proton~upper panels! and neutron~lower panels! mean free paths for different asymmetry paramet
at three densitiesr50.085 fm23, r50.17 fm23, and r50.34 fm23. Only EBHF results are reported. The different kinds of lin
correspond to different asymmetry parameters with the same notation as in Fig. 6.
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mn2mp52
]B

]Yp U
r

52
]B

]bU
r

. ~34!

In the parabolic approximation, Eq.~25!, for the energy per
particle of asymmetric nuclear matter, one has

mn2mp54Esym~r!~122Yp!. ~35!

Therefore, the composition ofb-stable matter, and in par
ticular, the proton fractionYp present at a given density, i
strongly dependent on the nuclear symmetry energy.
proton fraction plays also a crucial role in the thermal ev
lution of neutron stars. In fact, if the proton fraction in th
core of a neutron star is above a critical valueYUrca

p , the
so-called direct Urca processes can occur@36–38#. If they
occur, the direct Urca processes enhance the neutrino e
sion and neutron star cooling rate by a large factor compa
to the standard cooling scenario. The critical proton fract
has been estimated@36# to be in the range 11–15 %. In
recent paper@28#, based on microscopic EOS of dense m
02460
e
-

is-
d

n
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ter, it has been found that the onset of direct Urca proces
occurs at densitiesr.0.54–0.65 fm23, depending on the
nuclear interaction used to get the EOS~see Ref.@28# for
more details!.

In Table II, we report our present calculations for th
proton fractionYp(r) for b-stable matter in comparison wit
the one obtained with the separable Paris~see Ref.@12#! and
variational calculation of Ref.@16# with the ArgonneV14

potential plus the Urbana model~UVII ! three-body force. In
the calculations reported in Table II, muons have not be
included.

Our purpose, in the present paper, is not an accurate
termination of the proton fraction in dense stellar matt
Here, we aim to study how the inclusion of contributio
beyond the BHF to the chemical potentials could alter
proton fraction in b-stable matter. In fact, to solve th
b-equilibrium conditions~32!,~33!, the shift between neutron
and proton chemical potentialsm̂[mn2mp has to be evalu-
ated. In Table III the neutron and proton chemical potenti
FIG. 11. Proton and neutron inverse mean free paths vs asymmetry parameter for three densitiesr50.085 fm23, r50.17 fm23, and
r50.34 fm23 at a fixed single-particle energyEt(k)5180 MeV from the EBHF calculation.
5-11
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and their differencem̂, are reported for the different approx
mations used in the present work. From the results repo
in Table III we see that the chemical potential, approxima
by the Fermi energy, in the EBHF is noticeably affected
the rearrangement and renormalization contributions. H
ever, their difference and consequently the proton fractio
almost unchanged with respect to the BHF approximati
The EBHF approximation provides neutron and prot
Fermi energies, which are in better agreement with the
pirical values extracted from the mass table of atomic nu
@39# than the BHF approximation@12#.

V. CONCLUSIONS

In this paper we have reported the study of asymme
nuclear matter within the Brueckner-Bethe-Goldstone
proach. The isospin effect on the equation of state has b
investigated by performing a set of calculations at the t
hole-line level of the BBG expansion for the energy per p
ticle B(r,b). The Bethe-Goldstone equation has been sol

TABLE II. Proton fraction in b-stable nuclear matter~no
muons! vs the total baryonic density from different forces. Th
values reported are 102Y. The results in the second column a
taken from BL. Those in the third column have been given by
Fabrocini~private communication!.

rB Paris AV141UVII Present

0.038 2.75 —
0.076 2.80 1.85 2.40
0.11 3.09 2.48 2.74
0.14 3.48 2.96 3.03
0.17 3.70 3.37 3.32
0.20 4.10 3.74 3.50
0.30 4.90 3.67 4.07
0.40 5.79 3.56 4.57
0.50 — 3.63 5.01
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with the ArgonneV14 interaction. The continuous choice ha
been adopted for the auxiliary potential since it makes
convergence of the hole-line expansion faster than the
choice @27#. Ranging the asymmetry parameter fromb50
~symmetric nuclear matter! to b51 ~pure neutron matter! it
was possible to check thatB(r,b) exhibits a linear depen
dence onb2 for baryonic densities as large as at least t
times the saturation density. This result confirms the emp
cal law introduced in the mass formula of atomic nuclei a
also extends its validity up to the highest asymmetries. A
consequence, the entire isospin effect is incorporated in
symmetry energy. The calculation of the symmetry energy
the BHF approximation shows a monotonic increase a
function of baryonic density. Its value calculated at the sa
ration density is about 28.7 MeV, in agreement with t
empirical one. The comparison with the variational pred
tion is made rather difficult due to the contradictory resu
still existing in this approach. An accurate determination
the symmetry energy is required for dynamical simulatio
of collisions between neutron-rich nuclei, where the colle
tive observables including collective flows, balance ener
and other quantities are expected to be sensitive to the i
pin degree of freedom@1,2#. Ground-state correlations wer
included in the mass operator up to the four hole-line or
contributions. Their effect on the single particle propert
has been investigated. The first-order contribution to
mass operator displays a linear dependence on the asym
try parameter confirming a long-standing analysis by La
@30#. A new effect of the isospin degree of freedom appe
when the ground-state correlations induced by the seco
order contribution are introduced in the mass operator. T
is a nonlinear effect due to the particle-hole excitations
say, protons induced by the propagation of a neutron in
nuclear medium. This feature affects the isospin depende
of single-particle properties such as mean field, effect
mass, and the mean free path. Along with the symme
energy the heavy-ion collisions with asymmetric nuc
could also probe the isospin dependence of mean free

.

-
mmetry
TABLE III. Proton and neutron chemical potentials~Fermi energies! calculated in different approxima
tions and compared with the symmetry energy. The results corresponding to four values of the asy
parameterb for each of the three densities are reported.

r b mp mn
m̂ mp mn

m̂ mp mn
m̂ 4bEsym

(fm23) BHF BHF1M2 EBHF

0.2 233.99 218.05 15.94 230.44 214.18 16.26 223.00 26.92 16.08 16.22
0.085 0.4 242.98 210.77 32.20 239.75 27.01 32.74 232.60 20.16 32.44 32.45

0.6 251.71 23.31 48.40 249.26 0.15 49.41 243.24 5.67 48.91 48.67
0.8 261.32 3.68 65.00 259.63 6.58 66.21 254.85 10.49 65.34 64.90
0.2 245.94 223.19 22.75 240.45 217.08 23.37 231.01 28.24 22.77 23.00

0.170 0.4 258.08 212.65 45.43 253.46 26.72 46.74 244.30 1.25 45.55 46.00
0.6 271.73 22.77 68.96 268.10 2.72 70.82 259.60 9.39 68.99 69.00
0.8 286.22 6.91 93.13 283.99 11.63 95.62276.42 16.73 93.15 92.00
0.2 247.53 216.11 31.42 238.89 25.75 33.14 224.04 7.12 31.16 32.30

0.340 0.4 264.84 21.79 63.05 257.48 8.88 66.36 242.31 20.22 62.53 64.59
0.6 282.75 12.21 94.96277.17 22.85 900.02262.44 32.35 94.79 96.89
0.8 2103.15 25.48 128.63299.87 35.52 135.39286.32 42.95 129.27 129.18
5-12
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and effective mass, which play also an important role in
collisional dynamics.

The EBHF approximation for asymmetric matter resu
in a satisfactory fulfillment of the Hugenholtz–Van Hov
theorem in all asymmetry range 0<b<1. This property
makes us more confident of the hole-line expansion of
mass operator for calculating the single-particle proper
including the Fermi energy. We found that the neutron a
proton chemical potentials are largely affected by contri
tions beyond the BHF approximation. This could have
reaching consequences for the physics of the neutron
,

st

v.

J.

h

C

a-

H
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crust. In fact, the proton chemical potential in asymmet
nuclear matter is a very important ingredient in locating t
inner boundary of the neutron star crust. However, the
ferencem̂5mn2mp, and consequently the proton fraction
b-stable matter, is almost unchanged in the EBHF appro
mation with respect to the BHF approximation.
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