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The distorted one-body mixed density matrix, which is the basic nuclear quantity appearing in the definition
of the cross section for the semi-inclusifée,e’ p) X processes, is calculated within a linked cluster expansion
based upon correlated wave functions and the Glauber multiple scattering theory to take into account the final
state interaction of the ejected nucleon. The nuclear transparent§Of@nd*°Ca is calculated using realistic
central and noncentral correlations and the important role played by the latter is illustrated.
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[. INTRODUCTION models predict a rich correlation structure of the nuclear
wave function(see, e.g.[5]). The effect ofNN correlations
The accurate calculation of the final state interactionsn the calculation of FSI's within the Glauber approach has
(FSI's) of the ejected nucleons in exclusive and semi-been considered in various papgs-14], where, as a result
inclusive processes of the typeA(e,e’N)(A—1), of the difficulty of the problem, various approximations have
A(e,e’N)X, A(e,e’NN)X, etc., induced by medium- and been introduc_ed either by t_runpating the_: Glg_uber multiple
high-energy electrons, is one of the most urgent and imporscatterlng series or by con5|d_er|ng_over5|mpI|f|ed models_ of
tant theoretical challenges in the investigation of the propercorrelations, e.g., by adopting simple phenomenological
ties of hadronic matter. As a matter of fact, the possibilities?2Sirow-type wave functions embodying only central corre-
to get information on basic properties of bound hadrons,at'ons'. :
such as, for example, their momentum and energy distribu- In this paper a novgl approach to the p'roblem. IS pre-
tions, crucially depend upon the ability to estimate to Whichsented, based upon a linked cluster expansion series of the

distorted one-body mixed density matrix starting from real-

extent FS| effects destroy the direct link between the ME&stic correlated wave functions and Glauber multiple scatter-

sured cross section and the hadronic properties before intel'ﬁg operators. The expansion is such that, at each order in the
action with the probe, which is generally provided by ap- '

A ' e ) correlations, Glauber multiple scattering is included at all
proximations, e.g., the impulse approximatidi), which  orqer The expansion is based upon the number conserving
disregard FSI'ysee, e.g.[1]). Another convincing motiva- approach of15], properly generalized to take into account
tion for an accurate treatment of FSI's stems from the expeceg|auber ESI's.

tation that at largeQ® they should vanish because of color  Our paper is organized as follows: the basic elements of
transparencyCT), an effect originally predicted by Brodsky the theory, i.e., the concepts of semi-inclusive processes
[2] and Mueller[3], and extensively investigated by various A(e,e’N)X, nuclear transparency, and distorted momentum
authors(for recent reviews on the subject, see, e[g]), distributions, are reviewed in Sec. Il; the formal develop-
according to which the ejectile rescattering amplitudes withments of the linked cluster expansion are illustrated in Sec.
elastic and inelastic intermediate states interfere destrugt; the basic elements underlying the calculations of the
tively. Since the onset of the phenomenon is expected t@uclear transparency, i.e., the correlated nuclear wave func-
show up at large values @2, when FSI effects could be tion and the Glauber multiple scattering operators, are dis-
evaluated within the standard Glauber theory, the experimereussed in Sec. IV, where the results of the calculations of the
tal investigation of CT relies on the detection of possiblenuclear transparency in the process€®(e,e’p)X and
differences between experimental data and predictions of%Ca(e,e’p)X are also presented; finally, the summary and
standard Glauber multiple scattering calculations of FSI'sconclusions are given in Sec. V.

However, because of the expected small difference, an accu-

rate treatment of nuclear structure effects is a prerequisite in Il. SEMI-INCLUSIVE PROCESS A(e,e’p)X, NUCLEAR

order to get reliable information on CT effects. Among the TRANSPARENCY, AND DISTORTED MOMENTUM

large variety of nuclegr eﬁect;, those produced by nucleon- DISTRIBUTIONS
nucleon NN) correlations, which will be called from now
on initial state correlationdSC's), play a dominant role, for We will consider the procesé(e,e’p)X in which an

many-body calculations based upon realitil interaction  electron with four-momenturk,; ={k ,i €, } is scattered off a
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nucleus with four-momentunP,={0,iM .} to a statek, and the functiond(z;—z,) takes care of the fact that the
={k,,ie,} and is detected in coincidence with a protpn Struck proton “1” propagates along a straight-path trajectory
with four-momentum kpz{kp,iEp}; the final (A—1) so that it interacts with nucleonj® only if z;>z,. The
nuclear system with four-momentuly={Py ,iEy} is unde- integral over the missing energy of the distorted spectral
tected. The cross section describing the process can be wrftinction defines the distorted momentum distribution as

ten as follows:

do nD(km):j dEnPp(Em.Km). (8
————=KoepPp(Em .Km), (1)

2 ep” D\EmsBm
dQ dvdky, In the impulse approximatiofi.e., when the final state

whereK is a kinematical factorg,, the off-shell electron- interaction is disregardedSg=1)], if the systemX is as-
nucleon cross section, andd?=|g|?—»? the four- Sumed to be ak—1) nucleus in the discrete or continuum

momentum transfer. The quanti§y(E,Ky) is the dis- statesfy=f,_4, the distorted spectral functiofAy reduces

torted nucleon spectral function which depends upon thd® the usual spectral function, i.e.,
observablemissing momentum

Pp—P(k,E)= fE [(k, Wy, [ W)2S(E— (Emin+Er, ),

Km=0— kp 2 A-1
. 9

andmissing energy

whereE is the nucleon removal energy, i.e., the energy re-
Em=v+M—E,. (3)  quired to remove a nucleon from the target, leaving Ahe

—1 nucleus with excitation enerdy;, , and—k=k,=q

The latter equation results from energy conservation —k, is the nucleon momentum before interaction. The inte-
gral of the spectral function over tHe defines the(undis-

v+Mpa=Ep+ Mg+ pi (4)  torted momentum distributions

if the total energy of the systerd is approximated by its

nonrelativistic expression and the recoil energy is disre- n(k)=f dEP(E k). (10)

garded. The distorted spectral function can be written in the

following shorthand forn{8]: In this paper we will consider the effect of FSI'S{

#1) on the semi-inclusivé(e,e’p) X process, i.e., the cross
section(1) integrated over the missing ener&y,, at fixed

PD(Emakm):fEX |<km1\PfX|\I}A>|25(Em_(Emin+ Efx))y value Ofpm- Owing to
®)
A
whereE i,=M+M,_;—M,, and fE W?}((ré---rg)\lffx(rz---rA)=JHZ s(rj—ri), (11
x =
(K, ¥y |pr>:f ekm 1Sl (1 1) WF the cross sectioril) becomes directly proportional to the
X X distorted momentum distribution(8), i.e.,

X(ra = ra)Wa(ry-ra)
A nD(km)z(ZTr)*f ekm=rp (r,r)drdr’, (12

A
X 8 Hl dr;, (6)

where
with ¥, and ‘Iffx being the ground state wave function of

the target nucleus and the wave function of the systein [ (WASEO(r,r)SEWa") (13
the statefy, respectively; the quantityg is the Glauber po(r.r')= (VAW ) )
operator, which describes the FSI's of the struck proton with
the (A—1) system, i.e., is the one-body mixed density matrix, and

A A R
Se(ry-ra)=11 G(ry,rp=I1 [1-6(z;—2z)T (b~ by)], =3 5<fi—r>6<r{—f’>,.1;li o(rj—rj) (14

j=2 j=2

(7

the one-body density operator. In E43) and in the rest of
whereb; andz; are the transverse and the longitudinal com-the paper, the primed quantities have to be evaluated at
ponents of the nucleon coordinate=(b;,z;), I'(b) is the  with i=1,... A. By integratingnp(ky,) the nuclear trans-
Glauber profile function for elastic proton nucleon scattering,parencyT is obtained, which is defined as follows:
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T=f Np(Km)dkp,

=(27-r)*3f pD(r,r’)drdr’f eikm(‘*r')dkmzpr(r)dr
(15

Tzf pp(r)dr=1+AT, (16

where AT originates from FSI's. The nuclear momentum

PHYSICAL REVIEW C 60 024602

fa(rij) the correlation function associated with the operator

O, (ij) [if O,(ij)=0 for n>1, the usual Jastrow wave func-
tion is recoveredl If Glauber FSI's and nucleon-nucleon cor-
relations are both abseng{=1, f;=1, f,=0, for n>1),

the standard results for the shell-model one—body mixed den-
sity matrices,

distributions and the one-body density are normalized as fol-

lows:

17

f n(p)dp=fp(r)dr=

Ill. ONE-BODY MIXED DENSITY MATRIX AND
NUCLEAR TRANSPARENCY WITHIN A LINKED
CLUSTER EXPANSION FOR GLAUBER CORRELATED
WAVE FUNCTIONS

We have evaluated the one-body density ma(til) us-
ing for Sg the form(7) and for the nuclear wave functiobi 5
the following form:

=8 [T ij

i<j

(18)

)}‘1’0:
where

f(ij):; fo(rij)Oni), (19)

Sis the symmetrization operatof, the Slater determinant

pSM<r,r'>=§ Br(X) (X )=4po(r,r'), (20
P T ) =2 @500 bulX)=4po(ri,r), (2D
and the one-body diagonal matrix,
psm(ri)=psm(ri ari)zg | o (x)[?=4po(ri), (22)
are obtained, where
rr)= 2 @5 (r)@a(r)) (23
and
polr) =2 lea(r)l” (24)

are the spin- and isospin-independent matrices. In the above
equations, the notationr={a,o,7}, a={n,I,m}, and x
={r,s,t} has been used, which means that the single particle
orbitals have the representatign,(x) = ¢,(r) xX2£¥2.

We have developed a linked cluster expansmn in the
quantity »(r,rj,ri,r)= 1+f*(r,,r )f(r{,r{) which in-
cludes, at each order m(ri,r.r ,r ) the Glauber operator

describing the nucleon-independent particle motion, ando all orders, and the result at first order reads as follows:

PD(rlyrD:<‘l’o

xIT Gri.r))

v)-(v

Placing Eqg.(14) in the above equation, one obtains

pD(I’l,ri)=ﬂ+§l+’é|§+’ég—’éu—él‘, (26)

where

A=pew(ry,r)X®(ry,rp)A-1), 27)

qu> +<\If0

LrO(r DI Gerir)

iarj 1ri !r])

T2 e )0,

r)O(ry,r)G(ry,

e

qf(;>. (25)

Byi=4®(r,,r))*2?

X f dro{[4HY(r 15,1 12)po(r1, 1) po(ra)

—H™(r12,r12)po(r1,r2)po(ra,ry)]l

XG'(r1,1)G(r],r)}, (28)
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- )
By=—4®(ry,rp 3>a§b @E(r) ep(ry)

X j drodra{[4HY(r 53 0F (12) @a(r2) p(r3)
—H®(r29) o5 (12) @a(ra)p(ra,r2)1GT(r1,r2)G(ry,r3)
XG(ry,r)G(ry,ra)}, (29

’B‘5=4<b<r1,r1)“\*3>§b @X(r)ea(ry)

Xf drodr3{[4H¥(r 53| @u(r2)[?p(r3)

—H®(r ) @f (r2) ep(r3)po(r3,r2)1GT(ry,r7)

XGH(ry,r3)G(r1,r)G(ry,ra)}, (30

C=a0(ry,r) "™V ¢3(r)ea(ry)

X f dr,dr 3{[4HY(1 25) | @a(12)[2po(T 3)

—H(r2) @3 (r2) @a(ra)po(rs.ro)1}, (31

CU=40(r, )" DX G (rea(ry)

X J drodrs{[4HY(r 59| @p(r2)[2p0(T3)

—H™(r3) ¢p (r2)ep(ra)po(rs.ro)1}, (32

wherep(ri,r;) andpy(r;) are defined by Eq$23) and(24),
respectively, H¥"®(r ., .r,,,) and H®(r,.), where dir

(ex) stands fordirect (exchange)respectively, depend upon

the form of the correlation operator in E(L.8) and will be
defined in Sec. IV, and

n

[Cb(rl-ri)]nz{jPo(rj)GT(rl'rj)G(ri,rj)drj , (33

PHYSICAL REVIEW C 60 024602

P:éc(rlari):4f drz{[4Hdi’(r12,rl,z)po(rl,ri)po(rz)

—H®(r12,r1:2)po(r1,r2)po(r2.r1)1}, (35

Plssc(rlari): _4f drzdr3{[4Hdir(r23)Po("27ri)P0(r3)

—H®(r29)po(r2.r3)po(r3,r1)1po(r1,r2)},
(36)

SM H s
Pesi(F1:.r1)={psm(r1.r1)+pisc(r1,r1) + pisc(ra,ry}

X{@(ry,rp)h-1}, (37)

prsi(F1,1)=®(ry,r)h
X4J dro{[4HY(r 15,712)po(r 1,71 po(r2)

—H®(r12,r12)po(r1,r2)po(ra,ry)]
XT(ry,ri,ra)} (39
PRs(r1.r1)=pRsi(r1, 1) +pRs/(re,rs), (39)
with

pEA(r LT = —B(ry,r)A

X4f drodr3{[4H¥(r 53) po(r 2,1 1) po(T3)

—H®™(r29)po(r2.r3)po(r3,r1)1po(r2.ry)
XT(ry,ry,ra.ra)}h, (40)

PE'st(rl’ri):q)(rl’ri)A‘lPo(rl:ri)J drodrg

X{[AHY(1 53) po(T2) po(r'3)

—H®(r29)po(r2,r3)2I0(ry,r1,r2,13)},
(41)

with n=(A—3),(A—2),(A—1),A. In the above equations Wherel'(r,,ri,r;) andI'(ry,ry,r,,r3) denote the product of
the sum ovem andb runs over shell-model occupied states the Glauber factor& appearing in Eqs(28), (29), and(30)

below the Fermi sea.
Equation (25) holds for any value ofA. We will now
consider the usual Glauber condition of large i.e., we

minus 1[see Eq(45) below], and the superscript§, H, L,
andU stand forspectatoy holg linked, andunlinked respec-
tively.

considern=(A—3)=(A—2)=(A—1)=A. In such a case Let us now discuss the meaning of the various terms ap-
the various terms of E(25) can be properly rearranged to pearing in Eq(34). The first term represents the trivial shell-
finally obtain the following compact result: model contribution whereass® represents the contribution
from initial-state correlations. If only these three contribu-
tions are considered, the correlated momentum distribution
calculated in several papers6—18 are obtained, i.e.,

H s
po(r1,r)=psm(r1,r1)+pisc(r1,r1) +psc(ra.ri)

SM H s
+pesi(1,71) +pes(r1.r) +ppsi(ra,ri).

(39

n(k)=(27r)*3f ek =)o (r,r")drdr’, (42)

The physical meaning of the various terms in E84)
will be discussed later on; their explicit form is as follows: where
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FIG. 1. The various diagrams corresponding to the terms in Eq. F|G. 3. The various diagrams corresponding to the terms of the
(45). nuclear transparency, E@48) (only the direct contributions are
shown).
p1(r1,r)=psm(r1.r)+plsdrs,r)+piedrs.ri).
(43 A transparent diagrammatic representation of B¢) can
be given representing the generalization of the one given in
As will be clear later on using a diagrammatic representation,15—-17 for the (undistortedd momentum distributions. The
pgc(rl,ri) represents the contribution when particle “1” is basic elements appearing in E84) are the following ones:
correlated with a second particle, wher@g@s{(r,r;) repre-
sents the contribution from the correlation in a spectator pair (@ psmlri rj)=4po(ri.rj),
composed of particles “2” and “3.” The last three terms of
Eqg. (34) represent the contribution from ISCand FSI's;
namely, pjaa represents the contribution when ISC's are
present but a struck proton interacts in the final state with

(b) fpsm(fi)dri=4f po(ridri,

uncorrelated nucleons, whereaS represents the contri- (c) HI®(ry),

butions when initial state correlations are present but the '

struck nucleon interacts either with a partner, correlated (d)  HI(r ),

nucleon pjso), or with a nucleon which is correlated with a

third one (pi30). By taking the Forier transform of E¢34) (8 I(rq,ry,r)=G'(ry,r)G(ry,r)—1,

the distorted momentum distribution is obtained:
(f) T(ry,ri,nar)=GT(ry,r)G(ri,re)

nD(km):(Zﬂ')_sf k= po(r,r)drdr’.  (44) XGT(ry,r)G(ry,r)—1,

Equation (43) clearly illustrates the number conserving (9) [¢(r1,ri)]”5“ o (r')GT(rlif')G(ri,r.)dr_r
property of the expansion;saa a matter of fact, it can be o ) 1
readily checked that when,=r;, the integrals over, of (45

H S . . .
pisc(f1:,r1) and pisc(ry,r1) are identical and of OPPOSIt® ' The diagrammatic representation of the various quantities
sign, so that the number of particles is conserved; such gefined in Eq.(45) is presented in Fig. 1, whereas the dia-
property holds to all orders of the expansion. grammatic representation of E¢34) is given in Fig. 2,
where only the direct terms are shown. The diagrams corre-

- Qz s lo--- &) sponding to the exchange terms can be readily drawn.
Po pISC < N p]sc 3
M 1 g i T IV. NUCLEAR TRANSPARENCY FOR %0 AND “Ca
Qz 2g €Yy In this section the results of the calculation of the nuclear
. 3 transparency ot®0 and*°Ca obtained using E¢34) will be
Prsi = § 1,"‘1 -2 1,+1 A-3 0 presented. The results for the momentum distributions will

be given in a separate pagexl].

2g 367 ® 2__3
./Z’;\\'. + A. Nuclear wave function

r The nuclear wave function, Eq18), was constructed
with ¥ built up from harmonic oscillator orbitals and the
FIG. 2. The various diagrams corresponding to the terms in Eqcorrelation operators corresponding to ¥ Reid soft core
(34) (only the direct contributions are shoyn (RSQ interaction, i.e.,0,(ij)=1, O,(ij)=0oy- oy, Og(ij)
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TABLE I. The nuclear transparency, E@8), for 0.

PHYSICAL REVIEW C 60 024602

TABLE Il. The nuclear transparency, EG8), for 4°Ca.

Tou AT ATH, ATR aTR T Tow ATS ATH,  ATES ATE T
Central 0.51 0.020 0.032 -0.013 0.022 0.57 Central 041 0.020 0.028 —-0.011 0.023 0.47
Realistic 051 0.003 0.009 0.001 —0.001 0.52 Realistic 041 0.002 0.008 —0.001 0.001 0.42
Sym: 7, whereS; =3[ (a-ry) (0} 1) V(1) ~ o1 ;. PO=—pz ¢ ™ “9

The harmonic oscillator length parameter and the form of

the correlation functions,,(r;;) have been obtained by mini-

mizing the expectation value of the Hamiltonian calculated}
i

at the second order in the cluster expansion. The results w
be presented elsewhef&9]. Having fixed the form of the
variousf ;s the quantitiesH9"® can be readily obtained. In
the case of the simple Jastrow wave function one has

HY () =H(r)="f(r;)?-1,

Hdir(rij Tir) =HE(rij,ri) =fo(ripf(ri)) —1, (46)

with ;=43 mb, = —0.33, andb,=0.6 fm. Two different
ypes of nuclear wave functions have been used, viz., the
wave function, Eq(18), corresponding to the ReM6 inter-
action [20], with single particle and correlation parameters
determined from the minimization of the nuclear Hamil-
tonian[17], and the phenomenological Jastrow wave func-
tion with central correlations, frequently used in the calcula-
tions of the transparendigee, e.g.[10]). The results of the
calculations, which are presented in Tables | and Il, deserve
the following comments.

but when the spin, isospin, and tensor dependences of the (1) Within the phenomenological central correlation ap-
correlation functions are considered, a complex structure oproach, the effects of correlations on the nuclear transpar-

HYr® js generated. The expressionsHf"® for the gen-
eral case of th&6 RSC interaction are rather involved and
will be reported elsewherd 9]; here, below, the results cor-

ency are sizabléabout 12%.
(2) The contribution of the spectator term is almost zero,
originating from two terms of opposite sign, and the effect of

responding to the case of the dominant correlation function§SI’s within correlated nucleons is almost entirely due to the

of the V6 RSC interaction, i.ef;, f,, andfg, are shown:
HY(ry;)=fa(r;)2=1+279(r;;)?,
H®(rij)=f1(ri;)?—1—27g(r;;)>+18f1(r;))g(r)),
HE(rij 1) = Fa(ri) Fa(rig) — 1+ 279(ri)a(ris),
HE(ri ri) =1 1(rij) F1(ri) —1—279(ri)g(rir))
+9f,(ripa(riy) +9f1(ri-)a(r;), (47
where we have usef},=fg=g.

B. Nuclear transparency for 0 and “°Ca

The nuclear transparency has been calculated by15y.
Note that since the linked cluster expansion we are using is
number conserving one, the terrpl%C and p,SSC give equal
and opposite contributions to the integral in Ebf), so that
AT gets contribution only from the termssy, prs,, and

pis; therefore, the nuclear transparency can be represent

in the following form:

T=1+ATM+ATH AT +ATES, (48

hole contribution.

(3) Noncentral correlations affect very sharply the nuclear
transparency, in that the overall effect of correlations reduces
to about 2%, with the hole contribution remaining the domi-
nant one and the spectator contribution canceling out.

It is important to stress that similar conclusions have been
reached in19], where the nuclear transparency in the pro-
cess*He(e,e’ p) X has been obtained by an exéct all order
of correlations and Glauber multiple scattepirgalculation
performed using a realistic four-body wave function corre-
sponding to the same interaction used in this paper.

Thus we have found a small effect of realistic correlations
on the transparency, in apparent agreement with the results
of, e.g., Ref.[8]; there, however, such a result is a conse-
guence of a cancellation between hole and spectator contri-
butions, whereas in our approach it is due to an overall de-
grease of the transparency generated by noncentral
correlations, which lead to an almost vanishing contribution
of the spectator effect, with the only surviving contributions
being ATEY andATE,.! The reasons for the apparent over-

é;él agreement between our results and the ones of [Bgf.

are, at the moment, difficult to understand, also in view of
the fact that the two approaches are formally different, with
the latter one being based upon the Foldy-Walecka expan-
sion [22], which requires the orthonormality condition

where the spectator contribution has been split in two parts

which, as will be seen later on, cancel to a large extent. Let

us reiterate thah TEg; includes Glauber FSI's to all orders  inote that in the central Jastrow correlation approach, both for
between the hit nucleon and uncorrelated nucleons. The di@domplex nuclei(cf. Table ) and for“He (cf. [11] and[19], where
grammatic representation of E@8) is given in Fig. 3. Cal-  the Jastrow calculation has been carried out to all orders both in the
culations have been performed by parametrizing the Glaubeforrelations and the multiple scattering operatoesrrelations in-
profile in the usual way8]: crease the transparency by more than 10%.
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Jdrip(r;)C(rq,r;)=0, which, however, is not usually lated by an exact treatment of realistic correlations and

implemented in actual calculations. Glauber multiple scatteringl9,21] shows similar results, in-
dicating that the effects of correlations on triple- and higher-
V. SUMMARY AND CONCLUSIONS order Glauber multiple scattering contributions is negligible.
A thorough investigation of the convergence of the distorted
Our work can be summarized as follows. linked cluster expansion will be presented elsewHa!,

(1) A linked cluster expansion has been developed whichogether with the results of the calculations for the distorted
includes both initial state correlations and final state interaCmomentum distributions.
tions. The eXpanSion holds for the most general form of the To sum up, the genera| conclusion can be drawn that a
correlation fUnCtion, which includes both central and NON-realistic calculation of the nuclear transparency in semi-
central correlations, and is such that at each order in thgyclusive processea(e,e’p)X, for both light and heavy nu-
correlations, Glauber multiple scattering is included at allgjej, can be performed, thus appreciably improving the pio-
orders. neering estimates based on simple phenomenological nuclear
(2) The expansion has been applied to the calculation ofyave functions embodying only central repulsive correla-
the nuclear transparency in the proces¥&e,e’'p)X and  tjons.
40Ca(e,e’'p)X. The results show that whereas central Ja-
strow correlations increase the transparency by about 12%,
realistic central and noncentral correlations increase it by ACKNOWLEDGMENTS
only 2%.
(3) A comparison of our results with the ones obtained for We are indebted to Hiko Morita and Kolya Nikolaev for
the nuclear transparency in the procése(e,e’p)X calcu-  many useful discussions.
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