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Relativistic treatment of hypernuclear decay
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We compute for the first time the decay width ofL-hypernuclei in a relativistic mean-field approximation to
the Walecka model. Due to the small mass difference between theL-hyperon and its decay products—a
nucleon and a pion—the mesonic component of the decay is strongly Pauli blocked in the nuclear medium.
Thus, the in-medium decay becomes dominated by the nonmesonic, or two-body, component of the decay. For
this mode, theL-hyperon decays into a nucleon and a spacelike nuclear excitation. In this work we concentrate
exclusively on the pionlike modes. By relying on the analytic structure of the nucleon and pion propagators, we
express the nonmesonic component of the decay in terms of the spin-longitudinal response function. This

response has been constrained from precise quasielastic (pW ,nW ) measurements done at LAMPF. We compute the
spin-longitudinal response in a relativistic random-phase-approximation model that reproduces accurately the
quasielastic data. By doing so, we obtain hypernuclear decay widths that are considerably smaller—by factors
of 2 or 3—relative to existing nonrelativistic calculations.@S0556-2813~99!01208-X#

PACS number~s!: 21.80.1a, 21.60.2n, 14.20.Jn
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I. INTRODUCTION

Understanding modifications to hadronic properties
such as masses and decay widths—in the nuclear med
occupies an important place in nuclear physics. The rea
for such a status is the universal character of the problem
electromagnetic phenomena one asks, for example, if
coupling of the photon to the proton gets modified in t
nuclear environment. Similarly, hadronic processes—suc

the (pW ,nW ) reaction—search for evidence for new states
matter through the modifications of meson~e.g., pion! prop-
erties in the nuclear medium. Finally, the modification
masses and decay widths for vector mesons might prov
through relativistic heavy-ion experiments, conclusive e
dence for the formation of the quark-gluon plasma.

In the present paper we are interested in understan
medium modifications to the properties of the lambd
hyperon; in particular modifications to its decay width. T
our knowledge, this is the first time that such a study will
carried out within the framework of a relativistic mean-fie
approximation. There are several reasons why theL-decay is
interesting. First, the mesonic mode,L→Np, which com-
prises nearly 100% of the decay in free space, is unavail
in the medium because of Pauli blocking@1#. Second, a new
nucleon-stimulated mode,LN→NN, opens up—precisely
because of the presence of the nuclear medium@2,3#. As this
‘‘nonmesonic’’ mode dominates, the decay of the lambda
the nuclear medium becomes sensitive to nuclear excitati
Finally, the decay is interesting because the empiricalDI
51/2 rule—nearly exact for the free decay—appears to
violated in the nuclear medium@4,5#.

Because of simplicity, or perhaps because the weakLNp
couplings seem to be the only ones that are model inde
dent @6,7#, most—although certainly not all—nonrelativist
calculations to date have concentrated exclusively on
onlike nuclear excitations@8–12#. In this, our first, relativis-
tic study of the decay we will proceed analogously; yet o
results seem to indicate the need for the inclusion of ad
tional nuclear excitations@6,7,13#.
0556-2813/99/60~2!/024306~9!/$15.00 60 0243
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An important point that we will stress throughout this—
and any future—publication is the need for consistency
tween theoretical calculations and, seemingly unrelated,
perimental data. For example, pionlike modes have b
studied extensively by a variety of experiments. Arguab
the most complete set of experiments were performed at
neutron-time-of-flight~NTOF! facility at LAMPF @14,15#.
These quasielastic (pW ,nW ) measurements placed strong co
straints on the~pionlike! spin-longitudinal response, b
showing conclusively that the long-sought pion-conden
state does not exist. Although improving fast, the pres
experimental situation on hypernuclear decay is still limit
@16–18#. Thus, the theoretical guidance provided by altern
tive experiments should not be underestimated. Indeed
this work we compute the decay ofL-hypernuclei using the
same exact model that was used successfully in descri
the spin-longitudinal response extracted from the quasiela
(pW ,nW ) experiments@19#.

We have organized our paper as follows. In Sec. II
develop the formalism needed to compute the in-medi
decay of theL-hyperon. We rely strongly on the analyti
structure of the nucleon and pion propagators to show
the non-mesonic component of the decay is sensitive to
spin-longitudinal response. The underlyingLNp dynamics
is prescribed through an effective-Lagrangian approach.
the nucleon and lambda propagators we use a standard m
field approximation to the Walecka model, while the pio
propagator is evaluated in a random-phase approxima
~RPA!—using a pseudovector representation for thepNN
vertex. Our results are presented in Sec. III. Strong emph
is placed on the dynamical quenching of the effectivepNN
coupling in the nuclear medium, and on the correspond
reduction of the hypernuclear widths. Finally, in Sec. IV w
summarize our findings and make suggestions for fut
work.

II. FORMALISM

The dynamics of the lambda-nucleon-pion (LNp) system
is described in terms of the following effective Lagrangi
@7#:
©1999 The American Physical Society06-1
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L. ZHOU AND J. PIEKAREWICZ PHYSICAL REVIEW C60 024306
L5gwc̄N~x!~11kg5!t•p~x!cL~x!1H.c., ~1!

wheregw52.3531027 is the weakLNp coupling constant
and k526.7 is the ratio of the parity conserving to th
parity violating coupling. Note that—in accordance to t
empirical DI 51/2 rule—the lambda-hyperon field occupi
the lower entry of the two-component ‘‘isospinor’’cL(x);
the first entry is kept empty. This effective Lagrangian w
now be used to compute modifications to the propagation
the L-hyperon in the nuclear medium. Specifically, t
modifiedL-propagator in symmetric nuclear matter satisfi
Dyson’s equation@20#:

S~p!5S0~p!1S0~p!S~p!S0~p!1•••

5S0~p!1S0~p!S~p!S~p!, ~2!

where the lambda~proper! self-energy is defined by

2 iS~p!53gw
2 E d4q

~2p!4
~12kg5!G~p2q!~11kg5!D~q!.

~3!

Note that we have introduced the nucleon~G! and pion (D)
propagators. Moreover, the factor of ‘‘3’’ in front of th
integral appears as a direct consequence of theDI 51/2
rule—thepp2 channel contributes twice as much as thenp0

one.

A. Nucleon propagator

The nucleon propagator will be computed in nuclear m
ter using a mean-field approximation to the Walecka mo
@21#. Since most of the formal aspects of the derivation c
be found in the textbook by Serot and Walecka@22#—as well
as in many other publications—we limit ourselves to a br
review of the central issues.

In a self-consistent~or Hartree! approximation the relativ-
istic nucleon propagator in nuclear matter may be written

G~k!5~k” !1MN
! !F 1

k!22MN
!21 ih

1
ip

EN
! ~k!

3u~kF2uku!d„k02EN
(1)~k!…G , ~4!

where the following quantities have been introduced:

km![~k02VN ,k!, EN
(6)~k![EN

! ~k!6VN ,

EN
! ~k![Ak21MN

!2. ~5!

Note that once the Fermi momentumkF is specified, the
effective nucleon massMN

! , the energy shiftVN—and with
them the full nucleon propagator—can be determined@22#.
The three independent parameters of the Walecka mode
the mass of the scalar meson, and the scalar and vector
plings, respectively~the vector mass is kept fixed at i
physical value of 783 MeV!. These three parameters—whic
02430
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are used to describe ground-state properties of closed-
nuclei throughout the Periodic Table—are given by

ms5520 MeV; gs
2/4p58.724; gv

2/4p515.154.
~6!

The above nucleon propagator can be written alternativel
a spectral representation. That is,G(k)[G(1)(k)1G(2)(k),
where

G(1)~k!5(
s

S u~kF2uku!

k02EN
(1)~k!2 ih

1
u~ uku2kF!

k02EN
(1)~k!1 ih

D
3U!~k,s!Ū!~k,s!, ~7a!

G(2)~k!5(
s

V!~2k,s!V̄!~2k,s!

k01EN
(2)~k!2 ih

. ~7b!

We have chosen to display the analytic structure of
nucleon propagator to highlight the relevant physics that
been included at the mean-field level. For example, theG(2)

term represents the antiparticle~or filled Dirac sea! contribu-
tion to the nucleon propagator. This term is analytic in t
full complex k0-plane, except for the presence of negativ
energy poles located~slightly! above the real axis. This com
ponent of the propagator does not contribute to the width
the L-hyperon in the nuclear medium. TheG(1) term, in
contrast, represents the positive-energy part of the prop
tor. In addition to a change in the dispersion relation beca
of the presence of the mean fields, the only other modifi
tion to this part of the propagator, relative to its free-spa
structure, is the shift in the position of the pole of all th
states below the Fermi level from slightly below to slight
above the realk0-axis ~see Fig. 1!. In this way, the ‘‘quasi-
nucleon’’ propagator takes a form analogous to the one
free space—the conventional Feynman propagator—whil
the same time enforcing the Pauli-exclusion principle.

B. Pion propagator I

Isolating the analytic structure of the pion propagator
nuclear matter is not as straightforward as in the case of
above nucleon propagator. Thus, in this case it is conven
to express the pion propagator in its more general form—
using its Lehmann representation@20#:

D~q!5
1

pE0

`

dv
ImD~q,v!

v2q02 ih
2

1

pE2`

0

dv
ImD~q,v!

v2q01 ih
.

~8!

In this form, knowledge of the spectral weight~i.e., the
imaginary part of the propagator! is sufficient to reconstruc

FIG. 1. Spectral content of the nucleon propagator in a rela
istic mean-field approximation.
6-2
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RELATIVISTIC TREATMENT OF HYPERNUCLEAR DECAY PHYSICAL REVIEW C60 024306
the full propagator, albeit at the expense of introducing
additional integral. Yet the virtue of such a representation
that the physical content of the imaginary part is simple a
illuminating. We will return to this point later in the section
Now we proceed to compute directly the imaginary part
the lambda self-energy.

C. Lambda self-energy

As the lambda propagates through the nuclear mediu
feels the presence of the strong scalar and vector mean fi
Thus, the lambda propagator gets modified at the mean-
level in a manner similar to that of the nucleon propaga
However, because there are no preexisting lambdas in
nucleus, there is no Pauli correction to the propaga
Hence, the lambda propagator looks exactly as a conv
tional Feynman propagator

S~p!5
p” !1ML

!

p!22ML
!21 ih

, ~9!

but with a mass and a dispersion relation modified by
strong mean fields:

pm![~p02VL ,p!, EL
(6)~p![EL

! ~p!6VL ,

EL
! ~p![Ap21ML

!2. ~10!

The only two parameters that remain to be specified are
coupling constants of the lambda to the scalar and ve
fields. Here we determine them from the assumption that
strange quark in the lambda does not couple to the sigma
to the omega meson. In this way we end up with the sim
quark-model estimates of

gsLL /gsNN5gvLL /gvNN52/3. ~11!

Of course other possible values—perhaps phenomeno
cally more robust—can be easily incorporated in our cal
lation. Yet, irrespective of these values the effective lamb
parameters become

~ML
! 2ML!5S gsLL

gsNN
D ~MN

! 2MN!; VL5S gvLL

gvNN
DVN .

~12!

In a mean-field approximation it is the strong scalar field t
is responsible for inducing a shift in the mass of the lamb
relative to its free-space value. Yet, its entire decay width
generated from the weak matrix element given in Eq.~3!;
note that the dispersive contribution to the mass term is
significant. Moreover, the contribution to the width com
entirely from the particle (1 ih) component of the nucleon
propagator@the last term in Eq.~7a!#. This in turn constrains
the contribution from the pion propagator to arise exc
sively from the first (2 ih) term in Eq.~8!; otherwise theq0

integral in Eq.~3! would vanish. In this way, theq0 integral
can be computed with the aid of Cauchy’s theorem. We
tain
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ImS~p!53gw
2 E d3q

~2p!3

3
~12kg5!~k” !1MN

! !~11kg5!

EN
! ~k!

u„EN
! ~k!2EF

!
…

3E
0

`

dv ImD~q,v!d„EL
(1)~p!2EN

(1)~k!2v…,

~13!

where now km! is evaluated at its on-shell value:km!

5@EN
! (k),k[p2q#. To proceed, and in particular to isola

the Lorentz structure of the self-energy, it is convenient
use the following identity between gamma matrices:

~12kg5!~k” !1MN
! !~11kg5!

5~12k2!MN
! 1~11k2!k” !12kk” !g5. ~14!

Note that a parity-violating—axial-vector—component h
been generated at the one-loop level. Although interest
the effect of this term to the decay will be ofO(gw

4 ) and will
be neglected henceforth. In this way we arrive at the follo
ing form of theL-propagator:

S~p!5
A0g02Avg•p̂1B

A0
22Av

22B2
, ~15!

where the following quantities have been introduced:

A0[p0!2S0 , ~16a!

Av[upu2Sv , ~16b!

B[ML
! 1Ss. ~16c!

All these quantities depend~for an on-shell lambda! on the
momentum of the lambda (p) and the density of the system
(kF); for simplicity, reference to these parameters has b
suppressed. The medium-modified width of theL-hyperon is
now extracted by evaluating the imaginary part of the d
nominator in Eq.~15! at the position of the pole. That is,

GL522ImS EL
! ~p!

ML
!

S02
upu

ML
!

SV1SSD . ~17!

Since in our model the medium-modified pion propaga
depends solely on the magnitude and not on the directio
q, the delta function in Eq.~13! serves to perform the angula
integrations. This results in the following form for the imag
nary part of theL-self-energy:

ImS i~p!52
3gw

2

8pupu E0

`

q dqE
0

`

dv Ci~q,v!

3F2
1

p
ImD~q,v!G , ~18!
6-3
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L. ZHOU AND J. PIEKAREWICZ PHYSICAL REVIEW C60 024306
where theCi-coefficients are defined by

Ci~q,v!5H ~12k2!MN
! , for i 5S;

~11k2!EN
! ~p2q!, for i 50;

~11k2!~ upu2q•p̂!, for i 5V,

~19!

supplemented with the energy-momentum-conservation r
tion

EN
! ~p2q!5A~p2q!21MN

!25EN
(1)~p2q!2VN

5EL
(1)~p!2v2VN . ~20!

Note that suitable kinematical conditions at the various in
action vertices impose constrains on the limits of integrat
for both theq- and v-integrals in Eq.~18!. For a detailed
discussion on these limits we refer the reader to the App
dix.

D. Pion propagator II

Equation~18! is very general, as it depends solely on t
analytic structure of the pion propagator. In this section
discuss in detail the relativistic model used to calculate
pion propagator—placing special emphasis on the phy
underlying its imaginary part. The imaginary part of the pi
self-energy is interesting and fundamental as it is rela
after a suitable analysis, to a physical process: the~plane-
wave! cross section in proton-neutron scattering. There a
variety of physical processes that modify the propagation
the pion as it moves through the many-body environme
These include the coupling of the pion to particle-hole~ph!

and nucleon-antinucleon (NN̄) excitations. In nuclear matte
these two kinds of excitation have a distinctive character.
example, pions with spacelike (q2,0) momenta can only
‘‘decay’’ into ~real! ph-pairs. In contrast, theNN̄-channel
opens up at the relatively large timelike momentum ofq2

54MN
!2.0.

As was discussed in the Introduction, the mesonic de
of the lambda—in which an on-shell pion with timelike m
mentum is produced—is strongly Pauli-suppressed
nuclear matter@this process is represented by diagram~b! in
Fig. 2#. Recall that in free space the nucleon is produced w
a momentum of only 100 MeV, which is well below th
Fermi momentum at saturation. However, with the closing
the mesonic branch the nonmesonic channel opens up.
this nucleon-induced (LN→NN) decay the exchanged pio
is constrained to have spacelike momentum. Thus, the
pling of the pion to spacelike particle-hole excitations b

FIG. 2. Feynman diagrams contributing to the in-medium de
width of theL-hyperon.
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comes of paramount importance@this channel is represente
by diagram~c! in Fig. 2#. We now compute the medium
modified pion propagator in nuclear matter by iterating—
infinite order—the lowest-order contribution to the se
energy by means of Dyson’s equation@20#. That is,

D~q!5D0~q!1D0~q!P0~q!D~q!

5D0~q!1D0~q!P~q!D0~q!, ~21a!

P~q!5P0~q!1P0~q!D0~q!P~q!

5P0~q!1P0~q!D~q!P0~q!, ~21b!

where we have introduced the free pion propagator

D0~q!5
1

q22mp
2 1 ih

, ~22!

and the lowest-order pion self-energy

iP0~q!5l f p
2 S qm

mp
D S qn

mp
D E d4k

~2p!4

3Tr@gmg5G~k1q!gng5G~k!#. ~23!

The factor ofl52 represents the isospin degeneracy in sy
metric nuclear matter andf p

2 /4p50.0778 represents th
strength of the pseudovectorpNN vertex. Further, we have
established the equivalence between various ways of c
puting the medium-modified pion propagator. It is the la
form in Eq. ~21a! that we use here to write the mesonic a
nonmesonic contribution to the lambda self-energy:

ImS i~p!uM52
3gw

2

8pupu Eqmin

qmax
q dqE

vmin

vmax
dv Ci~q,v!

3F2
1

p
ImD0~q,v!G , ~24a!

ImS i~p!uN.M.52
3gw

2

8pupu Eqmin

qmax
qdq

3E
vmin

vmax
dvCi~q,v!D0

2~q,v!SL~q,v!.

~24b!

Note that we have introduced the spin-longitudinal respo
SL(q,v), to be defined below. The imaginary part of th
lambda self-energy is obtained by ‘‘cutting’’ all the Feyn
man diagrams given in Fig. 2, or equivalently, by putting
intermediate particles on their mass shell. All of these d
grams contain a nucleon in the intermediate state that m
lie above the Fermi surface. Certain diagrams@such as dia-
gram~b!# have a pion in the intermediate state and contrib
to the mesonic component of the decay. However, as
mesonic component is known to be strongly suppressed
the Pauli exclusion principle, no effort has been made
compute modification to the pion mass in the nuclear m

y

6-4
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dium @note that even in the chiral (mp50) limit the momen-
tum of the outgoing nucleon will increase to only 160 Me
still well below the Fermi momentum at saturation#. The
decay of the lambda into a nucleon and a~spacelike! particle-
hole excitation@such as in diagram~c!# constitutes the non
mesonic component of the decay. In this manner, the n
mesonic component becomes proportional to the imagin
part of the lowest-order pion self-energy, or equivalently,
the spin-longitudinal response:

SL
(0)~q,v!52

1

p
ImP0~q,v!. ~25!

Finally, diagrams such as in Fig. 2~d! contribute to the non-
mesonic decay through the higher-order iteration of
lowest-order pion self-energy. These diagrams have b
summed to all orders using an RPA approach. Note that
the residual interaction we have included a phenomenol
cal Landau-Migdal term, as described in detail in Ref.@19#.

III. RESULTS

This section is devoted to the discussion of our resu
Before doing so, however, we clarify the various approxim
tions required to extend our nuclear-matter results to fin
nuclei.

The first step in such a procedure is to calculate
ground state of various closed-shell nuclei~such as40Ca) in
a relativistic mean-field approximation to the Walecka mo
@21,22#. Once the self-consistent mean fields are genera
we solve the Dirac equation for aL-hyperon moving in these
potentials; no additional self-consistency is demand
Hence, the lambda moves in a mean-field potential that
fers from the corresponding nucleon potential in only tw
ways. First, the scalar and vector potentials were scaled
factor of 2/3, as the strange quark in the lambda is assu
not to couple to the sigma nor to the omega meson. Sec
by assuming that the magnetic moment of the lambda
carried exclusively by the strange quark, a strong ten
mean-field potential is generated. To illustrate these mod
cations, we have included in Table I a comparison betwee
the nucleon and the lambda single-particle spectra usin
mean-field potential appropriate for40Ca. For the case of the
s1/2 states—which lack spin-orbit partners—the binding e

TABLE I. Single-particle binding energies~in MeV! for a
nucleon or a lambda in the self-consistent mean-field of40Ca.
Quark-model estimates were used forgsLL andgvLL . See text for
details.

Orbital N L

s1/2 255.390 236.274

p3/2 238.903 224.030
p1/2 233.181 223.591

d5/2 222.751 211.769
s1/2 214.389 2 9.838
d3/2 213.876 211.099
02430
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ergy for the lambda orbitals is almost 2/3 that of the nucle
Yet the most interesting modification is the near total di
tion of spin-orbit effects in the lambda spectrum due to
strong tensor interaction.

Once theL-spectrum has been obtained, we compute
effective ~or average! vector density sampled by
L-hyperon occupying the lowest (s1/2) orbital. That is,

^rv&5E d3r rv~r !ŪL~r !g0UL~r !. ~26!

This is then the nuclear-matter density that is used to co
pute the decay width: GL(p;^rv&). Finally, the
L-hypernucleus decay width is extracted from the convo
tion of this expression with the momentum distribution of t
lowest orbital:

GL5E d3p

~2p!3
GL~p;^rv&!ŪL~p!g0UL~p!. ~27!

A. Mesonic decay

Computing the mesonic component of the decay is re
tively straightforward. We start by writing the free pio
propagator of Eq.~22! in its spectral form

D0~q!5
1

2vq
F 1

v2vq1 ih
2

1

v1vq2 ih G ;
vq[Aq21mp

2 . ~28!

This yields the following simple form for the mesonic com
ponent of the self-energy@Eq. ~24a!#:

ImS i~p!uM52
3gw

2

16pupu Ev1

v2
dvCi~v!. ~29!

Here the constantCi introduced earlier must be evaluated
its ‘‘on-shell’’ value v[vq . Moreover, the limits of inte-
gration are obtained from simple kinematical consideratio
after using the definitions given in Eqs.~A2a!, ~A2b!, and
~A3!. As the weakLNp coupling constants have been ch
sen to reproduce the width of the lambda-hyperon in f
space, we obtain in the limit ofkF50

G052.490310212 MeV. ~30!

Yet the mesonic component of the decay gets modified d
matically in nuclear matter because of strong Pauli corre
tions. This can be seen in Table II which shows that
mesonic component of the decay drops dramatically w
baryon number. We will return to discuss these results
more detail after presenting results for the nonmesonic c
ponent of the decay.

B. Nonmesonic decay

The nonmesonic component of the decay is considera
more complicated to evaluate. Not only does one need
compute the ground state of uniform nuclear matter but
6-5
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TABLE II. Hypernuclear decay widths in a relativistic mean-field approximation to the Walecka m
The third column contains the mesonic contribution to the decay width, while the fourth and fifth col
display the dominant nonmesonic and total decay widths, respectively. The last two columns cont
nonrelativistic results, without including the two-particle—two-hole component of the decay, as compu
Ref. @11# and in Ref.@25#, respectively.

Nucleus ^kF&/kF
0 GM /G0 GN.M. /G0 GTotal /G0 G/G0 @11# G/G0 @25#

L
12C 0.991 0.112 0.413 0.525 1.76 1.07

L
16O 0.956 0.099 0.497 0.596 1.78

L
28Si 1.013 0.053 0.479 0.532 1.09

L
32S 1.024 0.048 0.491 0.539 — —

L
40Ca 1.000 0.023 0.544 0.567 1.79 1.08
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stri-
addition, one must compute its linear~spin-longitudinal! re-
sponse. The linear response of the ground state—conta
in the imaginary part of the polarization insertion—requir
a specific representation for thepNN vertex. In this work we
have adopted a pseudovector~PV! representation. The
pseudovector representation adopted here is just one of
eral possible choices. Indeed, we could have adopted ins
a pseudoscalar~PS! representation, which is guaranteed to
equivalent on-shell. The merit of the PV representati
however, is that the correct soft-pion limit of various obse
ables is enforced at the level of the Lagrangian dens
rather than from a sensitive cancellation among vari
Feynman diagrams@23#.

One of the most interesting results that emerged from
earlier work on the pion-nucleon system is the dynami
quenching of thepNN coupling constant in the nuclear me
dium @19,24#. The origin of this quenching is intimately re
lated to the nonconservation of the nucleon axial-vector c
rent or, equivalently, to the presence of a nucleon-mass te
That is,

qmŪ~p8!gmg5U~p!52MNŪ~p8!g5U~p!Þ0. ~31!

In the nuclear medium the nucleon mass is reduce
dynamically—from its free-space value because of the str
scalar field. Thus, relative to a ‘‘nonrelativistic’’ calculation
by which we mean that the potentials are small andMN

!

→MN , it appears as if thepNN coupling constant has bee
effectively reduced in the medium. Moreover, this reduct
is density dependent and tracks the behavior of the effec
nucleon mass; namely, the quenching increases with the
sity of the system. This relativistic behavior was responsi
for generating no pion condensation—even in the absenc
short-range correlations@24#. More importantly, it described
correctly@19# the behavior of various quasielastic (pW ,nW ) spin
observables measured at LAMPF@14,15#. Measuring a vari-
ety of spin observables was required for the extraction of
spin-longitudinal response, which was instrumental in elim
nating pion condensation as a possible new state of ma
With these results in mind, we now proceed to use the sa
exact relativistic model to compute the nonmesonic deca
the L-hyperon.

Equation ~24b! suggests that once the spin-longitudin
response is obtained, computing the different Lorentz co
02430
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ponents of the non-mesonic decay becomes straightforw
We present in Fig. 3 results for the decay width of t
L-hyperon at a nuclear-matter density (kF5kF

0) appropriate
for L

40Ca ~see discussion at the beginning of the section!. The
momentum distribution for the lowest (s1/2) L-orbital is dis-
played by the solid line in the figure; it is normalized so th
the area under the curve—which has been multiplied b
factor of 100 for clarity—is equal to one. The other thr
curves in the figure display the mesonic and nonmeso
components of the decay computed in an approach that
fixed all masses to their free-space value; this is our b
attempt at reproducing nonrelativistic results. The das
curve shows the mesonic component of the decay as a f

FIG. 3. Momentum dependence of theL-hyperon decay width,
normalized to its free-space value. The mesonic contribution to
width is displayed with the dashed line, while the nonmeso
decay—with and without RPA correlations—is contained in t
dotted and dot-dashed curves, respectively. All calculations w
done assuming the ‘‘nonrelativistic’’ (MN

!→MN) limit. The inset
shows the same curves but now folded with the momentum di
bution of the lowest (s1/2) lambda orbital inL

40Ca.
6-6
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tion of the momentum of the lambda. Clearly, the meso
mode is strongly suppressed for momenta below 200 M
The curve eventually ‘‘heals’’ to its free-space value, but t
late to make a contribution to the in-medium decay; we h
computed a mesonic contribution to the decay in40Ca, rela-
tive to its free-space value, of only 0.014. This number w
obtained by folding the decay width computed in (MN

!

5MN) nuclear matter with the momentum distribution of t
s1/2-orbital ~see inset!. The non-mesonic contributions to th
decay, computed without and with RPA correlations, are d
played by the dot-dashed and dotted lines, respectiv
These contributions peak at small momenta and, thus, h
good overlaps with the momentum distribution. The Hart
~or non-RPA! and RPA contributions to the width have in
creased to 0.834 and 1.053, respectively.

The same calculation has been repeated in Fig. 4, but
with self-consistent nucleon and lambda propagators. Tha
in-medium masses were used with their values determ
self-consistently from the mean-field equations@22#. The dif-
ferent scaling of the nucleon and lambda masses with den
generates a slight change in the mesonic component o
decay, but one that is still too small to impact the total dec
width. By far the most important modification emerges fro
the dynamical quenching of thepNN coupling in the nuclear
medium @24#. Indeed, the nonmesonic components of
decay computed in the relativistic approach are now redu
to 0.444 and 0.544, respectively. This large reduction fac
relative to the aboveMN

! 5MN calculation, is consistent with

FIG. 4. Momentum dependence of theL-hyperon decay width,
normalized to its free-space value. The mesonic contribution to
width is displayed with the dashed line, while the nonmeso
decay—with and without RPA correlations—is contained in t
dotted and dot-dashed curves, respectively. All calculations w
done assuming the self-consistent (MN

! ) value for the effective
nucleon mass. The inset shows the same curves but now folded
the momentum distribution of the lowest (s1/2) lambda orbital in

L
40Ca.
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the reduction observed in the quasielastic (pW ,nW ) reaction
@19#. Moreover, the relativistic RPA result obtained here f
the total width—G/G050.567—is more than a factor o
three smaller than the nonrelativistic value reported by R
mos, Oset, and Salcedo in Ref.@11#. This large reduction
factor is not exclusive to40Ca, but is seen in all hypernucle
reported in Table II.

It is also relevant to mention that in a very recent pub
cation, a new nonrelativistic evaluation of theL-decay width
has been made@25#. For the case of40Ca a total decay width
~without including the two-particle—two-hole component
the decay! of G/G051.08 has been reported. This represe
a reduction of about 35–40 % relative to the value presen
in Ref. @11#. Yet, it is essentially identical to our ‘‘nonrela
tivistic’’ ( MN

! 5MN) value ofG/G051.07. However, had we
used the sameMN

! 5MN model to study the quasielasti

(pW ,nW ) observables@14,15#, we would have grossly overest
mated the observed spin-longitudinal response@19#.

We conclude this section with a brief discussion on p
sible improvements to our calculation. First, we have n
included short-rangeLN correlations. These correlation
have been found to be important in nonrelativistic calcu
tions, as they reduce the decay width by as much as 3
Although the inclusion of short-range correlations will on
help to further strengthen our main result, namely, that
pion branch alone is not sufficient to explain the in-mediu
decay, their inclusion is important for a detailed comparis
with experiment. Second, one should search for a phen
enologically consistentsLL coupling constant. For ex
ample, in a preliminary search we have found that with
small ~5%! fine tuning of the coupling, one can obtain th
more realistic value of 20 MeV for the binding energy of th
lowests1/2-orbital in 40Ca. This adjustment, however, resul
in an increase of the total decay width of only 10%. Final
although our results for the spin-longitudinal response are
good agreement with the quasifree (pW ,nW ) data, this agree-
ment is far from perfect—especially on the high-energy s
of the quasielastic peak. Thus, a complete finite-nucleus
culation of the RPA response, similar to the one carried
for the electromagnetic response@26#, should be done.

IV. CONCLUSIONS

We have computed for the first time the decay width
L-hypernuclei in a relativistic mean-field approximation
the Walecka model. Most of the formalism presented her
quite general, as it relies only on the analytic structure
various propagators. The calculation was performed in t
stages. First, ground-state properties of various closed-s
nuclei were computed self-consistently. With the mean-fie
potentials in hand, the Dirac equation for aL-hyperon was
solved with scaled scalar and vector potentials. A scal
factor of 2/3 was introduced from the assumption that
strange quark in the lambda does not to couple to the sig
nor to the omega meson. Moreover, by assuming that
magnetic moment of theL-hyperon is carried solely by the
strange quark, a tensor mean-field potential was introdu
that diluted—almost completely—all spin-orbit effects. Se
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ond, the mesonic and nonmesonic components of the d
width—with and without RPA correlations—were comput
in infinite nuclear matter. The uniform nuclear-matter de
sity was estimated from evaluating the average den
sampled by aL-hyperon occupying the lowest (s1/2) orbital.
Finally, the nuclear-matter results were folded with the m
mentum distribution of the lowestL-orbital to compute the
finite-hypernuclear width.

As expected, the mesonic component of the decay
strongly suppressed by Pauli correlations. Indeed, for
values of the nuclear-matter density adopted here, the d
of L-hyperons with momenta less than 200 MeV was stric
forbidden. Since in the Walecka mean-field model the m
mentum components of theL-hyperon beyond 200 MeV ar
small, the strong suppression of the mesonic mode ensue
contrast, the nonmesonic component of the decay is
Pauli-blocked. In the nonmesonic mode theL-hyperon de-
cays into a nucleon and a pionlike pair with spacelike m
menta. Information on these kind of pionlike excitations
contained in the nuclear spin-longitudinal response. T
fundamental nuclear response is accessible through cha

exchange (pW ,nW ) reactions. Indeed, high-precision measu
ments made at the NTOF facility at LAMPF were instrume
tal in answering some fundamental nuclear-physics quest
@14,15#. For example, these experiments showed con
sively, by extracting the spin-longitudinal response, that
long-sought pion-condensed state does not exist. In our r
tivistic model the absence of pion condensation was att
uted to a dynamical quenching of thepNN coupling con-
stant in the nuclear medium@19,24#.

In the present work we have computed the nonmeso
component of the decay—using the same relativistic R
model that was used to confirm the LAMPF measureme
The dynamical quenching of thepNN coupling constant in
the medium was now responsible for generating de
widths for L-hypernuclei that were two to three time
smaller than those obtained by existing nonrelativistic cal
lations@11,25#—and considerably smaller than measured
perimentally@17#. This suggests that other modes of exci
tion, besides pionlike modes, might be important
understanding the decay width ofL-hypernuclei@6,7,13#.

The study of such modes seems both interesting and
essary. For example, a weakLNv vertex will induce a cou-
pling to isoscalar-vector modes. As in the pion case,
additional contribution to the nonmesonic width can be
lated to a well-known nuclear response: the longitudinal
sponse measured in electron scattering. Hence, its impac
the decay will be also strongly constrained. Searching
the underlying dynamics behind the decay width
L-hypernuclei—while at the same time maintaining cons
tency with the wealth of existing nuclear-response data—
be the subject of a future report.
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APPENDIX: KINEMATICAL CONSTRAINTS
AT THE VERTICES

The limits of integration in theq- andv-integrals of Eqs.
~24a! and ~24b! are constrained by energy-momentum co
servation at the various interacting vertices. We now exa
ine the kinematical constraints imposed at each vertex s
rately.

1. Kinematical constraints at the lambda-nucleon-pion vertex

Energy-momentum conservation at theLNp vertex de-
mands that an on-shell lambda-hyperon ‘‘decays’’ into
on-shell nucleon—above the Fermi surface—and, in pr
ciple, an off-shell pion. That is,

v5EL
(1)~p!2EN

(1)~p2q!>0. ~A1!

Moreover, as the angular integration overq can always be
performed, the following limits of integration ensue:

vmin5EL
(1)2max„EN

(1)~kF!,EN
(1)~p1q!…, ~A2a!

vmax5EL
(1)2max„EN

(1)~kF!,EN
(1)~p2q!…, ~A2b!

where EN
(1)(p6q)5A(upu6q)21MN

!21VN . Note that the
above relations impose constraints on theq-integral as well.
For example, thev-integral will vanish unlessvmax.vmin .
Further,vmin is constrained to be greater than or equal
zero. Thus, from these two conditions the following limi
are obtained:

qmin5max~0,kF2upu!,

qmax5max„0,A~EL
(1)2VN!22MN

!22upu…. ~A3!

2. Kinematical constraints at the particle-hole-pion vertex

In the case of the nonmesonic decay of the lamb
hyperon, additional constraints—at least in nuclear matte
follow from enforcing energy-momentum conservation at t
php vertex. Indeed, the energy of the exchanged~spacelike!
pion is given by

v5EN
(1)~k1q!2EN

(1)~k!>0, ~A4!

whereEN
(1)(k1q).EN

(1)(kF) denotes the energy of the pa
ticle andEN

(1)(k),EN
(1)(kF) is the energy of the hole. As in

the above case, the most stringent constraints emerge in
case in which the particle, the hole, and the pion are col
ear. We obtain

vmin5max„0,A~ uqu2kF!21MN
!22AkF

21MN
!2
…,

~A5a!

vmax5A~ uqu1kF!21MN
!22AkF

21MN
!2. ~A5b!

The resulting limits of integration for thev-integral then
follow from enforcing Eqs.~A2a! and ~A2b! and ~A5a! and
~A5b! simultaneously.
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