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Relativistic treatment of hypernuclear decay
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We compute for the first time the decay width/fhypernuclei in a relativistic mean-field approximation to
the Walecka model. Due to the small mass difference betweem\ thgperon and its decay products—a
nucleon and a pion—the mesonic component of the decay is strongly Pauli blocked in the nuclear medium.
Thus, the in-medium decay becomes dominated by the nonmesonic, or two-body, component of the decay. For
this mode, the\-hyperon decays into a nucleon and a spacelike nuclear excitation. In this work we concentrate
exclusively on the pionlike modes. By relying on the analytic structure of the nucleon and pion propagators, we
express the nonmesonic component of the decay in terms of the spin-longitudinal response function. This
response has been constrained from precise quasielﬁsﬁ&:measurements done at LAMPF. We compute the
spin-longitudinal response in a relativistic random-phase-approximation model that reproduces accurately the
guasielastic data. By doing so, we obtain hypernuclear decay widths that are considerably smaller—by factors
of 2 or 3—relative to existing nonrelativistic calculatiofi§0556-281®9)01208-X|

PACS numbegs): 21.80+a, 21.60—n, 14.20.Jn

[. INTRODUCTION An important point that we will stress throughout this—
and any future—publication is the need for consistency be-
Understanding modifications to hadronic properties—tween theoretical calculations and., seemingly unrelated, ex-
such as masses and decay widths—in the nuclear mediuRgfimental data. For example, pionlike modes have been
occupies an important place in nuclear physics. The reascpfudied extensively by a variety of experiments. Arguably
for such a status is the universal character of the problem. I{'€ MOSt complete set of experiments were performed at the
electromagnetic phenomena one asks, for example, if threGUtron't'm?'Of'fl'_gbthTOF) facility at LAMPF [14,19),
coupling of the photon to the proton gets modified in theThese guasielasticp(n) measurements placed strong con-

. o ; straints on the(pionlike) spin-longitudinal response, b
nuclear environment. Similarly, hadronic processes—such asﬁ"nowing conclugi)vely th)at t%e Ion%-sought pioﬁ-conden)s/ed

the (p,n) reaction—search for evidence for new states ofstate does not exist. Although improving fast, the present
matter through the modifications of mes@ng., pion prop-  experimental situation on hypernuclear decay is still limited
erties in the nuclear medium. Finally, the modification of[16—18. Thus, the theoretical guidance provided by alterna-
masses and decay widths for vector mesons might providéive experiments should not be underestimated. Indeed, in
through relativistic heavy-ion experiments, conclusive evi-this work we compute the decay af-hypernuclei using the -
dence for the formation of the quark-gluon plasma. same exact model that was used successfully in describing
In the present paper we are interested in understandin@efp'n'long't“d'nal response extracted from the quasielastic
medium modifications to the properties of the lambda-(P.n) experimentg19].
hyperon; in particular modifications to its decay width. To We have organized our paper as follows. In Sec. Il we
our knowledge, this is the first time that such a study will bedevelop the formalism needed to compute the in-medium
carried out within the framework of a relativistic mean-field decay of theA-hyperon. We rely strongly on the analytic
approximation. There are several reasons why\thgecay is structure of the_ nucleon and pion propagators to _show that
interesting. First, the mesonic mod&,— N, which com- the non-mesonic component of the decay is sensitive to the
prises nearly 100% of the decay in free space, is unavailabgPin-longitudinal response. The underlying\= dynamics
in the medium because of Pauli blockifij. Second, a new S prescribed through an effective-Lagrangian approach. For
nucleon-stimulated modeAN—NN, opens up—precisely the nucleon and lambda propagators we use a standard mean-
because of the presence of the nuclear med@y8i. As this field approx!matlon to the Walecka model, while the_ pion
“nonmesonic” mode dominates, the decay of the lambda inpropagator_ is evaluated in a random-phese approximation
the nuclear medium becomes sensitive to nuclear excitation§RPA—Using a pseudovector representation for N
Finally, the decay is interesting because the empirichl yertex. Our results are presented in Sec. Il Strong_empha3|s
—1/2 rule—nearly exact for the free decay—appears to béS Placed on the dynamical quenching of the effectiéN
violated in the nuclear mediui,5]. coupling in the nuclear medium, and on the corresponding
Because of simplicity, or perhaps because the webikr reduction of the hypernuclear widths. Finally, in Sec. IV we
couplings seem to be the only ones that are model indepeﬁ-umkmar'ze our findings and make suggestions for future
dent[6,7], most—although certainly not all—nonrelativistic WO'%-
calculations to date have concentrated exclusively on pi-
onlike nuclear excitationg8—12]. In this, our first, relativis-
tic study of the decay we will proceed analogously; yet our The dynamics of the lambda-nucleon-pichN7) system

results seem to indicate the need for the inclusion of addiis described in terms of the following effective Lagrangian
tional nuclear excitationgs,7,13. [7]:

Il. FORMALISM
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whereg,,=2.35x 10’ is the weakA N coupling constant -M* +M*
and k= —6.7 is the ratio of the parity conserving to the

parity violating coupling. Note that—in accordance to the FIG. 1. Spectral content of the nucleon propagator in a relativ-
empirical Al =1/2 rule—the lambda-hyperon field occupies istic mean-field approximation.

the lower entry of the two-component “isospinor,(X); . )
the first entry is kept empty. This effective Lagrangian will @ré used to describe ground-state properties of closed-shell

now be used to compute modifications to the propagation opuclei throughout the Periodic Table—are given by

the A-hyperon in the nuclear medium. Specifically, the _ 2. 2.
modified A -propagator in symmetric nuclear matter satisfies ms=520 MeV; gs/dm=8.724; g,/4m=15.154.

o/
particles

Dyson’s equatiorf20];: (6)
. The above nucleon propagator can be written alternatively in
SP=S(P)+So(PZ(P)So(p) F - - a spectral representation. That@&(k)=G(") (k) + G(7)(k),

=So(p) +So(P)Z(P)S(P), (2)  where

where the lambddprope) self-energy is defined by O(ke—1k|) 0(|k| —kg)

G()(k)= +
dq ® 23 Ko—E(V(k)—in kC—E( (k) +in
i — 242 . _ + D _ _
iX(p) 39wf (2my LT RYIG(Pm AL k) Al) xU*(k,5)U*(k,S), (7a)
©) _
V*(—k,s)V*(—k,s
Note that we have introduced the nucle@) and pion () GIk)=>D E) (_)) ( . ) (7b)
propagators. Moreover, the factor of “3” in front of the s KHEVI(K—iy

integral appears as a direct consequence of Ahe 1/2 , _
rule—thepa— channel contributes twice as much asthe? ~ W€ have chosen to display the analytic structure of the
one. nucleon propagator to highlight the relevant physics that has

been included at the mean-field level. For example Ghe
term represents the antiparticler filled Dirac seacontribu-
tion to the nucleon propagator. This term is analytic in the
The nucleon propagator will be computed in nuclear matfull complex k°-plane, except for the presence of negative-
ter using a mean-field approximation to the Walecka modeknergy poles locate@lightly) above the real axis. This com-
[21]. Since most of the formal aspects of the derivation carponent of the propagator does not contribute to the width of
be found in the textbook by Serot and Wale¢Ral—as well  the A-hyperon in the nuclear medium. TH@&(*) term, in
as in many other publications—we limit ourselves to a briefcontrast, represents the positive-energy part of the propaga-
review of the central issues. tor. In addition to a change in the dispersion relation because
In a self-consistenior Hartreg approximation the relativ- of the presence of the mean fields, the only other modifica-
istic nucleon propagator in nuclear matter may be written asion to this part of the propagator, relative to its free-space
structure, is the shift in the position of the pole of all the
i states below the Fermi level from slightly below to slightly
K2—MPZ+i7 + Ex(K) above the reak®-axis (see Fig. 1 In this way, the “quasi- _
nucleon” propagator takes a form analogous to the one in
free space—the conventional Feynman propagator—while at
' (4)  the same time enforcing the Pauli-exclusion principle.

A. Nucleon propagator

G(k)=(k*+My)

x 0(ke— |k]) 8(k°— E{ (k)

where the following quantities have been introduced: B. Pion propagator |

Isolating the analytic structure of the pion propagator in

ker=(k=Vy k), EQ(K)=Ex(K) = Vy, nuclear matter is not as straightforward as in the case of the
above nucleon propagator. Thus, in this case it is convenient
Exn(k)=Vk2+ Mg’% (5)  to express the pion propagator in its more general form—by

using its Lehmann representatip20]:
Note that once the Fermi momentukg is specified, the

effective nucleon mashly,, the energy shift/y—and with Al = 1 ®d IpA(Q@) 1 (0 q ZnA(q, o)
them the full nucleon propagator—can be determif®]. (@)= mJo “’w_qo_i n )= ww—q°+i 7
The three independent parameters of the Walecka model are 8

the mass of the scalar meson, and the scalar and vector cou-
plings, respectively(the vector mass is kept fixed at its In this form, knowledge of the spectral weigfite., the
physical value of 783 Me) These three parameters—which imaginary part of the propagatois sufficient to reconstruct
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the full propagator, albeit at the expense of introducing an d%q
additional integral. Yet the virtue of such a representation is Imz(p)ZSQ@j 3
that the physical content of the imaginary part is simple and (2m)

illuminating. We will return to this point later in the section.

_ 5 * * 5
Now we proceed to compute directly the imaginary part of X(l Ky ) (K MR+ xy

)
O(EX(K)—Ep)

the lambda self-energy. Exn(k)
C. Lambda self-energy X j dw ZnA(q,0) 8E ) (p) —E( (k) — o),
As the lambda propagates through the nuclear medium it °
feels the presence of the strong scalar and vector mean fields. (13

Thus, the lambda propagator gets modified at the mean-field s . L
level in a manner similar to that of the nucleon propagatory"h‘:*'r*e now_k is evaluated at its on-shell value
However, because there are no preexisting lambdas in thg[En(k),k=p—qa]. To proceed, and in particular to isolate

nucleus, there is no Pauli correction to the propagator'!he Lorentz structure of the self-energy, it is convenient to

Hence, the lambda propagator looks exactly as a converise the following identity between gamma matrices:
tional Feynman propagator
ynman propag (1= kP (K + M) (14 x°)

S(p)zszr—MzA, 9) =(1- K )My+ (1+ k2K +2kk*y°. (14
p*“—Mi+iy

A Note that a parity-violating—axial-vector—component has

but with a mass and a dispersion relation modified by thdeen generated at the one-loop level. Although interesting,

strong mean fields: the effect of this term to the decay will be ﬁf(gfv) and will
be neglected henceforth. In this way we arrive at the follow-
p“*=(p°—V,,p), E{(p)=Ex(p)=V,, ing form of the A -propagator:
Er(p)=Vp*+ M. (10) _AgY’—A,y-p+B
S(p)=—5———— (15
Ag—A;—B
0 \

The only two parameters that remain to be specified are the

coupling constants of the lambda to the scalar and vectafhere the following quantities have been introduced:
fields. Here we determine them from the assumption that the

strange quark in the lambda does not couple to the sigma nor Ap=p”* -3, (163

to the omega meson. In this way we end up with the simple

quark-model estimates of A=|p|-2,, (16b
Foar/IoNNTJorn Gunn=2/3. (1) B=M}+3s. (160

Of course other possible values—perhaps phenomenologkj these quantities dependor an on-shell lambdaon the
cally more robust—can be easily incorporated in our calcumomentum of the lambdapj and the density of the system
lation. Yet, irrespective of these values the effective IambquF); for simplicity, reference to these parameters has been

parameters become suppressed. The medium-modified width of théyperon is
now extracted by evaluating the imaginary part of the de-
* 9oan * JoAa 1 i | i ' .
(M} — MA):( )(MN_ My): VA:< )VN- nominator in Eq(15) at the position of the pole. That is,
oNN JuNN 12
EX(p)

FA:_ZIm A* Eo_ |pl Ev+zs) (17)

In a mean-field approximation it is the strong scalar field that M} M}

is responsible for inducing a shift in the mass of the lambda, . . . )
relative to its free-space value. Yet, its entire decay width is>inCe in our model the medium-modified pion propagator

generated from the weak matrix element given in B3); depends solely on the magnitude and not on the direction of
note that the dispersive contribution to the mass term is ind. the delta function in Eq13) serves to perform the angular
significant. Moreover, the contribution to the width comesintegrations. This results in the following form for the imagi-
entirely from the particle €i7) component of the nucleon Nary part of theA-self-energy:

propagatofthe last term in Eq(7a]. This in turn constrains

the contribution from the pion propagator to arise exclu- T.3:(p)=
sively from the first (i ) term in Eq.(8); otherwise they® m
integral in Eq.(3) would vanish. In this way, thg® integral

can be computed with the aid of Cauchy’s theorem. We ob-

tain

395, (=

~ 8ol o q dQL do Ci(q,w)

X

v
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A A A A A comes of paramount importanfhis channel is represented
— - L by diagram(c) in Fig. 2. We now compute the medium-
- + NA dm o+ N hOP + N O v modified pion propagator in nuclear matter by iterating—to
/ o\ »(:5 infinite order—the lowest-order contribution to the self-
T T energy by means of Dyson’s equatif0]. That is,
@ ®) © @

: - : . A(a)=A0(a)+Ag(q)Ho(q)A(q)
FIG. 2. Feynman diagrams contributing to the in-medium decay

width of the A-hyperon. =Ao(q) +Ap(q)II(a)Ag(a), (219
where theC;-coefficients are defined by 11(q) =1o(q) + o) Ag(a)11(q)
(1- K AME, for i=S: =11o(q) +Io(q)A(q)IIo(q), (21b)

Ci(q,w)=1 (1+ k?)Ex(p—q), for i=0; (199  Where we have introduced the free pion propagator
1+« (Ipl=q-p), for i=V,

- _ Ao(@)= 5 (22)
supplemented with the energy-momentum-conservation rela- g°—mz+in
tion
and the lowest-order pion self-energy
Ex(P—a)=V(p— @)+ M =E{(p—a)— Vy o alr dk
- a2 || 2
=E(A+)(|O)—w—VN- (20) |Ho(Q)—)\fw( mw)(”‘w)-[ (2m)*
Note that suitable kinematical conditions at the various inter- XTI y*y°G(k+q)y"y°G(K)]. (23

action vertices impose constrains on the limits of integration
for both theg- and w-integrals in Eq.(18). For a detailed The factor ofA = 2 represents the isospin degeneracy in sym-
discussion on these limits we refer the reader to the Appenmetric nuclear matter andf,/4w=0.0778 represents the
dix. strength of the pseudovectatNN vertex. Further, we have
established the equivalence between various ways of com-
D. Pion propagator I puting the medium-modified pion propagator. It is the last

. : , form in Eq. (218 that we use here to write the mesonic and
Equation(18) is very general, as it depends solely on thenonmesonic contribution to the lambda self-energy:

analytic structure of the pion propagator. In this section we
discuss in detail the relativistic model used to calculate the

2
pion propagator—placing special emphasis on the physics Imgi(p)m:_sﬂ qmaxq dq o Ci(q, )
underlying its imaginary part. The imaginary part of the pion 87|p| Amin @min
self-energy is interesting and fundamental as it is related, 1
after a suitable analysis, to a physical process: (fiiane- X| = =T.Ao(q,0)], (249
wave cross section in proton-neutron scattering. There are a ™
variety of physical processes that modify the propagation of )
the pion as it moves through the many-body environment. s _ 30y [ dmax d
These include the coupling of the pion to particle-h@é) mi (Pl = 87(P| J gy acd
and nucleon-antinucleorN(N) excitations. In nuclear matter
these two kinds of excitation have a distinctive character. For “max 2
example, pions with spacelikegf<0) momenta can only x Lmin doGi(d.0)A5(0.@)S.(q,w).
“decay” into (rea) ph-pairs. In contrast, th&N-channel (24b)
opens up at the relatively large timelike momentumqdf
=4M§2>0. Note that we have introduced the spin-longitudinal response

As was discussed in the Introduction, the mesonic decag, (q,), to be defined below. The imaginary part of the
of the lambda—in which an on-shell pion with timelike mo- lambda self-energy is obtained by “cutting” all the Feyn-
mentum is produced—is strongly Pauli-suppressed imman diagrams given in Fig. 2, or equivalently, by putting all
nuclear mattefthis process is represented by diagrédmin intermediate particles on their mass shell. All of these dia-
Fig. 2]. Recall that in free space the nucleon is produced witlgrams contain a nucleon in the intermediate state that must
a momentum of only 100 MeV, which is well below the lie above the Fermi surface. Certain diagramsch as dia-
Fermi momentum at saturation. However, with the closing ofgram(b)] have a pion in the intermediate state and contribute
the mesonic branch the nonmesonic channel opens up. Far the mesonic component of the decay. However, as the
this nucleon-inducedAN— NN) decay the exchanged pion mesonic component is known to be strongly suppressed by
is constrained to have spacelike momentum. Thus, the codhe Pauli exclusion principle, no effort has been made to
pling of the pion to spacelike particle-hole excitations be-compute modification to the pion mass in the nuclear me-
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TABLE I. Single-particle binding energiegin MeV) for a  ergy for the lambda orbitals is almost 2/3 that of the nucleon.
nucleon or a lambda in the self-consistent mean-field*@a.  Yet the most interesting modification is the near total dilu-
Quark-model estimates were used §or , andg,4 - See textfor  tion of spin-orbit effects in the lambda spectrum due to the
details. strong tensor interaction.

Once theA-spectrum has been obtained, we compute the

Orbital N A effective (or averagg vector density sampled by a
sl ~55390 —36.274 A-hyperon occupying the lowess?) orbital. That is,
p¥? —38.903 —24.030 3 — 0
pl/2 —-33.181 —23.591 <pV>_ d rpv(r)UA(r)Y UA(r)' (26)
d*2 —22.751 —11.769 This is then the nuclear-matter density that is used to com-
st —14.389 —9.838 pute the decay width: T'y(p;(p,)). Finally, the
d3? —13.876 —11.099 A-hypernucleus decay width is extracted from the convolu-

tion of this expression with the momentum distribution of the

. . . - lowest orbital:
dium[note that even in the chirah{,=0) limit the momen-

tum of the outgoing nucleon will increase to only 160 MeV; d3p .
still well below the Fermi momentum at saturatjoiThe FA=J—SFA(p;(pV>)UA(p)y°UA(p). (27
decay of the lambda into a nucleon an@pacelike particle- (2m)

hole excitationsuch as in diagranc)] constitutes the non-
mesonic component of the decay. In this manner, the non- A. Mesonic decay
mesonic component becomes proportional to the imaginary

t of the | t-ord . if ivalently. t Computing the mesonic component of the decay is rela-
part of the lowest-order pion S_e -energy, or equivaiently, Otively straightforward. We start by writing the free pion
the spin-longitudinal response:

propagator of Eq(22) in its spectral form

1
SO(d,0)= = =Znlly(q,0). (25 A e | — L)
™ 0 2wglw—wgtin wtog—in)
Finally, diagrams such as in Fig(d} contribute to the non- I o 2
mesonic decay through the higher-order iteration of the @q= VG~ + Mz (28)

lowest-order pion self-energy. These diagrams have been, . . - - . )
summed to all orders using an RPA approach. Note that fgggfex'tel,?sirfgesfe?]ﬂgvrgggé??éigﬁrm for the mesonic com
the residual interaction we have included a phenomenologi- ' '
cal Landau-Migdal term, as described in detail in R&B]. 2

39
Imzi(p)|M:

w “2

lll. RESULTS

This section is devoted to the discussion of our resultsHere the constart; introduced earlier must be evaluated at

Before doing so, however, we clarify the various approximadts “on-shell” value w=w,. Moreover, the limits of inte-

tions required to extend our nuclear-matter results to finit@ration are obtained from simple kinematical considerations

nuclei. after using the definitions given in EqA2a), (A2b), and
The first step in such a procedure is to calculate thdA3). As the weakAN7 coupling constants have been cho-

ground state of various closed-shell nudich as*®Ca) in ~ Sen to reproduce the width of the lambda-hyperon in free

a relativistic mean-field approximation to the Walecka modelSPace, we obtain in the limit dt==0

[21,22. Once the self-consistent mean fields are generated, _ P

we solve the Dirac equation for/&-hyperon moving in these I'9=2.490<10°" MeV. (30

potentials; no additional self-consistency is demandedyqt the mesonic component of the decay gets modified dra-

Hence, the lambda moves in a mean-field potential that diftatically in nuclear matter because of strong Pauli correla-

fers from the corresponding nucleon potential in only tWoyjong This can be seen in Table Il which shows that the
ways. First, the scalar and vector potentials were scaled by @ agonic component of the decay drops dramatically with

factor of 2/3, as the strange quark in the lambda is assumeﬁ:aryon number. We will return to discuss these results in
not to couple to the sigma nor to the omega meson. Seconfhre detail after presenting results for the nonmesonic com-

by assuming that the magnetic moment of the lambda i$,nant of the decay.

carried exclusively by the strange quark, a strong tenso
mean-field potential is generated. To illustrate these modifi-
cations, we have included in Tabl a comparison between

the nucleon and the lambda single-particle spectra using a The nonmesonic component of the decay is considerably
mean-field potential appropriate f6?Ca. For the case of the more complicated to evaluate. Not only does one need to
s'? states—which lack spin-orbit partners—the binding en-compute the ground state of uniform nuclear matter but, in

B. Nonmesonic decay
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TABLE Il. Hypernuclear decay widths in a relativistic mean-field approximation to the Walecka model.
The third column contains the mesonic contribution to the decay width, while the fourth and fifth columns
display the dominant nonmesonic and total decay widths, respectively. The last two columns contain the
nonrelativistic results, without including the two-particle—two-hole component of the decay, as computed in
Ref.[11] and in Ref.[25], respectively.

Nucleus (ke)/K2 T'wiTo T'um/To Trowa/To I'/T, [11] I'/T, [25]
c 0.991 0.112 0.413 0.525 1.76 1.07
0 0.956 0.099 0.497 0.596 1.78
g 1.013 0.053 0.479 0.532 1.09
s 1.024 0.048 0.491 0.539 — —
Pca 1.000 0.023 0.544 0.567 1.79 1.08

addition, one must compute its line@pin-longitudinal re-  ponents of the non-mesonic decay becomes straightforward.
sponse. The linear response of the ground state—containétle present in Fig. 3 results for the decay width of the
in the imaginary part of the polarization insertion—requiresA-hyperon at a nuclear-matter density-€ k) appropriate

a specific representation for tkeNN vertex. In this work we  for ‘X)Ca(see discussion at the beginning of the segtidhe
have adopted a pseudovectoPV) representation. The momentum distribution for the lowess{?) A-orbital is dis-
pseudovector representation adopted here is just one of seytayed by the solid line in the figure; it is normalized so that
eral possible choices. Indeed, we could have adopted inste@fle area under the curve—which has been multiplied by a
a pseudoscaldPS representation, which is guaranteed to befactor of 100 for clarity—is equal to one. The other three
equivalent on-shell. The merit of the PV representationcurves in the figure display the mesonic and nonmesonic
however, is that the correct soft-pion limit of various observ-components of the decay computed in an approach that has
ables is enforced at the level of the Lagrangian densityfixed all masses to their free-space value; this is our best
rather than from a sensitive cancellation among variougttempt at reproducing nonrelativistic results. The dashed

Feynman diagramg23]. curve shows the mesonic component of the decay as a func-
One of the most interesting results that emerged from our

earlier work on the pion-nucleon system is the dynamical 2 P
guenching of therNN coupling constant in the nuclear me- F—— p(px100 L .
dium [19,24]. The origin of this quenching is intimately re- L ——- Mesonic j

lated to the nonconservation of the nucleon axial-vector cur- - —=— Non-Mesonic (H)
Non—Mesonic (R)

rent or, equivalently, to the presence of a nucleon-mass term. r

That is,
9,U(p") ¥*¥°U(p)=2M\U(p")y°U(p)#0. (31

In the nuclear medium the nucleon mass is reduced—

15

o

0.5

N SN

0
0 100

200

300

dynamically—from its free-space value because of the strong= 1
scalar field. Thus, relative to a “nonrelativistic” calculation, -
by which we mean that the potentials are small an{

— My, it appears as if therNN coupling constant has been
effectively reduced in the medium. Moreover, this reduction
is density dependent and tracks the behavior of the effective
nucleon mass; namely, the quenching increases with the den
sity of the system. This relativistic behavior was responsible I
for generating no pion condensation—even in the absence ol I / ST,
short-range correlatiorf24]. More importantly, it described

correctly[19] the behavior of various quasielastig, @) spin =00 (MeV)
observables measured at LAMPH,15. Measuring a vari- P

ety of spin observables was required for the extraction of the g 3. Momentum dependence of thehyperon decay width,

spin-longitudinal response, which was instrumental in elimi-normalized to its free-space value. The mesonic contribution to the
nating pion condensation as a possible new state of mattefidgth is displayed with the dashed line, while the nonmesonic
With these results in mind, we now proceed to use the sam@ecay—with and without RPA correlations—is contained in the
exact relativistic model to compute the nonmesonic decay ofiotted and dot-dashed curves, respectively. All calculations were
the A-hyperon. done assuming the “nonrelativistic’My— My) limit. The inset

Equation (24b) suggests that once the spin-longitudinal shows the same curves but now folded with the momentum distri-
response is obtained, computing the different Lorentz combution of the lowest §/?) lambda orbital in{’Ca.

100

024306-6



RELATIVISTIC TREATMENT OF HYPERNUCLEAR DECAY PHYSICAL REVIEW G50 024306

2 T T T T T T T T T

the reduction observed in the quasielastgn) reaction

— p(px100 [19]. Moreover, the relativistic RPA result obtained here for

- “N’[es"“‘c , the total width—¥'/I"y=0.567—is more than a factor of
on—Mesonic (H) 4 .

............ Non-Mesonic (R) | three smaller than the nonrelativistic value reported by Ra-

mos, Oset, and Salcedo in R¢L1]. This large reduction

_ factor is not exclusive td%Ca, but is seen in all hypernuclei

_ reported in Table 1.

- It is also relevant to mention that in a very recent publi-

- .0 -7 cation, a new nonrelativistic evaluation of thedecay width

SN AN e . has been made5]. For the case of°Ca a total decay width

= LN s T (without including the two-particle—two-hole component of

PN il T the decayof I'/T"y=1.08 has been reported. This represents
W% ’ a reduction of about 35—40 % relative to the value presented

AN / in Ref.[11]. Yet, it is essentially identical to our “nonrela-

il AN / ] tivistic” ( My=My) value of '/T ,=1.07. However, had we

/ used the samé/y=My model to study the quasielastic

- RN g (p,n) observable§14,15, we would have grossly overesti-
- S - 1 mated the observed spin-longitudinal respojri.
6 e 560 350 60 S _ Wg conclude this section with a l_)rlef dllscussmn on pos-
p,(MeV) sible improvements to our calculation. First, we have not
included short-rangeAN correlations. These correlations
FIG. 4. Momentum dependence of thehyperon decay width, have been found to be important in nonrelativistic calcula-
normalized to its free-space value. The mesonic contribution to théions, as they reduce the decay width by as much as 30%.
width is displayed with the dashed line, while the nonmesonicAlthough the inclusion of short-range correlations will only
decay—with and without RPA correlations—is contained in thehelp to further strengthen our main result, namely, that the
dotted and dot-dashed curves, respectively. All calculations wer@ion branch alone is not sufficient to explain the in-medium
done assuming the self-consister ) value for the effective decay, their inclusion is important for a detailed comparison
nucleon mass. The inset shows the same curves but now folded witfith experiment. Second, one should search for a phenom-
the momentum distribution of the lowess') lambda orbital in  englogically consistentrAA coupling constant. For ex-
ACa. ample, in a preliminary search we have found that with a

tion of the momentum of the lambda. Clearly, the mesonicSmall (5% fine tuning of the coupling, one can obtain the

mode is strongly suppressed for momenta below 200 Mevmore realistic value of 20 MeV for the binding energy of the

12_~rhital in 40 ; ;
The curve eventually “heals” to its free-space value, but too_rowests orbital in *Ca. This adjustment, however, results

late to make a contribution to the in-medium decay; we have | 2" increase of the total decz_;\y Widt.h Of. only 10%. Finallyj
. I although our results for the spin-longitudinal response are in

computed a mesonic contribution to the decay'i@a, rela- . T i
tive to its free-space value, of only 0.014. This number wag00od agreement with the quasifrep,if) data, this agree-
obtained by folding the decay width computed M} ment is far from perfect—espeually on the hlgh—energy side
=My) nuclear matter with the momentum distribution of the of th(_a quasielastic peak. Thus, a cpmplete f|n|te-nucle_us cal-
s orbital (see insat The non-mesonic contributions to the culation of the RPA response, similar to the one carried out
decay, computed without and with RPA correlations, are dislcor the electromagnetic responf2s], should be done.
played by the dot-dashed and dotted lines, respectively.
These contributions peak at small momenta and, thus, have
good overlaps with the momentum distribution. The Hartree
(or non-RPA and RPA contributions to the width have in-  We have computed for the first time the decay width of
creased to 0.834 and 1.053, respectively. A-hypernuclei in a relativistic mean-field approximation to

The same calculation has been repeated in Fig. 4, but nothe Walecka model. Most of the formalism presented here is
with self-consistent nucleon and lambda propagators. That igjuite general, as it relies only on the analytic structure of
in-medium masses were used with their values determinedarious propagators. The calculation was performed in two
self-consistently from the mean-field equati¢®g]. The dif-  stages. First, ground-state properties of various closed-shell
ferent scaling of the nucleon and lambda masses with densityuclei were computed self-consistently. With the mean-fields
generates a slight change in the mesonic component of th@tentials in hand, the Dirac equation forAahyperon was
decay, but one that is still too small to impact the total decaysolved with scaled scalar and vector potentials. A scaling
width. By far the most important modification emerges fromfactor of 2/3 was introduced from the assumption that the
the dynamical quenching of theNN coupling in the nuclear strange quark in the lambda does not to couple to the sigma
medium [24]. Indeed, the nonmesonic components of thenor to the omega meson. Moreover, by assuming that the
decay computed in the relativistic approach are now reducehagnetic moment of th -hyperon is carried solely by the
to 0.444 and 0.544, respectively. This large reduction factorstrange quark, a tensor mean-field potential was introduced
relative to the abové =M calculation, is consistent with that diluted—almost completely—all spin-orbit effects. Sec-

IV. CONCLUSIONS
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ond, the mesonic and nonmesonic components of the decay APPENDIX: KINEMATICAL CONSTRAINTS
width—with and without RPA correlations—were computed AT THE VERTICES
in infinite nuclear matter. The uniform nuclear-matter den- The limits of integration in the} and w-integrals of Egs.

sity was estimated from evaluating the average.densit)(24a) and (24b) are constrained by energy-momentum con-
sampled by a\-hyperon occupying the lowess{?) orbital.  oryation at the various interacting vertices. We now exam-

Finally, the nuclear-matter results were folded with the mo-ine the kinematical constraints imposed at each vertex sepa-
mentum distribution of the lowest-orbital to compute the  ately.

finite-hypernuclear width.

As expected, the mesonlc.compone.:nt of the decay Wa3 Kinematical constraints at the lambda-nucleon-pion vertex
strongly suppressed by Pauli correlations. Indeed, for the )
values of the nuclear-matter density adopted here, the decay Energy-momentum conservation at théw vertex de-
of A-hyperons with momenta less than 200 MeV was strictly™ands that an on-shell lambda-hyperon “decays” into an
forbidden. Since in the Walecka mean-field model the mo—o,n'lSheII ”‘;fCIiOTI_?‘bOV_?htT? Fermi surface—and, in prin-
mentum components of the-hyperon beyond 200 MeV are cipie, an oft-shell pion. That Is,
small, the strong suppression of the mesonic mode ens_ued. In 0= E(A+)(|O)— Ef\f’)(p—q)zo. (A1)
contrast, the nonmesonic component of the decay is not
Pauli-blocked. In the nonmesonic mode thehyperon de-  Moreover, as the angular integration owgrcan always be
cays into a nucleon and a pionlike pair with spacelike mo-performed, the following limits of integration ensue:
menta. Information on these kind of pionlike excitations is

contained in the nuclear spin-longitudinal response. This omin=E{" —maxE{"(ke),E{(p+q)), (A2a)
fundamental nuclear response is accessible through charge-
exchange §§,n) reactions. Indeed, high-precision measure- wma=ES —maxE" (ke) E{V(p—q)),  (A2b)

ments made at the NTOF facility at LAMPF were instrumen-

tal in answering some fundamental nuclear-physics question&here E”(p=a)=([p|=a)?+M*+Vy. Note that the
[14,15. For example, these experiments showed conclu@bove relations impose constraints on thmtegral as well.
sively, by extracting the spin-longitudinal response, that thd-0r example, thev-integral will vanish unless ma> wmin-
long-sought pion-condensed state does not exist. In our reld=Urther, omin is constrained to be greater than or equal to
tivistic model the absence of pion condensation was attribZ€r0- Thus, from these two conditions the following limits
uted to a dynamical quenching of theNN coupling con- &€ obtained:

stant in the nuclear mediufi9,24.

In the present work we have computed the nhonmesonic Amin=max 0ke—[p|),
component of the decay—using the same relativistic RPA () . -
model that was used to confirm the LAMPF measurements. Omax=MaxO(ES” = V)2 =M —=Ip]).  (A3)

The dynamical quenching of theNN coupling constant in

the medium was now responsible for generating decay 2. kinematical constraints at the particle-hole-pion vertex
widths for A-hypernuclei that were two to three times h ¢ th ic d ¢ the lambd
smaller than those obtained by existing nonrelativistic calcu- !N the case of the nonmesonic decay of the lambda-

lations[11,25—and considerably smaller than measured exNyperon, additional constraints—at least in nuclear matter—

: ; . follow from enforcing energy-momentum conservation at the
perimentally[17]. This suggests that other modes of excita- .
tion, besides pionlike modes, might be important inPh7 vertex.Indeed, the energy of the exchangeuacelike

understanding the decay width Afhypernuclei6,7,13. pion is given by
The study of such modes seems both interesting and nec- —E) (Kt a)—ED (K =
essary. For example, a wedNw vertex will induce a cou- 0=Ey (kta)~Ey (=0, (Ad)

pling to isoscalar-vector modes. As in the pion case, th'%/vhereE(N+)(k+q)>E(N”(kp) denotes the energy of the par-

additional contribution to the nonmesonic width can be re-tiCIe andEf\,*)(k)<E(N*)(kF) is the energy of the hole. As in

lated to a well-known nuclear response: the longitudinal re- b h t stri ¢ traint in th
sponse measured in electron scattering. Hence, its impact 6He above case, the most stringent constraints emerge in the
ase in which the particle, the hole, and the pion are collin-

the decay will be also strongly constrained. Searching fof We obtai
the underlying dynamics behind the decay width of€ar. YVe obtain
A-hypernuclei—while at the same time maintaining consis- B = = > >
tency with the wealth of existing nuclear-response data—will min=max(0,(| ] — ke) + M= VkE+ M),
be the subject of a future report.

(A5a)

Omax— \/(|C]|+k|:)2+|\/|,t‘2—\/k|2:+ Mﬁz. (A5b)
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