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Extended proton-neutron quasiparticle random-phase approximation
in a boson expansion method
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The proton-neutron quasiparticle random phase approximation~pn-QRPA! is extended to include next to
leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable
Hamiltonian in the SO~5! symmetry representation. The pn-QRPA equation of motion is solved by using a
boson expansion technique adapted to the treatment of proton-neutron correlations. The resulting wave func-
tions are used to calculate the matrix elements of double-Fermi transitions.@S0556-2813~99!03107-6#

PACS number~s!: 21.60.Fw, 21.60.Jz, 23.40.Hc
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I. INTRODUCTION

The use of the proton-neutron quasiparticle random ph
approximation ~pn-QRPA! in the treatment of proton
neutron excitations and in the description of charg
exchange and beta-decay observables is by now a w
known technique@1#. Among the various versions of th
procedure, which was originally proposed by Baranger@2#
and by Hableib and Sorensen@3#, one can mention the intro
duction of renormalized particle-particle interactions by V
gel and others@4,5#. The agreement between earlier sh
model and QRPA results, particularly in the field of doub
beta-decay studies@6#, was improved by the addition of th
particle-particle terms of the proton-neutron interaction
the pn-QRPA equations and their use has motivated a
siderable amount of work on the extension of the pn-QR
method itself. We shall avoid the task of going into deta
about the several variations to the pn-QRPA approach e
ing in the literature, which have been reviewed recently@7#,
and we shall rather start the present discussion by referrin
the work of Muto@8#. The work of Ref.@8# belongs to the
group of theoretical works where the emphasis is put on
validity of the pn-QRPA beyond the level of the quasibos
approximation@9,10#. In Ref. @8# occupation numbers of th
single-quasiparticle proton and neutron states are introdu
in the equations of motion to account for density fluctuatio
different from the pure particle-hole ones. We think that t
validity of this approximation, and the subsequent se
consistency requirement imposed at the quasiparticle leve
approximation can be further investigated. We want to co
pare it with results obtained by performing a boson exp
sion method. In order to assess the validity of the method
Ref. @8# we have adopted a schematic but nontrivial Ham
tonian which belongs to the SO~5! representation and whic
has been shown to produce good results when compared
realistic interactions@11#. We have performed a boson e
pansion of this Hamiltonian by introducing a generalizati
of the boson expansion method developed by Evans
Krauss@12#. The use of boson expansions, in the context
proton-neutron interactions, is a relatively unexplored d
main of the known applications of the boson expans
methods@13#. We have found that it is also a very usef
technique in dealing with charge-dependent interactions
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we shall show next. The formalism is explained in Sec.
The use of the present formalism to calculate the pn-QR
eigenfunctions and eigenvectors and the behavior of the
QRPA near the phase transition point@14# is shown in Sec.
III and the results are discussed in terms of the expecta
value of the boson number operator. The pn-QRPA wa
functions are used to calculate the matrix elements co
sponding to double-beta-decay Fermi transitions. Conc
sions about the effects due to the inclusion of the next
leading order terms in the proton-neutron QRPA are dra
in the last section.

II. FORMALISM

Since we are interested in the treatment of proton-neu
interactions we have adopted for the present study the s
matic Hamiltonian which has been proposed by Kuz’min a
Soloviev@15# and lately used in Refs.@16# and@11# in deal-
ing with double-beta-decay calculations. The Hamiltoni
includes a single-particle term, a separable monopole pai
interaction for protons and neutrons and a schematic cha
dependent residual interaction with both particle-hole a
particle-particle proton~p!-neutron~n! channels @16#. It is
written as

H5epNp2GpSp
†Sp1enNn

2GnSn
†Sn12xb2b122kP2P1, ~1!

where

Ni5(
mi

ami

† ami
, Si5(

mi

ami

† am̄i

† , i 5p,n,

b25 (
mp5mn

amp

† amn
, P25 (

mp5mn

amp

† am̄n

† , ~2!

are the number operator, the monopole pair operator,
particle-hole and the particle-particle creation operators,
spectively. These definitions are restricted to the sa
single-j state for protons and neutrons~single-shell limit!
and the summations run over them projection of the shell
angular momentumj. Proton and neutron single particle o
bits are denoted by the subindexes~p! and ~n! and ap

†
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5ajpmp

† is a particle creation operator andap̄
†

5(2) j p2mpaj p2mp

† its time reversal.

By performing the transformation of the particle creati
and annihilation operators of the Hamiltonian~1! to the qua-
siparticle representation, by using the Bogoliubov transf
mations for protons and neutrons separately@1#, the resulting
Hamiltonian can be written

Hqp5EpNp1EnNn1l1A†A1l2~A†A†1AA!

2l3~A†B1B†A!2l4~A†B†1BA!1l5B†B

1l6~B†B†1BB!, ~3!

whereEp ,En are the quasiparticle energies and the opera
and matrix elements of the above equation are defined b

A†5@ap
†

^ an
†#M50

J50 , B†5@ap
†

^ a n̄#M50
J50 ,

Ni5(
mi

ami

† ami
, mi5n,p,

l154V@x~up
2vn

21vp
2un

2!2k~up
2un

21vp
2vn

2!#,

l254V~x1k!upvpunvn ,

l354V~x1k!unvn~up
22vp

2!,

l454V~x1k!upvp~un
22vn

2!,

l554V@x~up
2un

21vp
2vn

2!2k~up
2vn

21vp
2un

2!#,

l652l2 , ~4!

following the notation of@11#, with V5 j 11/2. The quasi-
particle energiesEq and the occupation probabilitiesvp

2 and
vn

2 are determined from the gap equation and the part
number conservation conditions.

The operatorA†(A) which creates~annihilates! a pair of
unlike ~proton-neutron!-quasiparticles and the ones corr
sponding to pairs of identical quasiparticles together with
charge-exchange operatorsB†, B, and the number operator
Np , Nn are the generators of the SO~5! algebra. The details
about the solutions of this Hamiltonian in the SO~5! repre-
sentation have been discussed in@11#.

An alternative to the approximate diagonalization p
formed in@11#, where the reference state is known to have
undetermined number of quasiparticles, consists on the
son expansion of the generators of the SO~5! algebra by ap-
plying a transformation which preserves the algebra of
group. The boson mapping proposed by Evans and Kra
@12# can be adapted to describe proton-neutron operators
have obtained the following expressions for each of the
erators defined above in terms of bosons, namely:

Ap
†5bp

†~V2np2nf !
1/2,

Ap5~Ap
†!†,
02430
r-

rs

le

e

-
n
o-

is
ss
e
-

A0p5S np1
1

2
nf2

1

2
V D ,

An
†5bn

†~V2nn2nf !
1/2,

An5~An
†!†,

A0n5S nn1
1

2
nf2

1

2
V D ,

A†5bf
†~V2nn2nf !

1/2~V2np2nf !
1/2F~nf !

2F~nf !bp
†bn

†bf ,

A5~A†!†,

A05~np1nn1nf2V!,

B†5bf
†F~nf !~V2np2nf !

1/2bn

1bp
†~V2nn2nf !

1/2F~nf !bf ,

B5~B†!†,

B05np2nn , ~5!

with

F~nf !5F ~2V122nf !

~V112nf !~V2nf !
G1/2

. ~6!

To leading order in the previous mapping the Hamiltoni
~3! reads

H~B!5S 2Ep1
l5

2V Dnp1S 2En1
l5

2V Dnn

1S Ep1En1
l5

2V
1l1Dnf1

l6

V
~bp

†bn1bn
†bp!

1l2~bf
†bf

†1bfbf !2
l2

V
~bp

†bn
†1bnbp!

2
l3

AV
~bn

†1bn!nf2
l4

AV
~bp

†1bp!nf . ~7!

The linearized version of this Hamiltonian is obtained
introducing the phonon operator

G†5Xfbf
†2Yfbf , ~8!

and by diagonalizing the Hamiltonian in the QRPA phon
basis. The QRPA equation of motion is written

@H~B!,G†#5vG†, ~9!

and the amplitudesX and Y and the energyv are readily
determined by solving the dispersion relation

~Ef2v!X12l2Y50,
5-2
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2l2X1~Ef1v!Y50, ~10!

with solutions

v5AEf
22~2l2!2, ~11!

for the energy and

X52AEf1v

2v
, Y5AEf2v

2v
, ~12!

for the amplitudes. In the above equations

Ef5Ep1En1
l5

2V
1l1 , ~13!

and it shows that the effect of the 1/V terms is basically
reflected upon the unperturbed quasiparticle-pair energy
it is quite similar to the exchange term of the QRPA ladd
diagram@9#, as expected. The addition of terms proportion
to the couplingsl3 andl4, which are of the order 1/AV and
which are usually referred to as scattering terms, would
quire a nonzero number off bosons in the ground state an
then it is not allowed by the present approach@17,18#. In the
following section we shall present and discuss the result
the calculations which we have performed using the ab
introduced formalism.

III. RESULTS AND DISCUSSIONS

We have solved the pn-QRPA equations in the bo
mapping representation and for two sets of model par
eters. They areV510, Np52 protons, andNn58 neutrons
~set 1! andV520, Np56, andNn514 ~set 2!. These values
are taken from Ref.@11# in order to allow for a comparison
between present results and the ones obtained in the S~5!
representation. Excited proton-neutron two-quasipart
states in these model spaces represent states of the do
odd mass system built upon the initial double-even mass
In order to determine the effects due to the inclusion of ter
of the order of 1/V in the pn-QRPA solutions we have d
agonalized the pn-QRPA equations in the boson basis.
results corresponding to the energy of the one-phonon s
are shown in Fig. 1, for the two sets of parameters descr
in the text. The results are given as functions of the coup
constant of the attractive proton-neutron particle-parti
channels,k, which is measured in units of the strength of t
pairing interactionG.

It is evident from the results shown in Fig. 1 that th
collapse of the energy of the first excited state is not avoi
by the inclusion of terms of the order of 1/V and that the
relative contribution of these terms decreases for larger
ues of the shell degeneracy, as expected. In this respec
present results are at variance with the results of Ref.@8#
since the inclusion of the new terms does not shift the po
of collapse to larger values of the coupling constant ass
ated to attractive particle-particle channels but to smaller
ues, instead. The difference can be explained by saying
in the present approach the order of the contributions
terms of the expansion in powers of 1/V, is controlled by the
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boson expansion while in Ref.@8# it should be a strong mix-
ing of orders due to the diagonalization.

The overgrowing contribution of ground state correlatio
near the point of collapse, which in Ref.@8# is demostrated
by the behavior of the number of quasiparticle in the fin
state, is shown here by the number ofpn bosons in the
ground state, which diverges at the point of collapse, a
shown by the curves of Fig. 2.

Finally, in order to demostrate the effects due to the tre
ment of the Hamiltonian beyond the leading QRPA term
we have calculated the matrix elements

M2n5(
n

^ f uut2uun&^nuut2uu i &
En1E0

, ~14!

corresponding to double-Fermi transitions connecting
initial state (N,Z) with a final state (N22,Z12), as is done
in nuclear structure calculations of double-beta-decay tra
tions @7#. The results are shown in Fig. 3. As is well know
@4,5,7,8#, the second order matrix elementM2n vanishes, as a
function of the coupling strengthk and the inclusion of
terms of the order of 1/V does not prevent this trend. Simila
results are obtained in Ref.@8# in spite of the fact that the
corrections added to the pn-QRPA matrix have for t
present case and for the case of Ref.@8# different origin. For
the sake of completeness we have included in Figs. 1 an
the exact results obtained in the SO~5! representation, as
done in Ref.@11#.

FIG. 1. Excitation energy as a function of 4k/G. In insets~a!
and ~b! are displayed results forV510, Np52, Nn58, and forx
50.0 andx50.04, respectively. Results shown in insets~c! and~d!
correspond toV520, Np56, Nn514, for x50.0 andx50.025,
respectively. Solid lines correspond to the exact solution of
Hamiltonian in the SO~5! representation~see Ref.@11#!, long-
dashed lines represent the usual pn-QRPA and short-dashed
correspond to the results obtained by including corrections of o
1/V in the boson expansion of the pn-QRPA.
5-3
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IV. CONCLUSIONS

In the present work we have adapted the boson map
of Ref. @12# to the case of proton-neutron correlations. W
have solved proton-neutron QRPA equations in the bo
basis and shown that the inclusion of terms of the orde
1/V does not prevent the collapse of the pn-QRPA indu
by attractive proton-neutron, isospin dependent, interactio
The case is demostrated for a Hamiltonian belonging to
SO~5! group, which includes monopole isovector pairing i
teractions and isospin dependent two body interactions.
results obtained by using the proposed boson expan
method have been compared with the ones obtained by
cluding density dependent corrections in the QRPA eq

FIG. 2. Average number of quasiparticles as a function
4k/G. The notation is the same as the one given in the captio
Fig. 1.
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tions. It is found that both methods lead to basically the sa
conclusion about the collapse of the pn-QRPA, although
boson expansion method has the advantage of controlling
expansion in terms of the shell degeneracy. As for previou
reported studies these conclusions, which are based o
schematic Hamiltonian, can be of some use in understan
the overall trend of more realistic calculations, as the o
reported in@7#.
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FIG. 3. Matrix elementM2n as a function of 4k/G. The nota-
tion is explained in the caption to Fig. 1.
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