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Extended proton-neutron quasiparticle random-phase approximation
in a boson expansion method
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The proton-neutron quasiparticle random phase approximgpinfQRPA is extended to include next to
leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable
Hamiltonian in the S@) symmetry representation. The pn-QRPA equation of motion is solved by using a
boson expansion technique adapted to the treatment of proton-neutron correlations. The resulting wave func-
tions are used to calculate the matrix elements of double-Fermi transit®0s56-28139)03107-§

PACS numbgs): 21.60.Fw, 21.60.Jz, 23.40.Hc

[. INTRODUCTION we shall show next. The formalism is explained in Sec. Il.
The use of the present formalism to calculate the pn-QRPA

The use of the proton-neutron quasiparticle random phaseigenfunctions and eigenvectors and the behavior of the pn-
approximation (pn-QRPA in the treatment of proton- QRPA near the phase transition poji#] is shown in Sec.
neutron excitations and in the description of chargell and the results are discussed in terms of the expectation
exchange and beta-decay observables is by now a welxalue of the boson number operator. The pn-QRPA wave
known technique[1]. Among the various versions of the functions are used to calculate the matrix elements corre-
procedure, which was originally proposed by Barangggr SPonding to double-beta-decay Fermi transitions. Conclu-
and by Hableib and Sorensg8i, one can mention the intro- sions about the effepts due to the inclusion of the next-to-
duction of renormalized particle-particle interactions by Vo_!eadmg order terms in the proton-neutron QRPA are drawn
gel and otherd4,5]. The agreement between earlier shell” the last section.
model and QRPA results, particularly in the field of double-
beta-decay studig$], was improved by the addition of the Il. FORMALISM

particle-particle terms of the proton-neutron interaction in  gjnce we are interested in the treatment of proton-neutron
the pn-QRPA equations and their use has motivated a cofinteractions we have adopted for the present study the sche-
siderable amount of work on the extension of the pn-QRPAmatic Hamiltonian which has been proposed by Kuz'min and
method itself. We shall avoid the task of going into detailsSoloviev[15] and lately used in Ref§16] and[11] in deal-
about the several variations to the pn-QRPA approach exising with double-beta-decay calculations. The Hamiltonian
ing in the literature, which have been reviewed recefitly  includes a single-particle term, a separable monopole pairing
and we shall rather start the present discussion by referring tioteraction for protons and neutrons and a schematic charge-
the work of Muto[8]. The work of Ref[8] belongs to the dependent residual interaction with both particle-hole and
group of theoretical works where the emphasis is put on th@article-particle protofp)-neutrorin) channels[16]. It is
validity of the pn-QRPA beyond the level of the quasibosonwritten as

approximation 9,10]. In Ref.[8] occupation numbers of the "

single-quasiparticle proton and neutron states are introduced H=e,Npy—GpS;S,+enN,

in the equations of motion to account for density fluctuations t - -

different from the pure particle-hole ones. We think that the ~GnSiSht2xB BT - 2xP P @
validity of this approximation, and the subsequent self-
consistency requirement imposed at the quasiparticle level o
approximation can be further investigated. We want to com-
pare it with results obtained by performing a boson expan- Ni:E aTm_ami, 322 a%_a%, i=p,n,

sion method. In order to assess the validity of the method of m mi F

Ref.[8] we have adopted a schematic but nontrivial Hamil-

tonian which belongs to the §B) representation and which -_ t -— P

has been shown to produce good results when compared with P ;mn Ay, P pgmn Bmy 3, @
realistic interactiong11]. We have performed a boson ex-

pansion of this Hamiltonian by introducing a generalizationare the number operator, the monopole pair operator, the
of the boson expansion method developed by Evans anplarticle-hole and the particle-particle creation operators, re-
Krauss[12]. The use of boson expansions, in the context ofspectively. These definitions are restricted to the same
proton-neutron interactions, is a relatively unexplored do-singlej state for protons and neutrorisingle-shell limi}
main of the known applications of the boson expansiorand the summations run over tine projection of the shell
methods[13]. We have found that it is also a very useful angular momentum Proton and neutron single particle or-
technigue in dealing with charge-dependent interactions, dsits are denoted by the subindexg® and (n) and a;{,

here
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=a*mp is a particle creation operator anda%

=(—=)p"M ,rmp its time reversal.
By performing the transformation of the particle creation

1 1
Aop: np+ Enf_ EQ y

T_pt 112
and annihilation operators of the Hamiltoniél) to the qua- An=bp(Q—ny—ne) ™%,
siparticle representation, by using the Bogoliubov transfor- -
mations for protons and neutrons separafglythe resulting An=(An) "
Hamiltonian can be written

Hop=EpNp+ EnNp+ M ATA+ N, (ATAT+AA) Aon= ( Mnt 5 Ni— 59) ’
—N3(ATB+BTA)—\4(ATB"+BA)+1sB'B
a( ) a( ) 5 AT=bI(Q—nn—n )1/2(Q—np—nf)1’2d>(nf)
+ BT+
Ne(B'B'+BB), 3 (Il
whereE, ,E, are the quasiparticle energies and the operators
p: - ) A= (AT)T
and matrix elements of the above equation are defined by '
Al= [a a5, BT—[aT®an]M 0 Ao=(Npt+np+ni—Q),

o B'=bl®(ng)(Q—n,—n) ¥,
N;= omm,  M=n,p,

moo +by(Q—ny—n)Y2D(ny)by,
N1 =40 x(U202+02u2) — k(UZu2+v202)], B=(B"T,
No=4Q(x+ K)Upv Unvp, Bo=np—ny, )
Ns=4Q 0+ k) Unwn(U5— ), with
. (20+2-n;) ¥
Aa=4Q(x+ k)upv p(Ug—vy), d(ng)= @+ i-n)@-ny (6)
Ns=4Q[ x(Upuz+vivd) — k(Upva+uiud)], To leading order in the previous mapping the Hamiltonian
(3) reads
)\6: _)\2, (4)
A5 A5
following the notation of 11], with Q=]+ 1/2. The quasi- H(B)=| 2Ep+ 55 |Np+| 2Ent 5 |1
partlcle energie€, and the occupation probabllltleé and
Un are determlned from the gap equation and the particle E + t
number conservation conditions. EptEnt o0 2(2 L ALAN) (bpby +bybp)

The operatoAT(A) which creategannihilate$ a pair of
unlike (proton-neutrojrquasiparticles and the ones corre- +n,(blbl+b bf)—B(bTbU—b b.)
sponding to pairs of identical quasiparticles together with the P
charge-exchange operatd$, B, and the number operators

N,, N, are the generators of the 8 algebra. The details A N
about the solutions of this Hamiltonian in the &Drepre- \/ﬁ(b )Ny \/ﬁ(bp+b”)nf' ™

sentation have been discussedid].

An alternative to the approximate diagonalization per- The linearized version of this Hamiltonian is obtained by
formed in[11], where the reference state is known to have arntroducing the phonon operator
undetermined number of quasiparticles, consists on the bo-
son expansion of the generators of the(SQilgebra by ap- I'T=Xb]-Y;by, (8
plying a transformation which preserves the algebra of this
group. The boson mapping proposed by Evans and Kraugd by diagonalizing the Hamiltonian in the QRPA phonon
[12] can be adapted to describe proton-neutron operators. Weasis. The QRPA equation of motion is written
have obtained the following expressions for each of the op- + t
erators defined above in terms of bosons, namely: [H(B),I']=wl', ©

t_htio—n —n.\12 and the amplitudeX and Y and the energyw are readily
Ap=bp(Q2—np—n¢)™4 ; i i . ’
PP determined by solving the dispersion relation

A,=(ADT, (E;— w)X+2\,Y=0,
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2N X+ (Ef+w)Y=0, (10 . o A
with solutions ]
w=VEf—(21)?%, (12) ]
for the energy and S
> |
Ef+ w Ef_ w E
X=—1/ 50 Y= P (12 P i
N i
for the amplitudes. In the above equations 5]
\s |
Ef:Ep+En+E+)\l, (13
and it shows that the effect of the{l/terms is basically ool N TN
reflected upon the unperturbed quasiparticle-pair energy and 00 05 1.0 1.6 0.0 0.5 1.0 1.5 2.0
it is quite similar to the exchange term of the QRPA ladder 4k/G
diagram[9], as expected. The addition of terms proportional
to the couplings\; and\ 4, which are of the order 30 and FIG. 1. Excitation energy as a function okAG. In insets(a)

which are usually referred to as scattering terms, would reand(b) are displayed results fd2 =10, N,=2, N,=8, and fory
guire a nonzero number dfbosons in the ground state and =0.0 andy=0.04, respectively. Results shown in ins@gsand(d)
then it is not allowed by the present approdtii,1§. Inthe  correspond td) =20, N,=6, N,=14, for y=0.0 andx=0.025,
following section we shall present and discuss the results ofspectively. Solid lines correspond to the exact solution of the

the calculations which we have performed using the abovélamiltonian in the SCb) representationsee Ref.[11]), long-
introduced formalism. dashed lines represent the usual pn-QRPA and short-dashed lines

correspond to the results obtained by including corrections of order

Il RESULTS AND DISCUSSIONS 1/Q in the boson expansion of the pn-QRPA.

We have solved the pn-QRPA equations in the bosomhoson expansion while in Refi8] it should be a strong mix-
mapping representation and for two sets of model parammg of orders due to the diagonalization.
eters. They ar€) =10, N,=2 protons, andN,=8 neutrons The overgrowing contribution of ground state correlations
(set  and2=20, N,=6, andN,=14 (set 2. These values near the point of collapse, which in R¢8] is demostrated
are taken from Ref11] in order to allow for a comparison py the behavior of the number of quasiparticle in the final
between present results and the ones obtained in th{6) SO state, is shown here by the number pfi bosons in the
representation. Excited proton-neutron two-quasiparticleyround state, which diverges at the point of collapse, as is
states in these model spaces represent states of the dou wn by the curves of Fig. 2.
odd mass system built upon the initial double-even mass one. Finally, in order to demostrate the effects due to the treat-

In order to determine the effects due to the inclusion of termsnent of the Hamiltonian beyond the leading QRPA terms,
of the order of 10} in the pn-QRPA solutions we have di- e have calculated the matrix elements

agonalized the pn-QRPA equations in the boson basis. The

results corresponding to the energy of the one-phonon state

are shown in Fig. 1, for the two sets of parameters described (Fll=~[In)(nl| 7" |]i)

in the text. The results are given as functions of the coupling M2,= zn: En+Eo

constant of the attractive proton-neutron particle-particle

channelsg, which is measured in units of the strength of the

pairing interactionG. corresponding to double-Fermi transitions connecting the
It is evident from the results shown in Fig. 1 that the initial state (N,Z) with a final state N\—2,Z+2), as is done

collapse of the energy of the first excited state is not avoideth nuclear structure calculations of double-beta-decay transi-

by the inclusion of terms of the order of(1/and that the tions[7]. The results are shown in Fig. 3. As is well known

relative contribution of these terms decreases for larger val4,5,7,§, the second order matrix elemevit,, vanishes, as a

ues of the shell degeneracy, as expected. In this respect, thenction of the coupling strengtlx and the inclusion of

present results are at variance with the results of R8f. terms of the order of £} does not prevent this trend. Similar

since the inclusion of the new terms does not shift the pointesults are obtained in Rdi8] in spite of the fact that the

of collapse to larger values of the coupling constant associeorrections added to the pn-QRPA matrix have for the

ated to attractive particle-particle channels but to smaller valpresent case and for the case of R8f.different origin. For

ues, instead. The difference can be explained by saying th#te sake of completeness we have included in Figs. 1 and 3

in the present approach the order of the contributions, inhe exact results obtained in the &P representation, as

terms of the expansion in powers ofll/is controlled by the done in Ref[11].

, (14)
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FIG. 3. Matrix elemeniM,, as a function of 4/G. The nota-

FIG. 2. Average number of quasiparticles as a function oftion is explained in the caption to Fig. 1.
4k/G. The notation is the same as the one given in the caption to

tions. It is found that both methods lead to basically the same
conclusion about the collapse of the pn-QRPA, although the
IV. CONCLUSIONS boson expansion method has the advantage of controlling the

In the present work we have adapted the boson mappingxPansion in terms of the shell degeneracy. As for previously
of Ref. [12] to the case of proton-neutron correlations. Wereported studies these conclusions, which are based on a
have solved proton-neutron QRPA equations in the bosofichematic Hamiltonian, can be of some use in understanding
basis and shown that the inclusion of terms of the order othe overall trend of more realistic calculations, as the ones
1/Q does not prevent the collapse of the pn-QRPA inducedeported in[7].
by attractive proton-neutron, isospin dependent, interactions.

The case is demostrated for a Hamiltonian belonging to the

SQ(5) group, which includes monopole isovector pairing in-
teractions and isospin dependent two body interactions. The This work has been partially supported by the CONICET

results obtained by using the proposed boson expansiosf Argentina, Grant No. PICT0079. One of the authors
method have been compared with the ones obtained by i{O.C) thanks the RCNP of the University of Osaka, Japan,

Fig. 1.
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