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Systematic study of the effect of short range correlations on the form factors and densities
of s-p and s-d shell nuclei
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Department of Theoretical Physics, Aristotle University of Thessaloniki, GR-54006 Thessaloniki, Greece
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Analytical expressions of the one- and two-body terms in the cluster expansion of the charge form factors
and densities of thes-p ands-d shell nuclei withN5Z are derived. They depend on the harmonic oscillator
parameterb and the parameterb which originates from the Jastrow correlation function. These expressions are
used for the systematic study of the effect of short range correlations on the form factors and densities and of
the mass dependence of the parametersb andb. These parameters have been determined by fit to the experi-
mental charge form factors. The inclusion of the correlations reproduces the experimental charge form factors
at the high momentum transfers (q>2 fm21). It is found that while the parameterb is almost constant for the
closed shell nuclei4He, 16O, and40Ca, its values are larger~less correlated systems! for the open shell nuclei,
indicating a shell effect in the closed shell nuclei.@S0556-2813~99!03408-1#

PACS number~s!: 21.10.Ft, 25.30.Bf, 21.45.1v, 21.60.Cs
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I. INTRODUCTION

The calculation of the charge form factorsFch(q) and
density distributionsrch(r ) of nuclei is a challenging and
appealing problem@1#. A possibility to face this problem is
by means of an independent-particle model. This appro
which is particularly attractive because of its simplicity, fa
to reproduce the high momentum transfer data from elec
scattering in nuclei@2–11#. For this reason a modification o
the single particle~SP! potentials has to be suitably made

In fact a short range repulsion in this potential seems
visable for light nuclei@12#. For example, with an harmoni
oscillator ~HO! potential having in addition an infinite so
core, theFch(q) of 4He can be well reproduced, but for th
heavier nuclei, such as12C and 16O, state-dependent poten
tials seem necessary and even then the fit is not so goo
higher q values@12#. Another way is the introduction of a
modified shell model with fractional occupation numbers
the various states@13–16#.

An approach, which is rather similar, is the introducti
of the short range correlations~SRC’s! in the Slater determi-
nant. Many attempts have been made in this direction, c
cerning mainly light closed shell nuclei in the framework
the Born approximation@4–11,17–19#.

Czyz and Lesniak@2# first showed that the diffraction
character of the4He form factor can be qualitatively ex
plained by means of Jastrow-type@20# correlations. Khana
@3#, using Iwamoto-Yamada cluster expansion and retain
only one- and two-body cluster terms, showed that the inc
sion of short range nucleon-nucleon correlations provides
adequate description for the known data on the elastic s
tering of electrons by40Ca and makes predictions for th
behavior of the cross section at large momentum transf
Ciofi Degli Atti, using the ‘‘single pair approximation’’@4#
and the Iwamoto-Yamada cluster expansion@5# in s-p shell
nuclei, showed that elastic electron scattering at high m
mentum transfers seems to give a strong indication of
presence of SRC’s in nuclei. Bohigas and Stringari@8# and
0556-2813/99/60~2!/024005~13!/$15.00 60 0240
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Dal Ri et al. @9# evaluated the effect of SRC’s on the on
and two-body densities by developing a low order appro
mation ~LOA! in the framework of the Jastrow formalism
They showed that one-body quantities like the form fac
provide an adequate test for the presence of SRC’s in nu
which indicates that the independent-particle wave functi
cannot reproduce simultaneously the form factor and the
mentum distribution of a correlated system. Stoitsovet al.
@11# generalized the model of Jastrow correlations, sugge
by Bohigas and Stringari@8# within the LOA of Ref.@7#, to
heavier nuclei like16O, 36Ar, and 40Ca reproducing very
well the experimental data.

In the above approaches, different types of expansi
were used. The expansions were connected with the num
of the simultaneously correlated nucleons and the orde
the Jastrow correlation functionf (r i j ), which were retained
in the cluster expansion. Usually they are truncated up to
two-body terms which give significant contributions to va
ous expectation values.

In a series of papers@17–19# an expression of the elasti
charge form factorFch(q), truncated at the two-body term
was derived using the factor cluster expansion of Clark a
co-workers@21–23#. This expression, which is a sum of on
body and two-body terms, and depends on the HO param
and the correlation parameter through a Jastrow-type co
lation function, is used for the calculation ofFch(q) of 4He,
16O, and 40Ca and in an approximate way for the opens-p
ands-d shell nuclei.

The motivation of the present work is the systema
study of the effect of SRC’s on thes-p ands-d shell nuclei
by completely avoiding the approximation made in earl
work @17–19# for open shell nuclei, that is, the expansion
the two-body terms in powers of the correlation parame
in which only the leading terms had been retained. Gen
expressions for theFch(q) andrch(r ) were found using the
factor cluster expansion of Clark and co-workers and Jast
correlation functions which introduce SRC’s. These expr
sions are functionals of the SP wave functions and not of
©1999 The American Physical Society05-1
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wave functions of the relative motion of two nucleons as w
the case in many previous works@4,10,17#. Because of that
it is easy to extrapolate them to the case of open shell nu
and use them either for analytical calculations with HO wa
functions or for numerical calculations when more realis
SP wave functions are used. An advantage of the pre
method is that the mass dependence of the HO parameb
~with the presence of correlations! and the correlation param
eter b can be studied. These parameters have been d
mined, for the variouss-p ands-d shell nuclei by fit of the
theoreticalFch(q) to the experimental ones. It is found th
while the parameterb is almost constant for the closed she
nuclei 4He, 16O, and 40Ca, it takes larger values~less corre-
lated systems! in the open shell nuclei, indicating a she
effect for the closed shells. The present method has also
used with wave functions of Skyrme-type interactions.
this case there is only one free parameter, the correla
parameterb, and the two-body term is a small correction
the one-body term of the density.

The paper is organized as follows. In Sec. II, the gene
expressions of the correlated form factors and density di
butions are derived using a Jastrow correlation function
Sec. III the analytical expressions of the above quantities
the s-p ands-d shell nuclei, in the case of the HO orbital
are given. Numerical results are reported and discusse
Sec. IV, while an outline of the present work is given
Sec. V.

II. CORRELATED DENSITY DISTRIBUTIONS
AND FORM FACTORS

If we denote the model operator, which introduces SRC
byF, an eigenstateF of the model system corresponds to
eigenstate

C5FF ~1!

of the true system.
Several restrictions can be made on the model operatoF,

as, for example, that it depend on~the spins, isospins, and!
relative coordinates and momenta of the particles in the
tem, that it be a scalar with respect to rotations, etc.@24#.
Further, it is required thatF be translationally invarian
and symmetrical in its argument 1••• i •••A and
possess the cluster property. That is, if any subseti 1••• i p
of the particles is removed far from the resti p11••• i A ,
F decomposes into a product of two factors,F(1•••A)
5F( i 1••• i p)F( i p11••• i A) @23#. In the present workF is
taken to be of the Jastrow type@20#,

F5)
i , j

A

f ~r i j !, ~2!

where f (r i j ) is the state-independent correlation function
the form

f ~r i j !512exp@2b~r i2r j !
2#. ~3!

The correlation functionf (r i j ) goes to 1 for large value
of r i j 5ur i2r j u and it goes to 0 forr i j˜0. It is obvious that
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the effect of SRC’s, introduced by the functionf (r i j ), be-
comes large when the SRC parameterb becomes small and
vice versa.

The charge form factor of a nucleus, in the Born appro
mation, can be written

Fch~q!5 f p~q! f DF~q! f c.m.~q!Fp~q!, ~4!

wheref p(q) and f DF(q) are the correction for the finite pro
ton size and the Darwin-Foldy relativistic correction, respe
tively @25#, f c.m.(q) is the Tassie-Barker@26# center-of-mass
correction, andFp(q) the point form factor of the nucleu
which is the expectation value of the one-body operator,

Oq5(
i 51

A

oq~ i !5(
i 51

A

exp@ iqr i #. ~5!

That is,

Fp~q!5
^CuOquC&

^CuC&
5N^CuOquC&5N^Oq&, ~6!

where N5^C(r 1 ,r 2 , . . . ,r A)uC(r 1 ,r 2 , . . . ,r A)&21 is the
normalization factor which is determined so thatFch(0)
5Fp(0)51 or 4p*0

`r(r )r 2dr 51.
The point density distribution has the form

rp~r !5
^CuOr uC&

^CuC&
5N^CuOr uC&5N^Or&, ~7!

where

Or5(
i 51

A

or~ i !5(
i 51

A

d~r2r i !. ~8!

A. Expressions of the correlated density distributions and
form factors

In order to evaluate the point density distributionrp(r ),
we consider, first, the generalized normalization integral

I ~a!5^Cuexp@aI ~0!Or #uC&, ~9!

corresponding to the operatorOr , from which we have

^Or&5F] ln I ~a!

]a G
a50

. ~10!

For the cluster analysis of Eq.~10!, following the factor
cluster expansion of Ristig, Ter Low, and Clark@21–23#, we
consider the sum-product integralsI i(a), I i j (a), . . . for a
subsystems of theA-nucleon system and a factor cluster d
composition of these integrals. The expectation value of
density distribution operator is written in the form

^Or&5^Or&11^Or&21•••1^Or&A , ~11!

where
5-2
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^Or&15(
i 51

A F] ln I i~a!

]a G
a50

5(
i 51

A

^ i uF 1
†or~1!F1u i &,

~12!

^Or&25(
i , j

A
]

]a
@ ln I i j ~a!2 ln I i~a!2 ln I j~a!#a50

5(
i , j

A

^ i j uF 12
† @or~1!1or~2!#F12u i j &a

2(
i , j

A

@^ i uor~1!u i &1^ j uor~2!u j &#, ~13!

and so on.F1 is chosen to be the identity operator.
The cluster expansion establishes the separation of

body, two-body, . . . , A-body correlation effects on the den
sity. Three- and many-body terms will be neglected in
present analysis. Thus, in the two-body approximation, w
ing also the two sums of Eq.~13! in a different form,rp(r )
is written as follows:

rp~r !5N^Or&'N@^Or&11^Or&222^Or&21#, ~14!

where

^Or&15(
i 51

A

^ i uor~1!u i &, ~15!

^Or&2252(
i , j

A

^ i j uF 12
† or~1!F12u i j &a , ~16!

^Or&2152(
i , j

A

^ i j uor~1!u i j &a . ~17!

If the two-body operator is taken to be the correlati
function given by Eq.~3!, then

F 12
† F125122g~r 1 ,r 2 ,b!1g~r 1 ,r 2,2b!, ~18!

where

g~r 1 ,r 2 ,z!5exp@2zr1
2#exp@2zr2

2#exp@2zr1r 2 cosv12#,

z5b,2b, ~19!

and the term̂ Or&22 is written as

^Or&225^Or&2122O22~r ,b!1O22~r ,2b!, ~20!

where

O22~r ,z!52(
i , j

A

^ i j uor~1!g~r 1 ,r 2 ,z!u i j &a . ~21!

So rp(r ) takes the form

rp~r !'N@^Or&122O22~r ,b!1O22~r ,2b!#. ~22!
02400
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The termŝ Or&1 andO22(r ,z) and the densityrp(r ) can
be expressed also in the convenient form

^Or&15rSD~r !, ~23!

O22~r ,z!5E g~r ,r 2 ,z!@rSD~r !rSD~r2!2rSD
2 ~r ,r2!#dr2 ,

~24!

rp~r !'NFrSD~r !1E @g~r ,r 2,2b!22g~r ,r 2 ,b!#

3@rSD~r !rSD~r2!2rSD
2 ~r ,r2!#dr2G , ~25!

whererSD(r1 ,r2) is the uncorrelated density matrix assoc
ated with the Slater determinant,

rSD~r1 ,r2!5(
i 51

A

f i* ~r1!f i~r2!. ~26!

The diagonal elements of this give the one-body density
tribution

rSD~r1!5rSD~r1 ,r1!. ~27!

It should be noted that a similar expression forrp(r ),
given by Eq.~25!, was derived by Gaudinet al. @7# in the
framework of the LOA. In the LOA the Jastrow wave fun
tion C of the nucleus was expanded in terms of the functio
g̃5 f 2(r i j )21 andh5 f (r i j )21 and was truncated up to th
second order ofh and the first order ofg̃. This expansion
contains one- and two-body terms and a part of the thr
body term which was chosen so that the normalization of
wave function was preserved. Expression~25! of the present
work has only one- and two-body terms and the normali
tion of the wave function is preserved by the normalizati
factor N.

In the above expression ofrp(r ), the one-body contribu-
tion to the density is well known and given by the equati

^Or&154(
nl

hnl~2l 11!
1

4p
fnl* ~r !fnl~r !, ~28!

wherehnl is the occupation probability of the statenl ~0 or
1 in the case of closed shell nuclei! andfnl(r ) is the radial
part of the SP wave function.

An expression for the two-body term is usually found
making a transformation to the relative and the center-
mass coordinates of the two interacting nucleons@4,10,17#.
This is because the Jastrow functionf (r i j ) depends on the
relative coordinates of the two nucleons. Here, the exp
sion for the two-body term, that is, of the termO22(r ,z), will
be found by expanding the factor exp@2zr1r2 cosv12# in
spherical harmonics@27,28#. That is,

exp@2zr1r 2 cosv12#

52p(
kmk

Uk~2zr1r 2!Ykmk
* ~V1!Ykmk

~V2!, ~29!
5-3
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where

Uk~2zr1r 2!5E
21

1

exp~2zr1r 2 cosv12!

3Pk~cosv12!d~cosv12!

52i k~2zr1r 2!, ~30!

and i k(x) is the modified spherical Bessel function.
Using the algebra of spherical harmonics, the te

O22(r ,z) takes the form

O22~r ,z!54 (
ni l i ,nj l j

hni l i
hnj l j

~2l i11!~2l j11!

3F4Ani l inj l j

ni l inj l j k~r ,z!

2 (
k50

l i1 l j

^ l i0l j0uk0&2Ani l inj l j

nj l j ni l i k~r ,z!G ,

z5b,2b, ~31!
te
th

si

th

02400
where

An1l 1n2l 2

n3l 3n4l 4k
~r ,z!5

1

4p
fn1l 1

* ~r !fn3l 3
~r !exp@2zr2#

3E
0

`

fn2l 2
* ~r 2!fn4l 4

~r 2!exp@2zr2
2#

3 i k~2zrr2!r 2
2dr2 . ~32!

Thus the expression of the termO22(r ,z) depends on the
SP wave functions and so it is suitable to be used either
analytical calculations with the HO potential or for nume
cal calculations with more realistic SP potentials. Expr
sions~28! and ~31! were derived for the closed shell nucl
with N5Z, wherehnl is 0 or 1. For the open shell nucle
~with N5Z) we use the same expressions, where now
<hnl<1. In this way the mass dependence of the correlat
parameterb and the HO parameterb can be studied.

Finally, using the known values of the Clebsch-Gord
coefficients and provided thatfnl* (r )5fnl(r ), i.e.,
An1l 1n2l 2

n3l 3n4l 4k(r ,z)5An3l 3n4l 4

n1l 1n2l 2k(r ,z), Eq. ~31!, for the case ofs-p

ands-d shell nuclei, takes the form
O22~r ,z!54F3A0000
00000~r ,z!h1s

2 1@33A0101
01010~r ,z!26A0101

01012~r ,z!#h1p
2 13A1010

10100~r ,z!h2s
2 1S 95A0202

02020~r ,z!2
50

7
A0202

02022~r ,z!

2
90

7
A0202

02024~r ,z! Dh1d
2 1@12A0001

00010~r ,z!112A0100
01000~r ,z!26A0001

01001~r ,z!#h1sh1p1@20A0002
00020~r ,z!120A0200

02000~r ,z!

210A0002
02002~r ,z!#h1sh1d1@60A0102

01020~r ,z!160A0201
02010~r ,z!212A0102

02011~r ,z!218A0102
02013~r ,z!#h1ph1d

1@4A0010
00100~r ,z!14A1000

10000~r ,z!22A0010
10000~r ,z!#h1sh2s1@12A0110

01100~r ,z!112A1001
10010~r ,z!26A0110

10011~r ,z!#h1ph2s

1@20A0210
02100~r ,z!120A1002

10020~r ,z!210A0210
10022~r ,z!#h

1d
h2sG . ~33!
s

di-
The point form factorFp(q) can be derived in two
equivalent ways. The first one is to follow the same clus
expansion as in the case of the density distribution and
second one is to take the Fourier transform of the den
distributionrp(r ),

Fp~q!5E exp@ iqr #rp~r !dr . ~34!

In both cases, the form factor takes the following form:

Fp~q!'N@^Oq&122Õ22~q,b!1Õ22~q,2b!#. ~35!

In the above expression, the one-body term is given by
equation

^Oq&154(
nl

hnl~2l 11!E
0

`

fnl* ~r !fnl~r ! j 0~qr !r 2dr,

~36!
r
e

ty

e

while the two-body termÕ22(q,z) is given by the right hand
side of Eqs.~31! and ~33! by replacing the matrix element
An1l 1n2l 2

n3l 3n4l 4k(r ,z) by Ãn1l 1n2l 2

n3l 3n4l 4k(q,z) given by the equation

Ãn1l 1n2l 2

n3l 3n4l 4k
~q,z!5E

0

`

fn1l 1
* ~r 1!fn3l 3

~r 1!

3exp@2zr1
2# j 0~qr1!r 1

2dr1

3E
0

`

fn2l 2
* ~r 2!fn4l 4

~r 2!

3exp@2zr2
2# i k~2zr1r 2!r 2

2dr2 , ~37!

wherej 0(x) andi k(x) are the spherical Bessel and the mo
fied spherical Bessel functions, respectively.
5-4
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B. l -s coupling scheme

In the cases of mean field potentials withl -s coupling, the
wave function of thenl j state has the form

cnl j~r 1!5fnl j~r 1! (
ml ,ms

^ lmlsmsu jmj&

3Yl
ml~V!xs

ms~1!x t
mt~1!, ~38!

wherefnl j (r 1) is the radial part of the wave function of th
statenl j , andxs

ms(1) andx t
mt(1) are the spin and the isosp

wave functions, respectively.
Following the same procedure as in Sec. II A, the sa

expression~22! for rp(r ) has been found. In this case th
terms^Or&1 andO22(r ,z) have the form

^Or&152(
nl j

hnl j~2 j 11!
1

4p
fnl j* ~r !fnl j~r ! ~39!

and

O22~r ,z!52 (
ni l i j i ,nj l j j j

hni l i j i
hnj l j j j

~2 j i11!~2 j j11!

3F2Ani l i j i nj l j j j

ni l i j i nj l j j j k~r ,z!

2
1

2 (
k50

l i1 l j

^ l i0l j0uk0&2Ani l i j i nj l j j j

nj l j j j ni l i j i k~r ,z!G ,

z5b,2b, ~40!

where the matrix elementsAn1l 1 j 1n2l 2 j 2

n3l 3 j 3n4l 4 j 4k(r ,z) are given again

by Eq.~32! replacing the wave functionsfnl(r ) by the wave
functions fnl j (r ). Equation ~40! can also be written in a
form similar to that of Eq.~33! with the difference that there
are now more terms. This expression goes to Eq.~33! if there
is no l -s coupling.

In the evaluation of the density matrixrSD(r1 ,r2), which
is necessary for the derivation of the expression~40! of the
termO22(r ,z), we made the following approximation: In th
sum over the spin coordinates, only terms of pairs of p
ticles having the same third spin component are taken
account. The contribution of the terms which contain pa
with opposite third spin component is small and is neglec
@29,30#. In this scheme the form factor is calculated nume
cally by Fourier transform ofrp(r ) employing Eq.~34!.

III. ANALYTICAL EXPRESSIONS

In the case of the HO wave functions, with radial part

fnl~r !5Nnlb
23/2S r

bD l

Ln
l 11/2S r 2

b2D expF2
r 2

2b2G , ~41!
02400
e

r-
to
s
d
-

Nnl5S 2n!

GS n1 l 1
3

2D D 1/2

,

where the associated Laguerre polynomial is defined a
Ref. @31#, analytical expressions of the one-body term and
the matrix elementsAn1l 1n2l 2

n3l 3n4l 4k(r ,z) and Ãn1l 1n2l 2

n3l 3n4l 4k(q,z), de-

fined by Eqs.~32! and ~37!, can be found. From these ex
pressions, the analytical expressions of the termsO22(r ,z)
andÕ22(q,z), defined by Eq.~33!, can also be found.

The expression of the one-body term of the density a
form factor has the form

^Ox&15Ce2j2

(
k50

2

C2kj
2k, x5r ,q, ~42!

where for thê Or&1 the variablej and the coefficientsC and
C2k are

j5
r

b
, C5

2

p3/2b3
,

C052h1s13h2s ,

C254~h1p2h2s!, ~43!

C45
4

3
~2h1d1h2s!,

while for the ^Oq&1 the corresponding quantities are

j5
1

2
bq, C52,

C052~h1s1h2s13h1p15h1d!,

C252
4

3
~3h1p110h1d12h2s!, ~44!

C45
4

3
~2h1d1h2s!.

The analytical expression of the matrix eleme
An1l 1n2l 2

n3l 3n4l 4k(r ,z), which is given by Eq.~32!, has the form
5-5
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An1l 1n2l 2

n3l 3n4l 4k
~r ,z!5S )

i 51

4

Nni l i D yk

16Apb3
j l 11 l 31kLn1

l 111/2
~j2!Ln3

l 311/2
~j2!expF2

112y

11y
j2G (

w50

n2

(
s50

n4 ~21!w1s

w!s! S n21 l 21
1

2

n22w
D

3S n41 l 41
1

2

n42s
D @ 1

2 ~ l 21 l 42k!1w1s#!

~11y!( l 21 l 41k13)/21w1s
L ( l 21 l 42k)/21w1s

k11/2 S 2y2

11y
j2D , ~45!

wherej5r /b andy5zb2 (z5b,2b). It is mentioned that the Clebsch-Gordan coefficients^ l i0l j0uk0&, which appear in Eq.
~31! ~wherek runs from 0 tol i1 l j ), are different from zero only whenl i1 l j1k is an even integer and thereforel 21 l 42k is
an even integer. Because of that, the lower index of the Laguerre polynomial of Eq.~45! is an integer.

The above expression ofAn1l 1n2l 2

n3l 3n4l 4k(r ,z) is of the form

f ~j2!expF2
112y

11y
j2G ,

where f (j2) is a polynomial ofj2. The substitution of the expression ofAn1l 1n2l 2

n3l 3n4l 4k(r ,z) to the expression ofO22(r ,z), which

is given by Eq.~33!, leads to the analytical expression of the two-body term of the density. This expression, for the cases-p
ands-d shell nuclei, is again of the form

f ~j2!expF2
112y

11y
j2G ,

where nowf (j2) is a polynomial of the form

f ~j2!5 (
k50

4

C2k~hnkl k
,y!j2k. ~46!

The corresponding analytical expression of the matrix elementÃn1l 1n2l 2

n3l 3n4l 4k(q,z), which is given by Eq.~37!, has the form

Ãn1l 1n2l 2

n3l 3n4l 4k
~q,z!5

p

16S )i 51

4

Nni l i D expF2
11y

112y
j2G (

p50

n1

(
v50

n3

(
w50

n2

(
s50

n4

(
t50

( l 21 l 42k)/21w1s
~21!p1v1w1s1t

p!v!w!s! t! S n11 l 11
1

2

n12p
D

3S n31 l 31
1

2

n32v
D S n21 l 21

1

2

n22w
D S n41 l 41

1

2

n42s
D

3
G„1

2 ~ l 21 l 41k13!1w1s…@ 1
2 ~ l 11 l 31k!1p1v1t#! @ 1

2 ~k2 l 22 l 4!2w2s# t

G~ t1k1 3
2 !

3y2t1k
~11y!( l 11 l 32 l 22 l 4)/21p1v2w2s

~112y!( l 11 l 31k13)/21p1v1t
L ( l 11 l 31k)/21p1v1t

1/2 S 11y

112y
j2D , ~47!
e
e

he
wherej5qb/2 andy5zb2 (z5b,2b). The lower index of
the Laguerre polynomial of Eq.~47! is an integer becaus
l 11 l 31k is an even integer.

The above expression ofÃn1l 1n2l 2

n3l 3n4l 4k(q,z) is of the form

f ~j2!expF2
11y

112y
j2G ,

where f (j2) is a polynomial ofj2. The substitution of the
02400
expression ofÃn1l 1n2l 2

n3l 3n4l 4k(q,z) to the expression ofÕ22(q,z),

given by Eq.~33!, leads to the analytical expression of th
two-body term of the form factor. This expression, for t
case ofs-p ands-d shell nuclei, is again of the form

f̃ ~j2!expF2
11y

112y
j2G ,

where nowf̃ (j2) is a polynomial similar to that of Eq.~46!.
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TABLE I. The values of the parametersb and b, of the x2, and of the rms charge radii^r ch
2 &1/2:

contribution of the one-body density~column HO!, contribution of SRC~column SRC! and of the total rms
charge radii~column Total!, for variouss-p and s-d shell nuclei, determined by fit to the experiment
Fch(q). Case 1 refers to the HO form factor, case 2 when SRC are included. Case 2* is the same as case
but with the occupation probability of the state 2s taken to be a free parameter. Cases 3 and 4 refer to
SK1 potential with and without SRC’s, respectively. The experimental rms charge radii are from Ref@32#.

Case Nucleus b @fm# b @ fm22# x2 ^r ch
2 &1/2 @fm#

HO SRC Total Expt.

1 4He 1.4320 – 31 1.7651 – 1.7651 1.676~8!

2 4He 1.1732 2.3126 3.5 1.5353 0.5277 1.6234

1 12C 1.6251 – 177 2.4901 – 2.4901 2.471~6!

2 12C 1.5923 3.7051 110 2.4463 0.2566 2.4597

1 16O 1.7610 – 199 2.7377 – 2.7377 2.730~25!

2 16O 1.6507 2.4747 120 2.5853 0.7070 2.6802
3 16O – 148 2.6518 – 2.6518
4 16O – 3.0201 146 2.6518 0.1503 2.6561

1 24Mg 1.8495 – 188 3.1170 – 3.1170 3.075~15!

2 24Mg 1.8270 6.6112 161 3.0823 0.3009 3.0969
2* 24Mg 1.8315 7.1226 155 3.0893 0.2841 3.1023

1 28Si 1.8941 – 148 3.2570 – 3.2570 3.086~18!

2 28Si 1.8738 8.2245 114 3.2249 0.2438 3.2341
2* 28Si 1.8743 8.8104 112 3.2260 0.2315 3.2343

1 32S 2.0016 – 320 3.4830 – 3.4830 3.248~11!

2 32S 1.9810 9.1356 270 3.4497 0.2114 3.4561
2* 32S 1.9056 15.579 194 3.3284 0.1445 3.3315

1 36Ar 1.8800 – – 3.3270 – 3.3270 3.327~15!

2 36Ar 1.8007 2.2937 – 3.1970 0.9470 3.3343

1 40Ca 1.9453 – 229 3.4668 – 3.4668 3.479~3!

2 40Ca 1.8660 2.1127 160 3.3353 1.1115 3.5156
3 40Ca – 181 3.4097 – 3.4097
4 40Ca – 2.1729 178 3.4097 0.2349 3.4178
na
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From the analytical expression of the form factor, the a
lytical expression of the mean square radius of a nucle
which is the coefficient of2q2/6, can be found. This expres
sion is of the form

^r 2&5N@^r 2&122^r 2~bb2!&221^r 2~2bb2!&22#, ~48!

where

^r 2&15@6~h1s1h2s!130h1p170h1d#b2 ~49!

and

^r 2~y!&225b2~112y!213/2(
k50

5

aky
k, y5bb2,2bb2.

~50!
02400
-
s,

The coefficientsak depend on the occupation probabilitie
of the various states. If we expand, the right hand side of
~50!, in powers of 1/y (y5bb2.1), and keep powers o
bb2 up to (bb2)23/2, an approximate expression of the co
tribution of the two-body term to the radius takes the sim
form

^r 2~y!&225Cb2~bb2!23/2, ~51!

where the coefficientC depends on the occupation probabi
ties of the various states.

The analytical expressions of the form factor and the d
sity, which were found previously, will be used in Sec. I
for the fit of the theoretical charge form factors to the expe
mental ones and for the calculations of the charge den
distributions for variousN5Z (s-p ands-d shell! nuclei.
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FIG. 1. The charge form factor of the nuclei4He ~a!, 16O ~b!, 40Ca ~c!, and 36Ar ~d! for various cases. The experimental points for4He,
16O, and 40Ca are from Refs.@33#, @34#, and@35#, respectively.
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IV. RESULTS AND DISCUSSION

The calculations of the charge form factors for vario
s-p and s-d shell nuclei, withN5Z, have been carried ou
on the basis of Eqs.~4! and ~35! and the analytical expres
sions of the one- and two-body terms which were given
Sec. III. Two cases have been examined, named case 1
case 2, which correspond to the analytical calculations w
HO wave functions without and with SRC’s, respectively.
case 1 there is one free parameter, the HO parameterb, while
in case 2 there are two free parameters, the parameterb and
the correlation parameterb. The parameters, in both case
have been determined, for each nucleus separately, by a
squares fit to the experimentalFch(q).

The best fit values of the parameters as well as of
values ofx2,
02400
n
nd
h

,
ast

e

x25
1

K (
i 51

K

$@Fi~ theory!2Fi~expt!#/DFi~expt!%2,

~52!

are displayed in Table I. In the same table the calculated
mean square~rms! charge radiî r ch

2 &1/2 and the contribution
of the SRC’s to them,

^r 2&25^r ch
2 &2^r ch

2 &1 /A, ~53!

are displayed and compared with the corresponding exp
mental rms radii. It is noted that^r 2&2 is independent from
the center-of-mass correction and finite proton size.

The experimental and the theoreticalFch(q), for the vari-
ous cases, for the closed shell nuclei4He, 16O, and40Ca, are
shown in Fig. 1 while for the open shell nuclei12C, 24Mg,
5-8
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FIG. 2. The charge form factor of the nuclei12C ~a!, 24Mg ~b!, 28Si ~c!, and 32S ~d! for various cases. The case HO1SRC* corresponds
to the case when the occupation probabilityh2s is treated as free parameter. The experimental points of12C are from Ref.@34# and for the
other nuclei from Ref.@36#.
s
1

FIG. 3. The differenceDb5b(HO)2b(SRC) versus the mas
numberA. b(HO) andb(SRC) are the HO parameters in cases
~HO without SRC! and 2~HO with SRC!, respectively.
02400
FIG. 4. The correlation parameterb versus the mass numberA
in case 2~HO1SRC!.
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FIG. 5. The charge density distributionrch(r ) and the contributionr2,ch(r ) of SRC’s to it of the nuclei4He ~a!, 16O ~b!, 40Ca ~c!, and
36Ar ~d! for various cases. The experimental points are from Ref.@32#.
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28Si, and 32S, are shown in Fig. 2.
From the values ofx2, which have been found in cases

and 2~see Table I! and also from Figs. 1 and 2, it can be se
that the inclusion of the correlations improves the fit of t
form factor of all the nuclei we have examined. Almost
the diffraction minima which are known from the expe
mental data are reproduced in the correct place. There
disagreement in the fit of the form factor of the open sh
nuclei 24Mg, 28Si, and 32S for q'3.5 fm21 where it seems
that there is a third diffraction minimum in the experimen
data, which cannot be reproduced in both cases.

It is seen from Table I that the parameterb has the same
behavior as a function of the mass numberA in the HO and
the correlated model, while the following inequality holds

b~HO!.b~SRC!.

This is due to the fact that the introduction of SRC’s tends
increase the relative distance of the nucleons, i.e., the siz
the nucleus, while the parameterb, which is~on the average!
proportional to the~experimentally fixed! radius of the
02400
l

a
ll

l

o
of

nucleus, should become smaller. Such a behavior shoul
expected in view also of relations~49! and ~51!.

It is also noted that the difference

Db5b~HO!2b~SRC!

is almost constant for the open shell nuclei and is larger
the closed shell nuclei4He, 16O, and 40Ca. This can also be
seen from Fig. 3 where the values ofDb versus the mass
numberA have been plotted. The behavior ofDb as function
of A indicates that the SRC’s are stronger for the closed s
nuclei than in the open shell ones.

In Fig. 4 the values of the correlation parameterb versus
the mass numberA have been plotted. From this figure it
seen that the parameterb is almost constant for4He, 16O,
and 40Ca and takes larger values~less correlated systems! in
the open shell nuclei.

The behavior of the two parametersb andb indicates that
there should be a shell effect in the case of closed s
nuclei. That is, there is a shell effect not only on the valu
5-10
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FIG. 6. The charge density distributionrch(r ) and the contributionr2,ch(r ) of SRC to it of the nuclei12C ~a!, 24Mg ~b!, 28Si ~c!, and 32S
~d! for various cases. The case HO1SRC* corresponds to the case when the occupation probabilityh2s is treated as a free parameter. Th
experimental points are from Ref.@32#.
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of the harmonic oscillator spacing\v, as has been noted i
Refs. @37,38#, but also on the values of the correlation p
rameterb.

In the above analysis, the nuclei24Mg, 28Si, and32S were
treated as 1d shell nuclei. We have also considered case*
in which the occupation probabilityh2s of the nuclei 24Mg,
28Si, and32S is taken to be a free parameter besides the o
two parametersb andb. We found that while thex2 values
become better, comparing to those of case 2, the third
fraction minimum is not reproduced either and the behav
of the parametersb and b as functions of mass numberA
remains the same. The results in this case are shown in T
I and in Fig. 2. The values of the occupation probabilityh2s
of the above-mentioned three nuclei are 0.0355, 0.0245,
0.2945, respectively, while the corresponding values ofh1d ,
which can be found from the values ofh2s through the rela-
tion

h1d5@~Z28!22h2s#/10,
02400
-

er

if-
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are 0.3929, 0.5951, and 0.7411, respectively. The partial
cupancy of the state 2s for the nucleus32S has the result of
increasing the central part of the charge density significan

In Figs. 5 and 6 the charge densitiesrch(r ) ~normalized to
Z) of the above-mentioned nuclei for the various cases
Table I are shown and compared with the charge densitie
Ref. @32#. In the same figures the contribution of the SRC
to rch(r ),

r2,ch~r !5rch~r !2r1,ch~r !, ~54!

is shown. The introduction of short range correlations has
feature of reducing the central part of the densities of
closed shell nuclei, whiler2,ch(r ) is small and characterize
by oscillations in the case of open shell nuclei.

From the determined mass dependence of the param
b andb, the values of these parameters for others-p or s-d
shell nuclei can found. In Figs. 1~d! and 5~d! theFch(q) and
rch(r ) of the nucleus36Ar, treated as an 1d closed shell
nucleus, are shown. As there are no experimental data
5-11
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Fch(q) for high q values, the value of the parameterb is
taken to be the mean value of the corresponding value
16O and 40Ca, that is,b3652.2937 fm22, while the param-
eterb is determined assuming that

Db365Db40,

where

DbA5bA~HO!2bA~SRC!.

Using the values of the parametersb40(HO)51.9453 fm
and b40(SRC)51.8660 fm from Table I and choosing th
parameterb36(HO)51.8800 fm in order to reproduce th
experimental rms charge radius of36Ar ( ^r 2&expt

1/2 53.327
615 fm @32#! the valueb36(SRC)51.8007 fm was found.
These values ofb36 and b36(SRC) have been used for th
calculations of the correlatedFch(q) and rch(r ) of 26Ar,
which are shown in Figs. 1~d! and 5~d!, respectively. The
calculated rms charge radius^r 2&1/253.3343 fm, which was
found, is within the experimental error.

The effect of SRC’s on the form factors has also be
examined with various Skyrme-type wave functions. In t
case, there is only one free parameter, the correlation pa
eterb. The potential parameters have been adjusted in R
@39,40# in order to reproduce various physical quantities su
as rms radii, binding energies, etc. Thus, some effects of
SRC’s we would like to study have already been avera
out. Because of that, we cannot study the effect of the SR
on the parameters of the Skyrme interactions. This can
done if both the Skyrme parameters and the correlation
rameter are readjusted by fit to various experimental d
including the form factors and the fit is made for many nuc
at the same time. As this is out of the scope of the pres
work, we examined the form factors of16O and 40Ca with
various Skyrme interactions, namely, SK1–SK6@39,40#,
without SRC’s, named case 3 and with SRC’s, named cas

In case 3 and for16O, only SK1 gives smaller value fo
x2 compared with that of case 1~HO without SRC!. The
inclusion of SRC’s~case 4! to the Skyrme-type wave func
tions gives betterx2 only for the SK1, but still this value is
about 10% larger than in case 2~HO with SRC’s! and 1%
smaller than in case 3. For SK2–SK6 the correlated par
eter b goes to very large values~very small correlations!
without improving the quality of the fit. For40Ca and for
case 3 all the Skyrme interactions we have examined g
almost the samex2 value which is about 20% smaller than
case 1 and 10% larger than that of case 2, while the inclu
02400
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of the correlations improves the quality of the fit, for all th
Skyrme interactions, not more than 2%. See Table I and
1 for the results we have found with SK1.

From the results with Skyrme-type wave functions w
could conclude that even if a mean field is more realistic th
the HO one, the inclusion of the SRC’s does not improve
fit, at least of theFch(q), significantly. Significant improve-
ment of the fit should be expected if the parameters of
mean field will be determined along with the correlation p
rameter. It should be noted also that a good fit to the exp
mentalFch(q) of 6Li, 12C, and16O has been found by Ciofi
Degli Atti and Kabachnik@5#, using Woods-Saxon wave
functions, only if the correlation parameter and the dep
and radii of the wells were free parameters.

V. SUMMARY

In the present work, general expressions for the correla
charge form factors and densities have been found using
factor cluster expansion of Clark and co-workers. These
pressions can be used, either for analytical calculations, w
HO orbitals or for numerical calculations ofFch(q) and
rch(r ), with more realistic orbitals.

The systematic calculations, with HO orbitals, of the
quantities, for a number ofN5Z, s-p ands-d shell nuclei,
show that there is a shell effect on the values of the H
parameterb and on the correlation parameterb. Regarding
the parameterb it is almost constant for the closed she
nuclei while it takes larger values for the open shell nuc
The mass dependence of these parameters indicates th
SRC’s are stronger for the closed shell nuclei than for
open shell ones. This dependence can also be used to
reasonable values of these parameters for nuclei for wh
there are no experimental data of theFch(q).

Numerical calculations with various Skyrme-type wa
functions, taken from the literature@39,40#, indicate that
even if a mean field is more realistic than the HO one,
introduction of the SRC’s does not improve the fit of th
charge form factors significantly. The reason for this sho
be that the introduction of the correlations makes a chang
the mean field in a way that there is a balance between
SRC’s and the mean field, while for a given mean field th
is not this flexibility. A way to overcome this difficulty
should be to readjust the parameters of the mean field and
parameter of the correlations.
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