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Analytical expressions of the one- and two-body terms in the cluster expansion of the charge form factors
and densities of the-p ands-d shell nuclei withN=2Z are derived. They depend on the harmonic oscillator
parameteb and the paramete® which originates from the Jastrow correlation function. These expressions are
used for the systematic study of the effect of short range correlations on the form factors and densities and of
the mass dependence of the paramebeaad 8. These parameters have been determined by fit to the experi-
mental charge form factors. The inclusion of the correlations reproduces the experimental charge form factors
at the high momentum transferg®2 fm~1). It is found that while the parametgris almost constant for the
closed shell nuclefHe, %0, and“°Ca, its values are largéless correlated systemfor the open shell nuclei,
indicating a shell effect in the closed shell nuc[g80556-28139)03408-1

PACS numbgs): 21.10.Ft, 25.30.Bf, 21.45.v, 21.60.Cs

[. INTRODUCTION Dal Ri et al. [9] evaluated the effect of SRC’s on the one-
and two-body densities by developing a low order approxi-
The calculation of the charge form factoFg(q) and  mation (LOA) in the framework of the Jastrow formalism.
density distributionspg,(r) of nuclei is a challenging and They showed that one-body quantities like the form factor
appealing problenil]. A possibility to face this problem is provide an adequate test for the presence of SRC’s in nuclei,
by means of an independent-particle model. This approachyhich indicates that the independent-particle wave functions
which is particularly attractive because of its simplicity, fails cannot reproduce simultaneously the form factor and the mo-
to reproduce the high momentum transfer data from electromentum distribution of a correlated system. Stoitsial.
scattering in nuclei2—11]. For this reason a modification of [11] generalized the model of Jastrow correlations, suggested
the single particléSP) potentials has to be suitably made. by Bohigas and Stringaf8] within the LOA of Ref.[7], to
In fact a short range repulsion in this potential seems adheavier nuclei like®0, °Ar, and “°Ca reproducing very
visable for light nucle{12]. For example, with an harmonic well the experimental data.
oscillator (HO) potential having in addition an infinite soft In the above approaches, different types of expansions
core, theF 4(q) of “He can be well reproduced, but for the were used. The expansions were connected with the number
heavier nuclei, such a¥C and %0, state-dependent poten- of the simultaneously correlated nucleons and the order of
tials seem necessary and even then the fit is not so good ftine Jastrow correlation functiof(r;;), which were retained
higher q values[12]. Another way is the introduction of a in the cluster expansion. Usually they are truncated up to the
modified shell model with fractional occupation numbers fortwo-body terms which give significant contributions to vari-
the various state13—-16. ous expectation values.
An approach, which is rather similar, is the introduction In a series of papefd7—19 an expression of the elastic
of the short range correlatiotSRC’s in the Slater determi- charge form factofF(q), truncated at the two-body term,
nant. Many attempts have been made in this direction, conwvas derived using the factor cluster expansion of Clark and
cerning mainly light closed shell nuclei in the framework of co-workerg21—-23. This expression, which is a sum of one-
the Born approximatiofi4—11,17-19 body and two-body terms, and depends on the HO parameter
Czyz and LesniaK2] first showed that the diffraction and the correlation parameter through a Jastrow-type corre-
character of the*He form factor can be qualitatively ex- lation function, is used for the calculation Bf;(q) of “He,
plained by means of Jastrow-typ20] correlations. Khana !0, and“°Ca and in an approximate way for the opep
[3], using lwamoto-Yamada cluster expansion and retaininginds-d shell nuclei.
only one- and two-body cluster terms, showed that the inclu- The motivation of the present work is the systematic
sion of short range nucleon-nucleon correlations provides astudy of the effect of SRC’s on trep ands-d shell nuclei
adequate description for the known data on the elastic scaby completely avoiding the approximation made in earlier
tering of electrons by*°Ca and makes predictions for the work [17—19 for open shell nuclei, that is, the expansion of
behavior of the cross section at large momentum transferghe two-body terms in powers of the correlation parameter,
Ciofi Degli Atti, using the “single pair approximationT4]  in which only the leading terms had been retained. General
and the lwamoto-Yamada cluster expandgibhin s-p shell  expressions for th€ (q) and p¢(r) were found using the
nuclei, showed that elastic electron scattering at high mofactor cluster expansion of Clark and co-workers and Jastrow
mentum transfers seems to give a strong indication of theorrelation functions which introduce SRC’s. These expres-
presence of SRC’s in nuclei. Bohigas and String8tiand  sions are functionals of the SP wave functions and not of the
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wave functions of the relative motion of two nucleons as waghe effect of SRC'’s, introduced by the functidgr;;), be-
the case in many previous work$,10,17. Because of that, comes large when the SRC paramegebecomes small and

it is easy to extrapolate them to the case of open shell nucleiice versa.

and use them either for analytical calculations with HO wave The charge form factor of a nucleus, in the Born approxi-
functions or for numerical calculations when more realisticmation, can be written

SP wave functions are used. An advantage of the present

method is that the mass dependence of the HO pararbeter Fer(d)=fo(a) foe(a) fem(d)Fp(a), (4)
(with the presence of correlationasnd the correlation param-

eter B can be studied. These parameters have been deterheref (q) andfpe(q) are the correction for the finite pro-
mined, for the various-p ands-d shell nuclei by fit of the ton size and the Darwin-Foldy relativistic correction, respec-
theoreticalF .,(q) to the experimental ones. It is found that tively [25], f;,(q) is the Tassie-Barke26] center-of-mass
while the parameteg is almost constant for the closed shell correction, andF,(q) the point form factor of the nucleus
nuclei 4He, 16(), and 40Ca' it takes larger valugess corre- which is the expectation value of the one-body operator,
lated systemsin the open shell nuclei, indicating a shell A A

effect for the closed shells. The present method has also been . .

used with wave functions of Skyrme-type interactions. In Oq:; Oq('>:i§1 exdiqri]. )
this case there is only one free parameter, the correlation

paramete3, and the two-body term is a small correction to That js,

the one-body term of the density.

The paper is organized as follows. In Sec. Il, the general <\If|oq|\p>
expressions of the correlated form factors and density distri- Fo(Q)= RGO =N(W[Oy|¥)=N(Oy), (6)
butions are derived using a Jastrow correlation function. In
Sec. lll the analytical expressions of the above quantities fo\r/vhere N=(W(ry,fg . A )| O(r1ta, ... r)) "L is the

thre S_iF:/a:dlfl_dehr?” lm:de'itm t?e fasertogthidHSi orbltalz, Irrllormalization factor which is determined so thag,(0)
are given. Numerical results are reported a scusse DE (0)=1 or 47-rf3°p(r)r2dr:1.

Sec. IV, while an outline of the present work is given in The point density distribution has the form

Sec. V.
(V[0 W)
Il. CORRELATED DENSITY DISTRIBUTIONS o) = —7gmgy = N(¥|O,|¥)=N(O,), )
AND FORM FACTORS (W)
If we denote the model operator, which introduces SRC’swhere
by F, an eigenstaté of the model system corresponds to an R
eigenstate .
O;=2, o(i)=2 &(r=ry). ®)
P =Fd 1) =1 =1
of the true syst(_am_. A. Expressions of the correlated density distributions and
Several restrictions can be made on the model opefator form factors

as, for example, that it depend ¢tine spins, isospins, and ) S
relative coordinates and momenta of the particles in the sys- N order to evaluate the point density distributipp(r),
tem, that it be a scalar with respect to rotations, £2]. we consider, first, the generalized normalization integral
Further, it is required thatF be translationally invariant _

and symmetrical in its argument -1-i---A and () =(¥|exd al (0)O][¥), ©
possess the cluster property. That is, if any subget-i,

of the particles is removed far from the reisf,;---ia, corresponding to the operat@; , from which we have

F decomposes into a product of two factot&(1---A) ainl(a)
=F(iy---ip) Fligs1---ia) [23]. In the present workF is (O0)y=|———— (10)
taken to be of the Jastrow typ0], da | ,_g
A For the cluster analysis of E¢10), following the factor
F=I1 f(ry, (2)  cluster expansion of Ristig, Ter Low, and Cl4&1—23, we

<) consider the sum-product integrdi§), 1;(«), ... for a

wheref(r;;) is the state-independent correlation function of Subsystems of thé-nucleon system and a factor cluster de-

the form composition of these integrals. The expectation value of the
density distribution operator is written in the form

f(rij)=1—exd —B(r;—rj?1. 3

The correlation functiorf(r;) goes to 1 for large values
of rij=[ri—r;| and it goes to 0 for;;—0. It is obvious that where

(01)=(0;)1+(O)2+ - +(Op)a, (11
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A alnli(a) A The terms(O,); andO,(r,z) and the density,(r) can
(O)1=> —a | = > (i|Flo (1) Fi), be expressed also in the convenient form
i= wep =1
(12) (Or)1=pspll), (23
)
(0,),=2, Salintij(e)=Inli(@)=Inlj(a)].-0 Ozz(r,2)=f 9(r,12,2)[ pso(r)psplr2) = pap(T.r2)1dr,
1<) (24)
A
= (ij|Fifo0.(1)+0,(2)]Fp]lij
2 (117140 () + 0 (217dil)a o) =N peof0)+ | [9(1.1228)~20(1.12.8)]
A
—;j [(ilo(D)]i)+(jlo(2)]})], (13 X[ psp(1)psp(r2) — p3p(r o) 1dr,|, (25)
and so onF; is chosen to be the identity operator. where;_)SD(rl,rz) is the unc_orrelated density matrix associ-
The cluster expansion establishes the separation of onéted with the Slater determinant,
body, two-body. . ., A-body correlation effects on the den- A
sity. Three- and many-body terms will be neglected in the _ * .
present analysis. Thus, in the two-body approximation, writ- pSD(rl’rZ)_zl ¢ (1) i(rz). (26)

ing also the two sums of Eq13) in a different form,p,(r)
is written as follows: The diagonal elements of this give the one-body density dis-

tribution
Pp(r):N<Or>%N[<Or>1+<or>22_<or>2ﬂv (14
pso(r1) =psp(ri,r). 27
where
It should be noted that a similar expression fgy(r),

A given by Eq.(25), was derived by Gaudiet al. [7] in the
<Or>1=2 (ilo.(D)[i), (15  framework of the LOA. In the LOA the Jastrow wave func-
=1 tion ¥ of the nucleus was expanded in terms of the functions
A §=f2(rij)—1 andh=f(r;;) —1 and was truncated up to the
(01)25=2> (ij|FL0/(1) Fijij)a, (16)  second order oh and the first order ofj. This expansion
<] contains one- and two-body terms and a part of the three-
A body term which was chosen so that the normalization of the
B . . wave function was preserved. Expressi@b) of the present
(On)21= ZZJJ- (ijlo(D)lij)a- 17 work has only one- and two-body terms and the normaliza-
tion of the wave function is preserved by the normalization
If the two-body operator is taken to be the correlationfactor N.
function given by Eq(3), then In the above expression pf,(r), the one-body contribu-
tion to the density is well known and given by the equation

FloFi=1-20(r1,12,8)+9(r1,12.28), (18 .
(O)1=42 m(2+ Dz dn(Ndn(r),  (28)

where
g(rl,rz,z)=exp[—zri]exq—zrg]ex;ﬂzrlrz COSw15], where 7, is the occupation probability of the staté (0 or
1 in the case of closed shell nudleind ¢, (r) is the radial
z=3,28, (199  part of the SP wave function.
An expression for the two-body term is usually found by
and the term(O;),, is written as making a transformation to the relative and the center-of-

mass coordinates of the two interacting nuclephd0,17.
(01)25=(0)21— 201, 8) + O2(r,28), (20 This is because the Jastrow functibfr;;) depends on the
relative coordinates of the two nucleons. Here, the expres-
where sion for the two-body term, that is, of the te@y,(r,z), will
be found by expanding the factor ¢&2pgrir,CcoSws]| in

A . . .
Ozz(F,Z)ZziZ,j (i10/(1)g(r 1, 2,2]i} Va. 1) spherical harmonicf27,28. That is,

exd 2zrqr, CoSw15|
S0 py(r) takes the form
=272, U(221172) Vi (Q1) Yim (Q2), (29
pp(1)~N[(O)1—=202(r,8) +0x(r,28)]. (22 kmy
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where

1
exp(2zr4r, CoSw1,)

Uk(22r1r2)=j

X P(coswq,)d(COSw15)
=2i(2zr1r5), (30

andi,(x) is the modified spherical Bessel function.

PHYSICAL REVIEW @G0 024005

where

Ay 4 r, z)——¢nl. (1) oy, (V)X — 212

nylinals

x fw¢:2|2(r2)¢n4l4(r2)exd—zr§]
0

Xi(2zrry)radr,. (32)

Using the algebra of spherical harmonics, the term Thus the expression of the ter@y,(r,z) depends on the

O,4(r,2) takes the form

Oplr2)=4 2 770 (21 +1)(21j+1)

nili njl;

4Anlllnjllk(r Z)

II]

L+l

-~ Z (1,01 O|k0)2A"J'Jn"'k(r 2)|,

z=,28, (31

Ozz(ryz):4[3A88880(r,Z) 775+ [33A01011r.2) — 6AG101A 1, 2) 1 7, + BALGION T, 2) 75s+

0202 2 0001 0100
- _AozozA(r z ) )| n2a+[12A00011r,2) + 12A0100

SP wave functions and so it is suitable to be used either for
analytical calculations with the HO potential or for numeri-
cal calculations with more realistic SP potentials. Expres-
sions(28) and (31) were derived for the closed shell nuclei
with N=2Z, where 5, is 0 or 1. For the open shell nuclei
(with N=2Z) we use the same expressions, where now 0
< 7,=1. In this way the mass dependence of the correlation
parameter3 and the HO parametdr can be studied.

Finally, using the known values of the Clebsch-Gordan

coefficients and provided thatey(r)=én(r), ie.,
2’;"?2‘2‘:4‘(0 )zA:;:;Ei:jk(r,z), Eq.(31), for the case o6-p
ands-d shell nuclei, takes the form

50
95A%Z031r.2) — = AG303T2)

r,2)— AT, 2) ] 715715+ [ 20830050, 2) + 2085250, 2)

0200 0102 0201 50201 0201
—10A%50941,2) 1 715714+ [B0AG105 11, 2) + 60AGZ0; 11, 2) — 12A0305(r, 2) — 18AJT051r,2)] M1p71d

+[4A%101r.2)+4AL50r 2) —

28500011 2) 175 7ma5+ [ 128011011, 2) + 12438011, 2) — BAGIG T, 2) 71 7

+[20A35104r,2) + 20A10551 1 2) — 10AG6T,2) 17, 7as |- (33)

The point form factorFy(q) can be derived in two \hile the two-body tern©,,(q,z) is given by the right hand
equivalent ways. The first one is to follow the same clusteisige of Eqs(31) and (33) by replacing the matrix elements

expansion as in the case of the density distribution and th n3I3n4I4k
second one is to take the Fourier transform of the density Nil12!2

distributionpp(r),

Fp(q)zf exdiqr]pp(r)dr. (34
In both cases, the form factor takes the following form:

Fp(a)=~N[(Og)1—202xq,8)+0240,28)]. (39

(r,2) by A”3'3“4'4k(q,z) given by the equation

nqlqnyl

:S:S:ZIZK(Q )—f ¢n1|1(r1 &n (1)
xex —zriljo(qryridry

X fo H5,1,(12) by, (12)

In the above expression, the one-body term is given by the

equation

<Oq>1:4; 7 (21 + 1)f:%ﬁﬁl(r)¢n|(r)jo(qr)r2df,
(36)

xexd —zr5lig(2zrir,)radr,, (37

wherejq(x) andi,(x) are the spherical Bessel and the modi-
fied spherical Bessel functions, respectively.
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B. I-s coupling scheme on! 1/2
In the cases of mean field potentials wits coupling, the N = ’
wave function of thenlj state has the form Iin+l+ >

i(r)=dpn(r Im;smy|jm;
Yiuj (1) = b 1)m,z,ms< smyjm;) where the associated Laguerre polynomial is defined as in

Ref.[31], analytical expressions of the one-body term and of

. n3I3n4I4k n3I3n4I4k _
the matrix element$\nllln2I2 (r,z) and Anlllnzlz (g,2), de

fined by Egs.(32) and (37), can be found. From these ex-
pressions, the analytical expressions of the te@ngr,z)

XYMQ) XLy (D), (38)

where ¢,,;(r) is the radial part of the wave function of the
: mg m, . . . >
statenlj, andx,*(1) andy, ‘(1) are the spin and the isospin and0,,(q,2), defined by Eq(33), can also be found.

wave functions, respectively. , The expression of the one-body term of the density and
Following the same procedure as in Sec. Il A, the samgq,m factor has the form
expression(22) for p,(r) has been found. In this case the

terms(O,); andO,,(r,z) have the form

2
1 (001=Ce £ Cpe®™, x=r4, (42)
(01=22 mmj(2i + 17— hy(D)buy(r) (39 =0

where for the(O, ), the variable and the coefficient€ and

and C, are
Ozlr2)=2 jEn L (21 D2+ D) . )
ilidi oyl _ _
§= b’ C= 3203
mlijingljik
x| 2A0 (. 2)
I+, Co=27m15+ 3755,
2 ANljijnilijik
-5 kgo (1;01;0[k0) A IR (. 2) |
Co=4(n1p— 125, (43
z= 3,28, (40
. Nal3j3ngljak . i C,=—(2 + ,
where the matrix elementsnilijin‘z‘l‘z‘j‘z‘ (r,z) are given again 4 3( N1a+ 72s)

by Eq.(32) replacing the wave functiong,,(r) by the wave
functions ¢n;(r). Equation(40) can also be written in a ] ) N
form similar to that of Eq(33) with the difference that there While for the(Og), the corresponding quantities are
are now more terms. This expression goes to(B§). if there
is nol-s coupling. 1

In the evaluation of the density matrpgp(rq,r»), which é=-bg, C=2,
is necessary for the derivation of the expressiéd) of the 2
termO,,(r,2), we made the following approximation: In the
sum over the spin coordinates, only terms of pairs of par-
ticles having the same third spin component are taken into Co=2(71sF 725 371p+ 5710),
account. The contribution of the terms which contain pairs
with opposite third spin component is small and is neglected
[29,30. In this scheme the form factor is calculated numeri-
cally by Fourier transform op,(r) employing Eq.(34).

4
Co=— §(3ﬂ1p+ 10714+ 2725, (44)
I1l. ANALYTICAL EXPRESSIONS

4
. . . == + .
In the case of the HO wave functions, with radial part, Ca 3(2771d 772s)

— —al T ! 1+1/2 f _ r’ The analytical expression of the matrix element
¢n|(r)_anb I-n ex ) ( ) nslangl 4k . . f
b b? 2b Anilin‘z‘l‘z‘ (r,z), which is given by Eq(32), has the form
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1
}22 E )W+S n2+|2+§

s=0 W|S'

4 yK
An3l3n4|4k( rz)= ( H ) §I1+I3+kL 1*1/2(52“_ 3+1/2(§2)exr{

nqlinoly =1 16\/_b3 1+y

n,—w

1 1
n4+|4+§ [§(|2+|4_k)+W+S]' K+1/2
(1+y)l2rlatkea)2rws (Ip+ 1=Kzt wts

-
1+y

&,

(49
n,—s

whereé=r/b andy=zb? (z=p,2p8). It is mentioned that the Clebsch-Gordan coeﬁicie{mﬂﬁljo|k0>, which appear in Eq.
(31 (wherek runs from 0 tal;+1;), are different from zero only wheln+1;+k is an even integer and therefdeet-1,—k is
an even integer. Because of that, the lower index of the Laguerre polynomial ¢4Eds an integer.

The above expression @f"3 3”4' #(r.2) is of the form

1+2y
f(ﬁex;{— iy &)

wheref(£?) is a polynomial of¢?. The substitution of the expression Aﬁi:iﬂ;‘:;‘k(r,z) to the expression oD,,(r,z), which

is given by Eq(33), leads to the analytical expression of the two-body term of the density. This expression, for theszase of
ands-d shell nuclei, is again of the form
1+2
f(éz)exr{ - 52},

1+y

where nowf (£2) is a polynomial of the form

4
(&)= 2 Cad V)€ (46)

Nyl 4k

The corresponding analytical expression of the matrix elemﬁﬂf (q z), which is given by Eq(37), has the form

2

n n n n lo+14—Kk)/2+wW+s
} 1 N3 np ng (Ix+ls=k) (- 1)p+v+w+s+t Nyl +

2222 2

=0 v=0 w=0 s=

4
n3langlsk 0
Aniiiny (2 16(1:[ )ex"[ 1+2y = piviwlslt!

ni—p
1 1 1
n3+|3+§ ﬂ2+|2+§ n4+|4+§
N3—v N,—WwW ng—s

TG+t k+3)+wHs)[ (1 +13+k) +p+v+t]I[ 3 (k—1,—1,) —w—s],
X

T(t+k+32)
2t+k(1+y)(|1+|37|27|4)/2+p+V7W73 1+y
X (1+Zy)(|l+|3+k+3)/2+p+v+t L(l 1HI3tK)2+p+v+t 1+ 2y§ (47)

whereé=qb/2 andy=zb” (z=,2p). The lower index of  expression ofA"32M444(q, 7) to the expression dDyy(q,2),
the Laguerre polynomial of Eq47) is an integer because 1122
I, +15+Kk is an even integer.

The above expression N‘3:3:4:4k(q,z) is of the form

given by Eq.(33), leads to the analytical expression of the
two-body term of the form factor. This expression, for the
case ofs-p ands-d shell nuclei, is again of the form

1+y
2 _ 2
f(¢ )exr{ Troyt |

~ 1+y
2 _ 2
f(¢ )exp[ 1r2y% |

where f(&?) is a polynomial of¢?. The substitution of the where nowf(£?) is a polynomial similar to that of Eq46).
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TABLE |. The values of the parametets and 3, of the x?, and of the rms charge radqi2,)"2
contribution of the one-body densifgolumn HQ, contribution of SRAQcolumn SR and of the total rms
charge radii(column Tota), for variouss-p and s-d shell nuclei, determined by fit to the experimental
F(g). Case 1 refers to the HO form factor, case 2 when SRC are included. Casehz same as case 2
but with the occupation probability of the state faken to be a free parameter. Cases 3 and 4 refer to the
SK1 potential with and without SRC'’s, respectively. The experimental rms charge radii are frof3Ref.

Case Nucleus b[fm] B [fm™?] X2 (r2)Y2 [fm]

HO SRC Total Expt.
1 “He 1.4320 - 31 1.7651 - 1.7651 1.636
2 “He 1.1732 2.3126 35 1.5353 0.5277 1.6234
1 2c 1.6251 - 177 2.4901 - 2.4901 2.48)1
2 2c 1.5923 3.7051 110 2.4463 0.2566 2.4597
1 160 1.7610 - 199 2.7377 - 2.7377 2.729
2 160 1.6507 2.4747 120 2.5853 0.7070 2.6802
3 160 - 148 2.6518 - 2.6518
4 160 - 3.0201 146 2.6518 0.1503 2.6561
1 2Mg 1.8495 - 188 3.1170 - 3.1170 3.075)
2 2Mg 1.8270 6.6112 161 3.0823 0.3009 3.0969
2% Mg 1.8315 7.1226 155 3.0893 0.2841 3.1023
1 28g;j 1.8941 - 148 3.2570 - 3.2570 3.088
2 28g; 1.8738 8.2245 114 3.2249 0.2438 3.2341
2% 28g; 1.8743 8.8104 112 3.2260 0.2315 3.2343
1 32g 2.0016 - 320 3.4830 - 3.4830 3.748
2 32g 1.9810 9.1356 270 3.4497 0.2114 3.4561
2% 32g 1.9056 15.579 194 3.3284 0.1445 3.3315
1 38Ar 1.8800 - - 3.3270 - 3.3270 3.34B)
2 38Ar 1.8007 2.2937 - 3.1970 0.9470 3.3343
1 “ca 1.9453 - 229 3.4668 - 3.4668 3.439
2 ca 1.8660 2.1127 160 3.3353 1.1115 3.5156
3 Oca - 181 3.4097 - 3.4097
4 “ca - 2.1729 178 3.4097 0.2349 3.4178

From the analytical expression of the form factor, the ana- The coefficients, depend on the occupation probabilities
lytical expression of the mean square radius of a nucleusf the various states. If we expand, the right hand side of Eq.
which is the coefficient of- q%/6, can be found. This expres- (50), in powers of 1y (y=pb%>1), and keep powers of

sion is of the form

(r2y=N[(r?);—2(r?(Bb?)) oo+ (r3(28b%)),,l, (48)

where

(r3)1=[6(n15+ 725) + 307, + 707714]0?

and

5

<r2<y>>22=b2(1+2y>—13’2k20 ay*, y=pBb%2pb2
(50)

(49

Bb? up to (Bb?) ~¥2 an approximate expression of the con-
tribution of the two-body term to the radius takes the simple
form

(ré(y))o=Cb?(Bb?) 32 (52)

where the coefficien€ depends on the occupation probabili-
ties of the various states.

The analytical expressions of the form factor and the den-
sity, which were found previously, will be used in Sec. IV
for the fit of the theoretical charge form factors to the experi-
mental ones and for the calculations of the charge density
distributions for variousN=2Z (s-p ands-d shel) nuclei.
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FIG. 1. The charge form factor of the nuctile (a), *%0 (b), *°Ca(c), and 3®Ar (d) for various cases. The experimental points fbie,
160, and*°Ca are from Refs33], [34], and[35], respectively.

IV. RESULTS AND DISCUSSION 1 K
?=x 2, {[Fi(theory —F(expt / AF;(exph}?,
The calculations of the charge form factors for various - (52)

s-p ands-d shell nuclei, withN=Z, have been carried out

on the basis of Eqs(4) and (35) and the analytical expres- gare displayed in Table I. In the same table the calculated root

Sec. Ill. Two cases have been examined, named case 1 agflthe SRC’s to them,

case 2, which correspond to the analytical calculations with
(r2)y=(rgn—(réna/A, (53

HO wave functions without and with SRC'’s, respectively. In
case 1 there is one free parameter, the HO pararbgtdrile
in case 2 there are two free parameters, the pararheted  are displayed and compared with the corresponding experi-
the correlation paramete8. The parameters, in both cases, mental rms radii. It is noted thgt?), is independent from
have been determined, for each nucleus separately, by a ledse center-of-mass correction and finite proton size.
squares fit to the experimental(q). The experimental and the theoreti€al,(q), for the vari-

The best fit values of the parameters as well as of theus cases, for the closed shell nudeie, 10, and“°Ca, are
values ofy?, shown in Fig. 1 while for the open shell nucl&C, Mg,
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FIG. 2. The charge form factor of the nucféC (a), ?*Mg (b), 28Si (c), and *S (d) for various cases. The case HGRC' corresponds
to the case when the occupation probability, is treated as free parameter. The experimental pointé@fre from Ref[34] and for the
other nuclei from Ref[36].
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FIG. 3. The differenceAb=b(HO)—b(SRC) versus the mass

numberA. b(HO) andb(SRC) are the HO parameters in cases 1  FIG. 4. The correlation paramet@rversus the mass numbAr
(HO without SRQ and 2(HO with SRQ, respectively. in case 2(HO+SRQO.
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FIG. 5. The charge density distributigr(r) and the contributiom,(r) of SRC's to it of the nucle'He (a), *°0 (b), *°Ca(c), and
36Ar (d) for various cases. The experimental points are from &

285, and 3?S, are shown in Fig. 2. nucleus, should become smaller. Such a behavior should be
From the values of?, which have been found in cases 1 expected in view also of relatior{¢9) and(51).
and 2(see Table)land also from Figs. 1 and 2, it can be seen It is also noted that the difference
that the inclusion of the correlations improves the fit of the
form factor of all the nuclei we have examined. Almost all
the diffraction minima which are known from the experi-
mental data are reproduced in the correct place. There is a
disagreement in the fit of the form factor of the open shellis almost constant for the open shell nuclei and is larger for
nuclei 2*Mg, 28Si, and3%S forq~3.5 fm ! where it seems the closed shell nucléiHe, 10, and*°Ca. This can also be
that there is a third diffraction minimum in the experimental seen from Fig. 3 where the values &b versus the mass
data, which cannot be reproduced in both cases. numberA have been plotted. The behaviordb as function
It is seen from Table | that the parametehas the same of Aindicates that the SRC’s are stronger for the closed shell
behavior as a function of the mass numBen the HO and nuclei than in the open shell ones.

Ab=Db(HO)—b(SRO

the correlated model, while the following inequality holds: In Fig. 4 the values of the correlation paramegeversus
the mass numbeh have been plotted. From this figure it is
b(HO)>b(SRO. seen that the parametgris almost constant fofHe, 1°0,

and *°Ca and takes larger valuégss correlated systemis
This is due to the fact that the introduction of SRC’s tends tathe open shell nuclei.

increase the relative distance of the nucleons, i.e., the size of The behavior of the two parametdrsind 8 indicates that
the nucleus, while the parameterwhich is(on the average there should be a shell effect in the case of closed shell
proportional to the(experimentally fixeyl radius of the nuclei. That is, there is a shell effect not only on the values
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FIG. 6. The charge density distributir,(r) and the contributiom, .{(r) of SRC to it of the nuclet*C (a), Mg (b), %Si (c), and**S

(d) for various cases. The case HSRC* corresponds to the case when the occupation probalifys treated as a free parameter. The
experimental points are from RdB2].

of the harmonic oscillator spacirfgw, as has been noted in are 0.3929, 0.5951, and 0.7411, respectively. The partial oc-
Refs.[37,39, but also on the values of the correlation pa-cupancy of the states2for the nucleus®’S has the result of
rameterg. increasing the central part of the charge density significantly.
In the above analysis, the nucf&Mg, 2°Si, and?S were In Figs. 5 and 6 the charge densitjgg(r) (normalized to
treated as d shell nuclei. We have also considered ca%e 2 Z) of the above-mentioned nuclei for the various cases of
in which the occupation probability,s of the nuclei®*Mg, Table | are shown and compared with the charge densities of
285j, and®%S is taken to be a free parameter besides the othdRef. [32]. In the same figures the contribution of the SRC’s
two parameterd and 8. We found that while the? values  to pg(r),
become better, comparing to those of case 2, the third dif-
fraction minimum is not reproduced either and the behavior P2, =pcr(r) = predr), (54)
of the parameterd and 8 as functions of mass numbér . . . .
remains the same. The results in this case are shown in Tabl shown. The |n§roduct|on of short range correlatlpps has the
| and in Fig. 2. The values of the occupation probabikity eature of reducm_g th(_a central_part of the densities _of the
of the above-mentioned three nuclei are 0.0355, 0.0245, ar@osed.shgll nu_clel, While,h(r) is small and charactenzed
0.2945, respectively, while the corresponding valueggf, y oscillations in th? case of open shell nuclei.
which can be found from the values gf, through the rela- From the determined mass dependence of the parameters
tion b and B, the values of these parameters for otbgr or s-d
shell nuclei can found. In Figs(d) and 5d) the F.,(q) and
per(r) of the nucleus®®Ar, treated as an d closed shell
M1a=[(Z—8)—21,]/10, nucleus, are shown. As there are no experimental data for
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Fe,(q) for high g values, the value of the parametgris  of the correlations improves the quality of the fit, for all the
taken to be the mean value of the corresponding values dskyrme interactions, not more than 2%. See Table | and Fig.
160 and *°Ca, that is,83s=2.2937 fm 2, while the param- 1 for the results we have found with SK1.

eterb is determined assuming that From the results with Skyrme-type wave functions we
could conclude that even if a mean field is more realistic than
Abge=Aby, the HO one, the inclusion of the SRC’s does not improve the

where fit, at least of the~,(q), significantly. Significant improve-

ment of the fit should be expected if the parameters of the

_ _ mean field will be determined along with the correlation pa-
Aba=Dba(HO) ~bA(SRO. rameter. It should be noted also that a good fit to the experi-
Using the values of the parametels(HO)=1.9453 fm mentalF 4(q) of °Li, **C, and'°O has been found by Ciofi
and b,o(SRC)=1.8660 fm from Table | and choosing the Degli Atti and Kabachnik[5], using Woods-Saxon wave
parameterbzo(HO)=1.8800 fm in order to reproduce the functlon_s, only if the correlation parameter and the depths
experimental rms charge radius GPAr (<rz>g(2pt:3_327 and radii of the wells were free parameters.
+15 fm[32]) the valuebss(SRC)=1.8007 fm was found.
These values 0f335 and b3g(SRC) have been used for the V. SUMMARY
calculations of the correlateB(q) and pe(r) of 2°Ar,
which are shown in Figs. () and 3d), respectively. The
calculated rms charge radi(s?)1/?=3.3343 fm, which was
found, is within the experimental error.

The effect of SRC’s on the form factors has also bee
examined with various Skyrme-type wave functions. In this
case, there is only one free parameter, the corr_elation. pararﬁ-c The systematic calculations, with HO orbitals, of these
eter 8. The potential parameters have been adjusted in Refﬁuantities, for a number dfi=Z, s-p ands-d shell nuclei,

[39,4Q in order to reproduce various physical quantities sucr‘ghow that there is a shell effect on the values of the HO
as rms radii, binding energies, etc. Thus, some effects of th@

. arameteib and on the correlation parametgr Regardin
SRC’s we would like to study have already been average on p y garding

‘the parameteB it is almost constant for the closed shell
out. Because of that, we cannot study the effect of the SRC Ruclei while it takes larger values for the open shell nuclei.

he mass dependence of these parameters indicates that the
RC’s are stronger for the closed shell nuclei than for the

In the present work, general expressions for the correlated
charge form factors and densities have been found using the
factor cluster expansion of Clark and co-workers. These ex-

ressions can be used, either for analytical calculations, with
O orbitals or for numerical calculations d¥.(q) and
n(r), with more realistic orbitals.

reasonable values of these parameters for nuclei for which
Yhere are no experimental data of thg,(q).

Numerical calculations with various Skyrme-type wave
functions, taken from the literaturg39,4Q, indicate that
%Ven if a mean field is more realistic than the HO one, the
introduction of the SRC’s does not improve the fit of the
charge form factors significantly. The reason for this should
be that the introduction of the correlations makes a change in
the mean field in a way that there is a balance between the
SRC'’s and the mean field, while for a given mean field there
M5 not this flexibility. A way to overcome this difficulty
should be to readjust the parameters of the mean field and the
garameter of the correlations.

at the same time. As this is out of the scope of the prese
work, we examined the form factors ¢fO and “°Ca with
various Skyrme interactions, namely, SK1-SK89,40,
without SRC’s, named case 3 and with SRC’s, named case
In case 3 and for®0, only SK1 gives smaller value for
x? compared with that of case (HO without SRQ. The
inclusion of SRC’s(case 4 to the Skyrme-type wave func-
tions gives bettey? only for the SK1, but still this value is
about 10% larger than in case(BO with SRC’9 and 1%
smaller than in case 3. For SK2—-SK6 the correlated para
eter B8 goes to very large values/ery small correlations
without improving the quality of the fit. Fof%Ca and for
case 3 all the Skyrme interactions we have examined giv
almost the samg? value which is about 20% smaller thanin ~ The authors would like to thank Professor M.E. Grypeos
case 1 and 10% larger than that of case 2, while the inclusioand Dr. C.P. Panos for useful comments on the manuscript.
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