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S-matrix poles near the AN and XN thresholds in the coupledAN-%N system
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We searcht-matrix poles forAN-XN coupling interactions using two soft core models of the Nijmegen
group which bind the hypertriton at the correct binding energy, and hard core models which are still influential
in hypernuclear physics. To treat the hard core potentials, a useful method for calculating the dffreiiah
is proposed. We find poles close to tB&l threshold in the second or third quadrant of the complex plane of
the X N relative momentum. The relation between the poles and the shape df\tlegastic total cross section
is discussed based on a so-called uniformization by which two-ch&malrices become single-valued on a
complex valuable. We also find poles near thid threshold. These are correlated to Siwave AN scattering
lengths, the values of which have yet to be determif88556-28189)00908-3

PACS numbd(is): 13.75.Ev, 21.45tv, 21.30—Xx, 21.80+a

[. INTRODUCTION andX NN systems. Afnan and Gibs¢fhQ] calculated the\d
elastic scattering fully incorporating this coupling but using
Most of our knowledge of therN interaction has been simple phenomenologicafN interactions. They then found
obtained from heavy hypernuclei and it remains rather qualiand analyzed enhancements just below XN threshold.
tative. In contrast, recent theoretical analyses of few-baryoifo examine more closely theN-XN coupling interaction, a
systems with strangeness such as the three-body calculatiosignilar study applying more sophisticated meson-theoretical
of 3H [1-3] and the four-body study ofH [4] yield more interactions is necessary. It is also important to analyze elec-
qualitative results, being based on modern baryon-baryoHomagnetic hyperon-production processés], which are
forces and on rigorous solutions of the few-body Sehro €xPerimentally accessible. _ _
dinger equations. Thus, they offer a great advantage to scry- For theYN interaction, there exists a variety of strengths
tinize YN interaction models. As an example, Ref$-3] for the_AN-EN cpuplmg among exiensively used meson-
demonstrated that the Nijmegen soft cor®&l interaction theoretical potentials. The__ soft core mog8] and the h_ard
i , . ~ ) core modeD [12] of the Nijmegen group show cusps in the
NSC89[5] binds the hypertriton, but the lith A potential A N ejastic total cross section just at tAa\ threshold with
[6] does not. This is possibly caused by the sizable differencgjfterent magnitudes, while the Nijmegen hard core mdelel
between the'S, force components in the low-energy region [13] and the Jlich models[6] show round resonance peaks
[2]. This shows that even basic quantities such as scatteringsiow the threshold. We stress here that these prominent
lengths are still undetermined. cusps do not mean simple threshold effects, but suggest the
The few-body analysis o{H [1-3] has also clarified the existence oft-matrix poles in unphysical Riemann sheets.
effect of theA-2 conversion which was exactly included in This is important because the poles might move and become
the coupled channel formalisfd]. Although in the case of unstable bound state poles if the coupling strengths varied.
the hypertriton the admixture GNN states is only 0.5%, Some examples for separable potentials are given in Ref.
the expectation values of the sum of the transition potential§14]. In this paper, we shall locate these poles and follow
Vansn andVsy an are approximately 8% of the total po- their trajectories for the Nijmegen potentials.
tential energy, which is crucial for the binding of the hyper-  Knowledge of YN tmatrix around theXN threshold is
triton [2,3]. crucial for the analysis oA NN-2NN continuum states us-
This knowledge about thE states coupling, however, has ing meson-theoretical interactions. This paper accordingly
been obtained from the bound state lying below hi§N  investigates poles of thematrices for the NijmegefF, D
threshold. This should be extended to analyses close t the and the two soft core interactiofis,15]. This is achieved in
threshold, whereA-X conversion effects will emerge momentum space and hence the results are directly appli-
sharply. In this region, so-called unstable bound stif¢s cable to the three-body calculation. The behavior of
have received attention and have been searched for expetimatrices around an inelastic threshold in coupled channel
mentally. Only one state in thB(A)NNN system is con- problems and the effects of nearby poles have often been
firmed in the reactiorfHe(K~,7~) [8]. The existence of studied[7,14]. In such analyses it is important to understand
such an unstable bound state in the-4 system was pre- the connection between various Riemann energy sheets and
dicted by Haradaet al. where the coupling to continuum how far from the physical region the poles are located. In this
ANNN states was approximated by3aN optical potential  analysis we adopt a so-called uniformization given by New-
[9]. However, for understanding the actual features\ef ~ ton [16], by which thet-matrix for two-channel problems
conversion, it is highly desirable to treat it directly using abecomes single-valued after a suitable variable is introduced
realistic AN-XN coupling interaction. in place of energy. We thereby clearly describe the positions
At present, it is technically possible to incorporate pre-and the trajectories of thematrix poles in the Riemann
cisely the coupling toA continuum states for only thEN sheets.
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Section 1l gives the expression fokN-XN t-matrix
which is analytically continued to the complex energy plane.
Section Il describes a method to treat a hard core potential
in momentum space. This is for the purpose of treating the

Nijmegen hard core potentials which are influential in hyper— simplify the notation, thep indices have been omitted,

nuclear physics. In Sec. IV, the uniformization menuonedand the partial-wave elements are assumed to have no cou-

above is introduced, thereby we discuss how the shape of thgin o petween different orbital angular momenta or channel-
AN elastic total cross section around tBéN threshold is spin states. The extension to the case with couplings is

related to the positions of nearby poles. In Sec. V, the posi

_ k
=E—my—m{.

(2.5

tions of thet-matrix poles for the Nijmegen soft and hard

Straightforward.
Now consider the energ§ to be a complex number.

core models are described. We also show the trajectories ‘P—fenceek and

the poles when the strengths of the potentials are increase

II. ANALYTIC CONTINUATION OF THE = T-MATRIX

In this section, we give the expression of the off-shell
t-matrix for the AN-2N system and continue it analytically
into the complex energy plane.

The coupledt-matrices for theAN-XN system are de-
fined by the integral equations

Tij(2) =V +; ViGo (D Tii(2), i.j.k=12,
(2.2

with

G(2)=(z—H{)™Y, z=E+is, (2.2
wherei,j,k have integer values of 1 and 2 for theN and
SN channels, respectively. The free Hamiltonigi§ for

channelk is defined as

d.
k= V2 i€ (2.9
are complex numbers. We introduce the function
h(p")=(p|Vi|p")}{(p"[Tyj(2)[p") (2.7

and define each term in tHesummation of the right-hand
side of Eq.(2.4) by I (e,) as

% , p/IZh (pu)

(€)= fo dp # (2.8
e —_——
K 2

This function has a cut fog, =0, in other words, a cut along
my+m{E<E<o. Thus, there are two cuts in tHe plane
starting at theN+ A andN+3, thresholds, respectively. The
function values beyond the cuts are defined by analytic con-
tinuation. This is achieved by modifying E.8) as

[

Ik(ek):fo

p"?hi(p") — 2 mexhi(ay)
n2

d p/I

o 2
2 2y
Hg“:szkerNJr m{. (2.3 - e
“ +hi(a) JO dp'—— 7. 2.9
This refers to the total momentum zero frame and we denote €~ Z_Mk

the relative momentum between the nucleon and the hyperon

by py and the reduced mass of chankdly . The masses \here we assume thé(p) can be continued analytically
m{?(k=1,2) indicatem, andms, respectively. After per- and has no singularity in the trajectory from reato the
forming the partial-wave decomposition in momentumcomplex valuey, given in Eq.(2.6). This is true for the case
space, we express the projectedatrix elements for a given here. The cut now appears explicitly in the second term of
total angular momentum and parity again By Then Eq. Eq. (2.9). It is then easy to show

(2.1) reads
o 2 i€y ] )

w , dp'———5= — I TV 2 &= — T iy,
<p|Tij(Z)|p,>:<p|vij|p,>+2k fo dp”p"“(p|Vip") 0 ek—p—
2y

L ; , (2.10
X——7—("[T(@[p"), (249 . . _ . .
e — p—+is which defines the integral in both sheets of the Riemgnn
2k surface, corresponding to positive and negative imaginary

parts ofqg,. From Egs.(2.9) and(2.10, we can rewrite Eq.

with (2.4) as
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P 2(PIVik P )P Tki(D)P") 2k Pl Vikla){al Tw;(2)[p")
"2 - "2
L _
2,LLk 21““k

<|D|Tij(z)||o’>=<p|Vu||o’>+2k Jodp”

€k €x

— i P Vil a{(al Tj(2)[p") |- (2.1
This equation contains a netamatrix elemenl(qk|Tkj|p’> which requires the additional equation
n2 " " ’ ’
, . = A Vid " (P T2 2me A Vi di(al Tyj(2)[p")
<qk|TI](Z)|p >=<qk|VIJ|p >+2k JO dp : pHZ J : an ]
e 5— e~ 57—
“ 2y “ 2k
—i 7 i@l Vil 9 {al Tj(2)[p") | - (2.12
|
Equations(2.11) and(2.12 form a closed set of integral |q,<+) =|IZ)+G (z)UI(I)H—) (3.6)
equationg 17] and define thé-matrix elements on the entire ak 0 gk’
gy planes or the Riemann surface of the complex en&gy (“h _I= (-)
This set is solved in the following sections. |q)q,ﬁ>_|p>+G0(Z*)U|(Dq,ﬁ>' 3.7

Ill. T-MATRIX FOR A HARD CORE POTENTIAL

Although it is now rare to represent the short-range repuliSfies an

sion of theNN interaction by a hard core, the Nijmegén

As we shall show later, the first term of the right-hand side of
Eqg. (3.5 is expressed analytically, and the second term sat-
integral equation similar to the Lippmann-
Schwinger equation which can be solved using a standard

andF models of theYN interaction with hard cores are still Method. Our method is thus a natural extension of a standard
used frequently in hypernuclear physics. Therefore, in thidréatment without a hard core, and is therefore useful not

section we explore a method to obtain the off-sltetatrix
for a hard core potential in momentum space.
The off-shellt-matrix can be expressed as

+)

(BIT(2)[K)=(BIVIV ), (3.0
where¥ " is defined by
q,k
(W =1R+Go(2VI WD), (3.2
with
2
2= Hie. (3.3

To simplify the notation, theAN-XN coupling has been
omitted. First, we divide the interactiof, into the pure hard

core partU and the remainde¥ as

V=U+V (3.4
and use the two-potential formu]a8] to obtain
. S (+) ()

BIT@ IR =(plU|® ) +(@ VT D), (35

with

only for the present purpose, but also for other few-body
calculations in momentum space.

The analytic expression of the first term in E§.5 has
already been given by Takemiyi9], who proposed a
method to evaluate the off-shelmatrix for a hard-core po-
tential in coordinate space. Here, we use this method only in
the treatment of the pure hard-core part of the formula.

d)((;lz) and @) in Egs.(3.6) and (3.7) can be expanded
into partial waves
@Q?(r):; ORI knyR (k) 3.8
s
IM
and similarly\If(?. Here,y;¥ is the simultaneous eigen-

function ofL2, S?, J2, andJ,. We denote the pure-hard core
part of EQ.(3.5) as

(pli2)|K)=(plu|®, (3.9
q,k
and decompose it into partial waves
<|5IT(Z)II2>=|Z Vire (V8 gnig (P ;2 YR ().
s
IM
(3.10

024003-3



K. MIYAGAWA AND H. YAMAMURA

Referencd 19] proves that if we introduce a functigp de-
fined by

X|/ /|S(q K,r) J(+ 2.|.
I =Ppgs(a.kr) =\ k)

(3.1
it satisfies the equation
a2 1'(1'+1)\ ..
@2+ g ek
=3 20 S )
S
=r2uU}, g (Dii(kr) (3.12

PHYSICAL REVIEW C 60024003

and the off-shell element df is given byy as

12 (7, .
|,,|S(pkz) _;' fd”lw(pr)

d2 17(1'+1)

2
+ —

X Xprans(ak,r).

s’ls

(3.13

Following the method described in R¢fL9] one arrives at
the analytic expression of tieelement in Eq(3.13. For a
pure hard core potential with radius Eq. (3.12 has the
solution

—rj(kr)
ji(ke)

- hl(i)(qc) rhl(i)(qr)

Note, there is no coupling ihands, a result which can be found by generating the hard-core potential niatmi limits of
square well potentialssee Ref[19]). Further, from Eq(3.14) the integration in Eq(3.13 is limited tor<c and performing

the integration we obtain the final expression for

Xt (A K,P) =81 8g (3.14

(r=c).

(pk:z)=5, igv' ! ~cii(po) - rh<+>( ko 4 ol ko
H,S p, 1110, 332 p q ch,(“(qc) dr Ji(p . I
2 2 ¢ 2 H
—(g°=p )fodrr hi(pr)ji(kr) |. (3.1
The last term on the right-hand side of this equation is shown in [R6f.to be
2
(p#k),

77— [Kji(PC)ji+1(ke) —pji(ke)j+1(po)]
p
2 (3.19

Careziscpnii k) -
S kelif(ke)+ 1 (ko)1= (21 + D)ji(ko)jia(ke))  (P=K).

Next, let us consider the second part of the two-potential
formula (3.5). The state\lff;z) given in Eqg. (3.2 satisfies
another equationl8]

Vol + (@ VeV v
(3.20

(pli)k)=(@y ]

|\P;:Z)>=|CD ) +Gy( Z)V|‘I’( k)> (3.17  Observing that
with
Gy(2)=Go(2) +Go(2)UGy(2). (3.18 (p'|Gu=(p'|Go(1+UGy)= —12<q>gjﬁ),
Hence, if we defind by Z” ﬂ
(Bt =(@{ VW ) (3.19

and applying it to the second term of the right-hand side of
then the second part of the two-potential formula becomes Eq. (3.20, we arrive at the integral equation for
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<|3|f(z)||2>:(qygy‘ﬁ>|\”/|q>;})> TheAinputs to this integral equatio('@g’_gl\ﬂ/kbgfg) and
1 (CDgfﬁ) |[V|p’), are expressed by the scattering states from the
+j d5’<q>g‘5)|\”/|p"> —(p'|t(2)|K). pure hard-core parh(*), and the remainder of the potential,
P V. From Egs.(3.11) and (3.14), the scattering state®(*)
2p can be expressed simply by spherical Bessel and Hankel
(3.22  functions as
|
0 (r<ce)
DY) (k)= \F | ji(ke) (3.23
gl 1Ny s . _ (i)
5 5I’I55’s 7TI Jl(kr) hl(:)(qc) h| (qr) (r>C)
|
allowing the inputs to be easily calculated. Thus, the integral q q
equation(3.23 can be solved in a similar manner as de- L 2 =Aw %, 4.3

scribed in Sec. Il. V2um,  N2us

Consequently, combining the analytic expression given in

Egs.(3.15 and(3.16) with the solution of this integral equa- with
tion, we easily obtain the off-shettmatrix for a hard-core A?=ms—m,. (4.4)
potential.
By these relationg4.3) and (4.2) it is easy to realize Eq.
IV. CUSPS AND ROUND PEAKS CAUSED (4.1). These equations constitute a mapping of the Riemann

BY NEARBY POLES energy surface to the complex plane which is shown in
Fig. 1. Of course, there are 4 possible quadrants where
As described in Sec. |, the main aim of this paper is tocan be located, and for eagh two different values ofj, are

searcht-matrix poles for various'Ninteractions around the allowed by Eq.(4.1). Hence, there are 8 possible cases in
2N threshold. In Eq(2.4), thet-matrix elements are defined specifying to which quadrants both andg, belong on their
by the relative momenta between the hyperons and the
nucleon,q, in the case ofA-N andq, in the case o&-N.
However, these momenta are not independent and are related
to the energyE through Eq.(2.5). This can be rewritten as

2 2
1 az

—+tMmMytmMy=—-+my+tms=E. 4.1
P NFMA =5 T Mt My 4.9

Thus, eacht-matrix element is a function of the ener@y
and has branch points at the two threshddsmy+m, and (==
E=my+ms. We therefore encounter a somewhat compli-
cated Riemann energy surface with four sheets, and must
specify how they are related to the upper and lower halves of
theq, andq, planeg7,14]. In two-channel problems, a pro-
cedure called uniformizatiofiL6] is very convenient to map
the 4 Riemann sheets into one plane. This is used in the —i [k =0

. . L : (3, 3] (4, 4]
present analysis. The uniformization procedure introduces a (=i, —i)
new variable in place of the energy, in terms of which the
t-matrix becomes single-valued. Following REE6], we in-

troduce such a variable which satisfies FIG. 1. Complexw plane into which the energy Riemann sur-
face is mapped. The two numbers inside the square brackets indi-

cate the quadrants to whidy and g, belong, respectively.The
relation between the enerdyand the momentg, andq, is given

(_) _i)

a1 az

2, + 20, =Aw (4.2 by Eq.(4.1).] The parentheses show whetlgrandq, are positive,
negative, positive imaginary, or negative imaginary, respectively.
The bold line expresses the region where bound or scattering states
and exist if present.
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(a) 17 (a) 7
/w BN threshold below the SN threshold
0 0 \
(b) g || ( b ) o lgz|
\&N threshold /_W XN threshold
o)
o]
o a2 @
(c) . (¢c) O
SN threshold 5

SN threshold £

FIG. 2. Shape of th& N elastic total cross sectiamaround the
>N threshold in the case a nearbynatrix pole is located in the
region[4,2]. (The pole resides in the second quadrang©f) The
cross sections given by Eq.(4.11) are plotted(a) as a function of
|g,| below the threshold(b) as a function ofy, above the thresh- sponds to thexN threshold, the quadrant to whiaf be-
old, and(c) as a function oE. longs varies as +2—3—4 and the quadrants @f; as 1

—4—1—-4.
own complex planes. The complex plane in Fig. 1 is di- Let us now considerthe_ relation betwegr_l the shapes of the
vided accordingly into 8 parts, each of which contains twoA N elastic total cross s_ectlon and _the p05|t|ons_of a pole near
numbers inside square brackets indicating the quadrants #§€=N threshold. One important difference to single channel
which g, andq, belong. The bold line expresses the regionProblems is that there exists the reg[dng] touching thexN
where bound or scattering states exist if present. e threshold. Suppose a pole .eX|sts in this region close to the
threshold is located ab=1, and the> N threshold resides at threshold, then thé\N elastic total cross section takes the
shape of a cusp just at the threshold. On the other hand, if a
pole resides in the regid@,2] or [4,4] close to the bold line
mentioned above, the cross section shows a round peak of
the Breit-Wigner form. A pole lying in the regiof4,2] is
often called an unstable bound stét¢BS) pole[7].

We shall now discuss the above mentioned behavior of
(a) o the cross sections. Assuming that theatrix has a pole at

FIG. 4. Same as Fig. 2 but for the caseraatrix pole is located
in the region[2,4]. (The pole resides in the fourth quadrantc.

w=1. If moving counterclockwise around=i, the quad-
rant to whichq, belongs changes as12—3—4, and at the
same time the quadrant gf, changes as +2—1—2. On
the other hand, if one moves aroums=1 which corre-

below the £N threshold
50
O -
(b) g |¢I2 | 40
above the XN threshold ..g 3071
N}
° 7 20¢
(c) 19
1or "
620 I 64I10 I 660
Py [MeV/c]

2N threshold E
FIG. 5. AN elastic total cross sections around i threshold

FIG. 3. Same as Fig. 2 but for the caseraatrix pole is located as a function ofA lab momentum. Predictions by the force models

in the region[1,3]. (The pole resides in the third quadrantcp). of the Nijmegen group NSC97f, NSC89, ND, and NF are shown.
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TABLE I. Poles near thexN threshold for the component Im ¢
35,-3D, of the various force models. The positions of the poles are (fm)
shown on the complex planes of the relative momenta inAhe 0.2
and XN channels,q; and q,, respectively. The corresponding °
center-of-mass energies are indicatedeby
04 02 0 02 Re

-1 -1 &,

Model q; (fm™) g, (fm™) E (MeV) (fm=1)
D

NSC97f (1.46, —0.04  (—0.35, 0.15  (2135.6, —3.89 o NSCoTE(~035, 0.15

NSC89 (1.37, 0.03  (—0.04, —0.39 (2126.3, 1.0y 02 )

_ _ + Nscgg (—0.04, —0.39)

ND (1.43, 0.0 (—0.18, —0.08 (2132.8, 1.0y (=0.18, —0.08)

NF (1.44, —0.02 (—0.28, 0.12 (2134.2,-2.49 :ﬁ (—0‘28, 0‘12)
* 04

the position €1,9,)=(a;,a,) and the corresponding en- -
ergy isE,, it follows that FIG. 6. Positions of the poles for the force models NSC97f,

NSC89, ND, and NF in the complex, plane.
2 2

@y @
Eo=5—+mytmy=5—+my+ms. (4.5 R. ,

2 ohe (PIT, (Bl =22 @8
Then, thet-matrix elements around the pole can be approxi- 2 72
mated as However, the expressiof.7) is not appropriate around the

Ri(p.p’) 3N threshold. As already mentioned, this is because if the
(p| T (E)|p')= ﬂ_ (4.6)  Ppole moves around thEN threshold, the quadrant to which
. E-Eo a, belongs changes as-14—1—4, while the quadrant in

which «5, is located changes as12— 3—4. Therefore, the
expression(4.7) can not distinguish whether the pole is situ-
aftd in the region$4,2] or [4,4], or in the regiong1,1] or
[1,3]. On the other hand, the expressid@n8) can distinguish
between the regions and so will be used here.

Let us now infer from Eq(4.8 the shapes of th N
elastic total cross sectiom around theX N threshold. Since

The approximatior(4.6) of a first-order pole holds even in
the case when the pole resides in Riemann sheets other th
the first, which is proved for example in RgR0] for a
single channel case. The extension to the coupléd> N
system is straightforward. Notice, however, for all pairs of
(91,92)=(* a;,* a,) the energies defined by Ed4.1)
take the same valug, but reside in different places on the

Riemann energy surface. The approximatidrf) is there- o [(qy| T1u(E)|qp)]? (4.9
fore valid only around §1,0,) = (a1, a5).
From Egs.(4.1) and(4.5), we can rewrite Eq(4.6) as the g, dependence of the cross section becomes roughly
ﬁij(p1p/) 1|2
T (E)|p' )= —"~ 4. o 4.1
(PIT(B)P) === (4.7 o = (4.10
or Writing @,=a+ib, we have
! (g,=i|gy|: below the =N threshold
(ool —b)?+a? 72 ’
o 1 (4.1
@2’ (g,>0: above theXN threshold.

For the three cases, when the pole is located in the regiormeaks of the Breit-Wigner forrfFigs. 2c) or 4(c)], and are
[4,2], [1,3] and[4,4], we plot the cross sectionsexpressed quite similar to the resonances in single channel problems. In
by Eq. (4.1 in Figs. 2, 3 and 4, respectively. Notice that contrast, if the pole sits in the regi¢f,3], the cross section
Figs. 4c), 3(c), and 4c) show the cross section as a function forms a large cusp just at the thresh@klg. 3(c)]. In Ref.
of the energyE, hence its derivative at the threshold energy[7], these types of poles are named inelastic virtual state
is infinite according to the relatio@.1). If the pole is located poles. We should recognize that such a large cusp is caused
in the regiong4,2] or [4,4], the cross sections show round by the pole, and is not a simple threshold effect. Some such
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Im ¢ TABLE 1. Poles below theAN threshold. The scattering
(fm™) lengths indicated by are also shown. See the caption to Table | for
0.2 other details.
° Model  Partial wave q; (fm™) g, fm™Y) E (MeV) a (fm)
-04 -0.2 0 0.2 Re 1
(33—1) NSC97f Sy (0,-0.27 (0,149 (2051.8,0 —2.59
o 35,-3D; (0, -0.39 (0,1.49 (2049.3,0 —1.70

NSC89 15, (0,-0.289 (0,1.47 (20515, 0 —2.48

© A=11(-024, 0.07) 35,-3D, (0,-0.45 (0, 1.5) (2046.8, 0 —1.32

+ 02 g A=1.0 (018, —0.08)

ND 15, (0,-0.35 (0,1.49 (2050.0,0 —1.83
+ A=09 (014, ~0.22) 35,-3D; (0, -0.35 (0, 1.49 (2050.0,0 —1.89
NF s, (0, -0.3D) (0,1.489 (2050.8,0 —2.19

04 55,-°D;  (0,-0.36 (0, 1.49 (2049.7,0 —1.83

FIG. 7. Trajectory of the pole for the potential ND in the com-

plex g, plane with the multiplied overall strength paramexer the unstable bound state exists in the two-bddysystem,

, , and very likely in theYNN system. We should emphasize
poles, as we shall show in the next section, can actually,t the poles in the regidi,3] which produce the cusps are
move into the regior{4,2] and convert to unstable bound g equally important as those in the regiér2]. To demon-
state poles when the potential strength is slightly increasedgyyate this, we calculated the trajectory of the pole for the

potential ND, multiplying it by an overall strength parameter
V. RESULTS AND DISCUSSIONS \. The trajectory is shown in Fig. 7. The pole moves from

. . . the region[1,3] into [4,2] as the potential strength increases,
We searched-matrix poles for various meson theoretical
. . i ; . and becomes an unstable bound state pole. As for the loca-
YN interactions in the manner described in Secs. Il and Ill.

We used two soft core models of the Nijmegen group,tion of poles in the complex energy sheets, we refer the
NSC89[5] and the recently proposed new soft core modelre"’lv(?/ersd.t ° Ref[?]dV\t/rr]\etre tr:ey alre nlcel)t/ |Ilustr§it§cih h
NSC97[15], which includes six different versions nhamagd old Ien +zcb()lze{le theaar?t?biir?d?gt;[)gs (;]Iizrbelow r;lSN_

b, c, d, eandf. In this study we analyzed NSC97f. Both soft h ) hold h for thé d 3Sp-3D Th

core models NSC89 and NSC97f reproduce the correct binch reshold are shown for the, and °S,-"D, waves. The

ing energy of the hypertritofi2,3,21. We also chose hard So poles are relatively close to the threshold, and as ex-
core modelsD [12] and F [13] of the Nijmegen groutab- pected correlate to the scattering length. As mentioned ear-

breviated as ND and NF respectivelyhich are still used in It|)er, the AfN ch:ter“ng Ien%th: dhatlveHyevtv te l;)ethdetim:med f
hypernuclear physics studies. ecause of scant cross section data. However, the analyses o

; - . the hypertriton [2,3,21 constrain the Swave scattering
Figure 5 shows thé\ N elastic total cross sections around : .
theX N threshold for the force models above. The model NFIengths. The potentials NSC97f and NSCB9 which reproduce

yields a round peak, while ND and NSC89 form cusps just aPOIh the hypertriton bin_ding energy f”m.d thel cross section
the threshold. For NSC97f, the shape is unclear. All the endata hg“’e Sy scattering Iength. within-2.6 to —2.4 fm,
hancements are found to be caused by iBg-°D, force and a°s, scattering _Iength W|th|1n—1.7 to _.1'3 fm. The
component. Unfortunately, there exist only sparse experig_o(;r;;pfonﬂn_g rr]Josmor)\ I(\)lf tlhe_SO pole is at ablout
mental data of theAN cross sections, and so we can not _ ~-</ 1M =N the g, (A-N relative momentuincomplex

. . . lane.
determine its actual shape. However, a prominent peaR'@"' . .
around thes N threshold hF;s been observedpin llhé+dp Finally, we would like to point out that the analyses of the
—p+ A+ reaction[22] kaon  photoproduction  processes,d(y,K*)YN or
For every potential used, we found a pole near ¢ *He(y,K )Y NN offer a very promising way to clarify the
threshold in the’S.-3D Wav:a These are shown in Table |. Effécts caused by th¥N final-state interaction around the
In Fig. 6, the polés arle also.displayed in the compiext " AN andXN thresholds. These processes are experimentally
. ) | " | f and h feasible at TILAB and SPring-8. Further, the interactions of
N relative mom.entumpane.. For NSC97f and NF, the the photon andK* meson with the baryons are compara-
poles are located in thet,2] region of thew plane, and for . )
NSC89 and ND, they lie in the regiofi,3]. The relation tively Weak! which enables one to formu!ate and ca}ICL_JIate
between the poéition of the pole and thé shape of AhN these reactions rather well. All the techniques and insights

cross section described in Sec. IV holds for all potentialsqame.oI in this article are immediately applicable to _those

except NSC97f. The pole for NSC97f is close to the bOund_reactmns and we plan to perform such calculations in the

ary between the regiong,2] and[1,3], and it is farther from near future.

the imaginary axis of thg, plane than for NF. This explains

why the shape of th& N cross sections for this potential is

not a definite example of a cusp or a round peak type. We would like to thank W. Glokle for discussions, and
For all the interaction models, the poles are close to theritical and helpful comments. We are also grateful to L.

2N threshold and cause some enhancements. For NSC9&nthony for proofreading the final manuscript.
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