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S-matrix poles near the LN and SN thresholds in the coupledLN-SN system

K. Miyagawa and H. Yamamura
Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700, Japan

~Received 4 March 1999; published 8 July 1999!

We searcht-matrix poles forLN-SN coupling interactions using two soft core models of the Nijmegen
group which bind the hypertriton at the correct binding energy, and hard core models which are still influential
in hypernuclear physics. To treat the hard core potentials, a useful method for calculating the off-shellt-matrix
is proposed. We find poles close to theSN threshold in the second or third quadrant of the complex plane of
theSN relative momentum. The relation between the poles and the shape of theLN elastic total cross section
is discussed based on a so-called uniformization by which two-channelt-matrices become single-valued on a
complex valuable. We also find poles near theLN threshold. These are correlated to theS-waveLN scattering
lengths, the values of which have yet to be determined.@S0556-2813~99!00908-5#

PACS number~s!: 13.75.Ev, 21.45.1v, 21.30.2x, 21.80.1a
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I. INTRODUCTION

Most of our knowledge of theYN interaction has been
obtained from heavy hypernuclei and it remains rather qu
tative. In contrast, recent theoretical analyses of few-bar
systems with strangeness such as the three-body calcula
of L

3 H @1–3# and the four-body study ofL
4 H @4# yield more

qualitative results, being based on modern baryon-bar
forces and on rigorous solutions of the few-body Sch¨-
dinger equations. Thus, they offer a great advantage to s
tinize YN interaction models. As an example, Refs.@1–3#
demonstrated that the Nijmegen soft coreYN interaction

NSC89@5# binds the hypertriton, but the Ju¨lich Ã potential
@6# does not. This is possibly caused by the sizable differe
between the1S0 force components in the low-energy regio
@2#. This shows that even basic quantities such as scatte
lengths are still undetermined.

The few-body analysis ofL
3 H @1–3# has also clarified the

effect of theL-S conversion which was exactly included
the coupled channel formalism@1#. Although in the case of
the hypertriton the admixture ofSNN states is only 0.5%
the expectation values of the sum of the transition potent
VLN,SN and VSN,LN are approximately 8% of the total po
tential energy, which is crucial for the binding of the hype
triton @2,3#.

This knowledge about theS states coupling, however, ha
been obtained from the bound state lying below theLNN
threshold. This should be extended to analyses close to tS
threshold, whereL-S conversion effects will emerge
sharply. In this region, so-called unstable bound states@7#
have received attention and have been searched for ex
mentally. Only one state in theS(L)NNN system is con-
firmed in the reaction4He(K2,p2) @8#. The existence of
such an unstable bound state in theA54 system was pre
dicted by Haradaet al. where the coupling to continuum
LNNN states was approximated by aSN optical potential
@9#. However, for understanding the actual features ofL-S
conversion, it is highly desirable to treat it directly using
realisticLN-SN coupling interaction.

At present, it is technically possible to incorporate p
cisely the coupling toL continuum states for only theSN
0556-2813/99/60~2!/024003~9!/$15.00 60 0240
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andSNN systems. Afnan and Gibson@10# calculated theLd
elastic scattering fully incorporating this coupling but usi
simple phenomenologicalYN interactions. They then found
and analyzed enhancements just below theSNN threshold.
To examine more closely theLN-SN coupling interaction, a
similar study applying more sophisticated meson-theoret
interactions is necessary. It is also important to analyze e
tromagnetic hyperon-production processes@11#, which are
experimentally accessible.

For theYN interaction, there exists a variety of strengt
for the LN-SN coupling among extensively used meso
theoretical potentials. The soft core model@5# and the hard
core modelD @12# of the Nijmegen group show cusps in th
LN elastic total cross section just at theSN threshold with
different magnitudes, while the Nijmegen hard core modeF
@13# and the Ju¨lich models@6# show round resonance peak
below the threshold. We stress here that these promin
cusps do not mean simple threshold effects, but sugges
existence oft-matrix poles in unphysical Riemann shee
This is important because the poles might move and bec
unstable bound state poles if the coupling strengths var
Some examples for separable potentials are given in R
@14#. In this paper, we shall locate these poles and foll
their trajectories for the Nijmegen potentials.

Knowledge ofYN t-matrix around theSN threshold is
crucial for the analysis ofLNN-SNN continuum states us
ing meson-theoretical interactions. This paper accordin
investigates poles of thet-matrices for the NijmegenF, D
and the two soft core interactions@5,15#. This is achieved in
momentum space and hence the results are directly a
cable to the three-body calculation. The behavior
t-matrices around an inelastic threshold in coupled chan
problems and the effects of nearby poles have often b
studied@7,14#. In such analyses it is important to understa
the connection between various Riemann energy sheets
how far from the physical region the poles are located. In t
analysis we adopt a so-called uniformization given by Ne
ton @16#, by which the t-matrix for two-channel problems
becomes single-valued after a suitable variable is introdu
in place of energy. We thereby clearly describe the positi
and the trajectories of thet-matrix poles in the Riemann
sheets.
©1999 The American Physical Society03-1
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Section II gives the expression forLN-SN t-matrix
which is analytically continued to the complex energy pla
Section III describes a method to treat a hard core poten
in momentum space. This is for the purpose of treating
Nijmegen hard core potentials which are influential in hyp
nuclear physics. In Sec. IV, the uniformization mention
above is introduced, thereby we discuss how the shape o
LN elastic total cross section around theSN threshold is
related to the positions of nearby poles. In Sec. V, the p
tions of the t-matrix poles for the Nijmegen soft and ha
core models are described. We also show the trajectorie
the poles when the strengths of the potentials are increa

II. ANALYTIC CONTINUATION OF THE T-MATRIX

In this section, we give the expression of the off-sh
t-matrix for theLN-SN system and continue it analyticall
into the complex energy plane.

The coupledt-matrices for theLN-SN system are de-
fined by the integral equations

Ti j ~z!5Vi j 1(
k

VikG0
~k!~z!Tk j~z!, i , j ,k51,2,

~2.1!

with

G0
~k!~z!5~z2H0

~k!!21, z5E1 i«, ~2.2!

where i , j ,k have integer values of 1 and 2 for theLN and
SN channels, respectively. The free HamiltonianH0

(k) for
channelk is defined as

H0
~k!5

pk
2

2mk
1mN1mY

~k! . ~2.3!

This refers to the total momentum zero frame and we den
the relative momentum between the nucleon and the hyp
by pk and the reduced mass of channelk by mk . The masses
mY

(k)(k51,2) indicatemL and mS , respectively. After per-
forming the partial-wave decomposition in momentu
space, we express the projectedt-matrix elements for a given
total angular momentum and parity again byT. Then Eq.
~2.1! reads

^puTi j ~z!up8&5^puVi j up8&1(
k
E

0

`

dp9p92^puVikup9&

3
1

ek2
p92

2mk
1 i«

^p9uTk j~z!up8&, ~2.4!

with
02400
.
al
e
-

he

i-

of
d.

l

te
on

ek[
qk

2

2mk
5E2mN2mY

~k! . ~2.5!

To simplify the notation, thep indices have been omitted
and the partial-wave elements are assumed to have no
pling between different orbital angular momenta or chann
spin states. The extension to the case with couplings
straightforward.

Now consider the energyE to be a complex number
Henceek and

qk5A2mkek ~2.6!

are complex numbers. We introduce the function

hk~p9![^puVikup9&^p9uTk j~z!up8& ~2.7!

and define each term in thek-summation of the right-hand
side of Eq.~2.4! by I k(ek) as

I k~ek!5E
0

`

dp9
p92hk~p9!

ek2
p92

2mk

. ~2.8!

This function has a cut forek>0, in other words, a cut along
mN1mY

(k)<E,`. Thus, there are two cuts in theE plane
starting at theN1L andN1S thresholds, respectively. Th
function values beyond the cuts are defined by analytic c
tinuation. This is achieved by modifying Eq.~2.8! as

I k~ek!5E
0

`

dp9
p92hk~p9!22mkekhk~qk!

ek2
p92

2mk

1hk~qk!E
0

`

dp9
2mkek

ek2
p92

2mk

, ~2.9!

where we assume thathk(p) can be continued analytically
and has no singularity in the trajectory from realp to the
complex valueqk given in Eq.~2.6!. This is true for the case
here. The cut now appears explicitly in the second term
Eq. ~2.9!. It is then easy to show

E
0

`

dp9
2mkek

ek2
p92

2mk

52 ipmkA2mkek52 ipmkqk ,

~2.10!

which defines the integral in both sheets of the Riemannek
surface, corresponding to positive and negative imagin
parts ofqk . From Eqs.~2.9! and ~2.10!, we can rewrite Eq.
~2.4! as
3-2
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^puTi j ~z!up8&5^puVi j up8&1(
k F E0

`

dp9S p92^puVikup9&^p9uTk j~z!up8&

ek2
p92

2mk

2
2mkek^puVikuqk&^qkuTk j~z!up8&

ek2
p92

2mk

D
2 ipmkqk^puVikuqk&^qkuTk j~z!up8&G . ~2.11!

This equation contains a newt-matrix element̂ qkuTk jup8& which requires the additional equation

^qkuTi j ~z!up8&5^qkuVi j up8&1(
k F E0

`

dp9S p92^qkuVikup9&^p9uTk j~z!up8&

ek2
p92

2mk

2
2mkek^qkuVikuqk&^qkuTk j~z!up8&

ek2
p92

2mk

D
2 ipmkqk^qkuVikuqk&^qkuTk j~z!up8&G . ~2.12!
l
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Equations~2.11! and ~2.12! form a closed set of integra
equations@17# and define thet-matrix elements on the entir
qk planes or the Riemann surface of the complex energyE.
This set is solved in the following sections.

III. T-MATRIX FOR A HARD CORE POTENTIAL

Although it is now rare to represent the short-range rep
sion of theNN interaction by a hard core, the NijmegenD
andF models of theYN interaction with hard cores are sti
used frequently in hypernuclear physics. Therefore, in
section we explore a method to obtain the off-shellt-matrix
for a hard core potential in momentum space.

The off-shellt-matrix can be expressed as

^pW uT~z!ukW &5^pW uVuC
q,kW
~1 !

&, ~3.1!

whereC
q,kW
(1)

is defined by

uC
q,kW
~1 !

&5ukW &1G0~z!VuC
q,kW
~1 !

&, ~3.2!

with

z5
q2

2m
1 i«. ~3.3!

To simplify the notation, theLN-SN coupling has been
omitted. First, we divide the interactionV, into the pure hard
core partU and the remainderV̂ as

V5U1V̂ ~3.4!

and use the two-potential formula@18# to obtain

^pW uT~z!ukW &5^pW uUuF
q,kW
~1 !

&1^Fq,pW
~2 !uV̂uC

q,kW
~1 !

&, ~3.5!

with
02400
l-

is

uF
q,kW
~1 !

&5ukW &1G0~z!UuF
q,kW
~1 !

&, ~3.6!

uFq,pW
~2 !&5upW &1G0~z* !UuFq,pW

~2 !&. ~3.7!

As we shall show later, the first term of the right-hand side
Eq. ~3.5! is expressed analytically, and the second term s
isfies an integral equation similar to the Lippman
Schwinger equation which can be solved using a stand
method. Our method is thus a natural extension of a stand
treatment without a hard core, and is therefore useful
only for the present purpose, but also for other few-bo
calculations in momentum space.

The analytic expression of the first term in Eq.~3.5! has
already been given by Takemiya@19#, who proposed a
method to evaluate the off-shellt-matrix for a hard-core po-
tential in coordinate space. Here, we use this method onl
the treatment of the pure hard-core part of the formula.

F
q,kW
(1)

and Fq,pW
(2) in Eqs. ~3.6! and ~3.7! can be expanded

into partial waves

F
q,kW
~6 !

~rW !5(
l 8s8
ls

JM

yl 8s8
JM

~ r̂ !F l 8s8 ls
J~6 !

~q,k,r !yls
JM†~ k̂! ~3.8!

and similarly C
q,kW
(1)

. Here, yLS
JM is the simultaneous eigen

function ofL2, S2, J2, andJz . We denote the pure-hard cor
part of Eq.~3.5! as

^pW u t̃ ~z!ukW &[^pW uUuF
q,kW
~1 !

& ~3.9!

and decompose it into partial waves

^pW u t̃ ~z!ukW &5(
l 8s8
ls

JM

yl 8s8
JM

~ r̂ ! t̃ l 8s8 ls
J

~p,k;z!yls
JM†~ k̂!.

~3.10!
3-3
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Reference@19# proves that if we introduce a functionx de-
fined by

x l 8s8 ls
J~6 !

~q,k,r !

r
A2

p
i l[F l 8s8 ls

J~6 !
~q,k,r !2A2

p
i l j l~kr !

~3.11!

it satisfies the equation

S q21
d2

dr22
l 8~ l 811!

r 2 Dx l 8s8 ls
J~6 !

~q,k,r !

2(
l 9s9

2mUl 8s8 l 9s9
J

~r !x l 9s9 ls
J~6 !

~q,k,r !

5r2mUl 8s8 ls
J

~r ! j l~kr ! ~3.12!
tia

es

02400
and the off-shell element oft̃ is given byx as

t̃ l 8s8 ls
J

~p,k;z!5
1

2m

2

p
i 2 l 81 lE

0

`

drr j l 8~pr !

3S q21
d2

dr22
l 8~ l 811!

r 2 Dx l 8s8 ls
J~1 !

~q,k,r !.

~3.13!

Following the method described in Ref.@19# one arrives at
the analytic expression of thet̃ element in Eq.~3.13!. For a
pure hard core potential with radiusc, Eq. ~3.12! has the
solution
x l 8s8 ls
J~6 !

~q,k,r !5d l 8 lds8sH 2r j l~kr ! ~r<c!,

2
j l~kc!

hl
~6 !~qc!

rhl
~6 !~qr ! ~r>c!.

~3.14!

Note, there is no coupling inl ands, a result which can be found by generating the hard-core potential matrixU as limits of
square well potentials~see Ref.@19#!. Further, from Eq.~3.14! the integration in Eq.~3.13! is limited to r<c and performing
the integration we obtain the final expression fort̃

t̃ l 8s8 ls
J

~p,k;z!5d l 8 lds8s

1

2m

2

p
i 2 l 81 lF2c j l~pc!

d

dr
rhl

~1 !~qr !U
r 5c

j l~kc!

hl
~1 !~qc!

1
d

dr
r j l~pr !U

r 5c

c j l~kc!

2~q22p2!E
0

c

drr 2 j l~pr ! j l~kr !G . ~3.15!

The last term on the right-hand side of this equation is shown in Ref.@19# to be

E
0

c

drr 2 j l~pr ! j l~kr !5H c2

k22p2 @k j l~pc! j l 11~kc!2p j l~kc! j l 11~pc!# ~pÞk!,

c2

2k
„kc@ j l

2~kc!1 j l 11
2 ~kc!#2~2l 11! j l~kc! j l 11~kc!… ~p5k!.

~3.16!
of
Next, let us consider the second part of the two-poten
formula ~3.5!. The stateC

q,kW
(1)

given in Eq. ~3.2! satisfies
another equation@18#

uC
q,kW
~1 !

&5uF
q,kW
~1 !

&1GU~z!V̂uC
q,kW
~1 !

&, ~3.17!

with

GU~z!5G0~z!1G0~z!UGU~z!. ~3.18!

Hence, if we definet̂ by

^pW u t̂~z!ukW &[^Fq,pW
~2 !uV̂uC

q,kW
~1 !

& ~3.19!

then the second part of the two-potential formula becom
l ^pW u t̂~z!ukW &5^Fq,pW
~2 !uV̂uF

q,kW
~1 !

&1^Fq,pW
~2 !uV̂GU~z!V̂uC

q,kW
~1 !

&.

~3.20!

Observing that

^pW 8uGU5^pW 8uG0~11UGU!5
1

z2
p82

2m

^Fq,pW 8
~2 ! u ~3.21!

and applying it to the second term of the right-hand side
Eq. ~3.20!, we arrive at the integral equation fort̂
3-4
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^pW u t̂~z!ukW &5^Fq,pW
~2 !uV̂uF

q,kW
~1 !

&

1E dpW 8^Fq,pW
~2 !uV̂upW 8&

1

z2
p82

2m

^pW 8u t̂~z!ukW &.

~3.22!
ra
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The inputs to this integral equation,^Fq,pW
(2)uV̂uF

q,kW
(1)

& and

^Fq,pW
(2)uV̂upW 8&, are expressed by the scattering states from

pure hard-core part,F (6), and the remainder of the potentia

V̂. From Eqs.~3.11! and ~3.14!, the scattering statesF (6)

can be expressed simply by spherical Bessel and Ha
functions as
F l 8s8 ls
J~6 !

~q,k,r !5H 0 ~r ,c!

d l 8 lds8sA2

p
i l S j l~kr !2

j l~kc!

hl
~6 !~qc!

hl
~6 !~qr ! D ~r .c!

~3.23!
ann

in

r-
indi-

ely.
tates
allowing the inputs to be easily calculated. Thus, the integ
equation~3.23! can be solved in a similar manner as d
scribed in Sec. II.

Consequently, combining the analytic expression given
Eqs.~3.15! and~3.16! with the solution of this integral equa
tion, we easily obtain the off-shellt-matrix for a hard-core
potential.

IV. CUSPS AND ROUND PEAKS CAUSED
BY NEARBY POLES

As described in Sec. I, the main aim of this paper is
searcht-matrix poles for variousYN interactions around the
SN threshold. In Eq.~2.4!, the t-matrix elements are define
by the relative momenta between the hyperons and
nucleon,q1 in the case ofL-N andq2 in the case ofS-N.
However, these momenta are not independent and are re
to the energyE through Eq.~2.5!. This can be rewritten as

q1
2

2m1
1mN1mL5

q2
2

2m2
1mN1mS5E. ~4.1!

Thus, eacht-matrix element is a function of the energyE,
and has branch points at the two thresholdsE5mN1mL and
E5mN1mS . We therefore encounter a somewhat comp
cated Riemann energy surface with four sheets, and m
specify how they are related to the upper and lower halve
theq1 andq2 planes@7,14#. In two-channel problems, a pro
cedure called uniformization@16# is very convenient to map
the 4 Riemann sheets into one plane. This is used in
present analysis. The uniformization procedure introduce
new variable in place of the energy, in terms of which t
t-matrix becomes single-valued. Following Ref.@16#, we in-
troduce such a variablev which satisfies

q1

A2m1

1
q2

A2m2

5Dv ~4.2!

and
l
-

n

e

ted

-
st

of

e
a

q1

A2m1

2
q2

A2m2

5Dv21, ~4.3!

with

D2[mS2mL . ~4.4!

By these relations~4.3! and ~4.2! it is easy to realize Eq.
~4.1!. These equations constitute a mapping of the Riem
energy surface to the complexv plane which is shown in
Fig. 1. Of course, there are 4 possible quadrants whereq1
can be located, and for eachq1 two different values ofq2 are
allowed by Eq.~4.1!. Hence, there are 8 possible cases
specifying to which quadrants bothq1 andq2 belong on their

FIG. 1. Complexv plane into which the energy Riemann su
face is mapped. The two numbers inside the square brackets
cate the quadrants to whichq1 and q2 belong, respectively.@The
relation between the energyE and the momentaq1 andq2 is given
by Eq.~4.1!.# The parentheses show whetherq1 andq2 are positive,
negative, positive imaginary, or negative imaginary, respectiv
The bold line expresses the region where bound or scattering s
exist if present.
3-5
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own complex planes. The complexv plane in Fig. 1 is di-
vided accordingly into 8 parts, each of which contains t
numbers inside square brackets indicating the quadran
which q1 andq2 belong. The bold line expresses the regi
where bound or scattering states exist if present. TheLN
threshold is located atv5 i , and theSN threshold resides a
v51. If moving counterclockwise aroundv5 i , the quad-
rant to whichq1 belongs changes as 1→2→3→4, and at the
same time the quadrant ofq2 changes as 1→2→1→2. On
the other hand, if one moves aroundv51 which corre-

FIG. 2. Shape of theLN elastic total cross sections around the
SN threshold in the case a nearbyt-matrix pole is located in the
region @4,2#. ~The pole resides in the second quadrant ofq2 .) The
cross sectionss given by Eq.~4.11! are plotted~a! as a function of
uq2u below the threshold,~b! as a function ofq2 above the thresh-
old, and~c! as a function ofE.

FIG. 3. Same as Fig. 2 but for the case at-matrix pole is located
in the region@1,3#. ~The pole resides in the third quadrant ofq2).
02400
to

sponds to theSN threshold, the quadrant to whichq2 be-
longs varies as 1→2→3→4 and the quadrants ofq1 as 1
→4→1→4.

Let us now consider the relation between the shapes of
LN elastic total cross section and the positions of a pole n
theSN threshold. One important difference to single chan
problems is that there exists the region@1,3# touching theSN
threshold. Suppose a pole exists in this region close to
threshold, then theLN elastic total cross section takes th
shape of a cusp just at the threshold. On the other hand,
pole resides in the region@4,2# or @4,4# close to the bold line
mentioned above, the cross section shows a round pea
the Breit-Wigner form. A pole lying in the region@4,2# is
often called an unstable bound state~UBS! pole @7#.

We shall now discuss the above mentioned behavior
the cross sections. Assuming that thet-matrix has a pole at

FIG. 4. Same as Fig. 2 but for the case at-matrix pole is located
in the region@2,4#. ~The pole resides in the fourth quadrant ofq2).

FIG. 5. LN elastic total cross sections around theSN threshold
as a function ofL lab momentum. Predictions by the force mode
of the Nijmegen group NSC97f, NSC89, ND, and NF are show
3-6
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the position (q1 ,q2)5(a1 ,a2) and the corresponding en
ergy isE0 , it follows that

E05
a1

2

2m1
1mN1mL5

a2
2

2m2
1mN1mS . ~4.5!

Then, thet-matrix elements around the pole can be appro
mated as

^puTi j ~E!up8&.
Ri j ~p,p8!

E2E0
. ~4.6!

The approximation~4.6! of a first-order pole holds even i
the case when the pole resides in Riemann sheets other
the first, which is proved for example in Ref.@20# for a
single channel case. The extension to the coupledLN-SN
system is straightforward. Notice, however, for all pairs
(q1 ,q2)5(6a1 ,6a2) the energies defined by Eq.~4.1!
take the same valueE0 but reside in different places on th
Riemann energy surface. The approximation~4.6! is there-
fore valid only around (q1 ,q2)5(a1 ,a2).

From Eqs.~4.1! and ~4.5!, we can rewrite Eq.~4.6! as

^puTi j ~E!up8&.
R̃i j ~p,p8!

q12a1
~4.7!

or

TABLE I. Poles near theSN threshold for the componen
3S1-3D1 of the various force models. The positions of the poles
shown on the complex planes of the relative momenta in theLN
and SN channels,q1 and q2 , respectively. The correspondin
center-of-mass energies are indicated byE.

Model q1 ~fm21! q2 ~fm21! E ~MeV!

NSC97f ~1.46, 20.04! ~20.35, 0.15! ~2135.6, 23.89!
NSC89 ~1.37, 0.01! ~20.04, 20.39! ~2126.3, 1.07!
ND ~1.43, 0.01! ~20.18, 20.08! ~2132.8, 1.07!
NF ~1.44, 20.02! ~20.28, 0.12! ~2134.2, 22.49!
io

at
n

gy

d
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^puTi j ~E!up8&.
R̄i j ~p,p8!

q22a2
. ~4.8!

However, the expression~4.7! is not appropriate around th
SN threshold. As already mentioned, this is because if
pole moves around theSN threshold, the quadrant to whic
a1 belongs changes as 1→4→1→4, while the quadrant in
which a2 is located changes as 1→2→3→4. Therefore, the
expression~4.7! can not distinguish whether the pole is sit
ated in the regions@4,2# or @4,4#, or in the regions@1,1# or
@1,3#. On the other hand, the expression~4.8! can distinguish
between the regions and so will be used here.

Let us now infer from Eq.~4.8! the shapes of theLN
elastic total cross sections around theSN threshold. Since

s}u^q1uT11~E!uq1&u2 ~4.9!

the q2 dependence of the cross section becomes roughly

s}U 1

q22a2
U2

. ~4.10!

Writing a25a1 ib, we have

FIG. 6. Positions of the poles for the force models NSC9
NSC89, ND, and NF in the complexq2 plane.

e

s}H 1

~ uq2u2b!21a2 ~q25 i uq2u: below the SN threshold!,

1

~q22a!21b2 ~q2.0: above theSN threshold!.

~4.11!
. In

tate
used
uch
For the three cases, when the pole is located in the reg
@4,2#, @1,3# and@4,4#, we plot the cross sectionss expressed
by Eq. ~4.11! in Figs. 2, 3 and 4, respectively. Notice th
Figs. 2~c!, 3~c!, and 4~c! show the cross section as a functio
of the energyE, hence its derivative at the threshold ener
is infinite according to the relation~4.1!. If the pole is located
in the regions@4,2# or @4,4#, the cross sections show roun
nspeaks of the Breit-Wigner form@Figs. 2~c! or 4~c!#, and are
quite similar to the resonances in single channel problems
contrast, if the pole sits in the region@1,3#, the cross section
forms a large cusp just at the threshold@Fig. 3~c!#. In Ref.
@7#, these types of poles are named inelastic virtual s
poles. We should recognize that such a large cusp is ca
by the pole, and is not a simple threshold effect. Some s
3-7
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poles, as we shall show in the next section, can actu
move into the region@4,2# and convert to unstable boun
state poles when the potential strength is slightly increas

V. RESULTS AND DISCUSSIONS

We searchedt-matrix poles for various meson theoretic
YN interactions in the manner described in Secs. II and
We used two soft core models of the Nijmegen grou
NSC89 @5# and the recently proposed new soft core mo
NSC97@15#, which includes six different versions nameda,
b, c, d, eandf. In this study we analyzed NSC97f. Both so
core models NSC89 and NSC97f reproduce the correct b
ing energy of the hypertriton@2,3,21#. We also chose hard
core modelsD @12# andF @13# of the Nijmegen group~ab-
breviated as ND and NF respectively! which are still used in
hypernuclear physics studies.

Figure 5 shows theLN elastic total cross sections aroun
theSN threshold for the force models above. The model
yields a round peak, while ND and NSC89 form cusps jus
the threshold. For NSC97f, the shape is unclear. All the
hancements are found to be caused by the3S1-3D1 force
component. Unfortunately, there exist only sparse exp
mental data of theLN cross sections, and so we can n
determine its actual shape. However, a prominent p
around theSN threshold has been observed in theK21d
→p1L1p2 reaction@22#.

For every potential used, we found a pole near theSN
threshold in the3S1-3D1 wave. These are shown in Table
In Fig. 6, the poles are also displayed in the complexq2 ~
S-N relative momentum! plane. For NSC97f and NF, th
poles are located in the@4,2# region of thev plane, and for
NSC89 and ND, they lie in the region@1,3#. The relation
between the position of the pole and the shape of theL-N
cross section described in Sec. IV holds for all potenti
except NSC97f. The pole for NSC97f is close to the bou
ary between the regions@4,2# and@1,3#, and it is farther from
the imaginary axis of theq2 plane than for NF. This explain
why the shape of theLN cross sections for this potential
not a definite example of a cusp or a round peak type.

For all the interaction models, the poles are close to
SN threshold and cause some enhancements. For NSC

FIG. 7. Trajectory of the pole for the potential ND in the com
plex q2 plane with the multiplied overall strength parameterl.
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the unstable bound state exists in the two-bodyYN system,
and very likely in theYNN system. We should emphasiz
that the poles in the region@1,3# which produce the cusps ar
as equally important as those in the region@4,2#. To demon-
strate this, we calculated the trajectory of the pole for
potential ND, multiplying it by an overall strength paramet
l. The trajectory is shown in Fig. 7. The pole moves fro
the region@1,3# into @4,2# as the potential strength increase
and becomes an unstable bound state pole. As for the l
tion of poles in the complex energy sheets, we refer
readers to Ref.@7# where they are nicely illustrated.

We discovered that poles also exist near theLN thresh-
old. In Table II, the antibound-state poles below theLN
threshold are shown for the1S0 and 3S1-3D1 waves. The
1S0 poles are relatively close to the threshold, and as
pected correlate to the scattering length. As mentioned
lier, the LN scattering lengths have yet to be determin
because of scant cross section data. However, the analys
the hypertriton @2,3,21# constrain theS-wave scattering
lengths. The potentials NSC97f and NSC89 which reprod
both the hypertriton binding energy and theLN cross section
data have a1S0 scattering length within22.6 to 22.4 fm,
and a 3S1 scattering length within21.7 to 21.3 fm. The
corresponding position of the1S0 pole is at about
20.27i fm21 in the q1 (L-N relative momentum! complex
plane.

Finally, we would like to point out that the analyses of th
kaon photoproduction processes,d(g,K1)YN or
3He(g,K1)YNN offer a very promising way to clarify the
effects caused by theYN final-state interaction around th
LN andSN thresholds. These processes are experiment
feasible at TJLAB and SPring-8. Further, the interactions
the photon andK1 meson with the baryons are compar
tively weak, which enables one to formulate and calcul
these reactions rather well. All the techniques and insig
gained in this article are immediately applicable to tho
reactions and we plan to perform such calculations in
near future.
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TABLE II. Poles below theLN threshold. The scattering
lengths indicated bya are also shown. See the caption to Table I f
other details.

Model Partial wave q1 ~fm21! q2 ~fm21! E ~MeV! a ~fm!

NSC97f 1S0 ~0, 20.27! ~0, 1.47! ~2051.8, 0! 22.59
3S1-3D1 ~0, 20.37! ~0, 1.49! ~2049.3, 0! 21.70

NSC89 1S0 ~0, 20.28! ~0, 1.47! ~2051.5, 0! 22.48
3S1-3D1 ~0, 20.45! ~0, 1.51! ~2046.8, 0! 21.32

ND 1S0 ~0, 20.35! ~0, 1.49! ~2050.0, 0! 21.83
3S1-3D1 ~0, 20.35! ~0, 1.49! ~2050.0, 0! 21.89

NF 1S0 ~0, 20.31! ~0, 1.48! ~2050.8, 0! 22.19
3S1-3D1 ~0, 20.36! ~0, 1.49! ~2049.7, 0! 21.83
3-8
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