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Resonances in the three-neutron system
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A study of three-body resonances has been performed in the framework of configuration-space Faddeev
equations. The importance of keeping a sufficient number of terms in the asymptotic expansion of the reso-
nance wave function is pointed out. We investigated three neutrons interacting in selected force components
taken from realistiain forces. Three-neutron resonance pole trajectories connected to artificially enimamced
forces could be found. The final pole positions corresponding to the actual force strengths could not be found
due to the onset of numerical instabilities. The numerically reliable results achieved, however, make it likely,
that three-neutron resonance energies will have large imaginary parts and are therefore physically not inter-
esting. A straightforward application of complex scaling to three-nucleon systems with realistic forces could
not be controlled numerically S0556-28189)04207-1

PACS numbd(s): 21.30—x, 21.45+v, 24.10—i, 25.10+s

I. INTRODUCTION some theoretical underbinding results and 3NF'’s are used to
bridge that gap to the data point, alsh Besonance positions
Three-nucleon3N) resonances have not yet been firmly might finally be fine-tuned in this manner. These future rig-
established. The situation up to 1987 is giveflih A recent  orous results would also be an important guidance for experi-
investigation[2] of the process®He(s,7*)3n found no  ments and would clarify the hitherto controversial situation.
evidence of a resonance state of three neutrons. Earlier in- For the N system the bound state has been studied ex-
vestigationgd 3,4] pointed to resonances in the three neutrontensively in the last decades, resulting in numerically precise
(3n) and three proton (8) systems. The double charge ex- and converged solutions of théNF-addeev equatior|s5—
change process ofHe was also investigated ] criticiz- ~ 19]- Energy eigenvalues and wave functions have been gen-
ing previous work but pointing again to a3esonance, now erated with most modern nuclear Ham_|lton|ans in momen-
around (26-20 1) MeV. For the nnp system an excited state tum and coordinate space. Also numerlcally exqct solutions
around 7 MeV with a width of" = 0.6+ 0.3 MeV has been ©°f 3N Faddeev equations for continuum states with the same

suggested if6]. A variational study based on complex scal- Hgmlltonlans are now avallablg In momentum space f(.)r a
. oo . wide range of energidd.4]. The first model solutions also in
ing and simplified nucleon-nucleoN{) forces was carried

: : o coordinate space appearf2D| and variational approaches
through in[7] with the prediction of a 3n resonance Bt matured and provide equally accurate solutif.

=(14-13i) MeV for a J"=3/2" state. Earlier theoretical T ee.nucleon resonances, however, have not yet been
studies[8,9] might be useful in various aspects, but are notjyyestigated in a comparable rigorous manner and based on
conclusive with respect to the actual position af Beso-  yegjistic NN forces to the best of our knowledge. In this
nances. A virtual state ofH with the quantum numbers of article we would like to take first steps into such a direction.
the ground state has been investigatefllij by analytically In the two-nucleon (R!) system the exact form of the
continuing the momentum-space Faddeev equation and evevave function in configuration space is known outside the
estimating three-nucleon ford@NF) effects. In the frame- range of the potential. In theNB system only asymptotic
work of the hyperspherical harmonic method and using comexpansions are knowf22,23 and methods as to how to
plex scaling with model potentials a subthreshold 1@so-  apply them with sufficient accuracy, for instance in Faddeev
nance forJ”=1/2" has been located ifl1l]. Recently equations, have still to be elaborated in that framework.
mathematical foundations have been laid on the analyticathere are first very promising results foN3cattering above
continuation of the three-body Faddeev equations into unthe 3N breakup threshold20] though up to now only for
physical energy sheef42] and an application thereof to the simple Swave model forces. To the best of our knowledge
*He trimer appeared ifi3]. 3N resonance wave functions, which asymptotically oscillate
It is a theoretical challenge to determine the locations ofand grow exponentially, have not yet been determined as
the lowest lying 3 resonances on unphysical sheets basedolutions of Faddeev equations and realistic forces. First at-
on the most modern nuclear forces. Those forces are vergmpts in this direction have been dond 24], however with
successful in describing NB scattering observablegl4] very simple forces.
which leads to the expectation that the correspondihg 3  In this study we investigate three-body resonances as so-
Hamiltonian will also locate B resonances with a high de- |utions of configuration-space Faddeev equations. The larg-
gree of reliability. As for the 8! bound state energy, where est obstacle to find the resonance positions with sufficient
precision is the approximate form of the resonance boundary
condition.Ab initio it is not known at which coordinate val-
*Present address: Institute of Physics, Jagellonian University, PLues this form is valid with sufficient accuracy. For reso-
30059 Cracow, Poland. nances this problem can be overcome in principle using the
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coordinates are “rotated” into the complex plane, leading to 2
bound-state-like, exponentially decreasing resonance wave a,
function. This “rotation” of the coordinates into the com- )
plex plane works well for problems in atomic physics with =-k ¢a2(r)- ©)
potentials of inverse power laws. It will be shown in this

article that in nuclear physics a straightforward application ~The resonance conditions are such thdtas to be regular

of the CSM in configuration-space Faddeev form leads tcat the origin and purely outgoing. For the reduced amplitudes
serious numerical problems when the usual realisti¢in-  this amounts to

teractions of Yukawa type and hard core behavior are used.

Whether feasible modifications thereof can be found remains $4,(0)=0 (4)

to be seen. Right now our experience is such that the reso-

nance energies can be gained with sufficient precision only i&nd

one does not leave the reabxis and if one guarantees the )

exact boundary condition as close as possible by using a ¢a2(f)°‘fh|a2(kf), )
sufficient number of terms in its asymptotic form.

In Sec. Il we explain in detail the problems encounteredoutside the range of the interaction. Hehlé”(kr) is the
when one applies the CSM to nuclear resonances using thgherical Hankel function. As we shall demonstrate below it
2N system as a playground. Exact knowledge of the boundis mandatory to either use the exact form of the boundary
ary conditions for this system allows one to check assumpcondition (5) or to take into account at least the leading
tions which can later be applied td\3resonances. TheN8  orders to find the resonances in thie 8ystem with sufficient
equations and the method for their solution are presented iccuracy. In Eq.(3), m is the nucleon mass an#?

Sec. Ill. There we discuss results for three bosons interacting: (m/#2)E. The complex energf is embedded in the lower
with simple, Swave forces and more importantly fon3  half plane of the second energy sheet. The boundary condi-
interacting via realistic neutron-neutronrf) interactions. A tions (4) and (5) apply also to bound states with real, nega-
summary is given in Sec. IV. Information on the technicaltive eigenvalue€. The matrix elements of thlN interac-

complex scaling methoCSM) [25,26. Thereby all relative { ( a2 lu(
a,a d)a’(r)
272 2

performance can be found in Appendixes A and B. tion are defined in terms of,,_/(r) by
2%
Il. RESONANCES IN THE 2 N SYSTEM S(r—r")
(ragV|r' ay)=————V,_/(1). (6)
. . X 2 2 ’ aya;
Searching resonances in a system of two nucleons is a rr

well-defined problem and numerically well under control i . ,

[27]. In spite of that we discuss it here and present some A Method of solving Eq(3) is displayed in[28]. One

results due to its pedagogical simplicity, which enables us t&"00ses suitable grid points mand interpolates,,(r) in

present and test approaches which might be useful for finderms of cubic splines. The boundary conditigas and (5)

ing resonances for three or more nucleons. In addition wean be conveniently incorporated either by the absence of

can introduce our notation. certain expansion coefficients in the spline expansion or by
The 2N resonances are associated with the poles ofthe suitable relations among them. Then choosing appropriate

matrix which are embedded in the fourth quadrant of thecollocation points inr one ends up with a homogeneous

complexk plane[Re(k)>0, Im(k)<0]. They are solutions algebraic set of equations. They can be handled by standard

of the time-independent Schiimger equation without the methods28].

incoming and outgoing waves increasing exponentially at in- In systems with more than two nucleons the boundary

finity. We introduce the coordinate-space partial-wave basi§onditions are known only via an asymptotic expansion and

Ir,az)=]r,(Is)jt), where one has therefore to work with approximate boundary con-
ditions. Knowledge of the exact resonance solutions in the

- S(r'—r) - 2N system allows us now to study the question pivotal for
(r'frim)=———Yim(r") (1) 3N systems: how precisely does one need to know the

boundary conditions in order to get the resonance energies

with sufficient accuracy? To study this problem one can use

the series representation for the spherical Hankel functions
URICOEDY

b, (1) =o mi(l—m)! 2m XTI

(r]ary). ?) (7

_ _ _ _ and write the resonance wave function outside the interaction
It is written in terms of the reduced wave functiogpg (r)  region in a form which resembles the asymptotic boundary
which fulfill the radial Schrdinger equation condition in the N system[see Sec. lll, Eq(21)],

and where the orbital angular momenturand total spins
are coupled to the total angular momentjrithe isospin of
the two nucleons is denoted by Then the resonance wave |—m+1

function (r) to a givenj andt has the form ) SV
W(r) given;j L emy 1 exp<|[x >

(=2,

| r
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TABLE I. Resonance positions in differeNiN states obtained with the corre@plumn 4 and approxi-
mate(columns 5—Y boundary conditions applied at different matching ragii,. TherReID93 NN potential
multiplied with the factors\,, has been used.

NN state v I max E2N (MeV)
Exact (m=1) m=0 m=1 m=2
3Py 5.50 10.0 1.42 0.75i 1.75-1.04i
15.0 1.42-0.75i 1.58-0.63i
20.0 1.42-0.75i 1.36-0.58i
D, 5.00 10.0 15.08 0.80i 15.11-0.90i 15.08- 0.80i
15.0 15.08- 0.80i 15.07-0.85i 15.08-0.80i
20.0 15.08- 0.80i 15.06-0.83i 15.08-0.80i
3p,-3F, 6.20 10.0 2.79 1.17i 3.07-1.05i 2.79-1.17i
15.0 2.79-1.17i 2.62—0.99i 2.79-1.17i
20.0 2.79-1.17i 3.08-1.28i 2.79-1.17i

a range of the potential will increase, which is counterproduc-
m

[
¢(r)y=expikr) 2 T (8) tive. This can be avoided by generalizing E8). to complex
m=0 (kr) '
a’s. Then
with a;, being unknown constants independentkofndr. e ¥ sexp(—ue M@ co§Rea)]+i sifRe a)]}r),
Here, contrary to the I8 system, the number of terms in the (10

series is restricted by the orbital angular momenta contribut-
ing to the given total angular momentynof a resonance. ~ Which for Im(a) <0 increases the magscogRe(a)] in the
In Table | we presentld resonance positions in different exponent toue™ "™ “cogRe(a)] and thus choosing Ina()
NN states where the exact boundary condition has been infuitably decreases the range of the interaction again. At the
posed at different matching radii outside the interaction resame time also the wave function decreases faster due to the
gion. TheNN interactionreip93[29] has been used and has factore™'"M(®) in the exponent. Let us call that transformation
been multiplied by a factox, (shown in column 2 of Table the extended CSMECSM).
). Using the exact boundary condition the resonance posi- We first illustrate the power of the ECSM in thé\sys-
tions do not depend of course on the value of the matchingem using thereib93 NN potential in the stat€Pg. As we
radius. However, when the most crudely approximatediave seen in Table I, an enhancement faktpr 5.5 leads to
boundary condition is applied, keeping in E&) only the @ resonance state with a complex energy eigenvdue
term with m=0, the approximate resonance positions vary=(1.42-0.75i) MeV. If one uses in Eq(8) the first term
with the matching radius and up to 20 fm the results aravith m=0 only the energy eigenvalue is badly presented
highly insufficient. As seen from Table | it is sufficient to get (see Tables I and )l The result is improved and we can gain
correct energy eigenvalues if one keeps only the two leadinge correct result with the required precision using the CSM
terms in the boundary conditid) (for | =1 this is the exact With Im(a) =0 (see Table ). Note that in Table Il we stick
form). to the asymptotic formra=0) in view of the fact that for
For resonances the problem of a possibly approximatéree bodies we also have only approximate forms. If we
nature of the boundary condition can be overcome in prinhow allow for negative Img)’s, then as can be seen in Table

ciple using the complex scaling meth¢@5,26. This will Il we gain the correct eigenvalue even choosing a very small
now be illustrated for two nucleons because of its simplicity.matching radius.
In the 2N system one replaces the relative coordirrakegy We also see from Table Il that the CSM for increasing
Re(a) gets numerically unstable at a certain value of &e(
r—r'=re'® (9 In this example it happens around 40°. This behavior is in-

_ tricately connected to the present day parametrizations of
For real positive angles: the asymptotic forme's" with NN interactions and puts into question the applicability of
Im(k)<0 can be changed to an exponentially decreasinghe CSM for finding broad resonances in nuclear systems.
function. Therefore a resonance wave function analyticallyThe parametrizations are typically of Yukawa tygene-
continued to those complex coordinates can be treated like lBoson exchangedike in the REID93 [29] or REID soft core
bound state with its well-known boundary condition. Then it potential[30]. The analytical continuation to complexval-
is probably enough to restrict the boundary conditiBhto  ues leads to an oscillating behavior of the potential, which
the first termm=0. This “rotation” of the coordinate into drastically increases with increasing R¢( with unstable
the complex plane is sufficient for problems in atomic phys-numerics as a consequence. We examplify this behavior in
ics with Coulomb potentials. In nuclear physics the poten+ig. 1 for theREID93 potential. We checked several of the
tials decrease exponentially and the transformat®rturns  existing NN potentials and found always this problejpo-
then e #' into e~ #Ccos@Hisin@r  Therefore fora>0 the tentials according to Gognet al. [31], de Tourreil and
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TABLE Il. Complex energy eigenvalues for th#®, 2N state Re(V) [MeV] ()
obtained with thereip93 NN interaction enhanced by, =5.5 and T T I T T I T
an approximate boundary conditigpm=0 term only in Eq.(8)]. ! a= 0°
The correct energy eigenvalueESN= (1.42—0.75i) MeV. 5000 _\ X o %ga o
A o =60° -
r matching Ref) Im(a) E2N §\\ Py o =80° —-
(fm) (deg (deg (MeV) ol fed TN
[LAN N / ~—
10.0 0.0 0.0 175104 N
10.0 20.0 0.0 1.460.88 i I"
10.0 0.0 ~400  1.36-058 ] B0 i
10.0 0.0 ~80.0 1.24-0.58 i b
10.0 20.0 —40.0 1.42-0.73 | 10000 = Y/ i
10.0 20.0 -80.0 1.42-0.75 i i ; :'), ; é é ; o
2.0 20.0 —80.0 1.22-0.93 i 1 [fm)
2.0 20.0 —160.0 1.43-0.75 i
20.0 20.0 0.0 1.420.73 i Im(V) [MeV] (b)
20.0 30.0 0.0 1.430.74 | 10000 : : : , : : ,
20.0 40.0 0.0 1.430.75 i - a= 0° —
20.0 44.0 0.0 1.480.75 i . A a1
20.0 46.0 0.0 1.720.72 i " \\ - gi ggz -
20.0 48.0 0.0 2.990.36 i 0 Y S .
’//’?1;-4" \\‘ ----//. \.‘4/.
A hnd
Sprung[32], Eikemeier and Hackenbroi¢B3], and de Tour- -5000 '; 7]
reil [34]). In case of the AV1435] and AV18[36] potentials / ,'
the situation is even worse due to a singularity for complex -10000 |- ; .
values in their parametrization of the hard core part. Also ]
Gaussian parametrizations are not an exception. In this cas_j5gp l—1 ! I ! ! ! L
0 1 2 3 4 5 6 7 8

the form expt-ar?) limits the complex scaling angle Re)

to Re(a) <45°.

One possibility to generalize the CSM in order to avoid
the above problems is the so-called “smooth-exterior” com-
plex scaling(SECS [26]. The idea is to perform the complex

rotation only outside the region of interaction. In this way the
analytical continuation of the potential into the complex co-
ordinate plane is avoided. In practice this can be achieved,
for instance, by performing the following transformation

r [fm)]

FIG. 1. Analytical continuation of théP, REIDI3 NN potential
under the complex scaling transformatior:re'® for five values of
a=0°,20°,40°,60°, and 801(a) real part,(b) imaginary pari

r—r'=F(r)—re'® for r—oo, (11

[note the printing errors if26] leading to false expressions
(2.1.30 and(2.1.32]: with

B ) 1 {1+exg2N(r—rg)]H{1l+exd —2N(r—rg)]}
P =r+lexpia) = L) e N+ o) THAT exd —2N(r 1)1} |

(12

This transformation leads to the smooth-exterior-scaled

dF )
f(r)y= E=1+[exp(|a)—1]g(r)

Hamiltonian
g(r)=21+0.5tanHN(r—rg)]—tanHX(r+rg)]} (14
n2 1 d? R2f'(r) d A2 I(1+1)
—Ef—zmd—rz‘l'V(F(r))dmea-l—m—z—F r and
13 df _ -,
a=0.5)\[exr(|a)—l]{cosh [A(r—=rg)]
with —cosh 2[N(r+rg)]}. (15)
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TABLE Ill. Smooth-exterior complex scaling applied to the and Egq.(16) turns into a coupled set of partial-integro-
D, resonance state of tieEiD93 NN potential withh,=5.0. Only differential equation$28]
the first term in the boundary conditidB) was taken into account.
The correct energy eigenvalueE$\=(15.08-0.80i) MeV.

m
Ayt ng> %(p.ﬁ)—% Vp(p cosb) dp(p,0)

r matching A ro a E2N
(fm) (fm~1)  (fm)  (deg (MeV) o+
=2 Vap(pcost) X f Kpy(0,0"),(p,0')d0’,

10.0 2.0 5.0 10.0 15.080.84 i B y Jo_
10.0 2.0 5.0 20.0 15.070.81 i (18)
10.0 2.0 5.0 30.0 15.670.80 i _
10.0 2.0 5.0 40.0 15.680.80 i with
10.0 2.0 5.0 50.0 15.080.80 i ’ 2 1
10.0 2.0 5.0 60.0 15.080.80 i A Ea_+ li+ ia__ (+1) _)\()\+1) 19

. a 2 2 2 2 S’). 2 nz ( )
10.0 2.0 5.0 70.0  15.080.80 i dp pdp p°d0° p°cosd psine
10.0 2.0 5.0 80.0 15.080.80 i

. and 9~ =|0—mnl3|, 6" =||0— wl6|—w/2|.
15.0 2.0 5.0 60.0 15.080.80 i . .

. The coupling results from the permutation oper&and
20.0 2.0 5.0 60.0 15.080.80 i - . .
15.0 20 3.0 60.0 15.080.80 | from possible spin dependencles\InThe evallfa'flor) of tze

' ' ' ' S ermutation operator matrix eleme P|x an

15.0 3.0 30 600  15.080.80 i b P lisya|Pix'y a’)

the resulting expression for the kernil;,(6,60") is pre-
sented in Appendix A.

Similarily as in the two-body case the resonance condi-
tions are such tha¥(x,y)= ¢(X,y)/xy has to be regular at

choosing a proper value far a smooth-exterior-scaling path Ejhe o(;igin a}_nddpurelyaouthgoing in all ch;\gr;els. For the re-
results, which avoids the oscillating changes of K& po- uced amplitudes(p, ¢) this amounts t428,3§

tential. We present in Table Il the effectiveness of this ap- -

proach by aplying it to the'D, resonance state for the ¢(O,6)=q§(p,0)=¢(p,§) =0 (20
REID93 NN potential withA,=5.0. It is enough to keep only

the first term in the boyndary condltlciﬁ) @o reproduce the 504 for large distances
correct resonance position when a sufficiently large value of

the scaling angler is chosen. Now, however, contrary to the _ elkp
CSM, no numerical problems arise when large valueg of q&(p,¢9)—>u(x)e"‘yf0+—1/2
are used. In spite of its success in thid 8ystem we think (kp)
that SECS cannot be easily applied iN 8ystems. We could (21)
not overcome problems arising from the permutation oper
tor (see Sec. I

The case\ =0 corresponds to the usual CSM=re'* [26].
Taking ro outside the region of théNN interaction and

(A(0)+iB(a)+~--
kp

3The first term in Eq(21) occurs only in channels, where a
two-body bound stata(x) exists. The second part describes
the behavior in the three-body breakup channel. The corre-

Ill. THREE-BODY RESONANCES sponding momenta are
Now we investigate three-body resonances as solutions of q=Vm(E—E,)
configuration-space Faddeev equations. They are often called '
Kowalski-Noyes equations and have the fdr8T] k=JmE (22)
(Ho+V—=E)¢=—VPy. (16)  wherem is the nucleon mass arf, the two-body binding

energy. The boundary conditiori21) apply also to bound
Here H, is the kinetic energyV the two-body forcess a  states with real eigenvaluds which are located below all
Faddeev component, arithe sum of two permutation op- two-body threshold<€,. For resonanceg is complex and
erators such that the total, properly symmetrized wave functhe eigenvalueg close to the real axis of the physical sheet
tion is ¥ =(1+P)¢. Based on standard Jacobi variables are of interest. They either lie in second sheets which are
—Fy— T3, Y=1[X;— 5(X,+Xs)] it is convenient to introduce accessible to the right @, values(two-body fragmentation

polar coordinates= p cosé andy=(1/3/2)p sin 6. If we ex- cutg or in the lower half plane of a second sheet, which is

the Fadd S0) in t f ial accessible through theNBbreakup cut to the right dE=0.
press the racdeev componem(q,y) In terms of partial- o, 5 recent description of the cut structure see, for instance,
wave amplitude§a) which specify angular momenta and [24]

isospin quantum numbers, then we obtain An efficient method for solving Eq18) is very well dis-

played in[28]. One chooses suitable grid pointsgdnand 6
zﬁ()? }7)_2 ba(Xy) .- (17) and interpolateg(p, #) in terms of cubic splines. Similarily

X 1 . -y
@ Xy (xyla) as in the two-body case the boundary conditi¢28) and
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(21) can be conveniently incorporated either by the absence TABLE IV. Triton binding energies obtained in momentum-
of certain expansion coefficients in the spline expansion ofnd coordinate-space calculations with #E@093 NN potential us-
by suitable relations among the coefficients. Then choosing'd different numbers of channel§, . The last column gives the
appropriate collocation points ip and @ one ends up in a corresponding numbers for the Gogny potential.
homogeneogs algebra|c set of equations. For realtétic NN states N, 3H binding energyMeV)

forces the dimension of the matrix is very large and the ten-

sor product method39] is a key technique. We use a pspace rspace r space(Gogny

Lanczos-type iteration methdd0] and of course take ad- !S,+3s;-°D, 5 —-7630 -7.631 —8.640
vantage of the sparceness property of the matrices. It is ad<1 10 —7.403 —7.406 —8.550
vantegeous to work with further reduced amplitudegle- j<2 18 —7.747 —7.750 —8.639

fined as ¢(p,0)=pe*’F(p,0), if one treats resonances
below the cut with R&E>0. In Appendix B we present the
details of the above procedure. V(r)=—120exp—r?]+12exp—(r/3)?] [MeV].

The main problem in solving Eq18) is the approximate (23
nature of the asymptotic forrf21). Ab initio it is not known
at which p value this form is valid with sufficient accuracy. They are such that a barrier is built in, which is an obvious
For a recent discussion sgg8]. Also it is a priori not known a_md trivial mechanism generating a resonance. That ir_1terac-
how many terms should be included in the asymptotic ex{ion does not support a two-body bound state and in the
pansion(21) for a particular 3 resonance state. One sus- 28Symptotic form(21) the first term is absent. For three

' ik . ’
pects of course that including more terms one approachd?0SOns in the”=0" state and interacting bywave forces

more closely the exact boundary condition. The importanc A|:12Iy_the k?r.nelfhaﬁztl/iw' tThiS ”."‘i.de' Tas tt?]e%n _lrﬁ‘ed in
of the terms in Eq(21) going with increasing powers ofKg ] in applying the stochastic variational method. The reso-

depends not only on the resonance energy and the matching..c o, ' &Y found theres=(8.60-1.841) MeV. In this
P y ) 9y - &se the CSM works. For instance for a matching radius of
value for p but also on the magnitudes of tleepriori un-

. p=10 fm and taking theA and B terms in Eq.(21) into
known functions A(6),B(6), ... . For resonances com- account we achieved the results shown in Table V. For

monly these problems are expected to be overcome using “"F?e(a) —40.0° we are close to the result found[#2] but not
complex scaling methof25]. However, because of the re- 56 enough. A smaller matching radius, however, pke
strictions imposed on this method by the behavior ofM  _ 5 ¢, qoes not work. The correct result can, however, be

forces as discussed in Sec. Il, we found that this method cag ieved if in addition we turn on In() <0. This is dem-

be applied in the framework of the configuration-space Fadg\irateqd in Table V. We illustrate in Figs. 2 and 3 typical
deev equations only for rather narrow resonances. Therebr

Il relati di dv in the th bod ¥%sonance amplitudeB, working with real coordinates or
all relative coordinatesx(andy in the three-body casere it complex coordinates. In both cases the matching radius
rotated into the complex plane. This amounts de-p

_ Al . . has been chosen as 5 fm. In the first case this is not sufficient
=pe'® wherea is restricted to rather small values. An ex- 1, achieve the correct complex energy eigenvalue, whereas
ample for realistionn forces is mentioned at the end of this ;; he second case the amplitude is already sufficiently
section. However, if the forces are very simple, the CSM Calyamped atp=5 fm and the correct energy eigenvalue is
work as will be illustrated below. _ accessible at such a small matching radius.

One can hope that the SECSM which proved to be very |, his simple case one can study the problem of how
efficient in the two-body case will help here, too. However,many termsA,B, . .. in the boundary conditiof21) should

according to our insights up to now this approach leads tq yaxen into account to get the correct resonance position.
problems we could not solve when calculating the permuta-

tion operatoiP and when performing the transition from Car- TABLE V. CSM applied to a three-boson system interacting

tesian to polar relative coordinates. through theS-wave interaction of Eq(23) in theJ™=0" state. The

The only possibility left is to look at solutions of E¢L8) correct energy eigenvalue i€38=(8.47-1.86i) MeV. The

without leaving the reaf axis and taking the boundary con- ndary conditior21) with A andB terms only has been applied.
dition (21) with a sufficient number of terms into account in

order to reach as close as possible the exact boundary con- , matching Ret) Im(e) E38
dition. In this manner one can hope to get convergence for () (deg (deg (MeV)
the resulting resonance position.

We checked our configuration-space code by calculating 10.0 0.0 0.0 8.501.81 i
the energy of the bound state 8 nuclei with thereiD93 10.0 20.0 0.0 8.481.87 i
NN potential, taking differentNN force components into 10.0 40.0 0.0 8.461.86 i
account. In Table IV we present our humbers together with 5.0 20.0 0.0 8.361.78 i
results of momentum-space Faddeev calculat{dris. The 5.0 40.0 0.0 8.7£2.03 i
very good agreement between both approaches is clearly 5.0 40.0 -20.0 8.45-1.93 i
seen. 5.0 40.0 —40.0 8.46-1.86 i

In the first step we considered three bosons interacting via 5.0 40.0 —60.0 8.47-1.86 i

GaussiarS-wave forces
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SN

R
‘QS

FIG. 2. The real and imaginary parts of the reduced Faddeev FIG. 3. The same as in Fig. 2 but with the ECSM takimg
amplitudesF for a three-boson resonance in the statevlithout ~ =(40.0°—40.0°i) [(a) real part,(b) imaginary part.
complex scalind(a) real part,(b) imaginary part

Of course it will depend on the value of the matching radiusallowed thenn force to act in the statesSy, *P,, and

p. We present in Table VI the resonance positions obtainedP,-3F,. They are of attractive nature while the repulsive

with an increasing number of terms in the boundary condiones were neglected. This is only a feasibility study and

tion (21) and different matching radii. For the details of in- should provide a first orientation. In the first step the

cluding an arbitrary number of terms in the asymptotic con-forces were chosen as a smooth, Idg&l force of Ref.[31],

dition we refer to Appendix B. It is seen from Table VI that called in the following the Gogny potential. It is a rather

for matching radii>10 fm it is practically sufficient to take simple approach ttNN phase shifts through forces of cen-

only the two leading terms going with andB into account tral, tensor, and spin-orbit type supplemented Hy, aterm,

in order to get the correct resonance position. We also sea&ll of which of Gaussian form. To initiate the search process

that the restriction to thé term alone is totally insufficient. for the position of the resonance energy we artificially en-

Unfortunately this example is far from reality in nuclear hanced the force components in the three states such that all

physics. It does not contain a short-range repulsion and thef them support a two-neutron bound state at the same en-

mechanism for creating a resonance in few nucleon systenmergy. An example is shown in Table VIl for¥ =3/2" state

is different in reality, where it is not caused by a barrier in of three neutrons. For these enhancement factors alsothe 3

the potential itself. system is bound. Then we reduce the enhancement factors
Now we investigate the case of three interacting neutrongsome intermediate cases are shown in Table, Mhich

in states with different total angular momenta and parity. Wetraces out a bound state trajectory. In this case we see that

TABLE VI. Resonance positions of a three-boson system inJifre 0" state interacting through the
Swave interaction of Eq(23). The results are without complex scaling but taking an increasing number of
terms in the boundary conditiori21) into account. The correct energy eigenvalue El§e53=(8.47
—1.86i) MeV. Number of terms 1 means that only tA¢6) term has been used.

Prmax (FM) E38 (MeV) for a particular number of terms in E(R1)
1 2 3 4
10.0 8.40-1.40 i 850-1.81i 8.48-1.85i 8.49-1.85i
15.0 8.81-1.80 i 8.46-1.87 i 8.46-1.85 i 8.46—1.85i
20.0 8.00-2.18 i 8.46-1.85i 8.46-1.85 i 8.46—-1.85i
30.0 8.64-1.69 i 8.47-1.86 i 8.47-1.86 i 8.47-1.86 i

024002-7



H. WITALA AND W. GLO CKLE PHYSICAL REVIEW C 60 024002

TABLE VII. Required strength factora, for particular force  jectory only partially up to the point where we encounter
components of the GognjN interaction together with the corre- those instabilities. We expect that they are probably caused
sponding two- and three-neutron (3)2bound energy eigenvalues. py the difficulty to fulfill the resonance condition, which re-
quires that the exponentially decreasing, purely incoming

Ay Ean (MeV) — Egn (MeV) wave be much smaller than the exponentially increasing
15, 3p, 3p,-3F, purely outgoing wave. As we see from Table VII thé
=3/2" 3n bound state disappears when the enhancement
1'3222 2'3222 Zigég _:'8 _gé'gg factors arrive at Xis AspyAsp,3r)=(1.0,1.0,4.35). In
1'5960 8'5851 5'0797 _2'0 _24'15 Table VIII the trajectory of the 3/2 3n resonance in the
1'4370 8'1846 5'0123 _1'0 _19'73 second energy sheet is mapped out by decreasing the en-
13297 79584 4.9758 _05 _17.09 hancement factomsp ¢, in steps of 0.05 starting from
11930 7.7518 4.9442 ~01 —14.21 Asp,3r=4.3. The final reliable position reached is for
11205  7.6981 49365  -0.01 —12.96 N3p, 3= 3.6 With the valueES; =(5.30-4.67i) MeV. As
1'85 ;'25 :":O 7_1;'22 can be seen this stable position is only obtained when at least
1'0 1'0 4.8 _7'12 four terms in the boundary conditid21) are taken into ac-
1‘0 1‘0 4'7 _5'13 count. We checked that our particular distributiorpcdnd 6
1. 1. 4' '2 points as well as the choice of the matching radiup ihoes
0 0 -6 —3.29 not influence the resulting trajectory. The values given in
10 10 4.5 —165 Table VIII are based on a matching radips30.0 fm and
1.0 1.0 4.4 —-0.23

typically N,=30 andN,=25 points distributed by scaling
factorsS,=1.2 andS,=0.9 (see Ref[28]). It is unfortunate
that right now we are not able to reach the final position with

the 3n bound state still exists even when alh Zubsystem Asp,-3r=1. However, very likely the width will be quite
bound states have disappeared. Then we can neglect the fitatge. Therefore one cannot expect to see a visible enhance-
term in the boundary conditio(21). Decreasing further the ment around somer8c.m. energy in a reaction producing
enhancement fact@® (in this specific case only for three neutrons in the state 3/2

3p,-3F,) the energy eigenvalue goes into the second sheet The 1/2° and 3/2 states based on the Gogny potential
and traces out a resonance trajectory. The search for the redmehave similarly to the 3/2state. With proper enhancement
nance position corresponding to the actoal force is fin-  factors\, the three neutrons are bound together with two-
ished when the enhancement factors inrailforce compo-  neutron bound states fdiS,, 3Py, and 3P,-3F,. These &
nents have reached the valugs-1.0. As we shall see in the states remain bound even when the two-neutron bound states
case of three neutrons we face numerical instabilities befordisappear with appropriately reduced enhancement factors.
all \'s reach the value 1. We can present the resonance trdhey disappear into the second energy sheet when the en-

TABLE VIIl. The three-neutron 3/2 resonance state trajectories for the Goghy interaction obtained
with increasing number of terms in the boundary condit@h. The enhancement factoxsfor the 'S, and
3P, nn force components are equal to 1.

N3p 3k, E3" (MeV) for a particular number of terms in E(21)
1 2 3 4 5 6

430 0.86-0.068i 0.86-0.068i 0.85-0.092i 0.85-0.092i 0.86-0.068i 0.86-0.068 i
425 126-027i 1.34-021i 1.33-021i 1.34-021i 1.33-0.22i 1.33-0.22i
420 1.88038i 1.77-041i 1.77-041i 1.77-041i 1.79-0.38i 1.79-0.38i
415 2240531 220-062i 219-062i 219-063i 2.21-0.64i 2.19-0.63i
410 254070i 258-0.87i 260-086i 258-0.88i 2.63-0.89i 257-0.84i
405 272090i 294-1.15i 296-1.16i 297-114i 3.04-1.15i 292-1.18i
400 28F108i 327-149i 332-146i 332-146i 331-147i 3.31-147i
395 2841201 363-186i 3.64-181i 366-1.79i 3.64-1.80i 3.64-180i
390 2841301 4.01-224i 397-216i 3.95-216i 396-214i 3.97-214i
3.85 2841371 439-255i 4252530 4.24-253i 422-254i 4.21-251]
3.80 2841411 470-282i 454-291i 450-292i 447-294i 4.49-293i
3.75 2841441 488-313i 4.77-329i 4.76-3.32i 4.73-333i 4.78-335i
370 2841471 507-340i 4.99-368i 495-3.75i 4.98-3.78i 4.96-3.77i
3.65 284150 517-366i 512-4.08i 514-418i 516-4.17i 514-419i
360 284151i 523-391i 521-451i 530-467i 531-468i 533-469i
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TABLE IX. The positions of 3-neutron resonances for the  TABLE X. CSM applied to the]™=3/2" resonance state of the
Gogny potential obtained with four leading terms in the boundaryGogny potential with enhancement factors=(1.0,5.3,4.6). The

condition(21). correct energy eigenvalue B2 = (2.88-0.231) MeV.
J7 Ay Esn (MeV) Re(a) Im(a) Esn
'Sy %Py *P,-%F, (deg (deg (MeV)
1/2- 1.0 5.5 2.75 282282 10.0 0.0 2.880.23 i
3/2” 1.0 1.0 3.70 4.953.75 i 20.0 0.0 288023 i
372t 1.0 5.0 4.3 5.741.53 i 30.0 0.0 3.1+ 0.16 i

hancement factors reach (1.0,7.5,4.75) and (1.0,5.5,4.8) for Itis seen from Table IX that the 3/2state for the Gogny
J7=1/2" and 3/2, respectively. These enhancement factorspotential is relatively narrow. Taking the enhancement fac-
are of course not unique but we worked with those examplegors \,=(1.0,5.3,4.6) results in a resonance positEﬁ’f
Following their trajectories before numerical instabilities set— > 8g—-0.23i) MeV. For such a narrow resonance the
in results in the (_:omplex energy eigenvalues shown for the-gpm works properly for not too large values of theangle
Gogny potential in Table IX. For the 172and 3/2 states, (see Table X Increasing it, however, the resulting energy

similarily as for 3/2', the final, converged position is ob- gjgenvalue is totally wrong, which can be traced back to the
tained only when at least four terms in the boundary condijncreasing oscillations of theN potential resulting from its
tion are taken into account. In Fig. 4 we show the trajectoriegnalytical continuation to complexvalues.

for the three states 172 3/2", and 3/2 for the Gogny po- In the last step we checked how the results depend on the
tential. We note that the trajectories are not unique and dey N interaction used. We choose a modern, realisih¢ in-
pend how the enhancement factors are changed. Our strategysction as given by theeiD93 potential. The resulting po-
was to bring all of them together to one as close as possiblgjtions of the 3 resonances, as far as we could trace them
In this article we did not investigate the state 1/&ince oyt are shown for two examples in Table XI. In spite of the
we found, like in[9], that the 3 bound state disappears fact that the particular values of the,’s change, of course,
earlier than the @ bound states. In other words, they3 he resulting picture is basically the same as for the Gogny
bound state trajectory will enter into th@ two-body frag-  potential. We are still too far away from alj=1 in order to
mentation cut. We left that study with the additional gefinjtely say that all the widths will be quite large. But this

asymptotic term in Eq(21) to a future investigation. will likely be the case. Again to achieve converged results
one has to take at least four terms in the boundary condition
Im(E) [MeV] (21) into account.
I | I ) | I
1 /2= o o
3/27 + IV. SUMMARY
3/2t O
0 '@‘@é&;a’i}'"? """ O, 7] We investigated the configuration-space Faddeev equa-
1 %% T B g - i tions with the aim to determine the location of three-neutron
<><><><> t, Ch resonances. Realistioin forces have been used. The
ok O, + _ asymptotic form in the 8 breakup channel is known only in
<><><> + + the sense of an asymptotic expansion. We found that several
3k % + i terms thereof have to be included in order to get stable and
+ reliable results, which are independent of the matching ra-
4k ++ 4 dius. The search for the resonance positions was carried
+ through by artificially enhancingr2force components such
-50 i ; ; Jl é é o that a 3 bound state exists. Then by reducing those en-

hancement factors we followed the paths of the energy ei-

Re(E) [MeV] genvalue into the second sheet adjacent tadRe{0. Unfor-

FIG. 4. The three-neutron 172 3/2", and 3/2 resonance state -
trajectories for the GogniN N interaction obtained with four terms TABLE XI. The positions of three-neutron resonances for the
in the asymptotic boundary condition. Different points CorrespondRElD93 potential obtained with four leading terms in the boundary
to resonance positions with different values of the enhancemertondition(21).
factors. For the 1/2 stateh15= 1.0, Asp changes from 7.5 t0 5.5 in

steps of 0.1, andlsp 3¢, changes from 4.75 to 2.75 in steps of 0.1. ) , Av e Ean (MeV)
For the 3/2 stateh1g= 1.0, Aap= 1.0, and)\apz_apzchanges from So Po Pa-"F,

4.3 t0 3.7 in steps of 0.05. For the 3/3tate)\150= 1.0, A3p, changes 3/2- 1.0 1.0 3.25 530353 i
from 5.5 t0 5.0 in steps of 0.05, andp, 3, changes from 4.8 to 4.3 3/2+ 1.0 4.6 3.50 5031.55 i

in steps of 0.05.
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tunately it turned out that numerical instabilities set in before
we reached the actual strengths factors of 1 for all the indi-  (XYBIP[#)=2> f dx’x"2dy’y’%(xyB|PIx"y" )
vidually enhanced force components. Therefore we could not ’
reach the very final positions of the studied @sonances in d,(x"y")
the states)"=1/2", 3/27, and 3/2. A detailed reason for Xy
those instabilities remains to be found. Despite that, our re-
sults already indicate that the imaginary parts of the complexvhere the permutation operator =P 1,P 3+ P13P,3 and
resonance energies will be quite large, so that one should ndhte set of discrete quantum numbers abbreviate@ by y is
expect to see resonances in experiments. {(Is)j(NL2)I(j1)IM; (t1/2)TM1}. Herel, s, and]j are the
We also applied the CSM, which works beautifully in orbital angular momentum, total spin, and total angular mo-
atomic physics. The complex coordinates turn the exponerentum in the two-body subsystem 2A3,1/2, and! are the
tially increasing resonance wave function into an exponencorresponding quantities for particle 1, adt¥l denote the
tially decreasing one, like for a bound state, and the probler§onserved 8l total angular momentum and its magnetic
with the approximate boundary conditions is avoided. How-guantum number. In isospin spateefers to particles 2 and
ever, for realistidN interactions the complex scaling trans- S @nd couples with the isospin 1/2 of particle 1 to the total
formationr —rei® increases the interaction range by a factor'SOSPINT and its magnetic quantum numbér, . Following
1/cosa and leads for scaling anglesgreater than about 40° [27] one obtains, for the matrix element of the permutation
to a strong oscillations of the potential. This restricts theoperator,
application of the complex scaling method in more than two-

: (A1)

nucleon systems to rather narrow resonances. In the two- L 1 S(x'=X") 8y’ -y")
nucleon system one can avoid the above restriction by per- (xya|P|x'y"a’)= J_ldu (x’)"*z ( ,)w+2
forming the complex rotation outside the region of nonzero y
interaction. Because of the neccessary particle permutation in % E;C"",‘(x y,u) (A2)
the three-body system, we were not able to use that idea in aalRTITE
the three-body context. with
This project deserves further investigations to locate all
lowest resonances in the three nucleon systems based on ~ 1, 5
modernNN and possibly three-nucleon forces. XT=\ g X xyutys,
ACKNOWLEDGMENTS 9 3 1
"'/:\/_ 2~ 4+ 2 (A3)
This work was supported by the Deutsche Forschungsge- y 16° 27Uy
meinschaft under Project No. GI87/24-1. The numerical cal-
culations have been performed on the CRAY T90 and thénd
CRAY T3E of the Hahstleistungsrechenzentrum inlidh, B
Germany. GoMxy,u)=2 P(u) > >
K ri+ro=I1" s;+s,=\’
APPENDIX A: PERMUTATION OPERATOR X(x)'lJrSl(y)'Z*SZE];lj,lk. (Ad)
To evaluate the term on the right-hand side of ELp) -
one needs The purely geometrical quantit,sy;a,1 is given by
Il s ] " s j’
~ S —— L [1\"1ts2/ 3\ s R 1 1
grlsllk:_\/Ilrssrjjr)\)\r”rtt/(_l)kﬂ 1| = (_ z (_1)LLS No— | N
aa 2 4 LS 2 2
L S J L s J
12 1/2 t)(1/2 12 s i o (rl S, I3
X —_— r
172 T t)|1u2 s ¢ V@l < %o 0 o
= r{ rp 1’
I I’3 k )\" Z ~ (rz 52 S3 )\ 53 k) | I’3 k )\’
X —_— S S; S . A5
0 0 0 V(2s)'(25)!' 5 @\o 0 0/lo 0 o0f{ss » LJ| * 7 (A0)

rs s L
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The superscript “Cart” stands for Cartesian ahd 2l +1.

To arrive at the kernef 4., on the right-hand side of E¢18)
one has to evaluate

1 GS¥xy,u) (XY
xyBlPl =3 xy [ au 2 ER SO

X |yy/)\7

')"(/'91
(A6)

We introduce polar coordinates

X'=p cosé’,

- 3
V= \[Epsiné”, (A7)

and changing the to the 8’ integration

1 Xy 4 (ot
du— - =—| do’---, (A8)
1 Xy J3J e

one arrives at

4 +
xy(xyB|P|y)=2 —fe_ de’
y V3J90

Gl(0,0")

3 v Pyp 0,
(coso’)'r 7sin0’

(A9)
with
GRR(6,0)=2 P(u(6,6"))
K
x> > (cosf)rtst
ri+rp=l, sp+sp=»n,
r2+82
A ~r15:k
X 5 sin 9) 95, (A10)
and
cogd’ — tcogo— Esirte
u(e, 0 )= (A11)
I
—Ccosésiné
2
From Eq.(A9) follows that
4 GlR(6,0")
Kg(0,0")=— (A12)
3

3 A
(cosa’)'v( 7sin 0’)
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APPENDIX B: THE SOLUTION OF THE ENERGY
EIGENVALUE PROBLEM INCLUDING N TERMS
IN THE ASYMPTOTIC BOUNDARY CONDITION

As a result of numerical reasons, it is advantegous to ex-
tract the exponential part from the reduced Faddeev ampli-
tude ¢,(p,#) and to work instead with

Fo(p,0)=da(p,0)(pe*r). (B1)

Following Ref.[28] one introduces suitable grid points gn
{pi, i=0,...1; po=0, p=pmag and in 6 {6, k

=0,...K; 6,=0, 6x=/2}. Then one can writ€& ,(p, 6)

in terms of cubic splines,(p) ands,(6) as

M+1 N+1
Fa<p,a>=m20 go QamiSm(P)Sn(6), (B2)

with M=2] andN=2K.
As a result of the properties of the cubic splines as given
in [28], one has

Fa(pi ’ ek) = aa,Zi 2k

oF ,
ap

=42 +1,%
pi 1O

aF,,
90

=82 x+1- (B3)
pi B

The boundary conditions at the origin, EQO), imply that
a,on=0,
Aq,mo0=0,

8g,mn=N=0. (B4)

Writing the asymptotic expansid21) for F (p, #) under the
assumption that no two-body bound state exists in any chan-
nel « results in

1 X OBf(o)
p(kp)2 <1 (kp)'

whenN;, terms are included in the asymptotic form.

Imposing the boundary conditigiB5) at p= pyay implies
the dependence &f, m—m+1n ON 84 m=m.n @aNdB*(6). In
order to remove the unknow*(4) functions the boundary
condition has to be imposed on the I&t points of thep
grid. This leads to the dependence @f m—m+1n ON
Bam=Mns -« - Bam=M-2N,~1)n- IN the following the form
of this dependence is derived.

The asymtotic form for the partial derivativ=,/dp is,
according to Eq(B5),

Fulp,0)—

(B5)

Ny

IFo(p,0)  ~ %
ﬁﬁ_Al(p)mp,o)—gz A(p)B{(0),

dp
(B6)
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with
Ra(p)= o (B7)
2p
and, forl=2,
P e —— (B8)
p“(kop)

Taking the partial derivative of EqB2) with respect top
and the form(B6) yields, for the lastN; points of thep grid

{p=pi-is1, i=1,... N,

; AgM+1-2(i—1),nSn(0)

=- ; Qg m—2-1)nSn( OAL(P1—i+1)

Ni

—22 Api_i+1)B{(0). (B9)

Equation (B9) together with itsé derivative taken at the
points of thed grid leads to

Ay M+1-2(-1)n" _aa,M—Z(i—l),n’Al(pl—H—l)

PHYSICAL REVIEW C 60 024002

The set(B10) is composed ofN; equations forN;—1

unknownsB{*( 6,). They allow us to writea, y +1, iN terms
ofthea, y—ij+1pn, 1=1,...,2N;—1)+1, as

2(Ny—1)+1

>

Ao Mt+1n= AaM-i+1nCi (B11)

where theC;'s are functions of all thé\,(p,_;.)’s resulting
from Eqg. (B10).

In this way, incorporating the boundary conditioti34)
and(B5) one can writeF ,(p, 8) on the chosen grids as

M N
Fulp,0)= mZ=1 nzl AamnSm(p)Sn(6)

2(N—1)+1
AaM—-i+10Ci [Sm+1(p)Sn(0),

N
+2
n=1

i=1

(B12)

where, as a result of the last equation in E@4), we re-
numberech=N+1 by n=N.

Inserting the expansiofB12) with the help of(B1) into
Eq. (18) and choosing collocation poinis,, p=1,...,2,
andfy, =1, ...,X [28], yields

N Ne M N N M
2, Al 0B(00, B0 3 S 3 A= 2 2 3 Bapamidamn
- - (B13)
where, for n=2k, B*=B(6,) and, for n=2k+1, B
=dB/d6] y—,. with
" 3 . '
Aapa,smn= Sap| Sm(Pp)Sn( ) + p_+2|k Sm(Pp)Sn(bg)
P
+1 (p)S(62) [(1+1) NA+1) <1+3ik>] (00) (a)} ©14
S s - . - —1ts S
;ﬁ m{Pp)>nt 7 picoshy  pisint, ;g pp /)" Pp/=nt P

and

N¢

ot
Bapq,,emn: Va,B(Pp COSth)Sm(pp)Sn( eq) + ;l Vay(Pp COSHq)Sm(pp) fﬁ* K’yﬁ( 0q ,0")s(6")do’

+ §m,M—i+l[1sis2(Nt—1)+l]( — 0,4Ci

I(1+1)

SII\I/I +1(pp)sn( 0q) +

AA+1)

Sll\/I + 1(pp)sn( oq)

3
—+2ik
Pp

3ik

1
+—=2Sm+1(pp)Sn(bg) —
Pp

NC

1
el
p5COS 0, pjsire, ( Py Pp

+ _)+SM+1(Pp)Sn( aq)}

ot
X Va,B(pp COSHq)SM +1(Pp)sn( Hq) + El Vay(pp COSGQ)SM +1(Pp) fﬁ_ Ky,B( 0q ,0")s,(6")de’ ) . (B1Y)
7=
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The number of channels is denoted Wy. This eigenvalue

problem(B13) can be treated in a standard way by changing K

it into the form

A Ba=\a (B16)

and searching for that energy at whikh-1.

To solve Eq.(B16) we used a Lanczos-type iteration

method[40]. Taking an arbitrary starting vectaf®) a series

of vectors {a®}, i=1,... N;, was generated applying

A~1B:

al=A"1Ball~1), (B17)

PHYSICAL REVIEW €D 024002

1 -1

= | g% .. 5 S— E a*K., |.
ij - - +1j9j+1=i kN ik
VYDl =1

(B21)

For the application oB andA ™! on a given vectoa(" we
applied the tensor product meth{i2B]. HerebyA is decom-
posed as

Using a Schmidt procedure a set of orthonormalized vectors

{y("} was obtained fronja®}:

i—1

y(i):a(i)_jg1 <a(i)|y§\{)>*y§\}) ,

y(i)

(i) = , i=1,... N;. B18
Ny Oy o B
Expanding the original vecta in terms of{yﬂ)},
N;—1
a=3, oy, (B19)
i=1

and projecting Eq(B16) ontoy,(\]) reduces it to an eigenvalue

problem of much smaller dimensidw —1:

N;—1
igl Kjiwi=)\wj y
K=y AT *BIYK). (B20)

Defining a;;=(a®|y{}’) one gets

VIyOly™)[ - for i=j,
ajj= (@a®ly() for i>j,
0 for i<j,

and

A=A®B+C®D, (B22)
with
_ 1 3ik 3 . , "
Apm=Sm(pp)| =2+ —— | +| — +2iK|Sn(pp) +Smlpp),
Pp Po) \Pp
B3 = agSnl ),
_ 1
Cmep_gsm(pp)’
_ [(1+1) AX(A+1)
aB_ ” _
Dgn 5aﬁ[sn(0q) cosZGq Sin29q Snl(6a) |
(B23)

Then we use the identity

A®B+Ce®D=(AU @BV ) (IIeE+Ia1)(UaV)
(B24)

with

(B25)

andII,= diagonal.
It follows that

(A®B+C®D) 1=(U oV H(IIeE+I®l)"!
X (UA"t@VB™Y). (B26)

This form of A~* when used in the Lanchos iteration process
leads to a consequitive application of matrices of much
smaller dimension than that of the original matéx
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