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Resonances in the three-neutron system
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~Received 26 January 1999; published 30 June 1999!

A study of three-body resonances has been performed in the framework of configuration-space Faddeev
equations. The importance of keeping a sufficient number of terms in the asymptotic expansion of the reso-
nance wave function is pointed out. We investigated three neutrons interacting in selected force components
taken from realisticnn forces. Three-neutron resonance pole trajectories connected to artificially enhancednn
forces could be found. The final pole positions corresponding to the actual force strengths could not be found
due to the onset of numerical instabilities. The numerically reliable results achieved, however, make it likely,
that three-neutron resonance energies will have large imaginary parts and are therefore physically not inter-
esting. A straightforward application of complex scaling to three-nucleon systems with realistic forces could
not be controlled numerically.@S0556-2813~99!04207-7#

PACS number~s!: 21.30.2x, 21.45.1v, 24.10.2i, 25.10.1s
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I. INTRODUCTION

Three-nucleon~3N! resonances have not yet been firm
established. The situation up to 1987 is given in@1#. A recent
investigation@2# of the process3He(p2,p1)3n found no
evidence of a resonance state of three neutrons. Earlie
vestigations@3,4# pointed to resonances in the three neutr
(3n) and three proton (3p) systems. The double charge e
change process on3He was also investigated in@5# criticiz-
ing previous work but pointing again to a 3n resonance, now
around (20220 i ) MeV. For the nnp system an excited sta
around 7 MeV with a width ofG50.660.3 MeV has been
suggested in@6#. A variational study based on complex sca
ing and simplified nucleon-nucleon (NN) forces was carried
through in @7# with the prediction of a 3n resonance atE
5(14213 i ) MeV for a Jp53/21 state. Earlier theoretica
studies@8,9# might be useful in various aspects, but are n
conclusive with respect to the actual position of 3n reso-
nances. A virtual state of3H with the quantum numbers o
the ground state has been investigated in@10# by analytically
continuing the momentum-space Faddeev equation and
estimating three-nucleon force~3NF! effects. In the frame-
work of the hyperspherical harmonic method and using co
plex scaling with model potentials a subthreshold 3n reso-
nance for Jp51/22 has been located in@11#. Recently
mathematical foundations have been laid on the analyt
continuation of the three-body Faddeev equations into
physical energy sheets@12# and an application thereof to th
4He trimer appeared in@13#.

It is a theoretical challenge to determine the locations
the lowest lying 3N resonances on unphysical sheets ba
on the most modern nuclear forces. Those forces are
successful in describing 3N scattering observables@14#
which leads to the expectation that the correspondingN
Hamiltonian will also locate 3N resonances with a high de
gree of reliability. As for the 3N bound state energy, wher
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some theoretical underbinding results and 3NF’s are use
bridge that gap to the data point, also 3N resonance positions
might finally be fine-tuned in this manner. These future r
orous results would also be an important guidance for exp
ments and would clarify the hitherto controversial situatio

For the 3N system the bound state has been studied
tensively in the last decades, resulting in numerically prec
and converged solutions of the 3N Faddeev equations@15–
19#. Energy eigenvalues and wave functions have been g
erated with most modern nuclear Hamiltonians in mom
tum and coordinate space. Also numerically exact soluti
of 3N Faddeev equations for continuum states with the sa
Hamiltonians are now available in momentum space fo
wide range of energies@14#. The first model solutions also in
coordinate space appeared@20# and variational approache
matured and provide equally accurate solutions@21#.

Three-nucleon resonances, however, have not yet b
investigated in a comparable rigorous manner and base
realistic NN forces to the best of our knowledge. In th
article we would like to take first steps into such a directio

In the two-nucleon (2N) system the exact form of the
wave function in configuration space is known outside
range of the potential. In the 3N system only asymptotic
expansions are known@22,23# and methods as to how t
apply them with sufficient accuracy, for instance in Fadde
equations, have still to be elaborated in that framewo
There are first very promising results for 3N scattering above
the 3N breakup threshold@20# though up to now only for
simple S-wave model forces. To the best of our knowled
3N resonance wave functions, which asymptotically oscill
and grow exponentially, have not yet been determined
solutions of Faddeev equations and realistic forces. First
tempts in this direction have been done in@24#, however with
very simple forces.

In this study we investigate three-body resonances as
lutions of configuration-space Faddeev equations. The la
est obstacle to find the resonance positions with suffic
precision is the approximate form of the resonance bound
condition.Ab initio it is not known at which coordinate val
ues this form is valid with sufficient accuracy. For res
nances this problem can be overcome in principle using

L-
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H. WITAŁA AND W. GLÖ CKLE PHYSICAL REVIEW C 60 024002
complex scaling method~CSM! @25,26#. Thereby all relative
coordinates are ‘‘rotated’’ into the complex plane, leading
bound-state-like, exponentially decreasing resonance w
function. This ‘‘rotation’’ of the coordinates into the com
plex plane works well for problems in atomic physics wi
potentials of inverse power laws. It will be shown in th
article that in nuclear physics a straightforward applicat
of the CSM in configuration-space Faddeev form leads
serious numerical problems when the usual realisticNN in-
teractions of Yukawa type and hard core behavior are u
Whether feasible modifications thereof can be found rema
to be seen. Right now our experience is such that the r
nance energies can be gained with sufficient precision on
one does not leave the realr axis and if one guarantees th
exact boundary condition as close as possible by usin
sufficient number of terms in its asymptotic form.

In Sec. II we explain in detail the problems encounter
when one applies the CSM to nuclear resonances using
2N system as a playground. Exact knowledge of the bou
ary conditions for this system allows one to check assum
tions which can later be applied to 3N resonances. The 3N
equations and the method for their solution are presente
Sec. III. There we discuss results for three bosons interac
with simple, S-wave forces and more importantly for 3n’s
interacting via realistic neutron-neutron (nn) interactions. A
summary is given in Sec. IV. Information on the technic
performance can be found in Appendixes A and B.

II. RESONANCES IN THE 2 N SYSTEM

Searching resonances in a system of two nucleons
well-defined problem and numerically well under contr
@27#. In spite of that we discuss it here and present so
results due to its pedagogical simplicity, which enables u
present and test approaches which might be useful for fi
ing resonances for three or more nucleons. In addition
can introduce our notation.

The 2N resonances are associated with the poles of thS
matrix which are embedded in the fourth quadrant of
complexk plane@Re(k).0, Im(k),0]. They are solutions
of the time-independent Schro¨dinger equation without the
incoming and outgoing waves increasing exponentially at
finity. We introduce the coordinate-space partial-wave ba
ur ,a2&[ur ,(ls) j t &, where

^rW8urlm&5
d~r 82r !

rr 8
Ylm~ r̂ 8! ~1!

and where the orbital angular momentuml and total spins
are coupled to the total angular momentumj. The isospin of
the two nucleons is denoted byt. Then the resonance wav
function c(rW) to a givenj and t has the form

c~rW !5(
l

fa2
~r !

r
^ r̂ ua2&. ~2!

It is written in terms of the reduced wave functionsfa2
(r )

which fulfill the radial Schro¨dinger equation
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a28

Fda2a
28
S d2

dr2 2
l a2

~ l a2
11!

r 2 D 2
m

\2 Va2a
28
~r !Gfa

28
~r !

52k2fa2
~r !. ~3!

The resonance conditions are such thatc has to be regular
at the origin and purely outgoing. For the reduced amplitu
this amounts to

fa2
~0!50 ~4!

and

fa2
~r !}rhl a2

(1)~kr !, ~5!

outside the range of the interaction. Herehl
(1)(kr) is the

spherical Hankel function. As we shall demonstrate below
is mandatory to either use the exact form of the bound
condition ~5! or to take into account at least the leadin
orders to find the resonances in the 2N system with sufficient
accuracy. In Eq.~3!, m is the nucleon mass andk2

[(m/\2)E. The complex energyE is embedded in the lowe
half plane of the second energy sheet. The boundary co
tions ~4! and ~5! apply also to bound states with real, neg
tive eigenvaluesE. The matrix elements of theNN interac-
tion are defined in terms ofVa2a

28
(r ) by

^ra2uVur 8a28&5
d~r 2r 8!

rr 8
Va2a

28
~r !. ~6!

A method of solving Eq.~3! is displayed in@28#. One
chooses suitable grid points inr and interpolatesfa2

(r ) in
terms of cubic splines. The boundary conditions~4! and ~5!
can be conveniently incorporated either by the absence
certain expansion coefficients in the spline expansion or
suitable relations among them. Then choosing appropr
collocation points inr one ends up with a homogeneou
algebraic set of equations. They can be handled by stan
methods@28#.

In systems with more than two nucleons the bound
conditions are known only via an asymptotic expansion a
one has therefore to work with approximate boundary c
ditions. Knowledge of the exact resonance solutions in
2N system allows us now to study the question pivotal
3N systems: how precisely does one need to know
boundary conditions in order to get the resonance ener
with sufficient accuracy? To study this problem one can
the series representation for the spherical Hankel functio

hl
(1)~x!5 (

m50

l
~ l 1m!!

m! ~ l 2m!!

1

2m

expS i H x2
l 2m11

2
pJ D

xm11

~7!

and write the resonance wave function outside the interac
region in a form which resembles the asymptotic bound
condition in the 3N system@see Sec. III, Eq.~21!#,
2-2
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TABLE I. Resonance positions in differentNN states obtained with the correct~column 4! and approxi-
mate~columns 5–7! boundary conditions applied at different matching radiir max. TheREID93 NN potential
multiplied with the factorslV has been used.

NN state lV r max Eres
2N ~MeV!

Exact (m5 l ) m50 m51 m52

3P0 5.50 10.0 1.4220.75i 1.7521.04i
15.0 1.4220.75i 1.5820.63i
20.0 1.4220.75i 1.3620.58i

1D2 5.00 10.0 15.0820.80i 15.1120.90i 15.0820.80i
15.0 15.0820.80i 15.0720.85i 15.0820.80i
20.0 15.0820.80i 15.0620.83i 15.0820.80i

3P2-3F2 6.20 10.0 2.7921.17i 3.0721.05i 2.7921.17i
15.0 2.7921.17i 2.6220.99i 2.7921.17i
20.0 2.7921.17i 3.0821.28i 2.7921.17i
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f~r !5exp~ ikr ! (
m50

l
am

~kr !m , ~8!

with am being unknown constants independent ofk and r.
Here, contrary to the 3N system, the number of terms in th
series is restricted by the orbital angular momenta contrib
ing to the given total angular momentumj of a resonance.

In Table I we present 2N resonance positions in differen
NN states where the exact boundary condition has been
posed at different matching radii outside the interaction
gion. TheNN interactionREID93 @29# has been used and ha
been multiplied by a factorlV ~shown in column 2 of Table
I!. Using the exact boundary condition the resonance p
tions do not depend of course on the value of the match
radius. However, when the most crudely approxima
boundary condition is applied, keeping in Eq.~8! only the
term with m50, the approximate resonance positions va
with the matching radius and up to 20 fm the results
highly insufficient. As seen from Table I it is sufficient to g
correct energy eigenvalues if one keeps only the two lead
terms in the boundary condition~8! ~for l 51 this is the exact
form!.

For resonances the problem of a possibly approxim
nature of the boundary condition can be overcome in p
ciple using the complex scaling method@25,26#. This will
now be illustrated for two nucleons because of its simplic
In the 2N system one replaces the relative coordinater by

r→r 8[reia. ~9!

For real positive anglesa the asymptotic formeikr with
Im(k),0 can be changed to an exponentially decreas
function. Therefore a resonance wave function analytica
continued to those complex coordinates can be treated li
bound state with its well-known boundary condition. Then
is probably enough to restrict the boundary condition~8! to
the first termm50. This ‘‘rotation’’ of the coordinate into
the complex plane is sufficient for problems in atomic ph
ics with Coulomb potentials. In nuclear physics the pote
tials decrease exponentially and the transformation~9! turns
then e2mr into e2m[cos(a)1i sin(a)]r. Therefore fora.0 the
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range of the potential will increase, which is counterprodu
tive. This can be avoided by generalizing Eq.~9! to complex
a ’s. Then

e2mr→exp„2me2Im(a)$cos@Re~a!#1 i sin@Re~a!#%r …,
~10!

which for Im(a),0 increases the massm cos@Re(a)# in the
exponent tome2Im(a)cos@Re(a)# and thus choosing Im(a)
suitably decreases the range of the interaction again. At
same time also the wave function decreases faster due to
factore2Im(a) in the exponent. Let us call that transformatio
the extended CSM~ECSM!.

We first illustrate the power of the ECSM in the 2N sys-
tem using theREID93 NN potential in the state3P0. As we
have seen in Table I, an enhancement factorlV55.5 leads to
a resonance state with a complex energy eigenvalueE
5(1.4220.75 i ) MeV. If one uses in Eq.~8! the first term
with m50 only the energy eigenvalue is badly presen
~see Tables I and II!. The result is improved and we can ga
the correct result with the required precision using the CS
with Im(a)50 ~see Table II!. Note that in Table II we stick
to the asymptotic form (m50) in view of the fact that for
three bodies we also have only approximate forms. If
now allow for negative Im(a)’s, then as can be seen in Tab
II we gain the correct eigenvalue even choosing a very sm
matching radius.

We also see from Table II that the CSM for increasi
Re(a) gets numerically unstable at a certain value of Re(a).
In this example it happens around 40°. This behavior is
tricately connected to the present day parametrizations
NN interactions and puts into question the applicability
the CSM for finding broad resonances in nuclear syste
The parametrizations are typically of Yukawa type~one-
boson exchanges! like in the REID93 @29# or REID soft core
potential@30#. The analytical continuation to complexr val-
ues leads to an oscillating behavior of the potential, wh
drastically increases with increasing Re(a), with unstable
numerics as a consequence. We examplify this behavio
Fig. 1 for theREID93 potential. We checked several of th
existing NN potentials and found always this problem~po-
tentials according to Gognyet al. @31#, de Tourreil and
2-3
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Sprung@32#, Eikemeier and Hackenbroich@33#, and de Tour-
reil @34#!. In case of the AV14@35# and AV18@36# potentials
the situation is even worse due to a singularity for compler
values in their parametrization of the hard core part. A
Gaussian parametrizations are not an exception. In this
the form exp(2ar2) limits the complex scaling angle Re(a)
to Re(a),45°.

One possibility to generalize the CSM in order to avo
the above problems is the so-called ‘‘smooth-exterior’’ co
plex scaling~SECS! @26#. The idea is to perform the comple
rotation only outside the region of interaction. In this way t
analytical continuation of the potential into the complex c
ordinate plane is avoided. In practice this can be achiev
for instance, by performing the following transformatio
@note the printing errors in@26# leading to false expression
~2.1.30! and ~2.1.32!#:

TABLE II. Complex energy eigenvalues for the3P0 2N state
obtained with theREID93 NN interaction enhanced bylV55.5 and
an approximate boundary condition@m50 term only in Eq.~8!#.
The correct energy eigenvalue isEres

2N5(1.4220.75i ) MeV.

r matching Re(a) Im(a) Eres
2N

~fm! ~deg! ~deg! ~MeV!

10.0 0.0 0.0 1.7521.04 i
10.0 20.0 0.0 1.4020.88 i
10.0 0.0 240.0 1.3620.58 i
10.0 0.0 280.0 1.2420.58 i
10.0 20.0 240.0 1.4220.73 i
10.0 20.0 280.0 1.4220.75 i
2.0 20.0 280.0 1.2220.93 i
2.0 20.0 2160.0 1.4320.75 i

20.0 20.0 0.0 1.4220.73 i
20.0 30.0 0.0 1.4320.74 i
20.0 40.0 0.0 1.4320.75 i
20.0 44.0 0.0 1.4820.75 i
20.0 46.0 0.0 1.7120.72 i
20.0 48.0 0.0 2.9920.36 i
le
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with

FIG. 1. Analytical continuation of the3P0 REID93 NN potential
under the complex scaling transformationr→reia for five values of
a50°,20°,40°,60°, and 80°.@~a! real part,~b! imaginary part.#
F~r !5r 1@exp~ ia!21#H r 1
1

4l
ln

$11exp@2l~r 2r 0!#%$11exp@22l~r 2r 0!#%

$11exp@2l~r 1r 0!#%$11exp@22l~r 1r 0!#%J . ~12!
This transformation leads to the smooth-exterior-sca
Hamiltonian

H52
\2

m

1

f 2~r !

d2

dr2 1V„F~r !…1
\2

m

f 8~r !

f 3~r !

d

dr
1

\2

m

l ~ l 11!

F2~r !
,

~13!

with
d
f ~r !5

dF

dr
511@exp~ ia!21#g~r !

g~r !5110.5$tanh@l~r 2r 0!#2tanh@l~r 1r 0!#% ~14!

and

d f

dr
50.5l@exp~ ia!21#$cosh22@l~r 2r 0!#

2cosh22@l~r 1r 0!#%. ~15!
2-4
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The casel50 corresponds to the usual CSM,r 85reia @26#.
Taking r 0 outside the region of theNN interaction and
choosing a proper value forl a smooth-exterior-scaling pat
results, which avoids the oscillating changes of theNN po-
tential. We present in Table III the effectiveness of this a
proach by aplying it to the1D2 resonance state for th
REID93 NN potential withlV55.0. It is enough to keep only
the first term in the boundary condition~8! to reproduce the
correct resonance position when a sufficiently large value
the scaling anglea is chosen. Now, however, contrary to th
CSM, no numerical problems arise when large values oa
are used. In spite of its success in the 2N system we think
that SECS cannot be easily applied in 3N systems. We could
not overcome problems arising from the permutation ope
tor ~see Sec. III!.

III. THREE-BODY RESONANCES

Now we investigate three-body resonances as solution
configuration-space Faddeev equations. They are often c
Kowalski-Noyes equations and have the form@37#

~H01V2E!c52VPc. ~16!

Here H0 is the kinetic energy,V the two-body force,c a
Faddeev component, andP the sum of two permutation op
erators such that the total, properly symmetrized wave fu
tion is C5(11P)c. Based on standard Jacobi variablesxW

5rW22rW3 , yW5 1
3 @xW12 1

2 (xW21xW3)# it is convenient to introduce
polar coordinatesx[r cosu andy[(A3/2)r sinu. If we ex-
press the Faddeev componentc(xW ,yW ) in terms of partial-
wave amplitudesua& which specify angular momenta an
isospin quantum numbers, then we obtain

c~xW ,yW !5(
a

fa~x,y!

xy
^x̂ŷua&, ~17!

TABLE III. Smooth-exterior complex scaling applied to th
1D2 resonance state of theREID93 NN potential withlV55.0. Only
the first term in the boundary condition~8! was taken into account
The correct energy eigenvalue isEres

2N5(15.0820.80 i ) MeV.

r matching l r 0 a Eres
2N

~fm! (fm21) ~fm! ~deg! ~MeV!

10.0 2.0 5.0 10.0 15.0820.84 i
10.0 2.0 5.0 20.0 15.0720.81 i
10.0 2.0 5.0 30.0 15.0720.80 i
10.0 2.0 5.0 40.0 15.0820.80 i
10.0 2.0 5.0 50.0 15.0820.80 i
10.0 2.0 5.0 60.0 15.0820.80 i
10.0 2.0 5.0 70.0 15.0820.80 i
10.0 2.0 5.0 80.0 15.0820.80 i
15.0 2.0 5.0 60.0 15.0820.80 i
20.0 2.0 5.0 60.0 15.0820.80 i
15.0 2.0 3.0 60.0 15.0820.80 i
15.0 3.0 3.0 60.0 15.0820.80 i
02400
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and Eq. ~16! turns into a coupled set of partial-integro
differential equations@28#

S Da1
m

\2 EDfa~r,u!2(
b

Vab~r cosu!fb~r,u!

5(
b

Vab~r cosu!(
g
E

u2

u1

Kbg~u,u8!fg~r,u8!du8,

~18!

with

Da[
]2

]r2 1
1

r

]

]r
1

1

r2

]2

]u2 2
l ~ l 11!

r2cos2u
2

l~l11!

r2sin2u
~19!

andu25uu2p/3u, u15uuu2p/6u2p/2u.
The coupling results from the permutation operatorP and

from possible spin dependences inV. The evaluation of the
permutation operator matrix elements^xyauPux8y8a8& and
the resulting expression for the kernelKbg(u,u8) is pre-
sented in Appendix A.

Similarily as in the two-body case the resonance con
tions are such thatc(x,y)[f(x,y)/xy has to be regular a
the origin and purely outgoing in all channels. For the
duced amplitudesf(r,u) this amounts to@28,38#

f~0,u!5f~r,0!5fS r,
p

2 D50 ~20!

and for large distances

f~r,u!→u~x!eiqyf 01
eikr

~kr!1/2 S A~u!1
1

kr
B~u!1••• D .

~21!

The first term in Eq.~21! occurs only in channelsa, where a
two-body bound stateu(x) exists. The second part describ
the behavior in the three-body breakup channel. The co
sponding momenta are

q5Am~E2E2!,

k5AmE, ~22!

wherem is the nucleon mass andE2 the two-body binding
energy. The boundary conditions~21! apply also to bound
states with real eigenvaluesE which are located below al
two-body thresholdsE2. For resonancesE is complex and
the eigenvaluesE close to the real axis of the physical she
are of interest. They either lie in second sheets which
accessible to the right ofE2 values~two-body fragmentation
cuts! or in the lower half plane of a second sheet, which
accessible through the 3N breakup cut to the right ofE50.
For a recent description of the cut structure see, for insta
@24#.

An efficient method for solving Eq.~18! is very well dis-
played in@28#. One chooses suitable grid points inr andu
and interpolatesf(r,u) in terms of cubic splines. Similarily
as in the two-body case the boundary conditions~20! and
2-5
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~21! can be conveniently incorporated either by the abse
of certain expansion coefficients in the spline expansion
by suitable relations among the coefficients. Then choos
appropriate collocation points inr and u one ends up in a
homogeneous algebraic set of equations. For realisticNN
forces the dimension of the matrix is very large and the t
sor product method@39# is a key technique. We use
Lanczos-type iteration method@40# and of course take ad
vantage of the sparceness property of the matrices. It is
vantegeous to work with further reduced amplitudesF de-
fined as f(r,u)[reikrF(r,u), if one treats resonance
below the cut with ReE.0. In Appendix B we present the
details of the above procedure.

The main problem in solving Eq.~18! is the approximate
nature of the asymptotic form~21!. Ab initio it is not known
at whichr value this form is valid with sufficient accuracy
For a recent discussion see@38#. Also it is a priori not known
how many terms should be included in the asymptotic
pansion~21! for a particular 3N resonance state. One su
pects of course that including more terms one approac
more closely the exact boundary condition. The importa
of the terms in Eq.~21! going with increasing powers of 1/kr
depends not only on the resonance energy and the matc
value for r but also on the magnitudes of thea priori un-
known functions A(u),B(u), . . . . For resonances com
monly these problems are expected to be overcome using
complex scaling method@25#. However, because of the re
strictions imposed on this method by the behavior of theNN
forces as discussed in Sec. II, we found that this method
be applied in the framework of the configuration-space F
deev equations only for rather narrow resonances. The
all relative coordinates (x andy in the three-body case! are
rotated into the complex plane. This amounts tor→r8
5reia wherea is restricted to rather small values. An e
ample for realisticnn forces is mentioned at the end of th
section. However, if the forces are very simple, the CSM c
work as will be illustrated below.

One can hope that the SECSM which proved to be v
efficient in the two-body case will help here, too. Howev
according to our insights up to now this approach leads
problems we could not solve when calculating the permu
tion operatorP and when performing the transition from Ca
tesian to polar relative coordinates.

The only possibility left is to look at solutions of Eq.~18!
without leaving the realr axis and taking the boundary con
dition ~21! with a sufficient number of terms into account
order to reach as close as possible the exact boundary
dition. In this manner one can hope to get convergence
the resulting resonance position.

We checked our configuration-space code by calcula
the energy of the bound state of3H nuclei with theREID93
NN potential, taking differentNN force components into
account. In Table IV we present our numbers together w
results of momentum-space Faddeev calculations@41#. The
very good agreement between both approaches is cle
seen.

In the first step we considered three bosons interacting
GaussianS-wave forces
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V~r !52120 exp@2r 2#112 exp@2~r /3!2# @MeV#.
~23!

They are such that a barrier is built in, which is an obvio
and trivial mechanism generating a resonance. That inte
tion does not support a two-body bound state and in
asymptotic form ~21! the first term is absent. For thre
bosons in theJp501 state and interacting byS-wave forces
only the kernelKab51/4p. This model has been used i
@42# in applying the stochastic variational method. The re
nance energy found there isE5(8.6021.84 i ) MeV. In this
case the CSM works. For instance for a matching radius
r510 fm and taking theA and B terms in Eq.~21! into
account we achieved the results shown in Table V. F
Re(a)540.0° we are close to the result found in@42# but not
close enough. A smaller matching radius, however, liker
55 fm does not work. The correct result can, however,
achieved if in addition we turn on Im(a),0. This is dem-
onstrated in Table V. We illustrate in Figs. 2 and 3 typic
resonance amplitudesF, working with real coordinates o
with complex coordinates. In both cases the matching rad
has been chosen as 5 fm. In the first case this is not suffic
to achieve the correct complex energy eigenvalue, whe
in the second case the amplitude is already sufficien
damped atr55 fm and the correct energy eigenvalue
accessible at such a small matching radius.

In this simple case one can study the problem of h
many termsA,B, . . . in the boundary condition~21! should
be taken into account to get the correct resonance posi

TABLE IV. Triton binding energies obtained in momentum
and coordinate-space calculations with theREID93 NN potential us-
ing different numbers of channelsNc . The last column gives the
corresponding numbers for the Gogny potential.

NN states Nc
3H binding energy~MeV!

p space r space r space~Gogny!

1S013S1-3D1 5 27.630 27.631 28.640
j <1 10 27.403 27.406 28.550
j <2 18 27.747 27.750 28.639

TABLE V. CSM applied to a three-boson system interacti
through theS-wave interaction of Eq.~23! in theJp501 state. The
correct energy eigenvalue isEres

3B5(8.4721.86 i ) MeV. The
boundary condition~21! with A andB terms only has been applied

r matching Re(a) Im(a) Eres
3B

~fm! ~deg! ~deg! ~MeV!

10.0 0.0 0.0 8.5021.81 i
10.0 20.0 0.0 8.4821.87 i
10.0 40.0 0.0 8.4621.86 i
5.0 20.0 0.0 8.3621.78 i
5.0 40.0 0.0 8.7122.03 i
5.0 40.0 220.0 8.4521.93 i
5.0 40.0 240.0 8.4621.86 i
5.0 40.0 260.0 8.4721.86 i
2-6
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RESONANCES IN THE THREE-NEUTRON SYSTEM PHYSICAL REVIEW C60 024002
Of course it will depend on the value of the matching rad
r. We present in Table VI the resonance positions obtai
with an increasing number of terms in the boundary con
tion ~21! and different matching radii. For the details of in
cluding an arbitrary number of terms in the asymptotic co
dition we refer to Appendix B. It is seen from Table VI th
for matching radii.10 fm it is practically sufficient to take
only the two leading terms going withA andB into account
in order to get the correct resonance position. We also
that the restriction to theA term alone is totally insufficient
Unfortunately this example is far from reality in nucle
physics. It does not contain a short-range repulsion and
mechanism for creating a resonance in few nucleon syst
is different in reality, where it is not caused by a barrier
the potential itself.

Now we investigate the case of three interacting neutr
in states with different total angular momenta and parity. W

FIG. 2. The real and imaginary parts of the reduced Fadd
amplitudesF for a three-boson resonance in the state 01 without
complex scaling@~a! real part,~b! imaginary part#.
02400
s
d

i-

-

ee

he
s

s
e

allowed thenn force to act in the states1S0 , 3P0, and
3P2-3F2. They are of attractive nature while the repulsi
ones were neglected. This is only a feasibility study a
should provide a first orientation. In the first step thenn
forces were chosen as a smooth, localNN force of Ref.@31#,
called in the following the Gogny potential. It is a rath
simple approach toNN phase shifts through forces of cen
tral, tensor, and spin-orbit type supplemented by aL12 term,
all of which of Gaussian form. To initiate the search proce
for the position of the resonance energy we artificially e
hanced the force components in the three states such th
of them support a two-neutron bound state at the same
ergy. An example is shown in Table VII for aJp53/22 state
of three neutrons. For these enhancement factors also thn
system is bound. Then we reduce the enhancement fac
~some intermediate cases are shown in Table VII!, which
traces out a bound state trajectory. In this case we see

v FIG. 3. The same as in Fig. 2 but with the ECSM takinga
5(40.0°240.0° i ) @~a! real part,~b! imaginary part#.
er of

TABLE VI. Resonance positions of a three-boson system in theJp501 state interacting through the

S-wave interaction of Eq.~23!. The results are without complex scaling but taking an increasing numb
terms in the boundary condition~21! into account. The correct energy eigenvalue isEres

3B5(8.47
21.86 i ) MeV. Number of terms 1 means that only theA(u) term has been used.

rmax ~fm! Eres
3B (MeV) for a particular number of terms in Eq.~21!

1 2 3 4

10.0 8.4021.40 i 8.5021.81 i 8.4821.85 i 8.4921.85 i
15.0 8.8121.80 i 8.4621.87 i 8.4621.85 i 8.4621.85 i
20.0 8.0022.18 i 8.4621.85 i 8.4621.85 i 8.4621.85 i
30.0 8.6421.69 i 8.4721.86 i 8.4721.86 i 8.4721.86 i
2-7



fi

r
e

re

fo
t

er
sed
-
ing
ing

ent

en-

r

east

in

ith

nce-
g

ial
nt
o-

tates
tors.

en-

-
.

H. WITAŁA AND W. GLÖ CKLE PHYSICAL REVIEW C 60 024002
the 3n bound state still exists even when all 2n subsystem
bound states have disappeared. Then we can neglect the
term in the boundary condition~21!. Decreasing further the
enhancement factor~s! ~in this specific case only fo
3P2-3F2) the energy eigenvalue goes into the second sh
and traces out a resonance trajectory. The search for the
nance position corresponding to the actualnn force is fin-
ished when the enhancement factors in allnn force compo-
nents have reached the valuesl i51.0. As we shall see in the
case of three neutrons we face numerical instabilities be
all l ’s reach the value 1. We can present the resonance

TABLE VII. Required strength factorslV for particular force
components of the GognyNN interaction together with the corre
sponding two- and three-neutron (3/22) bound energy eigenvalues

lV E2n ~MeV! E3n ~MeV!

1S0
3P0

3P2-3F2

1.8360 9.2804 5.2012 24.0 231.68
1.7241 8.9456 5.1422 23.0 228.06
1.5960 8.5851 5.0797 22.0 224.15
1.4370 8.1846 5.0123 21.0 219.73
1.3297 7.9584 4.9758 20.5 217.09
1.1930 7.7518 4.9442 20.1 214.21
1.1205 7.6981 4.9365 20.01 212.96
1.05 7.65 4.90 211.13
1.0 7.5 4.8 28.24
1.0 1.0 4.8 27.12
1.0 1.0 4.7 25.13
1.0 1.0 4.6 23.29
1.0 1.0 4.5 21.65
1.0 1.0 4.4 20.23
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jectory only partially up to the point where we encount
those instabilities. We expect that they are probably cau
by the difficulty to fulfill the resonance condition, which re
quires that the exponentially decreasing, purely incom
wave be much smaller than the exponentially increas
purely outgoing wave. As we see from Table VII theJp

53/22 3n bound state disappears when the enhancem
factors arrive at (l1S0

,l3P0
,l3P2-3F2

)5(1.0,1.0,4.35). In

Table VIII the trajectory of the 3/22 3n resonance in the
second energy sheet is mapped out by decreasing the
hancement factorl3P2-3F2

in steps of 0.05 starting from

l3P2-3F2
54.3. The final reliable position reached is fo

l3P223F2
53.6 with the valueE3n

3/22
5(5.3024.67 i ) MeV. As

can be seen this stable position is only obtained when at l
four terms in the boundary condition~21! are taken into ac-
count. We checked that our particular distribution ofr andu
points as well as the choice of the matching radius inr does
not influence the resulting trajectory. The values given
Table VIII are based on a matching radiusr530.0 fm and
typically Nr530 andNu525 points distributed by scaling
factorsSr51.2 andSu50.9 ~see Ref.@28#!. It is unfortunate
that right now we are not able to reach the final position w
l3P223F2

51. However, very likely the width will be quite
large. Therefore one cannot expect to see a visible enha
ment around some 3n c.m. energy in a reaction producin
three neutrons in the state 3/22.

The 1/22 and 3/21 states based on the Gogny potent
behave similarly to the 3/22 state. With proper enhanceme
factorslV the three neutrons are bound together with tw
neutron bound states for1S0 , 3P0, and 3P2-3F2. These 3n
states remain bound even when the two-neutron bound s
disappear with appropriately reduced enhancement fac
They disappear into the second energy sheet when the
TABLE VIII. The three-neutron 3/22 resonance state trajectories for the GognyNN interaction obtained
with increasing number of terms in the boundary condition~21!. The enhancement factorsl for the 1S0 and
3P0 nn force components are equal to 1.

l3P2-3F2
E3n (MeV) for a particular number of terms in Eq.~21!

1 2 3 4 5 6

4.30 0.8620.068 i 0.8620.068 i 0.8520.092 i 0.8520.092 i 0.8620.068 i 0.8620.068 i
4.25 1.2620.27 i 1.3420.21 i 1.3320.21 i 1.3420.21 i 1.3320.22 i 1.3320.22 i
4.20 1.8820.38 i 1.7720.41 i 1.7720.41 i 1.7720.41 i 1.7920.38 i 1.7920.38 i
4.15 2.2420.53 i 2.2020.62 i 2.1920.62 i 2.1920.63 i 2.2120.64 i 2.1920.63 i
4.10 2.5420.70 i 2.5820.87 i 2.6020.86 i 2.5820.88 i 2.6320.89 i 2.5720.84 i
4.05 2.7220.90 i 2.9421.15 i 2.9621.16 i 2.9721.14 i 3.0421.15 i 2.9221.18 i
4.00 2.8121.08 i 3.2721.49 i 3.3221.46 i 3.3221.46 i 3.3121.47 i 3.3121.47 i
3.95 2.8421.20 i 3.6321.86 i 3.6421.81 i 3.6621.79 i 3.6421.80 i 3.6421.80 i
3.90 2.8421.30 i 4.0122.24 i 3.9722.16 i 3.9522.16 i 3.9622.14 i 3.9722.14 i
3.85 2.8421.37 i 4.3922.55 i 4.2522.53 i 4.2422.53 i 4.2222.54 i 4.2122.51 i
3.80 2.8421.41 i 4.7022.82 i 4.5422.91 i 4.5022.92 i 4.4722.94 i 4.4922.93 i
3.75 2.8421.44 i 4.8823.13 i 4.7723.29 i 4.7623.32 i 4.7323.33 i 4.7823.35 i
3.70 2.8421.47 i 5.0723.40 i 4.9923.68 i 4.9523.75 i 4.9823.78 i 4.9623.77 i
3.65 2.8421.50 i 5.1723.66 i 5.1224.08 i 5.1424.18 i 5.1624.17 i 5.1424.19 i
3.60 2.8421.51 i 5.2323.91 i 5.2124.51 i 5.3024.67 i 5.3124.68 i 5.3324.69 i
2-8
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RESONANCES IN THE THREE-NEUTRON SYSTEM PHYSICAL REVIEW C60 024002
hancement factors reach (1.0,7.5,4.75) and (1.0,5.5,4.8
Jp51/22 and 3/21, respectively. These enhancement fact
are of course not unique but we worked with those examp
Following their trajectories before numerical instabilities s
in results in the complex energy eigenvalues shown for
Gogny potential in Table IX. For the 1/22 and 3/21 states,
similarily as for 3/22, the final, converged position is ob
tained only when at least four terms in the boundary con
tion are taken into account. In Fig. 4 we show the trajecto
for the three states 1/22, 3/22, and 3/21 for the Gogny po-
tential. We note that the trajectories are not unique and
pend how the enhancement factors are changed. Our stra
was to bring all of them together to one as close as poss

In this article we did not investigate the state 1/21, since
we found, like in @9#, that the 3n bound state disappear
earlier than the 2n bound states. In other words, the 3n
bound state trajectory will enter into the 2n-n two-body frag-
mentation cut. We left that study with the addition
asymptotic term in Eq.~21! to a future investigation.

TABLE IX. The positions of 3-neutron resonances for t
Gogny potential obtained with four leading terms in the bound
condition ~21!.

Jp lV E3n ~MeV!
1S0

3P0
3P2-3F2

1/22 1.0 5.5 2.75 2.8222.82 i
3/22 1.0 1.0 3.70 4.9523.75 i
3/21 1.0 5.0 4.3 5.7421.53 i

FIG. 4. The three-neutron 1/22, 3/22, and 3/21 resonance state
trajectories for the GognyNN interaction obtained with four term
in the asymptotic boundary condition. Different points correspo
to resonance positions with different values of the enhancem
factors. For the 1/22 statel1S0

51.0, l3P0
changes from 7.5 to 5.5 in

steps of 0.1, andl3P2-3F2
changes from 4.75 to 2.75 in steps of 0.

For the 3/22 statel1S0
51.0, l3P0

51.0, andl3P2-3F2
changes from

4.3 to 3.7 in steps of 0.05. For the 3/21 statel1S0
51.0, l3P0

changes
from 5.5 to 5.0 in steps of 0.05, andl3P2-3F2

changes from 4.8 to 4.3
in steps of 0.05.
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It is seen from Table IX that the 3/21 state for the Gogny
potential is relatively narrow. Taking the enhancement f

tors l i5(1.0,5.3,4.6) results in a resonance positionE3n
3/21

5(2.8820.23 i ) MeV. For such a narrow resonance th
CSM works properly for not too large values of thea angle
~see Table X!. Increasing it, however, the resulting energ
eigenvalue is totally wrong, which can be traced back to
increasing oscillations of theNN potential resulting from its
analytical continuation to complexr values.

In the last step we checked how the results depend on
NN interaction used. We choose a modern, realisticNN in-
teraction as given by theREID93 potential. The resulting po
sitions of the 3n resonances, as far as we could trace th
out, are shown for two examples in Table XI. In spite of t
fact that the particular values of thelV’s change, of course
the resulting picture is basically the same as for the Go
potential. We are still too far away from alll i51 in order to
definitely say that all the widths will be quite large. But th
will likely be the case. Again to achieve converged resu
one has to take at least four terms in the boundary condi
~21! into account.

IV. SUMMARY

We investigated the configuration-space Faddeev eq
tions with the aim to determine the location of three-neutr
resonances. Realisticnn forces have been used. Th
asymptotic form in the 3n breakup channel is known only in
the sense of an asymptotic expansion. We found that sev
terms thereof have to be included in order to get stable
reliable results, which are independent of the matching
dius. The search for the resonance positions was car
through by artificially enhancing 2n force components such
that a 3n bound state exists. Then by reducing those
hancement factors we followed the paths of the energy
genvalue into the second sheet adjacent to Re(E)>0. Unfor-

y

d
nt

TABLE X. CSM applied to theJp53/21 resonance state of th
Gogny potential with enhancement factorsl i5(1.0,5.3,4.6). The

correct energy eigenvalue isE3n
3/21

5(2.8820.23 i ) MeV.

Re(a) Im(a) E3n

~deg! ~deg! ~MeV!

10.0 0.0 2.8820.23 i
20.0 0.0 2.8820.23 i
30.0 0.0 3.1120.16 i

TABLE XI. The positions of three-neutron resonances for t
REID93 potential obtained with four leading terms in the bounda
condition ~21!.

Jp lV E3n ~MeV!
1S0

3P0
3P2-3F2

3/22 1.0 1.0 3.25 5.3023.53 i
3/21 1.0 4.6 3.50 5.9321.55 i
2-9
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H. WITAŁA AND W. GLÖ CKLE PHYSICAL REVIEW C 60 024002
tunately it turned out that numerical instabilities set in befo
we reached the actual strengths factors of 1 for all the in
vidually enhanced force components. Therefore we could
reach the very final positions of the studied 3n resonances in
the statesJp51/22, 3/22, and 3/21. A detailed reason for
those instabilities remains to be found. Despite that, our
sults already indicate that the imaginary parts of the comp
resonance energies will be quite large, so that one should
expect to see resonances in experiments.

We also applied the CSM, which works beautifully
atomic physics. The complex coordinates turn the expon
tially increasing resonance wave function into an expon
tially decreasing one, like for a bound state, and the prob
with the approximate boundary conditions is avoided. Ho
ever, for realisticNN interactions the complex scaling tran
formationr→reia increases the interaction range by a fac
1/cosa and leads for scaling anglesa greater than about 40
to a strong oscillations of the potential. This restricts t
application of the complex scaling method in more than tw
nucleon systems to rather narrow resonances. In the
nucleon system one can avoid the above restriction by
forming the complex rotation outside the region of nonze
interaction. Because of the neccessary particle permutatio
the three-body system, we were not able to use that ide
the three-body context.

This project deserves further investigations to locate
lowest resonances in the three nucleon systems base
modernNN and possibly three-nucleon forces.
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APPENDIX A: PERMUTATION OPERATOR

To evaluate the term on the right-hand side of Eq.~16!
one needs
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^xybuPuc&5(
g
E dx8x82dy8y82^xybuPux8y8g&

3
fg~x8,y8!

x8y8
, ~A1!

where the permutation operator isP[P12P231P13P23 and
the set of discrete quantum numbers abbreviated byb or g is
$( ls) j (l1/2)I ( j I )JM;(t1/2)TMT%. Here l, s, and j are the
orbital angular momentum, total spin, and total angular m
mentum in the two-body subsystem 2-3,l, 1/2, andI are the
corresponding quantities for particle 1, andJM denote the
conserved 3N total angular momentum and its magne
quantum number. In isospin space,t refers to particles 2 and
3 and couples with the isospin 1/2 of particle 1 to the to
isospinT and its magnetic quantum numberMT . Following
@27# one obtains, for the matrix element of the permutati
operator,

^xyauPux8y8a8&5E
21

1

du
d~x82 x̃8!

~x8! l 812

d~y82 ỹ8!

~y8!l812

3G̃aa8
Cart

~x,y,u!, ~A2!

with

x̃85A1

4
x21xyu1y2,

ỹ85A 9

16
x22

3

4
xyu1

1

4
y2, ~A3!

and

G̃aa8
Cart

~x,y,u!5(
k

Pk~u! (
r 11r 25 l 8

(
s11s25l8

3~x!r 11s1~y!r 21s2g̃
aa8

r 1s1k
. ~A4!

The purely geometrical quantityg̃
aa

r 1s1k
is given by
8

g̃
aa8

r 1s1k
52Al̂ l̂ 8ŝŝ8 ĵ ĵ 8l̂l̂8 Î Î 8 t̂ t̂8~21!k1 l 81s1k̂S 1

2D r 11s2S 3

4D s1

(
LS

~21!LL̂ŜH l s j

l
1

2
I

L S J

J H l 8 s8 j 8

l8
1

2
I 8

L S J

J
3H 1/2 1/2 t

1/2 T t8J H 1/2 1/2 s

1/2 S s8JA l̂ 8!

~2r 1!! ~2r 2!! (
r 3

r̂ 3S r 1 s1 r 3

0 0 0D
3S l r 3 k

0 0 0DA l̂8!

~2s1!! ~2s2!! (
s3

ŝ3S r 2 s2 s3

0 0 0D S l s3 k

0 0 0D H l r 3 k

s3 l LJ H r 1 r 2 l 8

s1 s2 l8

r 3 s3 L
J . ~A5!
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The superscript ‘‘Cart’’ stands for Cartesian andl̂ [2l 11.
To arrive at the kernelKbg on the right-hand side of Eq.~18!
one has to evaluate

xy^xybuPuc&5(
g

xyE
21

1

du
G̃bg

Cart~x,y,u!

x̃8 l gỹ8lg

fg~ x̃8,ỹ8!

x̃8ỹ8
.

~A6!

We introduce polar coordinates

x̃8[r cosu8,

ỹ8[A3

2
r sinu8, ~A7!

and changing theu to theu8 integration

E
21

1

du
xy

x̃8ỹ8
•••5

4

A3
E

u2

u1

du8•••, ~A8!

one arrives at

xy^xybuPuc&5(
g

4

A3
E

u2

u1

du8

3
G̃bg

polar~u,u8!

~cosu8! l gS A3

2
sinu8D lg

fg~r,u8!,

~A9!

with

G̃bg
polar~u,u8!5(

k
Pk„u~u,u8!…

3 (
r 11r 25 l g

(
s11s25lg

~cosu!r 11s1

3SA3

2
sinu D r 21s2

g̃bg
r 1s1k

~A10!

and

u~u,u8!5
cos2u82 1

4 cos2u2 3
4 sin2u

A3

2
cosusinu

. ~A11!

From Eq.~A9! follows that

Kbg~u,u8!5
4

A3

G̃bg
polar~u,u8!

~cosu8! l gS A3

2
sinu8D lg

. ~A12!
02400
APPENDIX B: THE SOLUTION OF THE ENERGY
EIGENVALUE PROBLEM INCLUDING N TERMS
IN THE ASYMPTOTIC BOUNDARY CONDITION

As a result of numerical reasons, it is advantegous to
tract the exponential part from the reduced Faddeev am
tudefa(r,u) and to work instead with

Fa~r,u![fa~r,u!/~reikr!. ~B1!

Following Ref.@28# one introduces suitable grid points inr
$r i , i 50, . . . ,I ; r050, r I5rmax% and in u $uk , k
50, . . . ,K; u050, uK5p/2%. Then one can writeFa(r,u)
in terms of cubic splinessm(r) andsn(u) as

Fa~r,u!5 (
m50

M11

(
n50

N11

aamnsm~r!sn~u!, ~B2!

with M52I andN52K.
As a result of the properties of the cubic splines as giv

in @28#, one has

Fa~r i ,uk!5aa,2i ,2k ,

]Fa

]r U
r i ,uk

5aa,2i 11,2k ,

]Fa

]u U
r i ,uk

5aa,2i ,2k11 . ~B3!

The boundary conditions at the origin, Eq.~20!, imply that

aa,0,n50,

aa,m,050,

aa,m,n5N50. ~B4!

Writing the asymptotic expansion~21! for Fa(r,u) under the
assumption that no two-body bound state exists in any ch
nel a results in

Fa~r,u!→
1

r~kr!1/2 (
l 51

Nt Bl
a~u!

~kr! l 21 , ~B5!

whenNt terms are included in the asymptotic form.
Imposing the boundary condition~B5! at r5rmax implies

the dependence ofaa,m5M11,n on aa,m5M ,n and Bl
a(u). In

order to remove the unknownBl
a(u) functions the boundary

condition has to be imposed on the lastNt points of ther
grid. This leads to the dependence ofaa,m5M11,n on
aa,m5M ,n , . . . ,aa,m5M22(Nt21),n . In the following the form
of this dependence is derived.

The asymtotic form for the partial derivative]Fa /]r is,
according to Eq.~B5!,

]Fa~r,u!

]r
→2Ã1~r!Fa~r,u!2(

l 52

Nt

Ãl~r!Bl
a~u!,

~B6!
2-11
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with

Ã1~r!5
3

2r
~B7!

and, for l>2,

Ãl~r!5
l 21

r2~k0r! l 21/2. ~B8!

Taking the partial derivative of Eq.~B2! with respect tor
and the form~B6! yields, for the lastNt points of ther grid
$r5r I 2 i 11 , i 51, . . . ,Nt%,

(
n

aa,M1122(i 21),nsn~u!

52(
n

aa,M22(i 21),nsn~u!Ã1~r I 2 i 11!

2(
l 52

Nt

Ãl~r I 2 i 11!Bl
a~u!. ~B9!

Equation ~B9! together with itsu derivative taken at the
points of theu grid leads to

aa,M1122(i 21),n52aa,M22(i 21),nÃ1~r I 2 i 11!

2(
l 52

Nt

Ãl~r I 2 i 11!B̃l
a~uk!, ~B10!

where, for n52k, B̃l
a5Bl

a(uk) and, for n52k11, B̃l
a

5dBl
a/duuu5uk

.

02400
The set~B10! is composed ofNt equations forNt21
unknownsB̃l

a(uk). They allow us to writeaa,M11,n in terms
of the aa,M2 i 11,n , i 51, . . . ,2(Nt21)11, as

aa,M11,n5 (
i 51

2(Nt21)11

aa,M2 i 11,nCi , ~B11!

where theCi ’s are functions of all theÃl(r I 2 i 11)’s resulting
from Eq. ~B10!.

In this way, incorporating the boundary conditions~B4!
and ~B5! one can writeFa(r,u) on the chosen grids as

Fa~r,u!5 (
m51

M

(
n51

N

aamnsm~r!sn~u!

1 (
n51

N F (
i 51

2(Nt21)11

aa,M2 i 11,nCi GsM11~r!sn~u!,

~B12!

where, as a result of the last equation in Eqs.~B4!, we re-
numberedn5N11 by n5N.

Inserting the expansion~B12! with the help of~B1! into
Eq. ~18! and choosing collocation pointsrp , p51, . . . ,2I ,
anduq , q51, . . . ,2K @28#, yields

(
b51

Nc

(
m51

M

(
n51

N

Aapq,bmnabmn5 (
b51

Nc

(
m51

M

(
n51

N

Bapq,bmnabmn ,

~B13!

with
Aapq,bmn5dabFsm9 ~rp!sn~uq!1S 3

rp
12ik D sm8 ~rp!sn~uq!

1
1

rp
2 sm~rp!sn9~uq!2H l ~ l 11!

rp
2cos2uq

1
l~l11!

rp
2sin2uq

2S 1

rp
2 1

3ik

rp
D J sm~rp!sn~uq!G ~B14!

and

Bapq,bmn5Vab~rp cosuq!sm~rp!sn~uq!1 (
g51

Nc

Vag~rp cosuq!sm~rp!E
u2

u1

Kgb~uq ,u8!sn~u8!du8

1dm,M2 i 11[1< i<2(Nt21)11]S 2dabCiFsM119 ~rp!sn~uq!1S 3

rp
12ik D sM118 ~rp!sn~uq!

1
1

rp
2 sM11~rp!sn9~uq!2H l ~ l 11!

rp
2 cos2uq

1
l~l11!

rp
2 sin2uq

2S 1

rp
2 1

3ik

rp
D J sM11~rp!sn~uq!G

3Vab~rp cosuq!sM11~rp!sn~uq!1 (
g51

Nc

Vag~rp cosuq!sM11~rp!E
u2

u1

Kgb~uq ,u8!sn~u8!du8D . ~B15!
2-12
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The number of channels is denoted byNc . This eigenvalue
problem~B13! can be treated in a standard way by chang
it into the form

A21Ba5la ~B16!

and searching for that energy at whichl51.
To solve Eq. ~B16! we used a Lanczos-type iteratio

method@40#. Taking an arbitrary starting vectora(0) a series
of vectors $a( i )%, i 51, . . . ,Ni , was generated applyin
A21B:

a( i )5A21Ba( i 21). ~B17!

Using a Schmidt procedure a set of orthonormalized vec
$yN

( i )% was obtained from$a( i )%:

y( i )5a( i )2(
j 51

i 21

^a( i )uyN
( j )&* yN

( j ) ,

yN
( i )5

y( i )

u^y( i )uy( i )&u1/2, i 51, . . . ,Ni . ~B18!

Expanding the original vectora in terms of$yN
( i )%,

a5 (
i 51

Ni21

v i yN
( i ) , ~B19!

and projecting Eq.~B16! ontoyN
( j ) reduces it to an eigenvalu

problem of much smaller dimensionNi21:

(
i 51

Ni21

K ji v i5lv j ,

K ji [^yN
( j )uA21BuyN

( i )&. ~B20!

Defining ai j [^a( i )uyN
( j )& one gets

ai j 5H Au^y( i )uy( i )&u for i 5 j ,

^a( i )uyN
( j )& for i . j ,

0 for i , j ,

and
an

.

02400
g

rs

Ki j 5
1

Au^y( j )uy( j )&u
S aj 11,i* d j 11> i2 (

k51

j 21

ajk* KikD .

~B21!

For the application ofB andA21 on a given vectora( i ) we
applied the tensor product method@39#. HerebyA is decom-
posed as

A5Ā^ B̄1C̄^ D̄, ~B22!

with

Āpm[sm~rp!S 1

rp
2 1

3ik

rp
D 1S 3

rp
12ik D sm8 ~rp!1sm9 ~rp!,

B̄qn
ab[dabsn~uq!,

C̄pm[
1

rp
2 sm~rp!,

D̄qn
ab[dabFsn9~uq!2S l ~ l 11!

cos2uq
1

l~l11!

sin2uq
D sn~uq!G .

~B23!

Then we use the identity

Ā^ B̄1C̄^ D̄5~ĀU21
^ B̄V21!~P ^ J1I ^ I !~U ^ V!

~B24!

with

Ā21C̄5U21PU,

B̄21D̄5V21JV, ~B25!

andP,J diagonal.
It follows that

~Ā^ B̄1C̄^ D̄ !215~U21
^ V21!~P ^ J1I ^ I !21

3~UĀ21
^ VB̄21!. ~B26!

This form ofA21 when used in the Lanchos iteration proce
leads to a consequitive application of matrices of mu
smaller dimension than that of the original matrixA.
. G
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