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Lc
1
˜p1K21p1 decay
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The proton energy spectrum and the angular distribution of the probability of theLc
1→p1K21p1 decay

for the polarized Lc
1 and the unpolarized proton are calculated in the quark model with chiral

U(3)3U(3) symmetry incorporating heavy quark effective theory and chiral perturbation theory at the quark
level. The application of the obtained result to the analysis of the polarization of theLc

1 produced in the
processes of photo and hadroproduction is discussed. We draw the similarity between the measurements of the

polarization of theLc
1 in the Lc

1→p1K21p1 decay and them2 meson in them2→e21 n̄e1nm decay.
@S0556-2813~99!02807-1#
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I. INTRODUCTION

It is rather likely that in the reactions of photoproductio
and hadroproduction the charmed baryonLc

1 is produced
polarized@1#. The analysis of theLc

1 polarization by means
of the investigation of the decay products should clarify
mechanism of the charmed baryon production at high e
gies.

The most favorable mode of theLc
1 decays to be detecte

experimentally is Lc
1→p1K21p1. The experimental

probability of this mode equalsB(Lc
1→pK2p1)exp5(5.0

61.3)% @2#. However, from the theoretical point of view
this mode is the most difficult case due to the impossibility
factorize the baryonic and mesonic degrees of freedom
the computation of the matrix element of the transition@1#.

The theoretical investigation of nonleptonic decays
charmed baryons without factorization of baryonic and m
sonic degrees of freedom can be carried out in the qu
model with chiral U(3)3U(3) symmetry incorporating
heavy quark effective theory~HQET! @3,4# and chiral pertur-
bation theory at the quark level (CHPT)q @5#. The quark
model with chiral U(3)3U(3) symmetry is motivated by
the low-energy effective QCD with a linearly rising inte
quark potential responsible for a quark confinement@6#. The
application of this model to the description of the low-ener
properties of charmed mesons: mass spectra@7#, coupling
constants@7–9#, the form factors of the semileptonic deca
@10#, and the probabilities of the decays@7,11# gave the re-
sults agreeing good with experimental data.

Recently@12# the quark model with chiral U(3)3U(3)
symmetry has been extended by the inclusion of the lo
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lying baryon octet and decuplet coupled with the three-qu
currents. Due to the dynamics of strong low-energy inter
tions caused by a linearly rising interquark potential the
has been shown@6# that ~i! baryons are the three-quark stat
@13# and do not contain any bound diquark states, then~ii !
the spinorial structure of the three-quark currents is defi
as the products of the axial-vector diquark densit
q̄c

i(x)gmqj (x) and a quark fieldqk(x) transforming under
the SU(3)f3SU(3)c group as (6 f ,3̃c) and (3 f ,3c) multi-
plets, respectively, wherei, j, and k are the color indices
running throughi 51,2,3 andq5u, d, or s quark field. This
agrees with the structure of the three-quark currents used
the investigation of the properties of baryons within QC
sum rules approach@14#. The fixed structure of the three
quark currents allows us to describe all variety of low-ene
interactions of baryon octet and decuplet in terms of the p
nomenological coupling constantgB describing the coupling
of the baryon octet and decuplet with the three-quark c
rents@12#:

Lint~x!5
1

A2
gBB̄8~x!h8~x!1gBB̄10~x!h10~x!1H.c.,

~1.1!

where B8(x)5@cp(x), . . . # and B10(x)5(cD11, . . . ) are
the fields of the baryon octet and decuplet, respectively,
h8(x)5$2« i jk@ ūi

c(x)gmuj (x)#gmg5dk(x), . . . % and h10(x)

5$« i jk@ ūi
c(x)gmuj (x)#uk(x), . . . % are the three-quark cur

rents. The numerical value ofgB , calculated in terms of the
coupling constantgpNN513.4 of thepNN interaction, has
been found equalgB51.3431024 MeV @12#. The coupling
constantsgpND andggND of thepND andgND interactions
relative to the coupling constantgpNN and thespN term of
the low-energypN scattering have been calculated in go
agreement with the experimental data and other phenom
logical approaches based on QCD@12#.

In this paper we apply the quark model with chir
U(3)3U(3) symmetry to the calculation of the proton e
ergy spectrum of theLc

1→p1K21p1 decay of the polar-
ized Lc

1 and the analysis of theLc
1 polarization in the de-

pendence of the energies and momenta of the de
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products. For the analysis of theLc
1→p1K21p1 decay at

the quark level we assume that theLc
1 is a three-quark state

coupled with the three-quark currenthL
c
1(x)5

2« i jk@ ūi
c(x)gmdj (x)#gmg5ck(x) defined as the product o

the axial-vector light-diquark densityūi
c(x)gmdj (x) and the

c-quark fieldck(x).
The paper is organized as follows. In Sec. II we disc

the effective low-energy Lagrangian describing nonlepto
decays of charmed hadrons and reduce the calculation o
amplitude of theLc

1→p1K21p1 decay to the calculation
of the matrix element of the low-energy transitionLc

1→p
1K2. In Sec. III we calculate the matrix element of th
low-energy transitionLc

1→p1K2. In Sec. IV we calculate
the proton energy spectrum of theLc

1→p1K21p1 decay
for the polarizedLc

1 and the unpolarized proton. In Sec.

we calculate the probability of theLc
1→p1K̄0 decay rela-

tive to the probability of theLc
1→p1K21p1 decay. The

theoretical result on the ratio of the probabilities agrees w
with the experimental data. In the Conclusion we discuss
obtained results. In the Appendix we calculate the mom
tum integrals describing the the matrix elements of the lo
energy transitionsLc

1→p1K2 andLc
1→p1K̄0.

II. EFFECTIVE LAGRANGIAN FOR WEAK
NONLEPTONIC TRANSITIONS OF CHARMED HADRONS

The effective low-energy Lagrangian responsible for no
leptonic decays of charmed hadrons reads@15#

Leff~x!52
GF

A2
Vcs* Vud$C1~m!@ s̄~x!gm~12g5!c~x!#

3@ ū~x!gm~12g5!d~x!#1C2~m!

3@ ū~x!gm~12g5!c~x!#@ s̄~x!gm~12g5!d~x!#%,

~2.1!

where GF51.16631025 GeV22 is the Fermi weak con-
stant,Vcs* andVud are the elements of the CKM-mixing ma
trix, Ci(m) ( i 51,2) are the Wilson coefficients caused
01520
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the strong quark-gluon interactions at scalesp.m ~short-
distance contributions!, wherem is a normalization scale. In
the absence of quark-gluon interactions the coefficie
C1(m) and C2(m) do not depend onm and amount toC1
51 andC250. In (CHPT)q we should identifym with the
scale of spontaneous breaking of chiral symmetry (SBxS)
Lx5940 MeV @5–11#, i.e., m5Lx5940 MeV. Therefore,
below we would deal withC1(Lx) andC2(Lx). The contri-
bution of strong low-energy interactions at scalesp<m
5Lx ~long-distance contributions! is described by (CHPT)q
in terms of constituent quark loop diagrams, where the m
menta of virtual quarks are restricted from above by
SBxS scaleLx @5–12#.

The structure of the term proportional toC2(Lx) can be
reduced to the structure of the first one by means of the F
transformation@15#. The resultant coefficient of the first term
would containC2(Lx) in the formC2(Lx)/N, whereN53
is the number of quark colors. Thus, the effective low-ene
Lagrangian responsible for theLc

1→p1K21p1 decay can
be taken in the form

Leff~x!52
GF

A2
Vcs* VudC̄1~Lx!@ s̄~x!gm~12g5!c~x!#

3@ ū~x!gm~12g5!d~x!#, ~2.2!

where C̄1(Lx)5C1(Lx)1C2(Lx)/3. The amplitude of the
Lc

1→p1K21p1 decay is then defined

M@Lc
1~Q!→p~q!K2~q2!p1~q1!#

A2EL
c
1V2EpV2EK2V2Ep1V

5^p~q!K2~q2!p1~q1!uLeff~0!uLc
1~Q!&, ~2.3!

whereEi ( i 5Lc
1 ,p,K2,p1) are the energies of theLc

1 ,
the proton and theK2 andp1 mesons, respectively, andV is
the normalization volume.

In (CHPT)q at the tree-meson approximation we can fa
torize the pionic degrees of freedom and represent the
plitude Eq.~2.3! as follows:
M@Lc
1~Q!→p~q!K2~q2!p1~q1!#

A2EL
c
1V2EpV2EK2V2Ep1V

5^p~q!K2~q2!p1~q1!uLeff~0!uLc
1~Q!&

52
GF

A2
Vcs* VudC̄1~Lx!^p~q!K2~q2!uus̄~0!gm~12g5!c~0!uLc

1~Q!&^p1~q1!uū~0!gm~12g5!d~0!u0&, ~2.4!

where the matrix element̂p1(q1)uū(0)gm(12g5)d(0)u0& can be expressed in terms of the leptonic constant of thep1

mesonFp592.4 MeV @5#:

A2Ep1V^p1~q1!uū~0!gm~12g5!d~0!u0&5 iA2Fpq1
m . ~2.5!

Substituting Eqs.~2.5! in ~2.4! we arrive at the amplitude of theLc
1→p1K21p1 decay
1-2
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M@Lc
1~Q!→p~q!K2~q2!p1~q1!#

A2EL
c
1V2EpV2EK2V

52 iGFVcs* VudFpC̄1~Lx!q1
m ^p~q!K2~q2!us̄~0!gm~12g5!c~0!uLc

1~Q!&, ~2.6!

where the matrix element^p(q)K2(q2)us̄(0)gm(12g5)c(0)uLc
1(Q)& describes the transitionLc

1→p1K2 induced by the

currents̄(0)gm(12g5)c(0) and defined by strong low-energy interactions.

III. STRONG LOW-ENERGY TRANSITION Lc
1
˜p1K2

By applying the reduction technique we bring up the matrix element of the strong low-energy transitionLc
1→p1K2 to the

form

~3.1!

wherecp(x1), wK2(x2), andc̄L
c
1(x3) are the operators of the proton, theK2 meson and theLc

1 interpolating fields,ūp(q,s8)

anduL
c
1(Q,s) are the Dirac bispinors of the proton and theLc

1 , respectively.

Following Refs.@6–12# in order to describe the right-hand side~RHS! of Eq. ~3.1! at the quark level we suggest to use t
equations of motion

~3.2!
n-

-

e

d

Here gB and gC are the phenomenological coupling co
stants of the proton and theLc

1 coupled with three-quark

currents hN(x1)52« i jk@ ūi
c(x1)gmuj (x1)#gmg5dk(x1) and

h̄L
c
1(x3)5« i jk c̄i(x3)gmg5@ d̄ j (x3)gmuk

c(x3)# @12#, respec-

tively,

L int
(B)~x!5

gB

A2
c̄p~x!hN~x!1

gC

A2
h̄L

c
1~x!cL

c
1~x!1H.c.

~3.3!
01520
Then, i, j, and k are color indices andūc(x)5u(x)TC and
C52CT52C†52C21 is a matrix of a charge conjuga
tion, T is a transposition. The three-quark currenthL

c
1(x)

52« i jk@ ūi
c(x)gmdj (x)#gmg5ck(x) coupled with theLc

1 is
constructed by analogy with hN(x)5

2« i jk@ ūi
c(x)gmuj (x1)#gmg5dk(x) due to the similar spin-

orial properties of theLc
1 and the proton. Then,M p

5938 MeV andML
c
152285 MeV are the masses of th

proton and theLc
1 .

The interaction of theK2 meson with quarks is describe
1-3
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by the coupling constantgKqq5A2m/Fp

L int
(M )~x!5

gKqq

A2
s̄~x!ig5u~x!wK2~x!1•••1H.c.,

~3.4!

where m5330 MeV is the constituent quark mass calc
lated in the chiral limit@5#.

Substituting Eq.~3.2! in Eq. ~3.1! we obtain

A2EL
c
1V2EpV2EK2V2Ep1V^p~q!K2~q2!

3us̄~0!gm~12g5!c~0!uLc
1~Q!&

5gBgC

i

2

m

Fp
E d4x1d4x2d4x3eiqx1eiq2x2e2 iQx3

3ūp~q,s8!^0uT$hN~x1!@ ū~x2!ig5s~x2!#

3@ s̄~0!gm~12g5!c~0!#h̄L
c
1~x3!%u0&uL

c
1~Q,s!,

~3.5!

where the external particles are kept on-mass shell, i.e.Q2

5M
L

c
1

2
, q25M p

2, andq2
2 5MK

2 .

By applying the formulas of quark conversion@5#
~Ivanov! we can determine the vacuum expectation value
Eq. ~3.3! in terms of the constituent quark diagrams. In t
momentum representation we get@5–12#

A2EL
c
1V2EpV2EK2V2Ep1V^p~q!K2~q2!

3us̄~0!gm~12g5!c~0!uLc
1~Q!&

52 igBgC

3m

Fp
F 1

16p2G 2E d4k1

p2i
E d4k2

p2i
ūp~q,s8!

3gag5
1

m2 k̂1

gb
1

m1 k̂2

ga
1

m2q̂1 k̂11 k̂2

3g5
1

m2q̂2q̂21 k̂11 k̂2

gm~12g5!

3
1

Mc2Q̂1 k̂11 k̂2

gbg5uL
c
1~Q,s!, ~3.6!

where Mc51860 MeV is the mass of the constituentc
quark@7–11#. In the HQET the RHS of Eq.~2.4! is given by
@3,4,7–11#
01520
-

n

A2EL
c
1V2EpV2EK2V2Ep1V^p~q!K2~q2!

3us̄~0!gm~12g5!c~0!uLc
1~Q!&

52 igBgC

3m

Fp
F 1

16p2G 2

3E d4k1

p2i
E d4k2

p2i
ūp~q,s8!gag5

1

m2 k̂1

3gb
1

m1 k̂2

ga
1

m2q̂1 k̂11 k̂2

3g5
1

m2q̂2q̂21 k̂11 k̂2

gm~12g5!

3S 11 v̂
2

D 1

@~k11k2!v1 i0#
gbg5uL

c
1~Q,s!, ~3.7!

wherevm is the four velocity of theLc
1 @3,4,7–11# normal-

ized byvmvm51.
For the computation of the momentum integral we assu

@12# that the proton is a very heavy state and its four m
mentum is much larger than other momenta in the integr
of Eq. ~3.7!. Keeping the leading terms in the largeM p ex-
pansion we reduce the RHS of Eq.~3.7! to the form

A2EL
c
1V2EpV2EK2V2Ep1V^p~q!K2~q2!

3us̄~0!gm~12g5!c~0!uLc
1~Q!&

5 i
gBgC

M p
2

3m

Fp
F 1

16p2G 2E d4k1

p2i
E d4k2

p2i
ūp

3~q,s8!gag5
1

m2 k̂1

gb
1

m1 k̂2

gagm~12g5!

3S 11 v̂
2

D 1

@~k11k2!v1 i0#
gbg5uL

c
1~Q,s!. ~3.8!

The replacement of the constituent quark Green function

1

m2q̂1 k̂11 k̂2

→2
p̂1

M p
2

~3.9!

agrees with the heavy baryon@16,17# and HQET@3,4# ap-
proaches. Indeed, in accordance with Refs.@16,17# and
HQET @3,4# we obtain
1-4
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1

m2q̂1 k̂11 k̂2

5
m1q̂2 k̂12 k̂2

m22~q2k12k2!22 i0
52

m1q̂2 k̂12 k̂2

M p
222~k11k2!q2m21~k11k2!21 i0

52
1

M p

m2 k̂12 k̂2

M p
1 v̂

112~k11k2!v/M p2m2/M p
21~k11k2!2/M p

21 i0
, ~3.10!
n

u

where we have setqm5M pvm @3,4,16,17#. In the case ofm
5M p and in the limitM p→` we arrive at the well-known
expression for the Green function of a heavy baryon~or a
heavy quark in HQET@3,4#! @16,17#

1

m2q̂1 k̂11 k̂2

5
1

M p1 k̂11 k̂22M pv̂

→S 11 v̂
2

D 1

~k11k2!v1 i0
. ~3.11!

In our casem!M p , therefore, in the limitM p→` @16,17#
we arrive at Eq.~3.9!.

The computation of the momentum integrals in Eq.~3.8!
is carried out in the Appendix. Thus, the matrix eleme

^p(q)K2(q2)us̄(0)gm(12g5)c(0)uLc
1(Q)& is defined

A2EL
c
1V2EpV2EK2V2Ep1V

3^p~q!K2~q2!us̄~0!gm~12g5!c~0!uLc
1~Q!&

5 igpNN

2

5

gC

gB

Lx

m2
ūp~q,s8!gag5v̂gbv̂gagm~12g5!

3S 11 v̂
2

D gbg5uL
c
1~Q,s!, ~3.12!

wheregpNN is the coupling constant of thepNN interaction
expressed in terms of the parameters of the model thro
the relation gpNN5gB

2(2m/3Fp)(^q̄q&2/M p
2) @12#. After

some algebra the matrix element Eq.~3.12! amounts to

A2EL
c
1V2EpV2EK2V2Ep1V

3^p~q!K2~q2!us̄~0!gm~12g5!c~0!uLc
1~Q!&

5 igpNN

4

5

gC

gB

Lx

m2
ūp~q,s8!

3@2vm~12g5!1gm~11g5!#uL
c
1~Q,s!

5 igpNN

4

5

gC

gB

Lx

m2
ūp~q,s8!~12g5!

3~2vm1gm!uL
c
1~Q,s!, ~3.13!
01520
t

gh

where we used the Dirac equation of motionv̂uL
c
1(Q,s)

5uL
c
1(Q,s) for the freeLc

1 .

IV. PROTON ENERGY SPECTRUM
OF THE Lc

1
˜p1K21p1 DECAY

The amplitude of theLc
1→p1K21p1 decay is given

by
M@Lc

1~Q!→p~q!K2~q2!p1~q1!#

5GFVcs* VudC̄1~Lx!

3
4

5

gpNN

ML
c
1
FgC

gB

FpLx

m2 G ūp~q,s8!~12g5!

3~2Qq11ML
c
1q̂1!uL

c
1~Q,s!. ~4.1!

The partial width of theLc
1→p1K21p1 decay deter-

mined in the rest frame of theLc
1 reads

dG~Lc
1→pK2p1!

5
1

2ML
c
1

ūM@Lc
1~Q!→p~q!K2~q2!p1~q1!#u2

3~2p!4d (4)~Q2q2q22q1!

3
d3q

~2p!32Ep

d3q2

~2p!32EK2

d3q1

~2p!32Ep1

. ~4.2!

We define the quantity

uM[Lc
1~Q!→p~q!K2~q2!p1~q1!] u2

for the polarizedLc
1 and the unpolarized proton

uM@Lc
1~Q!→p~q!K2~q2!p1~q1!#u2

5uGFVcs* VudC̄1~Lx!u2F4

5

gpNN

ML
c
1

gC

gB

FpLx

m2 G 2

3
1

2
tr$~Q̂1ML

c
1!~11g5v̂L

c
1!

3~2Qq11ML
c
1q̂1!~11g5!~ q̂1M p!

3~12g5!~2Qq11ML
c
1q̂1!%, ~4.3!
1-5
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where v
L

c
1

m
is the spacelike unit four vector (v

L
c
1

2
521)

orthogonal to the four momentum of theLc
1 (vL

c
1Q50)

and related to the direction of its spin. In the rest frame of
Lc

1 we havev
L

c
1

m
5(0,vW L

c
1) such asvW

L
c
1

2
51.

Neglecting the terms proportional toMp
2 andMK

2 the re-
sult of the calculation of the trace reads

1

2
tr$•••%516~Qq1!2~Qq!124M

L
c
1

2
~Qq1!~qq1!

232ML
c
1~Qq1!2~vL

c
1q!116ML

c
1~Qq1!~Qq!

3~vL
c
1q1!18M

L
c
1

3
~qq1!~vL

c
1q1!. ~4.4!

For the derivation of the proton energy spectrum it is con
nient to use the formula

E q1
a q1

b d (4)~Q2q2q22q1!
d3q2

2EK2

d3q1

2Ep1

5
1

12
@2~Q2q!2gab14~Q2q!a~Q2q!b#

3E d (4)~Q2q2q22q1!
d3q2

2EK2

d3q1

2Ep1

5
p

24
3@2~Q2q!2gab14~Q2q!a~Q2q!b#, ~4.5!

which is valid when the contributions proportional toMp
2

andMK
2 are neglected. Using Eq.~4.5! we get

E 1

2
tr$•••%d (4)~Q2q2q22q1!

d3q2

2EK2

d3q1

2Ep1

5
p

3
$@15M

L
c
1

4
~Qq!218M

L
c
1

2
~Qq!218~Qq!3

17M
L

c
1

2
M p

2~Qq!212M
L

c
1

4
M p

2#

2~vL
c
1q!ML

c
1@13M

L
c
1

4
214M

L
c
1

2
~Qq!18~Qq!3

27M
L

c
1

2
M p

2#%

5
5p

2
M

L
c
1

6
xF S 12

3

5
x1

2

15
x21

7

60
j22

2

5

j2

x D
1~vW L

c
1nW p!

13

15
A12

j2

x2

3S 12
7

13
x1

2

13
x22

7

52
j2D G , ~4.6!

where the final expression is taken in the rest frame of
Lc

1 , x52Ep /ML
c
1 is the scaled proton energy,j
01520
e

-

e

52Mp /ML
c
1, and nW p5qW /uqW u. The scaled proton energyx

ranges the regionj<x<11j2/4.
The proton energy spectrum of theLc

1→p1K21p1 de-
cay in the rest frame of theLc

1 is determined:

dG~Lc
1→pK2p1!

5uGFVcs* VudC̄1~Lx!u2FgpNN

4

5

gC

gB

FpLx

m2 G 2

3F 5M
L

c
1

5

512p3
G S 12

3

5
x1

2

15
x21

7

60
j22

2

5

j2

x D
3@11a~x!~vW L

c
1nW p!#xAx22j2dx

dVnW p

4p
, ~4.7!

wheredVnW p
is the solid angle of the unit vectornW p5qW /uqW u

and a(x), the parameter of the asymmetry related to t
polarization of theLc

1 , is given by

a~x!5
13

15
A12

j2

x2

3
12~7/13!x1~2/13!x22~7/52!j2

12~3/5!x1~2/15!x21~7/60!j22~2/5!~j2/x!
.

~4.8!

In order to apply Eq.~4.7! to the analysis of the polarizatio
of theLc

1 in the processes of photoproduction and hadrop
duction we have to remove an uncertainty related to the
bitrary coupling constantgC

2 . For this aim we suggest to
normalize the proton energy spectrum to the partial width
the modeLc

1→p1K21p1 and replace the coupling con
stantgC

2 by the experimental value of the probability. Inte
grating Eq. ~4.7! over all variables we obtain the partia
width of the mode

G~Lc
1→pK2p1!

5uGFVcs* VudC̄1~Lx!u2FgpNN

4

5

gC

gB

FpLx

m2 G 2

3F 5M
L

c
1

5

512p3
G f ~j!. ~4.9!

The functionf (j) is determined by the integral

f ~j!5E
j

11j2/4S 12
3

5
x1

2

15
x21

7

60
j22

2

5

j2

x D xAx22j2dx

50.065. ~4.10!

The numerical value has been obtained atML
c
1

52285 MeV andM p5938 MeV.
1-6
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The proton energy spectrum of theLc
1→p1K21p1 de-

cay is then given by

dB~Lc
1→pK2p1!

B~Lc
1→pK2p1!

515.40S 12
3

5
x1

2

15
x21

7

60
j22

2

5

j2

x D
3@11a~x!~vW L

c
1nW p!#xAx22j2dx

dVnW p

4p
. ~4.11!

By using the experimental value of the probabilityB(Lc
1

→pK2p1)exp5(0.05060.013) @2# we obtain

dB~Lc
1→pK2p1!

5~0.7760.20!S 12
3

5
x1

2

15
x21

7

60
j22

2

5

j2

x D
3@11a~x!~vW L

c
1nW p!#xAx22j2dx

dVnW p

4p
. ~4.12!

Integrating over the energy of the proton we derive the
gular distribution of the probability of theLc

1→p1K2

1p1 decay

dB~Lc
1→pK2p1!

dVnW p

5
0.05060.013

4p
@110.77~vW L

c
1nW p!#.

~4.13!

Thus, the proton energy spectrum Eq.~4.12! and the angular
distribution of the probability Eq.~4.13! of the Lc

1→p
1K21p1 decay do not contain arbitrary parameters a
therefore, can be applied to the analysis of the polarizatio
the Lc

1 in the processes of photoproduction and hadrop
duction.

The formulas~4.12! and ~4.13! define the polarization o
theLc

1 relative to the momentum of the proton. If the spin
theLc

1 is parallel to the momentum of the proton, the righ

handed~R! polarization, the scalar productvW L
c
1nW p amounts

to vW L
c
1nW p5cosq. The angular distribution of the probabilit

reads

dB~Lc
1→pK2p1!(R)

dVnW p

5
0.05060.013

4p
~110.77 cosu!.

~4.14!

In turn, for the left-handed~L! polarization of theLc
1 , the

spin of theLc
1 is antiparallel to the momentum of the proto

the scalar product reads (vW L
c
1nW p)52cosq and the angular

distribution becomes equal
01520
-

,
of
-

dB~Lc
1→pK2p1!(L)

dVnW p

5
0.05060.013

4p
~120.77 cosu!.

~4.15!

For the right- and left-handed polarizations of theLc
1 the

proton energy spectrum is given by

dB~Lc
1→pK2p1!(R,L)

5~0.7760.20!S 12
3

5
x1

2

15
x21

7

60
j22

2

5

j2

x D
3@16a~x! cosq#xAx22j2dx

dVnW p

4p
. ~4.16!

The formulas~4.12! and~4.13! resemble the electron energ
spectrum and the angular distribution of the probability
the b decay of them2 meson, i.e.,m2→e21 n̄e1nm .
Therefore, the procedure of the investigation of the polari
tion of theLc

1 in the Lc
1→p1K2p1 decay is in complete

analogy to the procedure of the measurement of the polar
tion of them2 meson in them2→e21 n̄e1nm decay@2#.

V. PROBABILITY OF THE LC
1
˜P1K̄0 DECAY

Most modes of theLc
1 decays are measured relative

the modeLc
1→p1K21p1 @2#. For the theoretical descrip

tion of the Lc
1→p1K21p1 decay at the quark level we

have introduced the phenomenological low-energy inter
tion of theLc

1 with the three-quark currenthL
c
1(x) contain-

ing an arbitrary phenomenological coupling constantgC , Eq.
~3.3!. The spinorial structure of the three-quark curre
hL

c
1(x)52« i jk@ ūi

c(x)gmdj (x)#gmg5ck(x) defined as the

product of the axial-vector light diquark densit

@ ūi
c(x)gmdj (x)# transforming under the SU(3)f3SU(3)c

group as (6 f ,3̃c) and thec-quark fieldck(x) is caused by the
dynamics of the quark confinement given by a linearly risi
interquark potential@6,11#. In order to verify the validity of
the approach applied to the computation of the proton ene
spectrum and the angular distribution of the probability
the modeLc

1→p1K21p1 it is not sufficient to be re-
stricted by the consideration only this mode. For the con
mation of the result obtained for the modeLc

1→p1K2

1p1 one needs the computation of the probabilities of ot
modes relative to the probability of the main modeLc

1→p
1K21p1. In the ratio the coupling constantgC cancels
itself and the theoretical result turns out to be dependen
the Wilson coefficients, determined by the short-distan
quark-gluon interactions, and the long-distance dynam
described by the quark model with chiral U(3)3U(3) sym-
metry motivated by QCD with a linearly rising confineme
potential. The agreement between the experimental data
the theoretical predictions for the ratios should testify bo
the self-consistency of the approach and the consistency
with a short-distance QCD. Below we obtain the evidence
the self-consistency and the consistency of the approach
1-7
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example of the calculation of the decay modeLc
1→p1K̄0.

We have chosen this mode due to the following reaso
First, it contains the proton in the final state, and, second,
computation of the matrix element of this mode is co
pletely different to the computation of the matrix element
the mode Lc

1→p1K21p1. Indeed, the modeLc
1→p

1K̄0 unlike the modeLc
1→p1K21p1 admits the factor-

ization of the baryonic and mesonic degrees of freedom.
The effective low-energy Lagrangian responsible for

decayLc
1→p1K̄0 can be obtained from the effective La

grangian~2.1! at m5Lx :

Leff~x!52
GF

A2
Vcs* VudC̄2~Lx!@ ū~x!gm~12g5!c~x!#

3@ s̄~x!gm~12g5!d~x!#, ~5.1!

where C̄2(Lx)5C2(Lx)1C1(Lx)/3. The amplitude of the

Lc
1→p1K̄0 decay can be defined in analogy with Eq.~2.6!:

M@Lc
1~Q!→p~q!K̄0~q0!#

A2EL
c
1V2EpV

52 iGFVcs* VudC̄2~Lx!FKq0
m

3^p~q!uū~0!gm~12g5!c~0!uLc
1~Q!&, ~5.2!

whereFK5113 MeV @2# is the leptonic constant of theK
mesons.

To the computation of the matrix eleme

^p(q)uū(0)gm(12g5)c(0)uLc
1(Q)& we apply the reduction

technique. By using the equations of motion~2.2! we arrive
at the expression

A2EL
c
1V2EpV^p~q!uū~0!gm~12g5!c~0!uLc

1~Q!&

5gBgC

1

2E d4x1d4x2eiqx1e2 iQx2ūp~q,s8!

3^0uT$hN~x1!@ ū~0!gm~12g5!c~0!#

3h̄L
c
1~x2!%u0&uL

c
1~Q,s!, ~5.3!

where theLc
1 and the proton are kept on-mass shell, i.

Q25M
L

c
1

2
and q25M p

2 . In terms of the constituent quar

diagrams represented by the momentum integrals the RH
Eq. ~5.3! defined in HQET reads
01520
s.
e

-
f

e

,

of

A2EL
c
1V2EpV^p~q!uū~0!gm~12g5!c~0!uLc

1~Q!&

523gBgCF 1

16p2G 2E d4k1

p2i
E d4k2

p2i
ūp~q,s8!

3gag5
1

m2 k̂1

gb
1

m1 k̂2

ga
1

m2q̂1 k̂11 k̂2

gm

3~12g5!S 11 v̂
2

D 1

@~k11k2!v1 i0#

3gbg5uL
c
1~Q,s!. ~5.4!

Keeping the leading terms in the largeM p expansion we
reduce the RHS of Eq.~5.4! to the form

A2EL
c
1V2EpV^p~q!uū~0!gm~12g5!c~0!uLc

1~Q!&

53
gBgC

M p
2 F 1

16p2G 2E d4k1

p2i
E d4k2

p2i
ūp~q,s8!

3gag5
1

m2 k̂1

gb
1

m1 k̂2

gaq̂gm~12g5!

3S 11 v̂
2

D 1

@~k11k2!v1 i0#
gbg5uL

c
1~Q,s!. ~5.5!

The integrals overk1 and k2 have been calculated in th
Appendix. Using Eq.~A7! and making some algebraic tran
formations with the Dirac matrices we get

A2EL
c
1V2EpV^p~q!uū~0!gm~12g5!c~0!uLc

1~Q!&

52gpNNF4

5

gC

gB

FpLx

m3 G ūp~q,s8!~2v̂gmq̂1 v̂q̂gm!

3~12g5!uL
c
1~Q,s!. ~5.6!

The amplitude of theLc
1→p1K̄0 decay is defined

M@Lc
1~Q!→p~q!K0~q0!#

5 iGFVcs* VudC̄2~Lx!
FK

m

3FgpNN

4

5

gC

gB

FpLx

m2 GM
L

c
1

2
ūp~q,s8!

3~A1Bg5!uL
c
1~Q,s!, ~5.7!

where the constantsA andB are given by
1-8
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A511
M p

ML
c
1

22
M p

2

M
L

c
1

2 2
MK̄0

2

M
L

c
1

2 51.03,

B512
M p

ML
c
1

22
M p

2

M
L

c
1

2 2
MK̄0

2

M
L

c
1

2 50.21. ~5.8!

The numerical values are obtained forML
c
152285 MeV,

M p5938 MeV, andMK̄05498 MeV @2#. The partial width
of the Lc

1→p1K̄0 decay reads

G~Lc
1→pK̄0!

5uGFVcs* VudC̄2~Lx!u2FgpNN

4

5

gC

gB

FpLx

m2 G 2
FK

2

m2

M
L

c
1

3

32p

3tr$~Q̂1ML
c
1!~A2Bg5!~ q̂1M p!~A1Bg5!%

3AF12S M p2MK̄0

ML
c
1

D 2GF12S M p1MK̄0

ML
c
1

D 2G .

~5.9!

When computing the trace over Dirac matrices we obtain
partial width in the form

G~Lc
1→pK̄0!

5uGFVcs* VudC̄2~Lx!u2FgpNN

4

5

gC

gB

FpLx

m2 G 2F 5M
L

c
1

5

512p3
G

3
32p2

5

FK
2

m2 H A2F S 11
M p

ML
c
1
D 2

2
MK̄0

2

M
L

c
1

2 G
1B2F S 12

M p

ML
c
1
D 2

2
MK̄0

2

M
L

c
1

2 G J
3AF12S M p2MK̄0

ML
c
1

D 2GF12S M p1MK̄0

ML
c
1

D 2G
511.723uGFVcs* VudC̄2~Lx!u2

3FgpNN

4

5

gC

gB

FpLx

m2 G 2F 5M
L

c
1

5

512p3
G . ~5.10!

Now we can define the partial width of theLc
1→p1K̄0

decay with respect to the partial width of theLc
1→p1K2

1p1 decay. By using Eqs.~4.9! and ~4.10! we get

Rth5
G~Lc

1→pK̄0!

G~Lc
1→pK2p1!

5180.313
C̄2

2~Lx!

C̄1
2~Lx!

. ~5.11!
01520
e

The numerical factor in front of the ratio of the squar
Wilson coefficients is completely due the low-energy d
namics of our model induced by a linearly rising confin
ment potential. In order to verify the consistency of this d
namics with a short-distance QCD we should substitute
Eq. ~5.11! the numerical values of the Wilson coefficients

Following Buraset al. @15# we obtainC1(Lx)51.24 and
C2(Lx)520.47.1 These numerical values agree well wi
the numerical values of the Wilson coefficients calculated
the normalization scalem.1.5 GeV@15#: C1(m).1.21 and
C2(m).20.42.

The ratioRth calculated atC1(Lx)51.24 andC2(Lx)5
20.47 amounts to

Rth5
G~Lc

1→pK̄0!

G~Lc
1→pK2p1!

50.50. ~5.12!

The theoretical result agrees well with the experimen
value averaged over all experimental data@2#: Rexp5(0.49
60.07). This agreement is nontrivial and testifies to not o
the consistency of the model with short-distance QCD
the self-consistency of the quark model with chir
U(3)3U(3) symmetry incorporating HQET and (CHPT)q .
The former is due to the distinction between the compu
tions of the matrix elements of the modesLc

1→p1K̄0 and
Lc

1→p1K21p1. Indeed, the computation of the matr

element of the modeLc
1→p1K̄0 admits the factorization of

the baryonic and mesonic degrees of freedom, whereas
the computation of the matrix element of the modeLc

1→p
1K21p1 such a factorization is not feasible.

Our theoretical result for ratio Eq.~5.12! also confirms the
validity of our prediction for the proton energy spectrum a
the angular distribution of the probability of theLc

1→p
1K21p1 decay given by Eqs.~4.12! and ~4.13!, respec-
tively.

VI. CONCLUSION

The main result of the paper is in the prediction of t
proton energy spectrum and the angular distribution of
probability of the modeLc

1→p1K21p1 of the Lc
1 de-

cays. This mode is the most favorable for the measurem
as it contains the proton and the charged mesons. Howe
from the theoretical point of view this mode is the mo
difficult for the computation due to the impossibility to fac
torize baryonic and mesonic degrees of freedom.

To the computation of the matrix element of theLc
1→p

1K21p1 decay we have applied the quark model w
chiral U(3)3U(3) symmetry incorporating HQET an

1The Wilson coefficients defining the effective Lagrangian d
scribing weak hadronic transitions withDS51 andDI 51/2 selec-
tion rules and taken at the renormalization pointm5Lx

5940 MeV have been calculated previously in Ref.@19#. For this
aim one had only to follow the explict expression of the Wisl
coefficients as functions ofm obtained by Gilman and Wise@20#
and Buras and Slominsky@21#.
1-9
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(CHPT)q . This model is motivated by the effective low
energy QCD with a linearly rising confinement potenti
Due to the dynamics of strong low-energy interactio
caused by a linearly rising confinement potential the spi
rial structure of the three-quark currents coupled to the ba
ons is fixed unambiguously. The effective low-energy int
actions of the low-lying baryon octet and charmed baryo
coupled to the three-quark currents can be described in te
of two phenomenological coupling constantsgB andgC , re-
spectively. These constants enter multiplicatively to the m
trix elements of the strong low-energy transitions of baryo

In the case of the nonleptonic decays of theLc
1 the mul-

tiplicative character of the constantsgB andgC allows us to
replace the product of these constants by the experime
value of the probability of the modeLc

1→p1K21p1.
This defines any mode of theLc

1 decays relative to the mod
Lc

1→p1K21p1. As regards the proton energy spectru
and the angular distribution, the resultant expressions do
contain any arbitrary parameters and can be applied to
analysis of the polarization of theLc

1 in the processes o
photoproduction and hadroproduction. We have conside
the simplest case, maybe most favorable from the exp
mental point of view, when theLc

1 is polarized while the
proton of the decay is unpolarized. This means that for
investigation of the polarization theLc

1 one should follow
only the geometry of the momenta of the protons of
decay but not their polarizations. In this case there is
obvious similarity between measurements of the polariza
of the Lc

1 in the Lc
1→p1K21p1 decay and them2 me-

son in theb decaym2→e21 n̄e1nm .
For the confirmation of the validity of our prediction fo

the proton energy spectrum and the angular distribution
the probability of the modeLc

1→p1K21p1, we have

computed the probability of the modeLc
1→p1K̄0 relative

to the probability of the modeLc
1→p1K21p1. Our pre-

diction for the ratio of the probabilitiesRth5B(LC
1

→pK̄0)/B(Lc
1→pK2p1)50.50 agrees well with the ex

perimental value averaged over all experimental dataRexp
5(0.4960.07). This agreement is not trivial and confirm
not only the self-consistency of our approach but the con
tency of it with a short-distance QCD, since the computat
of the matrix element of the modeLc

1→p1K̄0 differs from
the computation of the matrix element of the modeLc

1→p
1K21p1. Indeed, if for the computation of the matrix e
ement of the modeLc

1→p1K̄0 one can factorize the bary
onic and mesonic degrees of freedom, whereas in the ca
the computation of the matrix element of the modeLc

1→p
1K21p1 such a factorization is not feasible.

APPENDIX: COMPUTATION OF THE MOMENTUM
INTEGRALS

We perform the integration overk1 andk2 of the momen-
tum integral of Eq.~3.6!. For this aim we consider the inte
gral
01520
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J~v !5E d4k1

p2i
E d4k2

p2i

1

m2 k̂1

G
1

m1 k̂2

1

@~k11k2!v1 i0#
,

~A1!

whereG is a Dirac matrix. The nontrivial contribution come
from the components of thek1

m andk2
m four vectors parallel

to four vectorvm. This gives

J~v !5E d4k1

p2i
E d4k2

p2i

m1 v̂k1v

@m22k1
22 i0#

3G
m2 v̂k2v

@m22k2
22 i0#

1

@~k11k2!v1 i0#
. ~A2!

Now it is convenient to make the Wick rotation and pass
Euclidean momentum space@9#:

J~v !54i E
0

` dkE1kE1
3

m21kE1
2 E dV1

2p2
~m1 i v̂kE1cosx1!

3GE
0

` dkE2kE2
3

m21kE2
2

3E dV2

2p2

m2 i v̂kE2cosx2

kE1cosx11kE2cosx2
, ~A3!

wheredV i54p sin2xidxi (i51,2) are the solid angles in Eu
clidean spaces of the momentakE1

m and kE2
m , respectively,

kEi5Ak4i
2 1kW i

2 ( i 51,2). Then we have used the relatio
AvE

252 i @8#.
In order to disconnect integrations overkE1 and kE2 we

suggest to use the following integral representation:

J~v !54E
0

`

dtE
0

` dkE1kE1
3

m21kE1
2 E dV1

2p2
~m1 i v̂kE1cosx1!

3eitkE1cosx1GE
0

` dkE2kE2
3

m21kE2
2 E dV2

2p2

3~m2 i v̂kE2cosx2!eitkE2cosx2. ~A4!

Integrating outx1 andx2 we get

J~v !516E
0

`

dtE
0

` dkE1kE1
3

m21kE1
2 H mFJ1~kE1t !

kE1t G
2 i v̂

]

]t FJ1~kE1t !

kE1t G J GE
0

` dkE2kE2
3

m21kE2
2 H mFJ1~kE2t !

kE2t G
1 i v̂

]

]t FJ1~kE2t !

kE2t G J , ~A5!

whereJ1(kEit) ( i 51,2) is the Bessel function. Now we ca
perform the integration overkEi ( i 51,2):
1-10
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J~v !516m2E
0

`

dtH mFK1~mt!

t G
2 i v̂

]

]t FK1~mt!

t G J GH mFK1~mt!

t G1 i v̂
]

]t FK1~mt!

t G J ,

~A6!

whereK1(mt) is the McDonald function. The integrals ove
t are divergent and should be regularized. We suggest to
the cutoff regularization restricting the region of the integ
tion over t from below ast>1/Lx . Keeping leading diver-
gent contributions@5–12# it is convenient to represent th
RHS of Eq.~A6! in the following form:

J~v !5
4

5 F16p2

3 G2 Lx

m2
^q̄q&2v̂G v̂, ~A7!
.

.

B
.

01520
se
-

where^q̄q& is the quark condensate defined in terms of
SBxS scale and the constituent quark mass as follo
@5–12#

^q̄q&52
N

16p2E d4k

p2i
trH 1

m2 k̂
J

52
Nm

4p2 FLx
22m2lnS 11

Lx
2

m2D G52~253 MeV!3.

~A8!

The numerical value is calculated atN53, m5330 MeV,
andLx5940 MeV. As has been shown in Ref.@5# the quark
condensate valuêq̄q&52(253 MeV)3 describes with an
accuracy better than 5% the mass spectrum of low-ly
pseudoscalar mesons for the current quark massesm0u
54 MeV, m0d57 MeV, and m0s5135 MeV quoted by
QCD @18#.
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