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Theory of multiple giant dipole resonance excitation
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A semiclassical description of multiple giant resonance excitation that incorporates incoherent fluctuation
contributions of the Brink-Axel type is developed. Numerical calculations show that the incoherent contribu-
tions are important at low to intermediate bombarding energies.@S0556-2813~99!01705-7#

PACS number~s!: 24.30.Cz, 21.10.Re, 24.60.Ky, 25.70.De
ce
e
e

le
s

n
el

re
ila

th
e
th

-
o

o

r
x

ve
e
se
bl

rs
on
an
o
h

for
y
ter
lli-
the
be
d to

e-
re-

est a
m.

tion
us.
ces
s of
t a
the

di-
I. INTRODUCTION

The Coulomb excitation of two-phonon giant resonan
at intermediate energies has generated considerable int
in the last few years@1#. The isovector double giant dipol
resonance~DGDR! has been observed in136Xe @2#, 197Au
@3#, and 208Pb @4–6#. The isoscalar double giant quadrupo
resonance has also been observed in the proton emis
spectrum from the collision of40Ca with 40Ca at a laboratory
energy of 44A MeV @7#. When the data on DGDR excitatio
for 136Xe and 197Au are compared with coupled-chann
Coulomb excitation calculations@8#, it is found that, in the
harmonic approximation, the calculated cross sections a
factor of 2 to 3 smaller than the measured ones. A sim
discrepancy, albeit somewhat smaller, is found for208Pb.

Several effects that are not taken into account in
coupled-channel theory have been considered as possibl
planations of this discrepancy. As examples, we mention
effect of anharmonicities@9,10# and the quenching of the 11

DGDR state@11#. Here we will consider a potentially impor
tant mechanism, which consists in the Coulomb excitation
a GDR on the background states populated by the decay
previously excited GDR@12–14#, as shown in Fig. 1. The
importance of such ‘‘hot’’ collective excitations in nuclea
gamma emission was suggested long ago by Brink and A
@15#. Due to the complicated nature of the noncollecti
background states, the amplitude for this excitation proc
varies rapidly with energy and possesses an average clo
zero. Its contribution to the cross section can be siza
however.

The excitation of a second GDR after the decay of a fi
will be possible only if the decay occurs before the collisi
has ended. We can thus obtain an estimate of the relev
of this excitation mechanism by comparing the Coulomb c
lision time to the giant dipole resonance decay time. T
decay time can be estimated astd5\/Gd , whereGd is the
giant resonance spreading width. For208Pb, the GDR width
is Gd'4 MeV, which yieldstd'16310223 s. We estimate
the collision time using the schematic time dependence
the Coulomb interaction of Ref.@8#,
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V~ t !5
V0

11~gvt/b!2
, ~1!

which furnishes a collision time of the order oftc'2b/gv.
In Fig. 2, we compare the decay and collision times

the case of208Pb1208Pb, as a function of the incident energ
per nucleon, using a value of 15 fm for the impact parame
b. We see that below about 150 MeV per nucleon, the co
sion time is longer than the decay time. We expect that
excitation of a second GDR after the decay of a first will
an important process in this energy range, when compare
direct double GDR excitation. As the collision time d
creases slowly with the incident energy, we expect it to
main important over an even wider energy range.

II. THE BRINK-AXEL MECHANISM
AND THE EVOLUTION EQUATION

Giant resonances have many characteristics that sugg
treatment in terms of simple collective degrees of freedo
The first and foremost of these is their classical interpreta
in terms of macroscopic shape oscillations of the nucle
The properties of multiple excitations of these resonan
would then suggest that they are simple bosonic degree
freedom. The Brink-Axel hypothesis, which assumes tha
giant dipole resonance may be constructed on each of

FIG. 1. Cartoon depiction of the conventional double giant
pole resonance excitation~DGDR! and the alternative ‘‘hot’’ giant
dipole excitation~HGDR! described here.
©1999 The American Physical Society04-1
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intrinsic excited states of the nucleus, suggests that the r
nances can be considered as degrees of freedom indepe
of the intrinsic states. Of course, the microscopic represe
tion of the giant resonances, in terms of the intrinsic partic
hole states, implies that their treatment as independent
grees of freedom can only be approximate. Yet, in ma
instances, it seems to be a very good approximation.

As a model of the multiple excitation and decay of a gia
resonance, we consider the excitation of an independent
lective degree of freedom of a target nucleus by an in
projectile and the subsequent decay of the collective st
into complex intrinsic ones. We can loosely follow the d
velopment given by Ko years ago@16#. His work was moti-
vated by the desire to incorporate the collective features
the Copenhagen approach to deeply inelastic heavy-ion
lisions @17# into the statistical description of the Heidelbe
approach@18# to those processes.

As did Ko, we take the Hamiltonian describing the tw
colliding nuclei to be

H~xW ,a,j!5h0~xW !1h1~a!1h2~j!1U~xW ,j!1V~xW ,a!

1W~a,j!, ~2!

whereh0(xW )5pW 2/2m1V0(xW ) is the Hamiltonian for the rela
tive motion in the ground state,h1(a) and h2(j) are the
collective and intrinsic Hamiltonians, respectively,W(a,j)
is the coupling between the collective and the intrinsic
grees of freedom, andU(xW ,j) andV(xW ,a) are the couplings
between the relative coordinate and the intrinsic and col
tive degrees of freedom, respectively. As we wish to conc
trate our attention on the excitation of the collective sta
alone through the relative motion, we simplify by taking t
direct coupling of the relative motion to the intrinsic states
be null, U(xW ,j)50. We write the collective and intrinsic
spectra and states ash1(a)un&5enun& andh2(j)us&5«sus&.
In the case that the collective spectrum represents mul
excitations of a giant resonance, we would expecten.ne1 .

To obtain a semiclassical approximation to the wave fu
tion, we write it in terms of a classical actionS(xW ), which
will describe the relative motion, as

FIG. 2. Collision timetc ~solid line! and GDR decay timetd

~dashed line! for the system208Pb1208Pb at an impact parameter o
15 fm as a function of the projectile energy per nucleon.
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C~xW ,a,j!5expiS(xW )/\(
n,s

cns~xW !un&us&. ~3!

Substituting this into the Schro¨dinger equation, we reduc
the latter to coupled equations for the relative coordinatxW
and the expansion coefficientscns(t),

xẄ52¹W U~xW !, ~4!

i\ċns~ t !5~«n1«s!cns~ t !1(
m

Vnm~ t !cms~ t !

1(
m,r

Wns,mr~ t !cmr~ t !,

where the effective potentialU(xW ) describing the relative
motion takes the form

U~xW !5(
n,s

~«n1«s!ucnsu21(
n,m

cns* Vnm~ t !cms

1 (
ns,mr

cns* Wns,mr~ t !cmr . ~5!

In the calculations presented here, we neglect the effec
potential and use straight line trajectories to describe
relative motion.

In the above equations, we have written the matrix e
ments of the coupling between the relative motion and c
lective excitations as

^m,r uV~xW ,a!un,s&5d rsVmn~ t !, ~6!

and the matrix elements of the collective-intrinsic coupli
as

^m,r uW~a,j!un,s&5Wmr,ns~ t !. ~7!

Thed function in the first of these definitions makes explic
the fact that the coupling of the relative motion to the c
lective degree of freedom due toV(xW ,a) does not affect the
occupation of the intrinsic states. Although the coupling
the collective degree of freedom to the intrinsic ones due
W(a,j), in the second of these equations, is internal to
target and, thus, is not affected by the relative motion of
projectile and target, we nonetheless include a time dep
dence in its matrix elements. We make use of this in
following to express the time correlation in the average
two matrix elements.

We assume that the complex intrinsic states are statis
and use a schematic random-matrix model to describe t
matrix elements. We take the first and second moment
the matrix elements to be

Wmr,ns~ t !50, ~8!

Wmr,ns~ t !Wm8r 8,n8s8~ t8!5dmm8dnn8d rr 8dss8

3\d~ t2t8!Gmr,ns .
4-2
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The average of a single matrix element is zero. The aver
of a pair of matrix elements, when the two are comp
conjugates one of the other, yields a result proportiona
Gmr,ns , the partial width for transitions from the stateun,s&
to the stateum,r &. Standard statistical hypotheses would on
require that the average of a pair of matrix elements van
for rÞr 8 or sÞs8. For simplicity, we take them to vanish fo
mÞm8 and nÞn8 as well. We also require the average
two matrix elements to be zero when the two interactio
occur at different times. This is a simplification of the actu
statistics. A more precise treatment would give the averag
rather large correlation length in energy, which could ev
tually be transformed into a short correlation time. Here,
take the correlation time to be zero.

While the collective excitation of the nucleus is a coh
ent process, the statistical coupling from the collective ex
tations to the intrinsic states is an incoherent one. The t
evolution of the system thus possesses both coherent
incoherent aspects. To describe the system correctly,
must consider the time evolution of the density matrix e
mentsrns,n8s8(t) rather than that of the components of t
wave functioncns(t). The diagonal elementrns,ns(t) repre-
sents the instantaneous occupation probability of the s
with n collective phonons excited on the intrinsic states.

We note that the standard calculation of giant resona
excitation@19,8# assumes it to be a coherent process, with
average wave function that evolves according to

\
]cn0

]t
52 i(

m
$«ndnm1Vnm~ t !%cm02

Gn0

2
cn0 . ~9!

This expression for the average wave function can also
derived using our statistical hypotheses. It takes into acco
the coherent excitation and subsequent decay of the G
However, due to its coherence, it can only account for
loss of the probability that has decayed from each state
cannot account for the flux gained through the statistical
cay. The density matrix formalism and the additional sta
tical states are necessary to obtain a complete descriptio
the time evolution.

Following Ko, we can put the time-evolution equation
the semiclassical density matrix into the form

\
]rns,n8s8

]t
52 i(

m
$~«n1«s!dnm1Vnm~ t !%rms,n8s8

1 i(
m

rns,ms8$~«n81«s8!dmn81Vmn8~ t !%

2
~Gns1Gn8s8!

2
rnsn8s8

1dnn8dss8(
m,r

Gns,mrrmr,mr . ~10!

The terms in the first two lines on the right-hand side indu
the coherent contribution to the evolution. This is given
terms of the~diagonal! collective and statistical contribution
to the excitation energy,«n and«s , and of the interactionV,
01460
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which couples the states through collective excitation alo
The two terms on the last two lines describe, respectiv
the loss of probability due to incoherent, statistical tran
tions out of the state and the gain of probability due to s
tistical transitions from the other states.

The rate of probability loss is determined by the spread
width of the collective-intrinsic stateun,s&, defined in terms
of the partial gain widths as

Gns5(
m,r

Gmr,ns . ~11!

That is, the spreading width for probability loss from a giv
state is given by the sum of the partial widths for probabil
transfer from that state to all others. This guarantees pr
ability conservation during the evolution of the system@as-
suming, of course, that«n and « r are real and thatV(t) is
Hermitian#.

We will assume that the initial population is in the groun
state. The initial conditions for which the equation will b
solved are then

rns,n8s8~ t→2`!→dnn8dn0dss8ds0@12T~b!#, ~12!

whereT(b) is an impact-parameter dependent transmiss
coefficient that takes into account the probability
projectile-target interactions more complex than those be
discussed here. We approximate the transmission coeffic
as

T~b!5
1

11exp@~b2R!/a!]
, ~13!

where we take the strong-interaction radius to beR
51.23(AP

1/31AT
1/3) fm and the diffusivity to be a

50.50 fm, with AP and AT the projectile and target mas
numbers, respectively.

As the only coherent coupling in the time-evolution equ
tion is through the collective interactionV, which couples
only collective states having the same statistical indexs, we
conclude that the density matrix will remain diagonal in t
statistical indexs at all times,

rns,n8s8~ t !5dss8rns,n8s~ t !. ~14!

The density matrix thus reduces to a separate density sub
trix for each value of the statistical index, with the couplin
between these submatrices, through the gain and loss te
being completely incoherent.

It is convenient to explicitly take into account the tim
dependence due to the collective excitation energy. To
this, we define a modified density matrix, having the sa
diagonal matrix elements as the original one, as

rnn8
s

~ t !5exp@2 i ~«n2«n8!t/\#rns,n8s~ t !. ~15!

The time evolution equation then reduces to the form
4-3
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\
]rnn8

s

]t
52 i(

m
@Ṽnm~ t !rmn8

s
2rnm

s Ṽmn8~ t !#

2
~Gns1Gn8s!

2
rnn8

s
1dnn8(

r ,m
Gns,mrrmm

r ,

~16!

in which the remaining contribution to the coherent evo
tion is due toṼ, where

Ṽnn8~ t !5exp@ i ~«n2«n8!t/\#Vnn8~ t !. ~17!

The second line of Eq.~16! contains the incoherent contr
butions of the statistical loss and gain terms, respectivel

Assuming that the collective excited states are harmo
n-phonon giant dipole states, the interaction matrix eleme
can be written as

Ṽnn8~ t !5~exp@ i«dt/\#Andn8,n21

1exp@2 i«dt/\#An11dn8,n11!V01~ t !, ~18!

where«d is the excitation energy of the giant dipole res
nance andV01(t) is the semiclassical matrix element co
pling the ground state to the giant resonance, which we t
to have the simple form

V01~ t !5V0

~bmin /b!2

11~gvt/b!2
, ~19!

as given in Ref.@8#. As is done there, we neglect the sp
degeneracies and magnetic multiplicities of the giant re
nance states and approximate the projectile-target rela
motion as a straight line.

In the case of harmonic phonons, the decay widths can
approximated as

Gns5nGd , ~20!

where Gd is the spreading width of the giant dipole res
nance. We have neglected the contribution to the width
the hot statistical background of states since, at the low t
peratures involved here, the decay widths of the hot Bri
Axel resonances are very similar to those of the cold on

In our development of the dynamics of multiple gia
resonance excitation, we have labeled the states of
nucleus with both a collective indexn, denoting the numbe
of collective dipole phonons, and a statistical ones, denoting
the states of the incoherent background. In order to perf
numerical calculations, we wish to simplify somewhat o
description of the statistical states. To this end, we now us
to denote the number of collective phonons that have
cayed into the incoherent background. The class of st
denoted by the pair of indicesn and s thus possessesn
phonons of collective excitation and an incoherent ba
ground excitation obtained through the decay of anothes
phonon. We represent this class of states by a single stat
the limit of harmonic phonons, this state would have an
citation energy of (n1s)«d and a width ofnGd , where«d is
01460
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the energy of the giant dipole resonance andGd is its spread-
ing width. We neglect contributions of the escape widths,
these are extremely small when compared to those of
spreading widths of the systems of interest here@13#. A sche-
matic representation of the states and the transitions betw
them is given in Fig. 3.

According to our convention for labeling states, the s
tistical index denotes the number of collective phonons t
have decayed to the incoherent statistical background.
decay of then-phonon s-background state thus transfe
its occupation probability to the (n21)-phonon
(s11)-background state. The form of the partial widths r
flects this fact,

Gmr,ns5d r ,s11dm,n21Gns5d r ,s11dm,n21nGd , ~21!

and is trivially consistent with the definition of the spreadi
width Gns , given in Eq.~11!.

We can now solve the differential equations, which we
numerically. A typical solution is shown in Figs. 4 and
where we display the time dependence of the occupa
probabilities~diagonal elements of the density matrix! of the
zero-, one-, and two-phonon states, for the system208Pb
1208Pb at an incident energy of 200 MeV per nucleon and
impact parameter ofb515 fm. For the centroid and width
of the giant dipole resonance, we use values taken fro
global systematic,«d543.4A20.215 MeV and Gd50.3«d
@20#, giving «d513.8 MeV and Gd54.1 MeV, slightly
above the experimental values.

In Fig. 4, we see that the ground state occupation pr
ability drops rapidly in the first half of the collision, while
the occupation of the collective one-phonon state rises
cordingly. The occupation probability of the decayed on
phonon state follows more slowly but, by the midpoint of t
collision, at t50, is about 25% of the value of the occup
tion of the coherent one-phonon state. We find the tende
of the two-phonon states in Fig. 5 to be similar. The occ
pation probability of the coherent two-phonon state ris
first, with that of the one-coherent, one-decayed phonon s
following more slowly but attaining a value of about 50%
that of the collective one at the midpoint of the collision. T
one-coherent, one-decayed phonon state is occupied
through the decay of the coherent two-phonon state
through collective excitation of the decayed one-phon
state. The occupation probability of the two-decayed-phon

FIG. 3. Schematic representation of the collective/statist
states and their transitions. The vertical arrows represent the
way coherent excitation/deexcitation of collective phonons. T
horizontal arrows represent the one-way statistical decay of the
lective phonons.« denotes the excitation energy.
4-4
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THEORY OF MULTIPLE GIANT DIPOLE RESONANCE . . . PHYSICAL REVIEW C60 014604
state grows more slowly than the others, as it is occup
only through the decay of the one-coherent, one-deca
phonon state.

We observe in Figs. 4 and 5 that all states eventu
decay to the states containing no collective excitations,

rnm
s ~ t→`!→0 n,mÞ0. ~22!

We can define asymptotic occupation probabilities for
states with no collective excitations as

r00
s ~ t→`!→P0

s , ~23!

FIG. 4. Time dependence of the occupation probabilities of
ground state and coherent and statistical~decayed! one-phonon
states for the system208Pb1208Pb at an incident energy of 20
MeV per nucleon and an impact parameter of 15 fm. The do
line denotes the time dependence of the collective interaction.
01460
d
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e

where probability conservation requires that

(
s

P0
s512T~b!, ~24!

with T(b) the transmission coefficient of Eq.~13!.
Although the states containing collective phonons are

ymptotically depopulated, we can still obtain an estimate
the probability that passes through them by calculating
probability that decays out of them. We thus define for the
states

e

d

FIG. 5. Time dependence of the occupation probabilities of
two-phonon states~two coherent phonons, one coherent and o
decayed phonons and two decayed phonons! for the system208Pb
1208Pb at an incident energy of 200 MeV per nucleon and an
pact parameter of 15 fm. The dotted line denotes the time dep
dence of the collective interaction.
4-5
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Pn
s[GnsE

2`

`

dt rnn
s ~ t ! nÞ0. ~25!

We note that this is only an estimate of the probability th
has passed through each state, as it takes into account
that part of the probability that decays incoherently. It do
not include the fraction of the probability that was tran
ferred coherently~through the action ofV) to other states.

Finally, we define a cross sectionsn
s for each state by

integrating its probabilityPn
s over the implicit dependenc

on the impact parameter,

sn
s[2pE

bmin

`

b db Pn
s~b!. ~26!

At extremely low energies, the lower limit of the integr
over impact parameter,bmin , is determined by the classica
point of closest approach of the Coulomb interaction. Wh
the energy is sufficiently high to surpass the Coulomb b
rier, the transmission coefficientT(b) cuts the integral off at
low values of the impact parameter.

III. NUMERICAL CALCULATION
OF MULTIPHONON EXCITATION

We have performed calculations of multiple giant dipo
resonance excitation within the model for the system208Pb
1208Pb in the projectile energy range from 100 to 10
MeV/nucleon. We display in Fig. 6, as a function of th
projectile energy, the coherentn-phonon cross sectionssn

0

~dashed lines! and totaln-phonon cross sectionss0
n ~solid

lines! obtained from the calculation. The coherent cross s
tionssn

0 describe the direct excitation of then-phonon states
These are the cross sections that result from a standard
culation of multiple giant resonance excitation amplitud
The totaln-phonon cross sectionss0

n account for all possible
n-phonon excitations, including those in which one or mo
of the phonons decays incoherently before others are exc
The respective coherent or total cross sections decreas
about an order of magnitude for each additional phonon
excitation. The coherentn-phonon cross sections increa

FIG. 6. Totaln-phonon excitation cross sectionss0
n ~solid lines!

and coherentn-phonon excitation cross sectionssn
0 ~dashed lines!

for the system208Pb1208Pb as a function of the projectile energy
01460
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monotonically with energy, as do the total excitation cro
sections for low phonon number. For the cases of th
phonons, the totaln-phonon cross section first decreases w
the incident energy, but then turns and increases like
other cross sections.

Except for the one-phonon case, the totaln-phonon cross
sectionss0

n in Fig. 6 are clearly larger than the cohere
cross sectionssn

0 . This can be readily understood by notin
that, although there is only one way a single phonon can
excited and decay, alternative sequences of excitation
decay are available when more than one phonon is involv
As we have emphasized previously in the case of tw
phonons@12–14#, the total cross sections0

2 contains both the
coherent two-phonon excitation, two-phonon decay contri
tion s2

0 and an incoherent contribution due to the excitati
~and decay! of a second phonon after the first phonon h
decayed into the statistical background. A part of the app
ent discrepancy in experimental double giant dipole re
nance cross sections can thus be explained by arguing
what is observed is the total two-phonon cross sections0

2

and not just the coherent cross sections2
0.

The relative importance of the coherent excitation cro
sections,sn

0 , compared to the total ones,s0
n , can best be

seen by looking at their ratio,sn
0/s0

n , as shown in Fig. 7 as a
function of the projectile energy. We observe that the to
n-phonon cross sectionss0

n are greatly enhanced relative t
the coherent cross sectionssn

0 at low energies. As the energ
increases, the relative enhancement decreases and ten
ward one. This trend can be explained by comparing the t
scale of the collision process to that of the decay of a gi
resonance into the statistical background. At low bomba
ing energy, the collision occurs slowly relative to the dec
time of the resonance. Subsequent excitations then usu
occur after the previous ones have decayed and the c
sections for coherent multiple excitation are small compa
to the total ones. As the energy increases, the collision t
decreases and the time available for decay of a phonon
fore the excitation of another also decreases. The rela
importance of the incoherent contributions to then-phonon
excitation cross section thus decreases as does the re
enhancement of the total cross section over the coherent

FIG. 7. Relative enhancement of the totaln-phonon excitation
cross sections0

n over the coherent excitation cross sectionsn
0 for

the system208Pb1208Pb as a function of the projectile energy.
4-6
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THEORY OF MULTIPLE GIANT DIPOLE RESONANCE . . . PHYSICAL REVIEW C60 014604
In Fig. 8, we show the differential excitation cross secti
that we obtain for the system208Pb1208Pb at 640 MeV/
nucleon as a function of the excitation energy. This was
tained by summing Breit-Wigner expressions with the app
priate excitation energy and width for each of the to
n-phonon cross sections. We show only the contributions
the first three giant dipole resonances, as the higher o
ones are almost invisible even on our theoretical curve. O
the first and second giant dipole resonances have been
served experimentally.

As the GDR excitation mechanism proposed here d
not depend on the peculiarities of the excited nucleus,
expect it to be ubiquitous in the periodic table. We can a
however, how the energy range in which it is important v
ies with the mass of the projectile being excited. To estim
this, we compare the collision and GDR decay times a
calculate the value of the projectile energy for which the t
are equal. For the case of208Pb, the decay and collision
times are equal atEP /Ap'150 MeV, where the DGDR en
hancement is about 50%.

To obtain a general estimate, we use a global system
«d543.4A20.215 MeV and Gd50.3«d @20#, to approximate
the decay time,td5\/Gd . We assume a projectile of mas
Ap incident on 208Pb, to estimate the collision time as

tc5
b

gv
'

r 0~Ap
1/312081/3!

gv
, r 051.23 fm.

FIG. 8. Theoretical multiple giant resonance differential exci
tion cross section of208Pb at a projectile energy of 640 MeV
nucleon.
cl.
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Equating the two expressions yields the curve of Fig.
From the figure, we conclude that the energy range in wh
the fluctuation contribution to the DGDR excitation is impo
tant grows slightly larger as the projectile mass decrease

IV. CONCLUSIONS

In summary, we conclude from the semiclassical calcu
tions presented here that the collective-statistical descrip
of multiple giant resonance excitation provides a theoret
basis for at least a part of the energy-dependent enhance
of multiple excitation cross sections observed experim
tally. Although we do not claim that the entire enhancem
arises in all cases through this mechanism alone, we h
shown that it can produce an important part of the enhan
ment and should be taken into account before seeking o
causes for the experimental observations.
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- FIG. 9. Energy per nucleon at which the collision time and gia
dipole resonance decay time of a projectile in a collision with208Pb
are approximately equal, as a function of the mass number of
projectile.
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