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A semiclassical description of multiple giant resonance excitation that incorporates incoherent fluctuation
contributions of the Brink-Axel type is developed. Numerical calculations show that the incoherent contribu-
tions are important at low to intermediate bombarding ener§&3556-28139)01705-7
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I. INTRODUCTION V
0
-—— &)
The Coulomb excitation of two-phonon giant resonances 1+ (yvt/b)
at intermediate energies has generated considerable interest _ S
in the last few year§1]. The isovector double giant dipole Which furnishes a collision time of the order ef~2b/yv.
resonancgDGDR) has been observed it?%e [2], 17Au In Fig. 2, we compare the decay and collision times for
[3], and 2%%Pb [4—6]. The isoscalar double giant quadrupole the case of%Pb+2%8Pp, as a function of the incident energy

resonance has also been observed in the proton emissi@ﬁ’r nucleonk,] usLngi avalbue of 15 fm for the impl)act pahrameltlt_ar
spectrum from the collision of°Ca with %°Ca at a laboratory 2 W€ see that below about 150 MeV per nucleon, the colli-

energy of 4A MeV [7]. When the data on DGDR excitation 5‘0’? tir_ne is longer than the decay time. We expect that the
for 13%e and 197Au ére compared with coupled-channel excitation of a second GDR after the decay of a first will be
Coulomb excitation calculations8], it is found that, in the an important process in this energy range, when compared to

: o X direct double GDR excitation. As the collision time de-
harmonic approximation, the calculated cross secnons_ are eases slowly with the incident energy, we expect it to re-
fa_tctor of 2to 3 smaller than the meas_ured ones. A similag, 4in important over an even wider energy range.
discrepancy, albeit somewhat smaller, is found #Pb.

Several effects that are not taken into account in the
coupled-channel theory have been considered as possible ex-
planations of this discrepancy. As examples, we mention the
effect of anharmonicitief9,10] and the quenching of the'1 Giant resonances have many characteristics that suggest a
DGDR statg 11]. Here we will consider a potentially impor- treatment in terms of simple collective degrees of freedom.
tant mechanism, which consists in the Coulomb excitation offhe first and foremost of these is their classical interpretation
a GDR on the background states populated by the decay ofia terms of macroscopic shape oscillations of the nucleus.
previously excited GDR12-14, as shown in Fig. 1. The The properties of multiple excitations of these resonances
importance of such “hot” collective excitations in nuclear would then suggest that they are simple bosonic degrees of
gamma emission was suggested long ago by Brink and Axdreedom. The Brink-Axel hypothesis, which assumes that a
[15]. Due to the complicated nature of the noncollectivegiant dipole resonance may be constructed on each of the
background states, the amplitude for this excitation process
varies rapidly with energy and possesses an average close to GDR DGDR

zero. Its contribution to the cross section can be sizable,
however. — —

The excitation of a second GDR after the decay of a first
HGDR

will be possible only if the decay occurs before the collision
- {{))

II. THE BRINK-AXEL MECHANISM
AND THE EVOLUTION EQUATION

has ended. We can thus obtain an estimate of the relevance
of this excitation mechanism by comparing the Coulomb col-
lision time to the giant dipole resonance decay time. The
decay time can be estimated as=#/1"y, wherel'y is the
giant resonance spreading width. F3fPb, the GDR width

@-0

isI'g=~4 MeV, which yieldsry~16x 10.72? s. We estimate FIG. 1. Cartoon depiction of the conventional double giant di-
the collision time using the schematic time dependence Ofole resonance excitatid®GDR) and the alternative “hot” giant
the Coulomb interaction of Ref8], dipole excitation(HGDR) described here.
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W (X, ,) =expSO S, g (X)n)]s). (3)

Substituting this into the Schdinger equation, we reduce

the latter to coupled equations for the relative coordinate
and the expansion coefficiengs,(t),

X=—VUX), ()

foo —s00 500 w0 900 .
Er/Ar (MeV) |ﬁwns(t):(8n+ss)l/fns(t)+§ Vim(t) ¥ms(t)
FIG. 2. Collision timer, (solid line and GDR decay timey

(dashed lingfor the systent®®Pb+2%%Pb at an impact parameter of +> Whsmr(t) ¥m(1),
15 fm as a function of the projectile energy per nucleon. m,r

X)v_here the effective potentiaﬂ{(i) describing the relative

intrinsic excited states of the nucleus, suggests that the reso- .
gmtlon takes the form

nances can be considered as degrees of freedom independ

of the intrinsic states. Of course, the microscopic representa-

tion of the giant resonances, in terms of the intrinsic particle- UX)=, (en+ go)| Und?+ > AN aml(t) Yms

hole states, implies that their treatment as independent de- ns n.m

grees of freedom can only be approximate. Yet, in many

instances, it seems to be a very good approximation. + > P Whs me(t) Py - (5
As a model of the multiple excitation and decay of a giant ns,mr

resonance, we consider the excitation of an independent cal- : .
; . ““In the calculations presented here, we neglect the effective
lective degree of freedom of a target nucleus by an ine

r , - ) ! : .
projectile and the subsequent decay of the collective Stat(_‘Qc'otentlal and use straight line trajectories to describe the

! T relative motion.
into complex intrinsic ones. We can loosely follow the de- . . .

. . . In the above equations, we have written the matrix ele-
velopment given by Ko years ag@6]. His work was moti-

vated by the desire to incorporate the collective features t]:ner)ts of the _couplmg between the relative motion and col-
ective excitations as

the Copenhagen approach to deeply inelastic heavy-ion col-
lisions[17] into the statistical description of the Heidelberg
approacH 18] to those processes.

As did Ko, we take the Hamiltonian describing the two a4nq the matrix elements of the collective-intrinsic coupling
colliding nuclei to be as

(M,r|V(X,a)|n,s)= 8sVimn(1), (6)

H(X,,8) = No(X) + hy(@) + y( )+ UK, )+ V(%) (W, £)10,8) =Waneno0 "
FW(ad), @) The & function in the first of these definitions makes explicit

the fact that the coupling of the relative motion to the col-

lective degree of freedom due V.‘()Z,a) does not affect the

whereho(X) = p2/2m+V,(X) is the Hamiltonian for the rela- occupation of the intrinsic states. Although the coupling of
tive motion in the ground stateéy;(«) and h,(€) are the the collective degree of freedom to the intrinsic ones due to
collective and intrinsic Hamiltonians, respectiveW(«,¢)  W(e«,§), in the second of these equations, is internal to the
is the coupling between the collective and the intrinsic detarget and, thus, is not affected by the relative motion of the
grees of freedom, and (X, £) andV(X,«) are the couplings projecti_le _and target, we nonetheless include a tim_e (_Jlepen-
between the relative coordinate and the intrinsic and collecd€nce in its matrix elements. We make use of this in the
tive degrees of freedom, respectively. As we wish to COnCentollowmg_to express the time correlation in the average of
trate our attention on the excitation of the collective stategWO matrix elements.

alone through the relative motion, we simplify by taking the e assume that the complex intrinsic states are statistical
direct coupling of the relative motion to the intrinsic states to@"d use a schematic random-matrix model to describe their

matrix elements. We take the first and second moments of

be null, U(x,£)=0. We write the collective and intrinsic the matrix elements to be

spectra and states as(a)|n)=e,|n) andh,(&)|s)=g4|s).
In the case that the collective spectrum represents multiple W—(t)=0 ®)
excitations of a giant resonance, we would expgetne; . mr.ns ’

To obtain a semiclassical approximation to the wave func-

tion, we write it in terms of a classical acti®(x), which
will describe the relative motion, as Xho(t—t") mrns-

er,ns(t)Wm’r’,n’s’(t,) = 5mm' 5nn’ 5rr ’ 535’
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The average of a single matrix element is zero. The averagehich couples the states through collective excitation alone.
of a pair of matrix elements, when the two are complexThe two terms on the last two lines describe, respectively,
conjugates one of the other, yields a result proportional tdhe loss of probability due to incoherent, statistical transi-
I'mrns, the partial width for transitions from the stdte,s)  tions out of the state and the gain of probability due to sta-
to the statém,r). Standard statistical hypotheses would onlytistical transitions from the other states.

require that the average of a pair of matrix elements vanish The rate of probability loss is determined by the spreading
forr#r’ ors#s’. For simplicity, we take them to vanish for width of the collective-intrinsic statf,s), defined in terms
m#m’ andn#n’ as well. We also require the average of of the partial gain widths as

two matrix elements to be zero when the two interactions

occur at different times. This is a simplification of the actual

statistics. A more precise treatment would give the average a [hs= mzr Fimens- (11
rather large correlation length in energy, which could even- '

tally be transfor.med' into a short correlation time. Here, Werhat is, the spreading width for probability loss from a given
take the correlation time to be zero.

While the collective excitation of the nucleus is a coher-State Is given by the sum of the partial widths for probability

ent process, the statistical coupling from the collective exci_transfer from that state to all others. This guarantees prob-

tations to the intrinsic states is an incoherent one. The timglbIIIty conservation during the evolution of the systgas-

evolution of the system thus possesses both coherent ﬁmmg, of course, that, ande, are real and tha/(t) is

. ; ermitian|.
incoherent aspects. To describe the system correctly, we . _— L
must consider the time evolution of the density matrix eIe-Sta\,[/Ze _I\/_V#Ieai‘:‘]i?;iézgtigggsln;gflv\?ﬁgﬁl?ﬁgne'ﬂgt}gs %ﬁugg
mentsp,s s (t) rather than that of the components of the ' q
N : solved are then

wave functiony,(t). The diagonal element,sn4(t) repre-
sents the instantaneous occupation probability of the state
with n collective phonons excited on the intrinsic state

We note that the standard calculation of giant resonance ) ) o
excitation[19,8] assumes it to be a coherent process, with avhereT(b) is an impact-parameter dependent transmission

average wave function that evolves according to coefficient that takes into account the probability of
projectile-target interactions more complex than those being

Pns,n’s’(t_)_oo)_>5nn'5n05ss’550[1_-r(b)]1 (12

Ao . o discussed here. We approximate the transmission coefficient
h_:_lE 1&n6nmt Vam(O} mo— 5= ¥no-  (9) as
ot m 2
This expression for the average wave function can also be T(b)= (13)

derived using our statistical hypotheses. It takes into account l+exd(b—R)/a)]’
the coherent excitation and subsequent decay of the GDR.
However, due to its coherence, it can only account for theyhere we take the strong-interaction radius to Be

loss of the probability that has decayed from each state. It 1 23(AY3+AY%) fm and the diffusivity to be a

Cannot aCCOUHt f0r the ﬂUX gained through the StatiStica| de': 050 fm, Wlth AP and AT the project"e and target mass
cay. The density matrix formalism and the additional statisyyympers, respectively.

tical states are necessary to obtain a complete description of As the only coherent coupling in the time-evolution equa-

the time evolution. . . . tion is through the collective interactiod, which couples
Follovymg Ko, we can put the .tlme—evolutlon equation of only collective states having the same statistical inslexe
the semiclassical density matrix into the form conclude that the density matrix will remain diagonal in the
P statistical indexs at all times,
Pnsn’s’ .
h— =i E {(8n+ 85) 6nmt Vnm(t)}pmsn’s’
at m Pns,n’s’(t):5ss’Pns,n’s(t)- (14
+i Z Prsmsi(ent€s) Oy + Vi (1)} The density matrix thus reduces to a separate density subma-
m trix for each value of the statistical index, with the coupling
(Tt T o) between these submatrices, through the gain and loss terms,
s s’

being completely incoherent.

It is convenient to explicitly take into account the time
dependence due to the collective excitation energy. To do
+ §nn/5ss,2 I smrPmrme - (10)  this, we define a modified density matrix, having the same

mr diagonal matrix elements as the original one, as

2 Pnsn's’

The terms in the first two lines on the right-hand side induce s )

the coherent contribution to the evolution. This is given in P ()=€xXd —i(eq—en)t/]pngnrs(t). (15
terms of the(diagonal collective and statistical contributions

to the excitation energy;, andeg, and of the interactiol,  The time evolution equation then reduces to the form
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J ps p=2,=0 _, n=l,s=1 _ | n=0,s=2
nn’ . ~ ~
b= =12 VoV p = PV (1] I I
(Fns+ Fn’s) n=1, s=0 — n=0, s=1 £
_Tpinl+5nn’% 1-‘ns,mrp:nm! I
(16) n=0, s=0
in which the remaining contribution to the coherent evolu- g1 3. Schematic representation of the collective/statistical
tion is due toV, where states and their transitions. The vertical arrows represent the two-
_ way coherent excitation/deexcitation of collective phonons. The
Vo () =exdi(e,—ep)t/ATV (1), (17) horizontal arrows represent the one-way statistical decay of the col-

lective phononse denotes the excitation energy.
The second line of Eq(16) contains the incoherent contri-
butions of the statistical Ioss' and ga_lin terms, respectively. the energy of the giant dipole resonance &ids its spread-
Assuming that the collective excited states are harmonighg width. We neglect contributions of the escape widths, as
n-phonon giant dipole states, the interaction matrix elementghese are extremely small when compared to those of the

can be written as spreading widths of the systems of interest H&@. A sche-
~ _ matic representation of the states and the transitions between
Vo ()= (exfli et/ 18y -1 them is given in Fig. 3.

According to our convention for labeling states, the sta-
tistical index denotes the number of collective phonons that
have decayed to the incoherent statistical background. The
decay of then-phonon s-background state thus transfers
its occupation probability to the n(1)-phonon
§s+ 1)-background state. The form of the partial widths re-
flects this fact,

+ eXF[ - | 8dt/h] YN+ 15n/'n+1)V01(t), (18)

whereegy is the excitation energy of the giant dipole reso-
nance andVy(t) is the semiclassical matrix element cou-
pling the ground state to the giant resonance, which we tak
to have the simple form

(bmin/b)2

Voy(t)=Vo——m—
ot %1+ (yut/b)?

(19 I“mr,ns: é\r,s-%— 15m,n—1rns: é\r,s-%— 15m,n—1nrd . (21

: . : . and is trivially consistent with the definition of the spreading
as given in Ref[8]. As is done there, we neglect the spin width I, given in Eq.(11).

degeneracies and magnetic multiplicities of the giant reso- W ve the diff ial i hich q
nance states and approximate the projectile-target relative € can now solve the difierential equations, which we do
motion as a straight line. numerically. A typical solution is shown in Figs. 4 and 5,

In the case of harmonic phonons, the decay widths can b\é{here we dis_play the time dependence (.)f the QCCUpaﬂon
approximated as probabilities(diagonal elements of the density majrof the
zero-, one-, and two-phonon states, for the syst®fPb
T=nTy, (200  +?%Pb atan incident energy of 200 MeV per nucleon and an
impact parameter dbf=15 fm. For the centroid and width
whereT'y is the spreading width of the giant dipole reso- of the giant dipole resonance, we use values taken from a
nance. We have neglected the contribution to the width ofjlobal systematic,sq=43.4A%21% MeV and I'4=0.3¢4
the hot statistical background of states since, at the low ten{20], giving £4=13.8 MeV andI'y=4.1 MeV, slightly
peratures involved here, the decay widths of the hot Brink-above the experimental values.

Axel resonances are very similar to those of the cold ones. In Fig. 4, we see that the ground state occupation prob-
In our development of the dynamics of multiple giant ability drops rapidly in the first half of the collision, while
resonance excitation, we have labeled the states of thine occupation of the collective one-phonon state rises ac-
nucleus with both a collective index denoting the number cordingly. The occupation probability of the decayed one-
of collective dipole phonons, and a statistical @andenoting  phonon state follows more slowly but, by the midpoint of the

the states of the incoherent background. In order to perforraollision, att=0, is about 25% of the value of the occupa-
numerical calculations, we wish to simplify somewhat ourtion of the coherent one-phonon state. We find the tendency
description of the statistical states. To this end, we nowsuse of the two-phonon states in Fig. 5 to be similar. The occu-
to denote the number of collective phonons that have depation probability of the coherent two-phonon state rises
cayed into the incoherent background. The class of statd#st, with that of the one-coherent, one-decayed phonon state
denoted by the pair of indices and s thus possesses  following more slowly but attaining a value of about 50% of
phonons of collective excitation and an incoherent backihat of the collective one at the midpoint of the collision. The
ground excitation obtained through the decay of another one-coherent, one-decayed phonon state is occupied both
phonon. We represent this class of states by a single state. through the decay of the coherent two-phonon state and
the limit of harmonic phonons, this state would have an exthrough collective excitation of the decayed one-phonon
citation energy of i+ s)e4 and a width ofnI"y, whereeyis  state. The occupation probability of the two-decayed-phonon
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FIG. 5. Time dependence of the occupation probabilities of the
FIG. 4. Time dependence of the occupation probabilities of the:jvézﬁlznoﬂosntg;zﬁ:;% (t:\;ge(;(:;; pggn%r;;’&?hgoshirgﬁz&g% one
ground state and coherent and statistiG@cayed one-phonon yed p yea p Y

20 inci im-
states for the systerA%®Pb+2%%Ph at an incident energy of 200 +298pp at an incident energy of 200 MeV per nucleon and an im

MeV per nucleon and an impact parameter of 15 fm. The dottecPaCt parameter of 1.5 fm. The .dotted line denotes the time depen-
) . S . dence of the collective interaction.
line denotes the time dependence of the collective interaction.

state grows more slowly than the others, as it is occupiedvhere probability conservation requires that
only through the decay of the one-coherent, one-decayed
phonon state.

We observe in Figs. 4 and 5 that all states eventually
decay to the states containing no collective excitations, s

(24)

prm(t—©)—0 n,m#0. (22

with T(b) the transmission coefficient of E(L3).
) ) ) o Although the states containing collective phonons are as-
We can define asymptotic occupation probabilities for thempiotically depopulated, we can still obtain an estimate of
states with no collective excitations as the probability that passes through them by calculating the
probability that decays out of them. We thus define for these
poot—2)—Pg, (23)  states
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FIG. 6. Totaln-phonon excitation cross section§ (solid lineg

and coherenb-phonon excitation cross sectiontg (dashed lines

for the system?®®b+2%Ph as a function of the projectile energy.

FIG. 7. Relative enhancement of the totaphonon excitation
cross sectionsf) over the coherent excitation cross sectigh for
the systen?®®Pb+2%Pp as a function of the projectile energy.

s_ “ s monotonically with energy, as do the total excitation cross
Pnzrnsf_wdtp””(t) n#0. (25 sections forylow phonogynumber. For the cases of three
phonons, the total-phonon cross section first decreases with
We note that this is only an estimate of the probability thatthe incident energy, but then turns and increases like the
has passed through each state, as it takes into account orfi{her cross sections.
that part of the probability that decays incoherently. It does Except for the one-phonon case, the tatgdhonon cross
not include the fraction of the probability that was trans-sectionsoyg in Fig. 6 are clearly larger than the coherent
ferred coherentlythrough the action o¥) to other states.  cross sections—ﬂ. This can be readily understood by noting
Finally, we define a cross sectiari for each state by that, although there is only one way a single phonon can be
integrating its probabilityP; over the implicit dependence excited and decay, alternative sequences of excitation and
on the impact parameter, decay are available when more than one phonon is involved.
As we have emphasized previously in the case of two-
phonong12-14, the total cross sectiamg contains both the
coherent two-phonon excitation, two-phonon decay contribu-
tion o3 and an incoherent contribution due to the excitation
At extremely low energies, the lower limit of the integral (and decay of a second phonon after the first phonon has
over impact parameteh,,,, is determined by the classical decayed into the statistical background. A part of the appar-
point of closest approach of the Coulomb interaction. Wherent discrepancy in experimental double giant dipole reso-
the energy is sufficiently high to surpass the Coulomb barhance cross sections can thus be explained by arguing that
rier, the transmission coefficie(b) cuts the integral off at What is observed is the total two-phonon cross sectign

UﬁEZﬂ'jw b db P(b). (26)
l'-)min

low values of the impact parameter. and not just the coherent cross sectigh
The relative importance of the coherent excitation cross
IIl. NUMERICAL CALCULATION sections,o?, compared to the total ones;}, can best be
OF MULTIPHONON EXCITATION seen by looking at their rati@;;ﬁ/a'g, as shown in Fig. 7 as a

function of the projectile energy. We observe that the total

We have performed calculations of multiple giant dipole n_phonon cross sections] are greatly enhanced relative to
resonance excitation within the model for the systéf#®b o coherent cross section§ at low energies. As the energy
+2%%Pb in the projectile energy range from 100 to 1000, ¢ eaces the relative enhancement decreases and tends to-
MeVinucleon. We display in Fig. 6, as a function ofothe ward one. This trend can be explained by comparing the time
projectile energy, the coherentphonon cross sections,  gcale of the collision process to that of the decay of a giant
(dashed lingsand totaln-phonon cross sectionsg (solid  resonance into the statistical background. At low bombard-
lines) obtained from the calculation. The coherent cross secng energy, the collision occurs slowly relative to the decay
tions o) describe the direct excitation of tiephonon states. time of the resonance. Subsequent excitations then usually
These are the cross sections that result from a standard c@ecur after the previous ones have decayed and the cross
culation of multiple giant resonance excitation amplitudessections for coherent multiple excitation are small compared
The totaln-phonon cross sectiong, account for all possible  to the total ones. As the energy increases, the collision time
n-phonon excitations, including those in which one or moredecreases and the time available for decay of a phonon be-
of the phonons decays incoherently before others are excitetbre the excitation of another also decreases. The relative
The respective coherent or total cross sections decrease biyiportance of the incoherent contributions to t@honon
about an order of magnitude for each additional phonon oé&xcitation cross section thus decreases as does the relative
excitation. The coheremt-phonon cross sections increase enhancement of the total cross section over the coherent one.
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FIG. 8. Theoretical multiple giant resonance differential excita- FIG. 9. Energy per nucleon at which the collision time and giant

tion cross section of%%Pb at a projectile energy of 640 MeV/ dipole resonance decay time of a projectile in a collision f#Pb
nucleon. are approximately equal, as a function of the mass number of the

projectile.
In Fig. 8, we show the differential excitation cross section
that we obtain for the SySte”%O?Pb_JFZOBPb at 640 MeV/  Equating the two expressions yields the curve of Fig. 9.
nucleon as a function of the excitation energy. This was Obg,m the figure, we conclude that the energy range in which
tained by summing Breit-Wigner expressions with the aPPMO%he fluctuation contribution to the DGDR excitation is impor-

priate excitation energy and width for each of the total ant grows slightly larger as the projectile mass decreases
n-phonon cross sections. We show only the contributions o} 9 ghtly farg prol '

the first three giant dipole resonances, as the higher order
ones are almost invisible even on our theoretical curve. Only

the first and second giant dipole resonances have been ob-
served experimentally.

As the GDR excitation mechanism proposed here does In summary, we conclude from the semiclassical calcula-
not depend on the peculiarities of the excited nucleus, w&ons presented here that the collective-statistical description
expect it to be ubiquitous in the periodic table. We can ask0f multiple giant resonance excitation provides a theoretical
however, how the energy range in which it is important var-basis for at least a part of the energy-dependent enhancement
ies with the mass of the projectile being excited. To estimat®f multiple excitation cross sections observed experimen-
this, we compare the collision and GDR decay times andally. Although we do not claim that the entire enhancement
calculate the value of the projectile energy for which the twoarises in all cases through this mechanism alone, we have

are equal. For the case Gf%Pb, the decay and collision Shown that it can produce an important part of the enhance-
times are equal &p/A,~150 MeV, where the DGDR en- ment and should be taken into account before seeking other

hancement is about 50%. causes for the experimental observations.
To obtain a general estimate, we use a global systematic,

eq=43.4A7 %215 MeV and T 4=0.3¢4 [20], to approximate

the decay timegyy=#/T"y. We assume a projectile of mass ACKNOWLEDGMENTS
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