PHYSICAL REVIEW C, VOLUME 60, 014311

Proton-neutron pairing in Z=N nuclei with A=76-96
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The ground states of even-evEs- N nuclei are determined with the isospin generalized BCS equations and
the HFB equation. The calculations permit the simultaneous existence of the following Coopep pains,
pn(T=1), andpn(T=0) where the two nucleons in a pair occupy space-spin orbitals which are related by
time reversal, as well apn(T=0) where the two nucleons are in identical space-spin orbitals. There is a
transition fromT=1 Cooper pairs at the beginning of this isotope sequende=t6 Cooper pairs at the end
of the sequence. Near the middle of the isotope sequence, there is coexisterice @fpair superfluid and a
T=1 pair superfluid in the same wave function. The fluctuation in the particle number is reduced if the wave
function contains proton-neutron pairing. The fluctuation in the isospin is eliminated and isospin is conserved
if the wave function contains only=0 pairing.[S0556-28189)05407-2

PACS numbds): 21.60—n

I. INTRODUCTION both T=0 andT=1 pn pairs[18-20. In this theory the
quasiparticle operators are defined by a4 unitary trans-
During the past few years there has been a rebirth oformation of the particle operators, and the two nucleons in a
interest in proton-neutron pair correlations. There are severgair occupy orbitals related by time revers@l) However,
reasons for this renaissandé) Radioactive nuclear beams the Pauli exclusion principle does not prevent a proton and a
have now extended thi=2Z line up to 1°°Sn[1,2]. In N neutron from occupying thesame space-spin orbital and
=Z nuclei, protons and neutrons occupy the same spatidbrming a pn Cooper pair, if they are coupled t6=0.
orbitals and have maximum spatial overlap. Therefbkre (Hereafter,pn refers to this particular pair, and not pn
=Z nuclei provide the best conditions for findimn pair  pairs) There is an isospin-generalized BCS theory which
correlations. It is now possible to studyn pairing in  includespn (T=0) Cooper pairs, as well g5, nn, andpn
medium-mass nucle{2) The new generation offAdetectors (T=0 andT=1) Cooper pair§23]. In this theory the qua-
is providing experimental data which was not available insiparticle operators are defined by am 8 unitary transfor-
previous decade$3) There is considerable interest in deter- mation of the particle operators.
mining the location of the proton drip line in medium-mass From 1967-1970 the isospin generalized BCS theory and
nuclei[3—6]. The proton drip line is close to thé=Z line.  the HFB theory were used to calculate the ground states of
In these nucleipn pairing might create additional binding evenN=Z nuclei in thesd shell[19—-23. For these nuclei
energy, and provide stability to some nuclei which wouldT=0 proton-neutron pairing correlations are much stronger
otherwise be unstable. Therefopa pairing could alter the than proton-proton and neutron-neutron pairing correlations.
location of the proton drip lingl4) pn pairing is expected to The T=0 pairing significantly alters the ground state prop-
play a significant role i3 decay[7—9]. Neutrinoless double erties of some of these nuclei. Subsequent calculafiphs
B decay has fundamental significance in elementary particl80] investigated the ground states Mf=Z nuclei in thepf
physics. shell andN#Z nuclei in thesd and pf shells. This early
The initial theory of nucleon pair correlations included work is reviewed in Ref[13]. From 1978—-1982 HFB crank-
Cooper pairs which contain two protons or two neutronsing calculations[31-33 investigated the effect of rotation
[10,11]. It did not include Cooper pairs containing one pro- on proton-neutron pairing. They demonstrated fhatpair-
ton and one neutron. In this BCS approximation, the quasiing is much more persistent in the presence of rotation than
particle operators are defined by &2 unitary transforma- are the usuapp andnn pairs. Consequently a ground band
tion of the particle operators. In the early 1960's it waswith T=1 pairing could be crossed by another band wWith
recognized that this pairing theory was incomplete, and that0 pairing at a critical spif32,33. In 1983 the finite-
it needed to be generalized to include proton-neutron Coopeemperature HFB cranking theof$4,35 was used to deter-
pairs [12]. This generalization occurred during the period mine the effect of temperature on proton-neutron pairing
1964-1972, and it proceeded in several sfg®-23. (1) [36-—38. The result was that the higher multipoles<0) of
The BCS theory was generalized to inclygle, nn, andpn  the pair fieldA are more resistant against increasing tempera-
Cooper pairs, where the bar indicates that the second nucledare than the standard monopolé=(0, T=1) pair field.
in a pair occupies a space-spin orbital which is the timedncluding Cooper pairs with all possible values BF more
reverse of the first nucleon’s orbital, and the two nucleonghan doubles the critical temperature for the disappearance of
are coupled to isospif=1 [14,16,17. (2) A BCS theory pairing.
was obtained fopn Cooper pairs, where the two nucleons Recently there have been many articles devoted to proton-
are coupled toT=0 [15]. (3) A unified BCS theory was neutron pairing[7,8,39—-60. An experiment on theN=2Z
derived forpp, nn, and pn Cooper pairs, which includes even-even nucleu&Rb finds that theT=1 ground band is
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crossed by & =0 band at a critical spifd4]. This has been TABLE I. Single-particle energies; .

interpreted as the crossing of a band witls 1 pairing by a

band withT=0 pairing[44,50. Other calculations find that e;(°'Ni) e;(Nilsson) ej(KFP)
T=0 pairing is crucial for determining the crossing fre- Orbital (MeV) (MeV) (Mev)
guency w. for such band crossings8]. The influence c_:f 2p112 1113 2 432 0.690
proton-neutron correlations on back 4bgendlr_lg has been invesy, 0.000 2261 0.000
tigated [41,42. HFB calculations on*Cr find that T=0 1fe 0.769 0.000 0140

pairing has a dramatic effect upon the deformation at higr}L
spins[57]. Shell model Monte Carlo calculations in tipd
shell find thatT=0 proton-neutron correlations persist to
higher temperatures than the correlations between like nucle- o )
ons[47-50. This has a significant effect upon the tempera-iS P 0r n. The effective interaction was calculated by Kuo
ture dependence of the Gamow-Teller streri@8j. EXCITED from the Paris potential. The monopole terms were modified
VAMPIR calculations forN=Z even nuclei withA=72—84 by Nowacki to provide a good fit to the spectra of the Ni
find thatT=0 andT=1 proton-neutron pairing both make a isotopes[62].
significant contribution to the pairing enerfg3]. Some ar- There have been extensive efforts to determine the defor-
ticles have considered simple model Hamiltonians in order tanation 0f89Zr [43,61,63—7% It was found that the ground
compare the isospin generalized BCS approximation wittstate shape is extremely sensitive to the choice of the param-
exact results[51-59. For example, calculations for the eters in the Hamiltoniaf67,72,74. Small changes in these
SQO(8) model find that the BCS energies are in good agreeparameters create large changes in the equilibrium shape.
ment with the exact energi¢s2]. Similarly, small changes in the Fermi energy or orbital oc-
The purpose of this article is to investigate proton-neutrorzupation probabilities cause large alterations in the shape.
pair correlations ifN=Z even nuclei withA=76—96. The  For these reasons, we use three different choices for the
calculations include all of the pair modes discussed aboveingle-particle energies;, which are given in Table I. Al
i.e., pp, nn, pn (T=0 andT=1), andpn (T=0), as well  ¢gjcylations will be repeated for each of these three choices.
as the time reverse of these proton-neutron pairs. There isfe purpose is to determine how the pair gaps and shapes
competition between these different pair modes, and a cOMyenend upon the choice of single-particle energies. Will the

petition_”bitween;IEO gairir]g arr:dT.zl pairing. Clalcglaécspairing properties be as sensitive to this choice as are the
tions will be performed using the isospin generalize deformation properties? Does the competition betw@&en

theory and the HFB theory. These the_orles permit the S|mul-:0 pairing andT=1 pairing depend upon this choice? Sec-
taneous coexistence of all pair modes in the same wave fun%- B and G ide additional h

tion. However, since these theories are derived from a varigions an provide additional reasons why more
tional principle, in a specific case it may be energeticallythan one c_h0|ce foe; is conS|dereq. The first ch0|ce5f0r_ the
favorable for all of the occupation probability to be placed in€Nergies; is taken from the experimental spectrum i,

one particular pair mode. In other cases it may be energetnd Will be referred to as;(°'Ni). These energies were also
cally favorable to have more than one pair mode coexist it#Sed in the shell model Monte Carlo calculations féiRb

the same wave function. For the nuclei considered here, will50]. The second choice for the energigs referred to as
the T=0 pair modes and th€=1 pair modes be mutually €j(Nilsson), is determined by requiring that the Hartree-
exclusive, or willT=0 pairing andT=1 pairing peacefully Fock spherical single-particle energies fSzr are equal to
coexist in the same wave function? The HFB theory treatshe Nilsson spherical single-particle energies $&#r. The
pairing and deformation simultaneously and self-rationale for this prescription and the equation used to deter-
consistently. Therefore these calculations can show houninee;(Nilsson) are given in Sec. Ill B. The third choice for
proton-neutron pairing affects the deformation, and vicethe energiew; is taken from Table Il in Ref[61], which

Jor2 3.000 4.178 1.580

versa. uses HFB in the same model space, and deterngnésm
experimental spectra in th~90 mass region. This will be
Il. HAMILTONIAN referred to as;(KFP).

The model space includes the, 2ps», 1fs,, and
19ggy, shells. A closed core ofiNiyg is assumed. This model
space was used in shell model Monte Carlo calculations for
*Rb [50] and in HFB calculations for Sr, Zr, and Mo iso-  Solutions to the Hartree-FodkiF) equation will be ob-

lll. HARTREE-FOCK

topes[61]. tained. The HF wave functions serve several purpogBs.
The Hamiltonian is The HF single-particle orbitals will be used as the basis
1 states for finding the solutions of the isospin generalized
_ t . Tt BCS equations.(2) The HF solutions corresponding to
= Clc.+ - et . . . ; .
H 2 &CiCity I (iilvalkNCIC/CC, (2 spherical shapes will be used to examine how the energies of

thej shells vary with mass numbeB) The HF states will be
wheree; is the single-particle energy,, is the antisymme- used for a preliminary evaluation of the dependence of the
trized effective interaction, and) denotegnljm7), wherer  deformation on the choice of the single-particle energjes
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A. Theory 4 T T T T r
. e q
The HF eigenvalue equation is ot — 2?; :Z 3
[y = 1f 5/2
hla)=€,|@). 3.1 < T T 2P 5 ]
g gl *——o )‘F
The HF Hamiltoniarh is ~
w ~12f ]
h=e+U, (3.2 W _6t ]
wheree is the single-particle energy ardis the HF poten- -20
o gle-p ay p STy %8ge 80, 100gh
—24 L L L 1 )
50 60 70 80 90 100 110
UU:E (iavglja), (3.3 MASS NUMBER A
«0CC
) . . ) FIG. 1. Spherical Hartree-Fock single-particle energjegersus
where the sum is on the OCCUpIed orbitals. Equat(@’]s)— mass numbeA. The energiegj(57Ni) are used.
(3.3) are solved by iteration to obtain the self-consistent HF
single-particle orbitals different than the ordering iR°%Sn. Most notably, int%%Sn
the 1fg, shell falls below the other shells. How does this
|a>:2 D ili), (3.9 compare with experiment? For thdcl, 2psp, 2py, and
i 1ggy, shells in%%n, the HF energies; are 0, 5.33, 5.65,
. . , and 7.55 MeV, whereas the experimental energies are 0,
and the HF single-particle energies 2.33,5.18, and 5.79 Me¥2]. (The energies are shifted by a
constant, so that the lowest energy i$ Rotice that theory
e.=(alela)+ > (aBlvyap). (3.5 and experiment have the shells ordered in the same se-
Boce quence in*%Sn. However there are quantitative differences

between the two spectra.

In the mass region arouritfZr, the deformation can be
very sensitive to the spherical energies. Because the
monopole effective interaction causes the energje® be
so mass dependent, and the monopole interaction has been
51djusted to fit Ni spectra and nét=76—96 spectra, it fol-
Tows that selecting the energiesfrom the 5Ni experimen-
tal spectrum might not be the best choice épr To improve
the likelihood that the theoretical ordering of theshells
closely resembles the experimental ordering for the
_ ) ) _ =76-96 mass region, it may be desirable to choose the en-

B. Spherical single-particle energies ergiese; so that the HF spherical energies fzr are equal

For some isotopes the HF equation has a spherically synio the Nilsson spherical energies
metric solution, where the deformatigh=0 and the HF
orbitals arg)=|nljm). In these wave functions a particu- €j(HF,%Zr, =0) = & + 1 (HF, *Zr,3=0)
lar set ofj shells is completely filled, while the remaining = ¢(Nilsson 3=0). (3.6)
shells are empty. Also, the energiesof the empty shells
must be greater than the energies of the filled shélts.  For spherical HF statesj; is diagonal, so that;=f; . The
verted states, where an empty shell is below a filled shell, dgpherical Nilsson energies are taken from a Nilsson diagram
not qualify) These spherical states are only possible for parspecifically constructed to fR%Zr [67]. The isotope®®zr is
ticular values ofZ and N. Except at magic numbers, the selected for this procedure because it is the dyZ even
energieE - for these spherical HF states are usually greatersotope in theA=76—-96 mass region which has a spherical
than the energies of deformed HF states. HF solution. Equationi3.6) is used to determine the energies

Figure 1 shows the HF single-particle energéedor the  e;, which are given ag;(Nilsson) in Table I. These energies
spherical HF solutions. This calculation uses the singleare shifted by a constant, so that the lowest energy is zero.
particle energiesej(57Ni), which at first appear to be the The deformation and pairing properties of a particular
natural choice foe;. In 8se the Py, and Psp, shells are  nucleus are determined, in part, by the energiesSo it is
full. In 8Zr the 2p,,,, 2psp, and Ifs, shells are full. In  then useful to compare the energigsresulting from the
1005n all shells are full. Observe that the ordering of thethree choices of; given in Table I. Figure 2 shows the
energiese; is very mass dependent. There are crossings ispherical Hartree-Fock energiesfor 807r. The energieg;
the energies of thg shells as the mass number varies. Thesere shifted so that the lowest energy is 0. BheKFP) spec-
crossings are caused by the monopole component of the efrum is compressed relative to tleg(57Ni) spectrum. How-
fective interaction. Observe that the ordering®/Ni is very  ever the two spectra have the levels in the same order with

The energy of the nucleus,=(H) is evaluated using the
HF wave function. In the notation aboye) and|i) include

all nucleon guantum numbers, including the isosgirof n).

In the remainder of the articléa) denotes the space-spin
component of the orbital, but not the isospin component. Fo
an N=Z even nucleus, the nucleon orbitals occur in degen
erate quartetbap), |an), |ap), and|an), where|a) is the
time reverse ofla). The orbital|@) is composed of basis
stateg)i) which havem—1/2 equal to an even integer.
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aozr Spherical HF 0.40 i
5.54 energles 0.35 }
9gpp—— : N=Z
€F __ k82 446 0.30 HF g
. 99/2—. 4.12 0.25 | J
fopp_H10 4z
5/2 992 360 e (N
3.26 i g o020} j )
P1/2 3.00 € —T T~ f5/2 T 0.15 | a——a e](NiIsson)_
2.06 P12 0.10 | se s e (KFP)
Pis2 P,0
0.05
f 52 1.07 0.00 Sr Zr Mo Ru Pd Cd '
' 72 76 80 84 88 92 96 100 104 108
0 0 0
Psfp—— Psp—— Ps/2 ———— MASS NUMBER A
e. (PN e (Nilsson) e (KFP) FIG. 3. Hartree-Fock quadrupole deformatignThe shapes are
i I i prolate(P), oblate(O), or triaxial (T).

FIG. 2. Spherical Hartree-Fock single-particle energigsor these isotopes are very sensitive to the choice of parameters

80zr for three different choices of the energy. in the Hamiltoniar{67,72,74. For "®Sr, the shape is triaxial
for e;(°>'Ni), y-soft oblate forej(Nilsson), and strongly de-

about the same relative spacings. Eh&Nilsson) spectrum formed prolate fore;(KFP). For8%Zr, the shape is triaxial
is also compressed relative to tb§(57Ni) spectrum, and it for ej(57Ni), and y-soft prolate for the other twe;. For
has thefg, shell below thep;, shell. Mo, the shape is oblate fa;(*'Ni), and y-soft prolate for
the other twoe; .

During the past 20 years there have been numerous inves-
o ) o tigations into the shape dzr. Early calculations found a

The HF equation is solved for each choiceepf Triaxial  ,.soft oblate shapfs3], or a shape which is almost spherical
shapes are considered as well as axially symmetric shapegy y-soft oblate[66,67). Early and later calculations found a
The first surprising result is the sheer multiplicity of solu- prolate shape[43,61,64,65 or a y-soft prolate shape
tions. For "®Sr usinge;(°'Ni), there are eight distinct HF [gg g Experiment finds that the shape ®r is triaxial or
states: three are prolatgg€0.091, 0.194, 0.382 four are y-soft with 8~0.4 [72]. Apparently experiments have not
oblate (3=-0.066, —0.134, —0.329, —0.345), and the yet determined the sign of the quadrupole moment, which

ground state is triaxial £=0.350, y=169°). For isotopes would signify whether the shape is prolate or oblate.
considered here, the typical number of HF states is 4-6.

Axially symmetric HF states are often saddle points, which IV. ISOSPIN GENERALIZED BCS
are relative minima irB and relative maxima iry. To deter-

mine which states are saddle points, constraints were in-
cluded for the quadrupole degrees of freedom

C. Deformation

Although the isospin generalized BCS theory does not
provide complete self-consistency in pair and shape degrees
h' =h— x20Q20— X2 Qoo Qs_»). (3.7 of freedom, it still serves several useful functiof¥) This
theory shows how to choose the quasiparticle transforma-
For each HF state, the Lagrange multipligeg and y, are tions so that all possible nucleon-nucleon pair modes can be

varied to map out the energy surface in the neighborhood dfontained in one wave functiof2) The BCS wave functions
the HF state, thereby determining whether the state is a

saddle point. Of the eight®Sr states listed above, four are 5 T
saddle points. 4 N=Z

Figure 3 shows the deformatigh for the lowest energy 5 3 , HF
HF state(ground state Figure 4 shows the prolate-oblate 2 2} Oblate S
energy difference, which is the energy of the lowest prolate ~ 1+ N oS s

. . o \ N o—- ¢ .(°'Ni)

state minus the energy of the lowest oblate state. If thisen- & ¢ N s S B
ergy difference is largésmall), then the deformation is stiff o ey » === e (Nilsson)
(soft) in y. For 7®Sr and 8Zr the deformations are large. & — Prolate -~ ¢ s e (KFR)
However, e;(Nilsson) gives a smalleg than the other two “ 3l : 1
e;, Which is probably caused by the larger gap at the Fermi . St Zr Mo Ru Pd & . .
surface shown in Fig. 2. For the heavier isotopes the defor- 72 76 80 84 88 92 96 100 104 108

mation decreases with mass number. For the magic nucleus
10951 the model space is filled, and the shape is spherical.
The different choices foe; give different shapes. They also  FIG. 4. Hartree-Fock prolate-oblate energy difference. This is
give very different prolate-oblate energy differences. Thisthe energy of the lowest prolate state minus the energy of the lowest
confirms the early finding that the ground state shapes ofblate state.

MASS NUMBER A
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will be used as trial input wave functions for HFB calcula- This wave function is the vacuum for the quasiparticles de-
tions. Because the BCS equations are much easier to solfimed in Eqg.(4.2). It includespp, nn, andpn Cooper pairs,
than the HFB equation, this two step procedure is much morevhere the two nucleons are in time-reversed orbitals, as well
efficient than attempting to use HFB without having the BCSaspn Cooper pairs, where the two nucleons are in identical
states as starting points. Because the pair gaps and quasiparbitals. All of these different types of Cooper pairs can co-
ticle coefficients are complex and the values of the phasesxist in the same wave-function. #f,; andv .5 equal zero,
are critical, it would be difficult to begin with HFB without then the proton-neutron pairs vanish, and the wave function
having BCS as input. reduces to the usual BCS form with only proton-proton and
neutron-neutron pairing. For each there is a quartet of
A. Theory single-particle orbital§ap), |an), |ap), and|an). Each
one of these orbitals has an occupation probability

The conventional BCS theory, which omits proton-
neutron pairing, defines the quasiparticle operatgdrby a 02=0 1|2+ |0 02| 2+ |V 032 (4.7)
two-dimensional transformation of the particle opera@fs “

; ; whereu?+v2=1. The wave functior(4.6) is used to con-

a, :<ua _Ua)(ca) (4.1) struct the HF Hamiltoniat and the pair potentiah. In the

ay, v, U, J\CG)’ ' BCS approximation one neglects those elements ahd A
which connect one quartet of orbitals to another quartet.

where|e) is a HF single-particle orbital. The isospin gener- Then the HF Hamiltonian is block diagonal in the four-

alized BCS theory[23] replaces Eq(4.1) with the eight-  dimensional matricef(«), which have the same structure

dimensional transformation asu(a) in Eq. (4.4). That is,h(«) is diagonal and four-fold

degenerate, where the diagonal elements equal the HF

a'(a) _ u(e)  —uv(a) CT(a)) 4.2 single-particle energy
a(a) —v*(a) Uu*(a))\Cla))’ '
— . + ’ n,, 2 )
wherea'(a) andC'(«) are the four-component vectors €a <a|e]|a> ,327' (a7fpr'|velarpr >UB’ “.8
al, clp where 7 is p or n. Similarly, the pair potential is block
al, cr diagonal in the four-dimensional matricA¢a), which have
al(a)= ot | Cl(a)= ct |- (4.3 the same structure aq«) in Eq. (4.5. The components of
gt ap the pair potential are
Ay Can
Observe that each quasiparticle contains both proton and Apap= 2 (@aT=1|v,|BBT=1)uwz, (4.9

. B>0
neutron components. In the ground state of a nucleus with

N=Z= even, time-reversal symmetry and isospin symmetry .
each create a degeneracy factor of two. Then the four- ReA,,3p,= 2 (aET=1|va|B,8T=1>uﬁ Rev g3,
dimensional matrices(«) andv(«) acquire the simplified p=0

forms (4.10
u(a)=u,l, (4.4) IMA s ap= > (a@a@T=0|v,|BBT=0)ugzImugs,
B>0
wherel is the four-dimensional unit matrix and (4.11
0 Va1 Vg2 Va3 1
ReApan=5 2 [(@aT=0Jv,|BBT=0)
VU 0 UZS Va2 2ﬂ>0
v(a)= , (4.9 —
Va2 —Unz 0 v +({@aT=0v,|BBT=0)]us Rev 4,
“Uq3 Vg2 _Uzl 0 (412

whereu, ,v ., are real ana@ . ,v ,3 are complex. The isospin 1
generalized pairing wave-function for the ground state of ~ IMAup =75 20 [—(aaT=0Jv,|BBT=0)
evenN=Z nuclei has the form A

+(aaT=0|v,|BBT=0)]uzImuv ;.
|(I)0>:al_>[0 (ua+021C2pcln+va2CLpCTIp+UZ3CLpCT7n) (4.13
The real part ofA ,, 5, containsT=1 Cooper pairs, which
have occupation probabilitidRev, g°>. The imaginary part
(4.6 of A 4 5p CONtainsT=0 pairs, which have occupation prob-

X(Uptv,1CLCh —v,,Cl CL +v.5Cl,Ch)0).

ap=an
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abilities|Im v ,g/>. HoweverA ,, ., contains onlyT=0 pairs. 2.0 ' ; ; ; ' ; '
Also A, 4p is real. From the four-dimensional matrices Sr
h(a) and A(@), one constructs the eight-dimensional BCS 151 7r
energy matrix. The quasiparticle energies are the eigenvalues _
of this energy matrix, which are fourfold degenerate, and 3 1247 5
have the form EQ 1.0 ]
<
_ 2. A2712
Ea_[(ea_)\) +Aa]l ' (414) 05 -
where\ is the Fermi energy, and the pair potentlg) is the
coherent sum of the contributions from each pair mode 0.0 . : . . . . .
76 78 80 82 84 86 8 90 92
A=A o ol [ A wpanl 2+ | Aapanl®. (415 MASS NUMBER A

FIG. 5. Experimental proton pair gap, determined by odd-

The eigenv rs of the eight-dimensional energy matrix can . X ;
e eigenvectors of the eight-dimensional energy matrix ca even mass difference,. Equation(4.29 is also shown.

be obtained analytically, with the result that

12 B. Pair correlations

1
U= 5[1+(5a_7\)/Ea] ' (4.19 The isospin generalized BCS equations are solved for the
N=Z even isotopes wittA=76—-96. The nucleon orbitals
1 12 |a) are taken from the HF calculations, and every HF state is
:|:§[1_(6a_)\)/Ea]:| , 4.17 used as the starting point for a BCS calculation. The pair
potentialA is calculated with the effective interaction deter-

mined from the Paris potential. The pair potential includes

Va1= ~Va(AGp an/Aa), 418 e multipole channeld=0,1,2,3,4,5,6,7,8,9 and the isospin
channelsT=0,1. If eJ(57N|) is used, then the lowest energy

Va2= VoA apapl/Aa), (419 state for’Sr and®Zr hasA~0.6 MeV, and the pairing is
entirely in theT=1 channel. How does this compare to ex-

Vas= —Va(A%p /A (420 perimental values oA, which are given by odd-even mass

differences? The experimental has been parametrized as
The Fermi energy is adjusted to constrain the particle num- [77]

ber
L _lamev w25
~ - .
N=z=2 v2. (4.21) P A
a>0

For A=80, this givesA.,;~1.3MeV. The odd-even mass
The coupled Eqsi4.7)—(4.21) are solved by iteration to ob- differences are
tain the self-consistent values of, andv,; . Begin with the

initial trial choices ofu, andv,;, and use Eq94.8—(4.15 p :} 2S5 (N.Z)—S.(N.Z+1)—S.(N.Z—1
to calculate the pair gaps and single-particle energies. Then P 4[ p(N.2) = Sp(N, )= Sp(N, 1
use Eqgs.(4.16—(4.20 to calculate new values fan, and (4.26
v, - Repeat this procedure until convergence is obtained. .
The va!ue ofA, |§ different for efach grbltala). So it is P.="[2S,(N,Z)— S,(N+12)— Sy(N—-12)],
convenient to define average pair gapsfor each of the
different pair modes (4.27)
1 m where the nucleon separation energgare obtained from
KPF —Ay=— > |A 0.0 (4.22  Ref.[78] Figures 5 and 6 show the experimental valuea of
ma ap,a 1 *

given byP, andP,,. The lightest Sr and Zr isotopes hate
in the vicinity of 1.3 MeV. Consequently the calculated val-
_ 1> ues ofA are significantly smaller than the experimental val-
Apn__a > Awpanl, (4.23  ues. As has often been observed in the past, it is not easy to
calculate pairing matrix elements from the bare nucleon-
nucleon interaction with no free parameters, and it is difficult
N - to use the same effective interaction to obtain good HF prop-
2 1A ap.anl (4.24 . c ;
erties and good pairing properties. Most nuclear structure
calculations use different effective interactions for the HF
wherep or n means that the nucleon occupies one of theand pair potentials. To obtain better agreement between cal-
time-reversed orbitalka). The energy of the nucleuSgcs  culated and experimental pair gaps, a pairing scale parameter
=(H) is evaluated using the BCS wave functi@h6). S, is introduced. Every matrix element of the effective inter-
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FIG. 6. Experimental neutron pair gap, determined by odd- FIG. 8. Average pair gap versus mass numbé for isospin
even mass differencB,,. Equation(4.25 is also shown. generalized BCS calculations.

action which is used in the evaluation afis multiplied by
S,. Matrix elements of the effective interaction which are
used in the HF potential are left in their original form. Figure
7 shows howA varies with the parametes,, for the lowest
energy BCS state of°Zr. In this state there is onlf=1
pairing. To obtainA~1.3MeV, the valueS,=1.45 is
adopted. Althougte;(°’Ni) ande;(Nilsson) give very differ-
ent values ofA at Sy=1 (no scaling, fortuitously they give

very S|mll?rdvalqes (ifAl TSSP: 1.45. All BCS calculations degenerate with the state containing oply (T=1) pairs]

are repeated using,=1.45. (3) Choose initial values Im;#0 and the other components
We first consider the Iowest_energy BCS state for eacl?)f v,i=0. Then the final wave function will contain onpn

isotope. The average pair gap is shown in Fig. 8. If (T=0) pairs.(4) Choose initial values ,;#0 and the other

e;(°'Ni) is used, ther/°sr, ®Zr, and®Mo haveT=1 pair ~, 0. Then the final wave function will contain onlyn
correlations, wherea¥Ru and*Pd have coexistence of the (T=0) pairs. All of these different solutions of the BCS

T=0 pair superfluid and th&=1 pair superfluid, and®Cd equations are self-consistent.
hasT=0 pair correlations. Iig;(Nilsson) is usgd,ggheﬁGSr Figures 9—11 compare the energies obtained with these
has T=1 pairing, "Pd hasT=0 pairing, while Zr and  four BCS states. All four BCS states are based upon the
Cd have coexistence of the=0 pair phase and th&  same HF state, which is the one that leads to the BCS state of
=1 pair phase. I&;(KFP) is used, ther°sr, ®Zr, and®*Cd  |owest energy. Fof®Sr and®%Zr T=1 pairing gives signifi-
have T=1 pairing, ®Pd hasT=0 pairing, and®Mo has  cantly more binding energy thafi=0 pairing. In several
coexisting phases witfi=0 pairing andT=1 pairing. The  jnstances the ground state with=0 pairing andT=1 pair-
claim has been made that=0 pairing andT=1 pairing  ing is slightly below the state with onl§=1 pairing; these
never coexist in the iSOSpin genera”zed BCS theory. Thi$nc|ude 802r using ej(N”SSOﬂ)7 84M0 using eJ(KFP), and
calculation clearly demonstrates that for a given Hamiltoniarger, usingej(57Ni). In 92Pd T=0 pairing provides substan-

H, some isotopes have tfie=0 pairing superfluid and the {jally more binding energy thafi=1 pairing if ;(Nilsson)
T=1 pairing superfluid coexisting in the same BCS ground

In order to compare the energy provided by the different
types of Cooper pairs, the BCS equations are solved in sev-
eral different ways for every HF statél) In the initial trial
wave function choose all components ©f;#0. Then the
final self-consistent wave function will contain the types of
Cooper pairs which minimize the enerdy) Choose initial
valuesv ,,#0 and the othew,;=0. Then the final wave
function will contain onlypp and nn pairs.[This state is

state wave function. 1.0 . . . : , . . .
1.6 . . . . . = 05 r N=§
0.0 + e (5'Ni)
14} 2 o o D
<~ -05¢} Sp=1.45 1
1.2} L3 1.0 o a ]
< W D/
2 1.0 | 80 I 15} o——¢No pairing
~ Zr [
0.8 r BCS 8 —20F o—oT=1 pairing
- w T .
IE» 0.6 .7 570 J —25t o\o v o—0T=0 pairing ]
1< ,,/ — ej( Ni) 1.0 A—AJ:]E)];. T=1
o == o) (isson) ] sl S Mo Ry pd s T
0.2 -//’/ i ' 72 76 80 84 88 92 g8 100 104 108
0.0 I I I L I
1.0 1.4 1.2 1.3 1.4 15 16 MASS NUMBER A
Sp (Scale pair interaction) FIG. 9. Difference between BCS energy and Hartree-Fock en-
. ergy for each type of Cooper pair. Th{;(57Ni) single nucleon
FIG. 7. BCS average pair gap versus the scale parametgy. energies are used.
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FIG. 10. Difference between BCS energy and Hartree-Fock en- FIG. 12. BCS quadrupole deformatigh The shapes are prolate
ergy for each type of Cooper pair. Tleg(Nilsson) single nucleon (P), oblate(O), or triaxial (T).
energies are used.
ground state. Conversely, if one begins with the ground state

or ej(KFP) are used; however, f(ﬁ](57N|) the ground state and t_hen turns off th@=1 (IOI’ T=0) pair inter_action, then
with T=0 pairing andT =1 pairing is 0.247 MeV below the iterations toward self-consistency will end with the ground
state with onlyT=1 pairing. For®®Cd usinge;(Nilsson), the ~ State reverting to the upper state with offly-0 (or T=1)
ground state witiT=0 pairing andT=1 pairing is 0.106 pairng.
MeV below the state with onlff =0 pairing.

If two mean field states are close in energy, then the re- C. Deformation
sidual interaction will sometimes connect them, thereby pro-

ducing a mixed state which incorporates properties of both OECS state. Figure 13 shows the BCS prolate-oblate energy

the original states. A typical example is two HF states with ™. ;
different deformation, as prolate and oblate. Another eX_d|fference. These can be compared to the corresponding HF

ample might be two BCS states, where one Tia<d pairing Figs. 3 and 4. Whereas HF has some triaxial ground states,

and the other ha§=1 pairing. Mixing these two BCS states the BCS ground states are all axially symmetric. P the

would yield a state with botf=0 andT=1 pairing. In the shape isy-soft prolate fore;(Nilsson) ande;(KFP), and

57N[i
previous paragraph there are examples of a BCS ground sta%)Iate fore; (*'Ni).

with bothT=0 andT=1 pairing which is close in energy to
another BCS state with onlly=0 or T=1 pairing. Since the V. HARTREE-FOCK-BOGOLIUBOV

ground state already includes both types of pairing, it would - 14 gptain complete self-consistency in both Hartree-Fock

be redundant to mix this ground state with another statgng BCS degrees of freedom, it is necessary to perform HFB
which has only one type of pairingBoth BCS states use the 5|culations.

same set of HF single nucleon orbitals and the same HF
deformation) If the upper state has onl§y=0 (or T=1)
pairing, then including a small amount df=1 (or T=0) A. Theory

pairing in the upper state and resuming iterations to obtain In the past | have done HFB calculations fop,nn, and
self-consistency would cause it to become identical to thgyn Cooper pairs, and separately fon Cooper pairs. How-

Figure 12 shows the deformation for the lowest energy

1.0 — . ’ — . ’ 5 . —
0.5 | N=Z - 4t
3 00} o e, (KFP) | s 3} BCS ]
E _osl /° B Sp=1.45 1 £ 2t S,=1.45 1
£ 1ol . ] i b P ]
[ . D/ o @ ce j("’7Ni)
| - B o —0 irl 1 1
0 15 ° No pairing ulJ 0 u——e . (Nilsson
8 -20¢} 0—0T=1 pairing — -1 !
u 2.5 / D——0aT=0 pairing | o 2 arec s e](KFP)
Il a—5T=0 + T=1 R | “
39T st zr Mo Ru Pd cd P ] ST st Zr Mo Ru Pd cd
-3.5 ' L L ' N N s s —4 ' ' f ' . s . s
72 76 80 B84 88 92 96 100 104 108 72 76 80 B84 88 92 96 100 104 108
MASS NUMBER A MASS NUMBER A

FIG. 11. Difference between BCS energy and Hartree-Fock en- FIG. 13. BCS prolate-oblate energy difference. This is the en-
ergy for each type of Cooper pair. Thg(KFP) single nucleon ergy of the lowest prolate state minus the energy of the lowest
energies are used. oblate state.
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ever this is the first time | am performing HFB calculations

which simultaneously includeop,nn,pn and pn Cooper

pairs. Consequently the isospin structure of the theory will
be presented in some detail. Parity is a conserved symmetry.

For each parity, the quasiparticle operatatsare defined by
a unitary transformation of the particle operat@r’s

af U ct
2=l uelle) (5.1)
where the vectora’ andC' are
al cl
t % t Cy
a'= a% , C'= C% (5.2
¥ T
ay, Gy

The vectorcg has dimensiorM and contains the compo-
nentsCTp, whereM is the number of single proton states
[iY=|nljm) with m—1/2 equal to an even integer, and simi-

larly for the vectorC! . The vectorCJr has dimensioM and
contains the components T where]i) > is the time reverse of
||> e, (1) erI|nIJ m), and similarly for the vector
C— The vectora] has dimensioM with componentsajl,
wherej=1,2--M, and similarly fora2 aT andaz— For the
ground state of a nucleus witk=Z= even, time-reversal

symmetry and isospin symmetry each create a degeneracy

PHYSICAL REVIEW C60 014311

3= 2 [(U);iCly+ (Va)ji Cip+ (V3);Cin= (V1) Cinl,
(5.7

2[

V3)]I ip (VZ)J|C|n+(V*)J|G]
(5.8

l)JI

The HFB equation will be solved by an iterative procedure.
On the first iteration, the HFB trial wave function is given by
the isospin generalized BCS wave functi¢h6), and the
HFB quasiparticle transformatiof®.1) is given by the BCS
quasiparticle transformatio(.2). Therefore on the first it-
eration(but not on later iterationsthe indexj in Egs.(5.5—
(5.9 is equivalent to the indew in Eq. (4.3). Then the HFB
starting values are

(Up)ei=u,Dyi, (5.9
(V1) ai=va1Dai (5.10
(V2)ai=va2Dai (5.11
(V3)ai=va3Dai (5.12

whereD ,; is given by the HF orbital$3.4) andv ,; is given
by the BCS staté4.6).
The density matrix and the pairing tensor

le:<CjTCi>v (5.13

factor of two in the quasiparticle energies. Then the matrices

U andV have the forms

U, 0 0 O

0 U, 0 0
U=l 0 0 u, o (5.3
0O 0 0 U
0 Vi Vo Vi
-V, 0 Vi -V,
V=" v, cvi o0 v |0 B4
~V; V, -V¥ 0

where the matricedJ,, V1, V,, and V5 have dimension
MXM. Also U; andV, are real, wherea¥; and V3 are

complex. Combining Egqe5.1)—(5.4), the quasipatrticle op-
erators are explicitly given as

ajl=2[(uojicrp—(vl)jicm (V2);iCip—(Va);iCinl,
(5.5)

Ch+(V1);iCip— (V3); Cip+ (V)i Cinl,

(5.6)

a,z=2i [(Uyji

tIJ:<CjCi>! (514)

are evaluated with respect to the HFB quasiparticle vacuum,
so that

p=VTv, (5.19
(5.16

Substituting Eq(5.4) into Eg.(5.15), and using the unitarity
constraint

t=VvTu.

utu+Vvr =1, (5.17)
it follows that p is block diagonal
pop O 0 0
0O pp O 0
p=| o 0 pp O | (5.18
0 0 0 ppp
where
(prl‘rz)ij :pirl,j7'21 (519)
and
Ppp~ Pnn~ Ppp~ Pnn» (5.20
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Ppp=ViVi+VIV,+Vivs. (5.21)

PHYSICAL REVIEW C60 014311

From the symmetries of the nucleon-nucleon interaction and
the form of the pairing tensor given in Ep.22), it follows

The M XM matrix p,, is real and symmetric. The structure that the pair potential has the structure

of the pairing tensor is found by substituting E¢s.3 and
(5.4) into Eq.(5.16), so that
0 t

t t

pn pp pn
pn pp
t= . o 622
_tpﬁ _th 0 tpn
~ton tg  —thn 0
where
(tfl‘rz)ij=tirl,j7'21 (tTl?Z)ijztiTl,j_Tf (5239
and
tpp= ~tam> (5.24)
ton=V1iU1, (5.25
top=V3U1, (5.26
ton=V3U;. (5.27)

The M XM matricest,,, t,;, andt;; are symmetric. Also,
tpn andtyy are c_omp_lex, wheredsy is r_eal.
The HF Hamiltonian and HF potential are

h=e+U, (5.29

ui,:% (ik|valil)pik- (5.29

Sincep is real with the form given in Eq(5.18, and since

the nucleon-nucleon interaction is time-reversal invariant
and conserves isospin projection, it follows that the HF

Hamiltonian has the structure

hp 0 0 O

0 hy, 0 O
h: 0 0 hpp 0 , (53@
0 0 0 hpp
where
(hop)ij=(ileli)+ 2 [(ip,krlvalip,I7)
ki>0,7
+(ip.k{valip. D (Ppp)ic. (5.31)
and theM XM matrix h,, is real and symmetric.
The pair potential is
1 .
Aifﬁ% (ijlvalkhty. (5.32

0 A A A

pn pp pn
—A 0 A~ —A
pn pn pp
A= ,  (5.33
—Ayp —A;ﬁ 0 A;n
—Apn App _A;n 0
where
Apﬁz —Aqn, (5.39

and the subscript notation is the same as in BR3. The
components of the pair potential are

(App)ij= kI§>:0 (i T=1]o KIT=1)(t;p, (5.39

Re(An)ij= > (ij T=1|v,|KIT=1)Re(tyn),

kI>0
(5.39
Im(Aga)ij= 2, (1iT=0lvaKIT=0)Im(tgr)i,
(5.37
1
Re(Ap)ij =75 2 [(T=0lookIT=0)
+(ijT=0Jva[kI T=0) JRe(tpn)u
(5.38
1 )
IM(A pp)i; =5 2 [(ijT=0v,/kIT=0)
—(ijT=0Jva[KIT=0)1IM(tpp)y -
(5.39

The M XM matricesAy,, Ay, and A7 are symmetric.
Also, Ay, and A7 are complex, wherea& ;i is real. The
real part ofA ;7 containsT=1 pairs and the imaginary part
of Ay containsT=0 pairs. HoweverA ,, contains onlyT
=0 pairs.

The HFB energy is

1
e+=-U

Enre=(H)=Tr >

1 T
ptsAtT. (540

The HFB equation is

e
ot~y =E; v (5.41)

There is a fourfold degeneracy in the quasiparticle energies
E;. The complex HFB energy matrix has dimensioh 8
X8M. It include all pair modes discussed in this article.
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FIG. 14. Average pair gap versus mass numbey for HFB FIG. 15. Difference between HFB energy and Hartree-Fock en-
calculations. ergy for each pair mode. Theg(°>Ni) single nucleon energies are
used.

There are limiting cases: Ipp, nn, and pn pairs are in-
cluded, butpn pairs are omitted, then the energy matrix € (°'Ni) is used, then’*sr, #%Zr, and ®Mo haveT=1 pair
becomes block diagonal, and separates into twbx#M  correlations, while®Ru has coexistence of tHE=0 (pn)
matrices. This is achieved by choosivg=0 in the trial ~ pair superfluid and thd=1 pair superfluid, and’Pd and
wave function, therv,=0 in the final self-consistent wave ~°Cd haveT=0 (pn) pair correlations. Ife;(Nilsson) is
function. If pp and nn pairs are included, by andpn  used, ther’®Sr and®Zr haveT=1 pairing, *Mo and *Ru
pairs are omitted, then the energy matrix separates into foutave no pairing, an&Pd and**Cd haveT=0 (pn) pairing.
2M X 2M matrices. This is achieved by choosivg=V; If €(KFP) is used, therf®sr, #Zr, and *°Cd haveT=1
=0 in the trial wave function. Ipn pairs are included, but Pairs,*Mo has coexistence of tHE=0 (pn) pair phase and
all others are omitted, then the energy matrix separates intée T=1 pair phase?®Ru has no pairing, an&Pd has two
four 2M X 2M matrices. This is achieved by choosig ~ degenerate states with different deformations: one With
=V;=0 in the trial wave function. Ifpn (T=0) pairs are =0 (pn) pairs and one witiT =0 (pn) pairs. This calcula-
included, but all others are omitted, then the energy matriion demonstrates that for a given Hamiltonidn some iso-
separates into four M X 2M matrices. This is achieved by topes have =0 pair superfluid and @=1 pair superfluid
choosingV;=V,=ReV,=0 and ImV5#0 in the trial wave COexisting in the same HFB ground state wave function.
function. All of these provide self-consistent wave functions. The HFB energies can be compared for each of the dif-
The HFB equation is solved by iteration. On each iterationferent types of Cooper pairs. This is accomplished by com-
the symmetries ip, t, h, andA [Egs.(5.18, (5.22, (5.30), paring the lowest energy HFB state to other HFB states
and(533)] are preserved_ These are examp|es of propagatinwhiCh originate from the same HF state. These different
symmetries. HFB states have different pair modes. The relative energies
It has been demonstratéﬂ?,] that the HFB ground state of these various HFB states are shown in FIgS 15-17. Figure
wave function for everN=Z nuclei can be given in the 15 shows the relative HFB energies fef(°>'Ni). For "°Sr
simple form of Eq.(4.6). This is provided by the quasica- and®’Zr, T=1 pairing provides significantly more binding
nonical basis: The HFB density matrixis fourfold degen- ~ energy tharT=0 pairing. In®Ru the mixed phases ground
erate. The quartet of eigenvectdr@p)y |an>, |Ep>, and state withT=0 andT=1 pairing is slightly below the state
|an) correspond to the same eigenvalife. This basis also

provides a convenient way to characterize the HFB pair po- 1.0 T - ' y y g T y
tential A. Average pair gapA can be defined for each of the 0571 N=Z ]
different pair modes by representidgin the quasicanonical E 0.0+ / e (Nilsson)
basis, and then using Eq&l.22—(4.24). = 05} o Sp=1.45
¥ 10l ]
w —1.0 D/ o
B. Pair correlations IPE 15} J /3 o—¢No pairing ]
. . -2.0} o—-0T= iri
In Sec. IVB every HF state was used to obtain four dif- u" / e o]
ferent BCS wave functions, corresponding to different com- “25F o A aT=0 + T=1
binations of pair modes. Now every one of these BCS states %[ s 2+ Mo Ru Pd cd  POn9 ]
is used as the initial trial wave function for a HFB calcula- =35 y y ' g ’ ; : :
tion. The final result is a multiplicity of self-consistent HFB 72 76 B0 B4 B8 92 96 100 104 108
wave functions, which have different deformations and dif- MASS NUMBER A

ferent types of Clooper pairs. FIG. 16. Difference between HFB energy and Hartree-Fock en-
Now we consider the lowest energy HFB state for eachy gy for each pair mode. The (Nilsson) single nucleon energies
isotope. The average pair gap is shown in Fig. 14. If  are used.
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FIG. 17. Difference between HFB energy and Hartree-Fock en- FIG. 19. HFB prolate-oblate energy difference. This is the en-
ergy for each pair mode. Thg(KFP) single nucleon energies are ergy of the lowest prolate state minus the energy of the lowest
used. oblate state.

difference. These can be compared to the corresponding HF
with only T=1 pairing. For®?Pd the lowest energy state has Figs. 3 and 4 and the BCS Figs. 12 and 13. HF, BCS, and
T=0 (pn) Cooper pairs, while there is a higher energy stateHFB give comparable magnitudes for the quadrupole defor-
with the mixed phases containing=0 (pn) Cooper pairs mation 8. However, whether the shape is prolate, oblate, or
and T=1 Cooper pairs. FoP®Cd T=0 pairing gives sub- triaxial varies, as one goes from HF to BCS to HFB. Also,
stantially more binding energy thaln=1 pairing. Figure 16 HF, BCS, and HFB give similar systematics for the prolate-
shows the relative HFB energies fef(Nilsson). For’®Sr  oblate energy difference. However,e']‘(57Ni) is used, then
and8%r, T=1 pairing provides substantially more binding BCS gives smaller magnitudes for this energy difference
energy thariT=0 pairing. For®?Pd and®Cd, T=0 pairing  than HF, and HFB restores the larger magnitudes. Esr,
provides significantly more binding thah=1 pairing. For  the shape is oblate for all three choicesepf However, for
%Cd the lowest energy state h@is=0 (pn) Cooper pairs, ej(57Ni) the oblate shape is strongly deformed; whereas for
while there is a higher energy state with the mixed phasethe other two choices ; the prolate shape is only 0.3-0.5
containingT=0 (pn) Cooper pairs and =1 Cooper pairs. MeV above the oblate shape, so that the oblate shape is very
Figure 17 shows the relative HFB energies éofKFP). For v soft. For8°Zr, the shape is strongly deformed oblate for
®Sr and ®zr, T=1 pairing provides significantly more e;(*'Ni); however for the other two choices ef the shape
binding energy thanT=0 pairing. For 8Mo the mixed is very y soft, with almost degenerate prolate and oblate
phases ground state wilfi=0 andT=1 pairing is slightly ~ shapes. Foe;(Nilsson) the oblate shape is only 0.039 MeV
below the state with onlyr=1 pairing. For®®Pd theT=0  below the prolate shape, and &(KFP) the prolate shape is
pairing state is 0.241 MeV below tfie=1 pairing state. For just 0.082 MeV below the oblate shape. Efivlo, the shape
%Cd the T=1 pairing state is only 0.131 MeV below the is oblate fore;(>Ni), and y-soft prolate for the other twe; .
T=0 pairing state. For ®Ru, the shape ig-soft oblate fore;(°'Ni), and y-soft
prolate for the other twe; . For 9°Pd, the shape is almost

C. Deformation spherical forej(*'Ni), y-soft oblate fore;(Nilsson), and

y-soft triaxial (y=—4.5°) for e;(KFP). For®cCd, the val-

Figure 18 shows the deformation for the lowest energy’ of B are very small for all three choices ef

HFB state. Figure 19 shows the HFB prolate-oblate energy These calculations show that different choices for the

single-particle energies; give different ground state shapes

0.40 : ' ' ' ' ' and different prolate-oblate energy differences. This provides
0.35 °, N=Z ] an opportunity for experiment to shed light upon appropriate
0.30 | HFB - choices for parameters in the Hamiltonidn For example, if
0.25 sp=145 ] experiments find that%Zr does not have an oblate shape,
— e (TN ] then this would eliminate;(°'Ni) as an appropriate choice
g o207 i - for HFB calculations irf%Zr with this nucleon-nucleon inter-
015 *= 7 &) (Nitsson) action. The interpretation would be that the monopole com-
0.10 | e e (KFR) ] ponents of the interaction are not finely tuned to provide the
0.05 | NT ] correct shifts in the energies of theshells as the mass num-
Sr Zr Mo Ru e ber changes from’Ni to 8Zr. This would not be surprising,
0'0072 76 80 84 B8 92 96 100 104 108 since the monopole components of the interaction were ad-

justed to give good spectra for the Ni isotopes, rather than

the Zr isotopes. Correct values for the energies ofj thieells
FIG. 18. HFB quadrupole deformatigh The shapes are prolate in 8°Zr might then be obtained by using;(Nilsson) or

(P), oblate(0), or triaxial (T). e;(KFP), rather thare;(>'Ni).

MASS NUMBER A
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VI. FLUCTUATIONS TABLE II. Fluctuation in the neutron numbekN for BCS

Mean field theories include collective modes by violatin ground states. Results are given for different choices of the single
i ies inclu 1\ violati -
y Ynucleon energg; andS,=1.45.

symmetries of the nucleon-nucleon Hamiltonidn For ex-

ample, althougliH is rotationally invariant, mean field theo- Nycleus AN2 ANP ANE

ries describe deformation by using fields and wave functions

which are not rotationally invariant. The angular momentum’°St 1.55 191 1.63

J is not a good quantum number for these wave functions>°Zr 1.63 1.55 1.60

This approach is adopted in Hartree-Fock and Nilsson calcu®™Mo 1.10 0 121

lations. 8Ru 1.12 0 0

%pd 1.71 1.02 1.02

A. Number fluctuations %cCd 1.18 1.40 1.59

In a similar manner the BCS and HFB mean field theoriesFor e;(°'Ni).
describe pair correlations by using wave functions which ddFor e;(Nilsson).
not conserve the particle number. These wave functions havgor e;(KFP).
the correct average proton and neutron numpégs (4.21)],
but there are fluctuations in the proton and neutron numbers
AZ and AN. For an evenZ=N nucleus,AZ=AN. The (AN)2=32 uZv?. (6.9
fluctuation in the neutron number is given by =0

o o The conclusion is that for a given set of neutron orbital oc-
AN)?=(N2)—(N)? 6.1 : o
(AN)P=(ND=(N)*, .1 cupation probabﬂmewi, the fluctuation in the neutron

whereN is the neutron number operator and the expectatior?umberAN IS largest when there is no proton-neutron pair-
values are with respect to the BCS or HFB wave function!"9- Introdu'cmg any type of proton-neutron pairing reduces
For evenZ=N nuclei. these wave functions have the form the fluctuation in neutron numbglOf course, all statements

given in Eq.(4.6). It can then be demonstrated that above also apply to fluctuations in the proton number.
The fluctuation in the neutron numbeéN is given in

) 5y 5 2 Table Il for the BCS ground states. These vaIuEsAblfa@
(AN)*=2 Zo uava+220 Uyl a2, (6.2 significantly smaller than those usually found fp andnn
“ “ pairing. Forpp andnn pairing, the weak pairing limit gives
whereu,, is given in Eq.(4.7). There are several limiting AN=1/6, and the strong pairing limit givesN= N for a
cases.(1) If there is proton-proton pairing and neutron- half-filled j shell, where her&\ is the number of neutrons in
neutron pairing, but no proton-neutron pairing, thep,  thej shell[79]. The evenZ=N isotopes considered here
=v,3=0 andv,=v,,, SO that have values oZ and N which change in steps of 2. The
fluctuationsAN in Table Il are all smaller than 2. Therefore
the major component of these wave functions is centered on
the isotope of interest, with substantially smaller components
from neighboring isotopes.

(AN)2=47, u?p2. (6.3
a>0

This is the usual result fopp and nn pairing [79]. (2) If
there is proton-neutron pairing, but no proton-proton pairing B. Isospin fluctuations

or neutron-neutron pairing, th =0, so that . .
P g theh.. The nucleon-nucleon strong interaction conserves the

) 5 isospinT. Do the BCS and HFB wave functions conserve
(AN)2=22 uv?. (6.4  isospin? The isospin vector is

a>0

Comparing Eqgs(6.3) and (6.4), we obtain the interesting T=Td+Tyj+Tk. (6.6

result that the fluctuation in the neutron numbeam()? is _ . .
reduced by a factor of 2 if there is only proton-neutron pair—Fi(\)/ ;re]vs né— ?A%;JClTer:étihs%E(i:r?isg?o?If gie\;vivnearli]r?iﬂgnsugf
ing, compared to the case where there is only pairing be?t fyt ?'51' : lan |p_ nd |@n 9 nd for q h
tween like nucleons. This is true even when the neutron orcts Of statesap), |an), |ap), and[an), and for eac

bital occupation probabilitiesi have the same values for quartet its representation is

both cases. Why does this happen? It is because the fluctua- 0
tion (AN)? includes terms such aéCLnCT;HXC;nCan), T :l " 6.7)
which equalsu?v?, if there is nn pairing, but this term m2( 0 m)

equals zero if there is nan pairing. (3) If there isT=0

pairing, but noT=1 pairing, thenv ,,=Rev,3=0, so that where m=x,y,z and 7, is a 2xX2 Pauli spin matrix. The
AN is again given by Eq(6.4). (4) If there isT=1 (pp,nn  expectation value of an isospin component is

andpn) pairing, but noT=0 pairing, therv ,;=Imuv ;=0

andv ,,=Rev,s, so that (T =Tr(Tmp), (6.9
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wherep is the density matrix5.13. For the wave function TABLE lll. Fluctuation in the isospinAT for BCS ground
(4.6), the density matrix is block diagonal in the quartets ofstates. Results are given for different choices of the single nucleon

states, and for each quartet energye; andS,=1.45.
p=v2l, (6.9  Nucleus AT? ATP ATS
764
wherev , is given by Eq(4.7) andl is the 4x 4 unit matrix. 8OSr L.79 221 1.88
Therefore Zr 1.88 1.75 1.85
Mo 1.27 0 1.37
(T)=0, (T)=0. 6.10 *Ru 1.07 0 0
%pd 1.73 0 0
The average value of the isospin vector is zero in the BCS¢cd 0 1.27 1.83
and HFB ground state. The fluctuationTnis
% or e;(>'Ni).
) ) PFor e;(Nilsson).
(AT) =<T‘T>—<T>-<T>=<T‘T>=m;xyZ<Tm>- °For ;(KFP).
(6.11 i . -
fluctuation.(3) If there is only T=0(pn) pairing, thenv .,
The isospin componerk,, is a one-body operator, an'ﬂ,zn =v,=Rev,3=0 andviz(lm v.3)% SO that
separates into a one-body operator plus a two-body operator. 5
From Wick’s theorem it follows that (AT)“=0. (6.16
(T2>=Tr(T2 0)+[THTp) 12— TH(T1p) 2= TH(T A TE %) There are no fluctuations in the isospin. Since every nucleon
m m m 1

(6.12 pair is coupled tor =0, the BCS and HFB wave functions

have good isospiii =0, and isospin is conserve@) If there

wheret is the pairing tensot5.14). For the wave function is only T=0(pn) pairing, then v,,=v,;=0 and v?
(4.6), the pairing tensor is block diagonal in the quartets of=|v,,|?, and Eq.(6.16 is again obtained. There is no isos-

states, and for each quartet pin fluctuation.(5) If there is onlyT=0 (pn andpn) pair-
. ing, then v,,=Rev,=0 and v2=|v,4|?+ (IMv,s)? and
t=—v'(a)u(a), (6.13  Eq.(6.16) is the result. Isospin is conserve@) If there is

. . T=0 pairing andl =1 pairing, then the isospin fluctuation is
where the 44 matricesu(a) andv(«) are given by EQs.  jhiermediate between Eq&.15 and(6.16. (7) If there is no
(4.4) and(4.5). The first term in Eq(6.12 is obtained from pairing, then HFB reduces to HF, whepg=0, v,=1 or
the one-body operator part @f,, while the next three terms u,=1, ,va=0, and Eq.(6.16) is obtained. T
are the HF direct, the HF exchange, and the pairing contri- - The conclusion is that the isospin fluctuation is largest for
blzmons derived from the two-body operator component ofine conventional case where there is only proton-proton and
T From Eqs(6.8) and(6.10), it follows that the HF direct  neytron-neutron pairing. Introducing proton-neutron pairing
term equals 0. By substituting Eg6.7), (6.9, and(6.13  does not increase the isospin fluctuation. If there is dnly
into_Eq.(E_S.l_Z), it can be demonstrated that the fluctuation in =g proton-neutron pairing, then the isospin fluctuation van-
the isospin is ishes, and isospin is conserved.

The fluctuation in the isospiAT is given in Table Il for

2_ 2.2 2 2_ 2 2 the BCS ground states. The states with ofikz 0 pairing
(4" 4;;’0 HaVa 42’0 Ualva] 4;;’0 UalIMvag)™ have AT=0. These include twd?Pd states and on&Cd
(6.14  state. The other states withT=0 have no pairing. The

) states with small, but nonzero, fluctuations have bbthO
Whgreua_andv_ai are taken from the wave fun(_:tlc_(Q.B) and  gndT=1 pairing. The states with the largest fluctuations
v, is defined in Eq(4.7). There are several limiting cases. paye onlyT=1 pairing.

(1) If there is proton-proton pairing and neutron-neutron
pairing, but no proton-neutron pairing, thep;=v ,3=0, so

that VIl. EXPERIMENTAL SIGNATURES

OF PROTON-NEUTRON PAIRING

2_ 2 2 There are several possible ways to experimentally detect
(AT) _420 Ual - (6.15 the presence of proton-neutron pairing. First, consider the
ground states of odd-odd=Z nuclei. ForA<40 these iso-
So even when there is no proton-neutron pairing, there is topes have =0 ground state(The one exception i&'Cl.)
fluctuation in the isospin. Furthermore the isospin fluctuationThe last proton and last neutron coupleTte0 rather than
equals the neutron number fluctuatich3). (2) If there is  T=1, indicating that the nuclear interaction is stronger in the
T=1 (pp, nn and pn) pairing, but noT=0 pairing, then T=0 channel than in th&=1 channel. Most notably, the
va=Imuv,3=0, and Eq(6.19 is again the result. So intro- deuteron is bound witil =0, whereas the dineutron is not
ducing pn(T=1) pairing causes no change in the isospinbound. ForA=42-54 the odd-oddN=Z nuclei haveT=1
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ground states, biffCu reverts tor =0. There is little experi- provide information regarding this pairing phase transition.
mental information available regarding the isospin of theCalculations[37,38 on *Mg found that if onlyJ=0, T
ground state for odd-odt#l=Z nuclei with A>70. (One =1 Cooper pairs are included, th&g=1.5MeV. However,
notable exception i€4Rb.) If this could be determined for if Cooper pairs with all possible values dfand T are in-
the A=76-98 mass region, it could be compared with the¢luded, therT.=3.4MeV. So the abrupt change in the ex-

systematics | have calculated for the preferred pair mode i,ﬁ)erimental level density should occur at a temperature whi.ch
even-everN=Z nuclei in this mass region. is strongly dependent upon .the nature of the Coo_per. pairs.
Second, consider pair transfer reactions. They are sens'i:—'ﬁh’ proton-neutron pairing is expected to have a significant
tive to the correlations between the two nucleons which aré ffect uponfs decay rate$7-9).
transferred. The value of the neutron-neutron pair transfer
amplitude (A+2|C/CI|A) depends upon whether the two

neutrons form a correlated Cooper pair, and similarly for two  pairing correlations have been calculated for the ground
protons (If the two neutrons are coupled to spin zero, then instates of eve@ =N nuclei withA=76—-96. The isospin gen-
the BCS approximation the transfer amplitude is proportionakralized BCS equations and the HFB equation have been
to the pair fieldA [80].) Therefore the proton-neutron pair utilized. These calculations simultaneously inclyzig nn,
transfer amplitudé A+ 2|C£CE|A) should measure whether pn(T=1), pn(T=0), andpn(T=0) Cooper pairs, as well
or not the proton and neutron form a correlated Cooper pair@s the time-reverse of these proton-neutron pairs. The HFB
Consequently proton-neutron pair transfer reactions migh@round state has the following pairing properties: For all
provide an experimental signature for the existence othree choices of the single-nucleon eneegythere is a tran-
proton-neutron pair correlations. At present this data is nosition from T=1 pairing at the beginning of this isotope
available. Future calculations will compare pair transfer rate§equence ta =0 pairing at the end of the sequenc¢&he
for wave functions which have proton-neutron pairing, andonly exception isCd with the KFP choice o&; , where the
wave functions where the proton-neutron pairing is omitted T =1 pairing state is slightly below th€=0 pairing state.
This will show how proton-neutron pairing alters the proton-Near the middle of the isotope sequence, tfi¢i and KFP
neutron pair transfer amplitude. choices ofe; lead to coexistence of =0 pair superfluid
Third, consider the effect of rotation upon pairing. gy~ and aT=1 pair superfluid. Here th€=0 pair phase and the
andnn Cooper pairs, the spins of the two nucleons are antiT =1 pair phase coexist in the same HFB wave function. The
parallel. When the nucleus is rotated, the Coriolis force ha#sospin generalized BCS calculations also find this phase co-
an opposite effect on each nucleon in the pair. The Coriolig€xistence in some isotopes. Consequefity0 Cooper pairs
force tends to align both nucleon spins along the rotationdT=1 Cooper pairs are not mutually exclusive in isospin
axis, which breaks the pair and loses pairing energy. This igeneralized BCS and HFB calculations.
the old Coriolis anti-pairing effect. However, fpm Cooper Deformations have been calculated for these isotopes. The
pairs, the spins of the two nucleons are parallel. When th&arious choices for the single-particle energggive differ-
nucleus is rotated, the Coriolis force has the same effect oant ground state shapes and different prolate-oblate energy
both nucleons in the pair. Fgrn pairs rotation aligns both separations. This confirms the early finding that the ground
nucleon spins along the rotation axis without breaking thestate shapes of these isotopes are unusually sensitive to the
pair or losing pairing energy. There is no Coriolis antipairingchoice of the parameters in the Hamilton{&v,72,74.
effect. This permits the scenario in which a ground state Fluctuations in the particle number and isospin were con-
band with T=1 pairing is crossed by a band withi=0 sidered. Analytic and numerical results demonstrate that for
pairing at a crossing frequenay, . This is the scenario pro- a given set of orbital occupation probabilitie§, the fluc-
posed for’“Rb [44,50. If there is a band crossing, how can tuation in the proton number or neutron number is largest
one determine whether it is a crossing of the ground bansvhen there is proton-proton pairing and neutron-neutron
with a conventional aligned ban@two nucleons aligned pairing, but no proton-neutron pairing. If proton-neutron
along the rotation axjsor whether it is a crossing of two pairing is introduced, then these number fluctuations are re-
bands having different kinds of Cooper pairs? There are induced, even when the valuesmﬁ are held constant. Simi-
dications that these two types of band crossings corresporidrly, analytic and numerical results show that for given val-
to different numerical values fas, [58]. Much experimental ues ofv?, the fluctuation in the isospin is largest when there
and theoretical work remains to be done to show more conis only proton-proton pairing and neutron-neutron pairing.
clusively how different magnitudes fap, can distinguish  Introducing T=1 proton-neutron pairing does not increase
between the two types of band crossings. the isospin fluctuation. If there is only=0 proton-neutron
Fourth, consider the effect of temperature upon pairingpairing, then the isospin fluctuation disappears, and isospin is
At a critical temperaturd . the thermal excitations break the conserved.
Cooper pairs, and the equilibrium value of the pair fiald
vanishes. There is a phase tra_nsition from t_h_e superfll_Jid ACKNOWLEDGMENTS
phase to the normal phase. At this phase transition there is a
peak in the specific heat, which corresponds to a discontinu- This work was supported in part by the National Science
ity in the derivative of the level density with respect to the Foundation. The author is grateful to D. Dean for providing
temperature. Therefore experimental level densities mighinatrix elements of the nucleon-nucleon interaction.

VIIl. CONCLUSIONS
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