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A simple parametrization for the octupole collective variables is proposed and the symmetries of the wave
functions are discussed in terms of the solutions corresponding to the vibrational limit.
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I. INTRODUCTION

The collective description of the octupole degrees of fr
dom has been a long standing problem in nuclear physics@1#.
The phenomenological description of low-energy vibratio
states @2,3# discussed them in terms of simple ‘‘surfac
modes’’ thus allowing for the description of the octupo
degrees of freedom in terms of seven collective variab
a3m @2,4#. In the 1980s, theoretical calculations@5# predicted
the existence of octupole stable deformations and this p
lem aroused considerable interest, especially in the Ce
and the Rn-Th regions. The level scheme of a few mod
ately or weakly deformed nuclei, such as64Ge @6#, 148Sm
@7#, 218Ra @8#, or 233,225Ra @9# presents features that may b
related to octupole instabilities and softness of the nucl
with respect to possible exotic octupole deformations. Lat
@10# there has been evidence for the existence of stable
tupole deformations in the Rn-Th region making the probl
of the collective description of this degree of freedom mo
actual. It has been shown that this type of collective exc
tions can significantly change the fusion cross section
heavy ions@11#. Initially, only octupole deformations of the
Y30 type were considered, but the possibility of other type
deformations~such asY32 @12# or Y31 @13#! has also been
discussed. The study of more general structures was inte
without much success@14#. There were also several propo
als related to the appropriate parametrization of the collec
variables. Rohozinski@15# proposed a parametrization bas
on the symmetries coming from theOh group of transforma-
tions of the frame of reference. Hamamoto@16# wrote octu-
pole shapes in terms of the irreducible representations of
octahedron groupA1 ,F1(k) andF2(k) and suggested that
parametrization that covers all possible octupole deform
shapes~without double counting the same shape! is provided
by removingF2(k) ~eliminating in this way three param
eters!.

*Present address.
†On leave of absence from the Comisio´n Nacional de Energı´a

Atómica.
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In the present paper we return to the idea used for
definition of the intrinsic system in Bohr’s paper@2# ~also
used by other authors for the collective description of
pairing degrees of freedom!: in the intrinsic system the iner
tia tensor~related to the rotational part of the kinetic energ!
must be diagonal.

In Sec. II we review some features of the collective ex
tations, the Hamiltonian, we discuss how to separate the
tational and intrinsic degrees of freedom and we propos
simple parametrization. We use the Pauli prescription
quantize the quadratic Hamiltonian. In Sec. III we discu
the structure of the wave functions and of the element
scalars or invariants~as defined in Ref.@17#!, as well as the
symmetries of the wave function. In Sec. IV we discuss
rigid rotor that illustrates the differences between the ro
tional bands related with octupole deformations as compa
with the quadrupole ones@18#. Section V summarizes the
results obtained in the present paper.

II. FORMULATION OF THE PROBLEM

A. The collective variables

The theory of collective oscillations has been develope
long time ago by several authors@2,3,19#. The classical case
corresponds to quadrupole oscillations that were describe
detail by Bohr in 1952. A very clear and pedagogical disc
sion concerning the symmetries and wave functions for
problem can be found in a paper@17# by Kumar and
Baranger, where a numerical solution for this problem w
first proposed. A collective treatment was also performed
the pairing degrees of freedom: the pairing acting only
one type of particles yields a two dimensional collective d
scription @20#, while the corresponding to theT51 case
yields a six-dimensional one@21#. In the three cases de
scribed, the recipe used to found the collective descript
has the same basic ingredients.

~a! The kinetic energy was written explicitly in terms o
the time derivatives of the collective variables.

~b! The collective variables~of dimension five, two or six,
depending on the case! were written in the intrinsic system
isolating the intrinsic variables from those that describe
©1999 The American Physical Society05-1
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motion of the intrinsic system~the three Euler angles in th
five- and six-dimensional cases, one angle in the two dim
sional one!. In all cases the intrinsic system was defined
the system where the inertia tensor~the part related with
collective rotations! were diagonal.

~c! The kinetic energy was written in terms of the Eul
angles and the intrinsic variables, and the coupling betw
both types of degrees of freedom was studied. Regarding
potential energy it has parts that depend only on the col
tive variables~and not on their time derivatives!. This part
can be written in terms of elementary scalars@17# that are
constructed using the collective variables. For example
the quadrupole case there are only two of such scalars@b2

andb3 cos(3g), using Ref.@2# notation#, in the pairing case
~between particles of one type! there is only one of such
scalars (D2 using Ref.@20# notation! and in theT51 pairing
case there are three of such scalars@D2, D2e64if cos(2G),
using Ref.@21# notation#.

~d! The general symmetry properties of the wave fun
tions that are related to different choices of collective~Euler!
angles and intrinsic variables corresponding to the same
lective variables in the lab system are used to define
range of the different intrinsic variables. In some simp
cases it was also possible to write down explicitly some
ementary tensors@17,22,23# in terms of the collective vari-
ables.

In the present paper we will follow this program for th
octupole surface oscillations, relating them to the shape
the nucleus. Many times the surface of the nucleus, in p
coordinates, has been expressed in terms of the nuclea
dius as

R~u,f!5R0S 11(
lm

al,mYl,m~u,f! D , ~2.1!

whereR0 is the radius of the nucleus in its spherical equil
rium shape andal,m are the collective coordinates that d
scribe the deformation of the nuclear surface. We use for
Yl,m the spherical harmonics satisfying the Condon a
Shortley convention, i.e.,Yl,2m5(21)m(Yl,m)* . As the ra-
dius has to be real, it follows thatal,2m5(21)m(al,m)* .

It is assumed that these variables change slowly w
time, and therefore it is usual to express their kinetic ene
as a quadratic function of the velocities as

T5
1

2 (
lm

Bluȧl,mu2, ~2.2!

whereȧm is the time derivative ofam . It is well known that
the coefficientsal,m written in lab system and theal,m writ-
ten in the intrinsic system~that we will denote byal,m to
avoid confusions! are related by~in what follows we use the
notation of Ref.@19#!

al,m5(
n
Dm,n

l ~v i !al,m , ~2.3!
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wherev i are the three Euler angles. As usual theDm,n
l (v i)

functions, which are related to the matrix element of t
rotation operation, are defined by

Dm,n
l ~v i !5^l,muexp~ icI z!exp~ iuI y!exp~ ifI z!ul,n&,

~2.4!

wherev i[(c,u,f) are the Euler angles.
From Eq.~2.3! it follows that

al,m5(
n

@Dm,n
l ~v i !#* al,n , ~2.5!

with @Dm,n
l (v i)#* 5(21)n2mD2m,2n

l (v i).
In order to evaluate the kinetic energy we must wr

down explicitly the time derivative ofal,m :

ȧl,m5(
n

@Dm,n
l ~v i !#* ȧl,n1(

n
@Ḋm,n

l ~v i !#* al,n .

~2.6!

The time derivative of theDm,n
l (v i) functions can be ex-

pressed as

Ḋm,n
l ~v i !5 i(

m,k
qkDm,m

l ~v i !~Mk!n,m , ~2.7!

whereMk are the (2l11) dimensional representation of th
angular momentum operator and satisfy the commutation
lations

@M1 ,M2#52 iM 3 , ~2.8!

and cyclic permutations~note the signs!. It is customary to
use a representation where (M3)m,n5mdm,n . The magni-
tudesqk are the angular velocity components in thek direc-
tion. We can then express the kinetic energy as

T5
B

2 (
m

~ȧl,m!* ȧl,m5Tvibration1Trotation1Tcoupling,

~2.9!

where for simplicity a singlel is considered, and

Tvibration5
B

2 (
m,n,n8

Dm,n
l* Dm,n8

l ȧl,n8
* ȧl,n ,

Trotation5
B

2 (
m,n,n8,m,m8,k,k8

Dm,m
l*

3 *Dm,m8
l al,nal,n8

* qkqk8~Mk!n,m~Mk8!m8,n8 ,

~2.10!

Tcoupling5 i
B

2 (
m,n,n8,m,k

@2ȧl,n8
* al,nDm,m

l* Dm,n8
l qk~Mk!n,m

1ȧl,nal,n8
* Dm,n

l* Dm,m
l qk~Mk!m,n#.
5-2
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Using the unitarity condition for theDm,n
l (v i) functions

@(mDm,n
l* (v i)Dm,n8

l (v i)5dn,n8#, the vibrational part of the
kinetic energy simplifies to

Tvibration5
B

2 (
n

ȧl,n* ȧl,n , ~2.11!

while the rotational part is

Trotation5
B

2 (
k,k8

qkqk8(
n,n8

al,nal,n8
* ~MkMk8!n,n8

5
1

2 (
k,k8

qkqk8J kk8 , ~2.12!

where the inertia tensor is defined as

J kk85B(
n,n8

al,nal,n8
* ~MkMk8!n,n8 . ~2.13!

The coupling between the internal and rotational degree
freedom maintains a complicated structure, i.e.,

Tcoupling5 i
B

2 (
n,n8,k

qk@ ȧl,nal,n8
* 2ȧl,n8

* al,n#~Mk!n,n8

5 iA21BˆqW $a3ȧ3%
1
‰0
0 , ~2.14!

where$%M
J means the angular momentum coupling toJ,M ,

and the last line corresponds to thel53 case.

B. Definition of the intrinsic system

We now proceed to the definition of the intrinsic syste
We have isolated three rotational variables~the Euler
angles!, but we also have (2l11) coordinatesal,n . It is
necessary to reduce their number to (2l22). This is cus-
tomary achieved by imposing the condition

J kk85Jkdkk8 . ~2.15!

In fact, the requirement is that the off-diagonal elements
J kk8 vanish. These three conditions, which usually are n
linear, in principle reduce by three the number of paramet
The inertia tensorJ kk8 can be expressed in terms of th
coupling to angular momentum two and zero of the coll
tive variables, using the fact that

~MmMm8!n,n85(
J

^1m1m8uJM&$MM %M
J . ~2.16!

Due to symmetry reasons, the only values ofJ that sur-
vive in the summation related with the inertia tensor are t
or zero. Forl53 the explicit expressions for the diagon
components of the inertia tensor are the following:

J15B@4A7$aa%0
01A21$aa%0

223A14 Re$aa%2
2#,

J25B@4A7$aa%0
01A21$aa%0

213A14 Re$aa%2
2#,
01430
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J35B@4A7$aa%0
022A21$aa%0

2#, ~2.17!

while the vanishing of the off-diagonal components yield1

J1253BA14 Im$aa%2
250,

J1353BA14 Re$aa%1
250,

J2353BA14 Im$aa%1
250. ~2.18!

It is convenient to define the auxiliary variablesum

5$aa%m
2 . The definition of the intrinsic system through th

cancellation of the off-diagonal components of the iner
tensor is therefore equivalent to the conditionsu150, u2 and
u22 real. It must be noted that similar conditions are held
the quadrupole case. In this case those conditions are s
fied if a2,15a2,2150 anda2,25a2,22 and real. In the octu-
pole case, one must satisfy three nonlinear equations, w
solutions are more complicated.

The a3n ~in what follows we will concentrate on thel
53 case, and therefore usean) must be expressed in term
of four independent variables. Calling themX, Y, Z, andg it
is possible to use as a parametrization

a35Fcosg2
A3

2
singGX1 i Fcosg1

A3

2
singGY,

a25
1

A2
singZ,

a15
A5

2
sing@X1 iY#,

a05A5 cosgZ, ~2.19!

that automatically makes the off-diagonal components of
inertia tensor equal to zero.

To simplify the notation we definexk5X,Y,Z and gk
5g2p/3k for k51,2,3. In terms of these variables, theum
different from zero can be written as

u05h cosg,

u25
h

A2
sing, ~2.20!

whereh55A2/21(kxk
2 cosgk .

1In the quadrupole caseJ12 is related to Im$aa%2
2 while J13 and

J23 are related to$aa%1
2. The diagonal components of the inert

tensor are related to$aa%0
0, $aa%0

2, and Re$aa%2
2. In a similar way in

theT51 pairing collective description the off diagonal componen
of the inertia tensor can be written asJ1252BIm$DD* %2

2, J13

52BRe$DD* %1
2, J2352BIm$DD* %1

2. The diagonal component
are related to$DD* %0

2, Re$DD* %2
2, and$DD* %0

0 .
5-3
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If we define

r2[(
n

uanu25(
k

xk
2@114 cos2 gk#, ~2.21!

the diagonal components of the inertia tensor can be wri
as

Jk5B$4r222A21h cosgk%. ~2.22!

C. Quantization of the Hamiltonian

The next problem is that of quantizing the Hamiltonia
There is no unique way to perform this quantification but,
in the quadrupole case@17#, the Pauli prescription can b
used. This recipe is designed to give the right answer w
the generalized variables are transformed to Cartesian c
dinates. Given a classical Hamiltonian written in terms
variablesan and their time derivatives, with a kinetic energ
given by

T5
1

2 (
mn

Gmn~a!ȧmȧn, ~2.23!

the Pauli prescription replaces the kinetic energy by the
erator

T52
1

2 (
mn

uGu21/2
]

]am
uGu1/2Gmn

]

]an
, ~2.24!

where uGu is the determinant of the inertia matrixGmn and
Gmn is its inverse matrix. The volume element to be used
given by

dt5uGu1/2)
n

dan . ~2.25!

In our case, the variables areX,Y,Z,g,q1,q2 ,q3, and the in-
ertia matrixGmn is shown in Table I.

III. SYMMETRY PROPERTIES

A. General structure of the wave functions

The total collective Hamiltonian will contain a potentia
energy depending on the internal collective variables~and its
time derivatives! in addition to the kinetic energy terms a
ready discussed. The eigenfunctions of the total Hamilton
can be labeled by the parity, the angular momentum and
projection on the laboratoryz-axis (t, I , andI z). They can be
conveniently expressed as a linear combination

C I ,I z

t ~X,Y,Z,g,v i !5(
K

gK,j
t ~X,Y,Z,g!DI z ,K

l ~v i !,

~3.1!

where the quantum numbersj, related to the internal vari-
ables, remain yet unspecified. This set of eigenfunctions c
stitute a complete set of states and they will be orthogo
usingdt specified in Eq.~2.25! as volume element.
5-4
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B. Invariants and the potential energy in Bohr’s Hamiltonian

As in the collective descriptions studied befo
@19,17,21#, there are two types of symmetries that arise in
problem of collective motion. The first type corresponds
the invariance under rotations. The second type is relate
the fact that even if the collective variables in the lab syst
are uniquely determined, there are 24 different ways of
fining a right-handed intrinsic system@2#. For simplicity, it is
commonly assumed that the potential energy does not
pend on the velocities, and that it should be an analytic fu
tion when written in terms of theam . Naturally, it must also
be a scalar under rotations, and it is therefore importan
search for simple polynomials in terms of theam that are
scalar under rotations. It is well known that in the quadrup
case there are two of the so-called basic invariants@17# (b2

andb3 cos 3g) while in theT51 pairing case there are thre
basic scalars under rotations@D2 andD2e64if cos(2G)#, but
only two if one requires invariance with regard to rotatio
both in usual space and in gauge space@D2 andD4 cos2(2G)#.

In the octupole case it is possible to find in a simple w
some of these basic scalars with regard to rotations~we use
the same notation as Kumar and Baranger@17#!. The first one
is quite trivial~the upper index denotes the number of boso
needed to construct the scalar!:

I (2)5r25(
m

am* am52A7$aa%0
0 . ~3.2!

The second and third ones can be constructed in a sim
way as in the quadrupole case usingum , the quadrupole
variables related to the inertia tensor, i.e.,

I (4)5$uu%0
05

1

A5
h2, ~3.3!

I (6)5ˆ$uu%2u‰0
052A 2

35
h3 cos 3g. ~3.4!

To be sure that one has obtained all the basic scalars
convenient to count the states with angular momentum z
and check that they can be constructed out of the elemen
scalars already known. The number of states having ang
momentum zero for each number of bosons can be c
structed in a simple way using the m-scheme. Studying
states obtained considering up to 40 bosons it is found th
is necessary to introduce a basic scalar formed with
bosons.2 Its existence shows how much more complicated
the octupole case as compared with the other collective tr
ments already performed.

C. Wave function’s symmetry properties

In this subsection we will follow closely Ref.@17#. The
wave functionC must be an analytical function of the coo

2We would like thank to Professor J. Blomqvist who called o
attention to the existence of this tenth order invariant.
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dinatesam . The lab variables are unambiguously defin
while, as Bohr already noted, the intrinsic variablesam are
not, as there are 24 ways of defining a right-handed intrin
system starting from one lab system.

This can be seen more clearly if one defines three b
operators which can be used to transform a given intrin
system in an equivalent one:
R1 : rotation throughp around the 1-axis of the intrinsic

system.
R2 : rotation throughp/2 around the 3-axis of the intrin

sic system.
R3 : cyclic permutation of the three intrinsic axes.
SinceR 1

2 5R 2
45R 3

351, the 24 possible transformation
between equivalent intrinsic systems areS(s1 ,s2 ,s3)
5R 1

s1R 2
s2R 3

s3 with 0<s1<1, 0<s1<3, and 0<s1<2.
There are then 24 ways of choosing theam for a givenam ,
but C must be the same for each of the choices, being
variant under the transformation that changes an intrin
system to an equivalent one, i.e.,C must be invariant unde
any of the transformationsS(s1 ,s2 ,s3). All these transfor-
mations can be considered as acting on the coordin
(X,Y,Z,g,u,f,c). We have therefore that these transform
tions applied to a point:

R1(X,Y,Z,g,u,f,c)5(X,Y,Z,g,p2u,f1p,2w),
R2(X,Y,Z,g,u,f,c)5(X,Y,Z,g,u,f,w1p/2),
R3(X,Y,Z,g,u,f,c)5(X,Y,Z,g, three new Euler angles

very complicated!.

These very complicated new Euler angles related toR3
correspond to the cyclic permutation of the axis but we w
not need their explicit form.

In order to obtain the corresponding transformationRk of
wave functionsC we must apply the recipe for active tran
formations:

new wave function at new point

5 old wave function at old point.

It is convenient to remember that the application of
active rotationR on a spherical tensorTlm yields

@R~u,f,c!T# lm5(
n
Dm,n

l ~u,f,c!Tln . ~3.5!

Writing the new wave function at the new point in term
of the old one at the old point one obtains

R uI ,M &5(
K
DM ,K

I ~R21! uI ,K&

5(
K

@DK,M
I ~u,f,c!#* uI ,K&. ~3.6!

A similar relation holds betweenam and am , i.e., am

5(m@Dm,m
3 (u,f,c)#* am .

To obtain the effect ofRi on theDK,M
l matrices it is

convenient to relateRi to the operatorRi8 that performs the
5-5
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TABLE II. Matrix elements ofD M ,K
I (p/2,0,p/2).

M\K 3 2 1 0 21 22 23

3 2
i

8
2i

A6

8
2 i

A15

8
2 i

A20
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2 i
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2 i
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8
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8

2
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8
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8
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8
0 2
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0
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same transformation on the lab system, i.e.,Ri5RRi8R
21,

whereR corresponds to the rotation (u,f,c). It is then pos-
sible to express

RiDM ,N
l ~u,f,c!5RRi8R

21DM ,N
l ~u,f,c!. ~3.7!

Applying three times Eq.~3.6! on the right-hand side on
gets

(
KPQ
DM ,K

l ~R!DK,P
l ~Ri8

21!DP,Q
l ~R21!DQ,N

l ~u,f,c!

5(
K
DM ,K

l ~u,f,c!DK,N
l ~Ri8

21!, ~3.8!

where in the last step the unitarity of theDK,N
l matrices was

used.
Taking into account that the wave functions can be w

ten as

C I ,M
t ~X,Y,Z,g,u,f,c!5(

K
gI ,K

t ~X,Y,Z,g!DM ,K
l ~u,f,c!,

~3.9!

and taking into account that the symmetry of the wave fu
tion with regard toR1 , R2, andR3 implies that

RiC I ,M
t ~X,Y,Z,g,u,f,c!5C I ,M

t ~X,Y,Z,g,u,f,c!,
~3.10!

and considering the effect ofRi on the intrinsic and rota-
tional degrees of freedom

RiDM ,K
I ~u,f,c!5DM ,K

I ~u8,f8,c8!

5(
K8
DM ,K8

I
~u,f,c!D K8,K

I
~Ri8

21!,

~3.11!
01430
-

-

RigI ,K
t ~X,Y,Z,g!5gI ,K

t ~X8,Y8,Z8,g8!, ~3.12!

it is possible to obtain a condition on the part of the wa
function that depends on the internal variables:

gI ,K8
t

~X,Y,Z,g!5(
K

gI ,K
t ~X8,Y8,Z8,g!D K8,K

I
~Ri8

21!.

~3.13!

In order to obtain the effect of the symmetry operation
the internal variables, we must first evaluateDM ,K

I (Ri) ex-
plicitly. A lengthy yet straightforward calculation yields

DM ,K
I ~R1!5~21! IdM ,2K , ~3.14!

DM ,K
I ~R2!5~2 i !KdM ,K , ~3.15!

DM ,K
I ~R3!5DM ,K

I S p

2
,0,

p

2 D . ~3.16!

This last matrix is shown in Table II.
From the transformation properties of the coefficientsam ,

one can deduce the transformation properties forX, Y, Z,
andg. In Table III we show all the information related to th
transformation properties of the variables, as well as
characteristics of the matrices related withDK,K8

I (Ri
21).

With regard to the spatial inversionP, which is not a
symmetry property due to ambiguities in the definition of t
5-6
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TABLE III. Action of the different transformation operators on the corresponding intrinsic variables.
shown are the explicit representation ofD K,K8

I (Ri
21).

Variable\Transformation R1 R2 R3

X8 X 2Y Z
Y8 2Y X X
Z8 2Z Z Y

g g 2g g1
2p

3
u p2u u Complicated
f p1f f Complicated

c 2c c1
p

2
Complicated

DK,K8
I (Ri

21). (21)IdK,2K8 (2 i )KdK,K8
DK,K8

I S p

2
,
p

2
,p D
ve

try

ie

ity

al
o-

rtia

nt

ures

the

e
n
t
m as
n,

nd
o

rms
intrinsic axis, but must be a symmetry of the intrinsic wa
function, one obtainsP:(X,Y,Z,g)→(2X,2Y,2Z,g) and
PK,K8

I
5(21)IdK,K8 that replaces theDK,K8

I in Eq. ~3.13!.
The different transformations will then yield some symme
properties of the wave function:

R1 :gI ,K
t ~X,Y,Z,g!5~21! IgI ,2K

t ~X,2Y,2Z,g!,
~3.17!

R2 :gI ,K
t ~X,Y,Z,g!5~2 i !KgI ,K

t ~2Y,X,Z,2g!,
~3.18!

R3 :gI ,K
t ~X,Y,Z,g!5(

K8
gI ,K8

t S X,Y,Z,g1
2p

3 D
3DK,K8

I S p

2
,
p

2
,p D . ~3.19!

There are some combinations of these operators that y
more useful results, such as

R2
2 :gI ,K

t ~X,Y,Z,g!5~21!KgI ,K
t ~2X,2Y,Z,g!,

~3.20!

R2
2R1 :gI ,K8

t
~X,Y,Z,g!5~21! I 1KgI ,2K

t ~2X,Y,2Z,g!.
~3.21!

If the wave function is also an eigenfunction of the par
operator with eigenvalueP, i.e.,

PC I ,M
t ~X,Y,Z,g,u,f,c!5PC I ,M

t ~X,Y,Z,g,u,f,c!,
~3.22!

we obtain that

P:gI ,K
t ~X,Y,Z,g!5P~21! IgI ,K

t ~2X,2Y,2Z,g!.
~3.23!
01430
ld

IV. THE RIGID ROTOR

In this section we study the axially symmetric rotor. Axi
symmetry implies that at least two of the diagonal comp
nents of the inertia tensor must be equal. From Eq.~2.22! it
follows that forg50 or g5p/3 this condition is satisfied. It
is also possible to make the three components of the ine
tensor equal by making all the threexk equal~in this particu-
lar caseh50!. For g50 one hasJ15J2 while for g5p/3
one hasJ15J3. In both cases the remaining compone
does not vanish. We will study in some detail theg50 case
because it illustrates some of the complications and feat
related to the octupole degrees of freedom.

We will assume in this section that theg degree of free-
dom is frozen~in particularg is equal to zero!. It follows
also from the relation between the collective variables in
intrinsic system (am) and the intrinsic variables (X, Y, Z,
and g! given by Eqs. ~2.19! that g50 implies that
the only deformations allowed should haveK50 or
K563, 66, . . . . Itmust be noted that when the collectiv
description of theT51 pairing excitations was studied i
Refs.@21,23#, it was found that for studying the rigid rotor i
was necessary to retain the gauge angle degree of freedo
the rotational Hamiltonian was coupled to it. In this sectio
even if the rotational Hamiltonian is coupled to theg degree
of freedom we will assume that it is possible to freeze it a
we will therefore disregard it completely. In this case the tw
basic quantitiesr2 andb can be written as

r252~X21Y2!15Z2, ~4.1!

b5
10

A21
S 2

1

2
~X21Y2!1Z2D , ~4.2!

and the inertia tensor has a rather simple expression in te
of the intrinsic variables:

J15J253~X21Y2!130Z2,

J3518~X21Y2!. ~4.3!
5-7
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TABLE IV. Inertia matrix Gmn for the g50 case.

ṙ ṁ ż q1 q2 q3

ṙ 1 0 0 0 0 0

ṁ 0 r2 0 0 0 0

ż 0 0 r2 sin2 m 23r2 sin2 m 0 0

q1 0 0 23r2 sin2 m 9r2 sin2 m 0 0
q2 0 0 0 0 6r2@12

3
4 sin2 m# 0

q3 0 0 0 0 0 6r2@12
3
4 sin2 m#
t
se

t
or

tu

s

ew

b

e
the
al
the

the
-

it is
the
ith

tion
the
po-
ned
It is convenient to reparametrize the problem in order
introduce r as one of the dynamical variables and u
‘‘spherical coordinates’’ by defining two angle variablesm
andz

X5r sinm cosz/A2,

Y5r sinm sinz/A2,

Z5r cosm/A5. ~4.4!

In terms of these variablesb5(10/A21)r2@2 1
4 sin2m

11
5 cos2 m#. Now theGmn inertia matrix will be a six by six

matrix as shown in Table IV.
We will assume the adiabatic hypothesis forr andm. But

it must be noted that, asz is a cyclic coordinate, we canno
use for it the adiabatic hypothesis and we must, theref
consider the coupling ofż with q1 , q2, andq3 in an exact
way. For this purpose we use the conjugate momen
method, i.e., we introduce

Q15
]T
]q1

56r2F12
3

4
sin2mGq1 , ~4.5!

Q25
]T
]q2

56r2F12
3

4
sin2mGq2 , ~4.6!

Q35
]T
]q3

59r2 sin2mFq32
1

3
ż G5K, ~4.7!

Pz5
]T
]ż

523r2 sin2 mFq32
1

3
żG52 i

]

]z
5mz . ~4.8!

It must be noted thatQi satisfy the commutation relation
given by Eqs.~2.8!. Besides, the relation between Eq.~4.7!
and Eq.~4.8! provides the auxiliary condition:

K523mz50,63,66, . . . . ~4.9!

The kinetic energy can be written in terms of these n
variablesQk as

Trot5(
k

1

2Jk
Qk

2 , ~4.10!

where the components of the moment of inertia are given
01430
o

e,

m

y

J15J25
3

4
r2@113 cos2 m#,

J35
9

2
r2 sin2 m. ~4.11!

The total rotational energy can be written as

Trot5
I ~ I 11!

2J1
1

K2~J12J3!

2J1J3

5

F I ~ I 11!1 2
3 K2

@12 9
4 sin2 m#

sin2 m
G

2J1
. ~4.12!

The structure of the full ‘‘rotational band’’ is now mor
complicated than for the quadrupole case. The part of
band that hasK50 has a structure similar to that of the usu
rigid quadrupole band, but the part of the band related to
states withKÞ0 has energies determined also byr and m
that are related with the energy of the first member of
ground state rotational band. Note thatm represents devia
tions from perfectly axisymmetric deformations, i.e., form
50 the deformations haveJ350 and thereforeK[0, only
for mÞ0 can nonzeroK be found. Form50 the rotational
band has the usual structure~all states haveK50, as states
with KÞ0 have an infinite energy!. When the states with
angular momentum equal or larger than 3 are considered
found that there are more than one state belonging to
ground state band with this angular momentum: one w
K50 and parity (21)I , and two withK53 and energies
given by Eq.~4.12!. Each time thatI 5uKu53n ~with n in-
teger! two new states appear~i.e., we will have five states
with 8>I>6, seven states with 11>I>9, etc.!. Figure 1
shows the lowest energy states forK50,3,6 as a function of
m.

V. SUMMARY

In the present paper we have obtained a parametriza
of the octupole collective variables that guarantees that
inertia tensor is diagonal. The relation between the com
nents of the octupole intrinsic variables and those defi
parameters is given by the equations
5-8
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a35Fcosg2
A3

2
singGX1 i Fcosg1

A3

2
singGY,

a25
1

A2
singZ,

a15
A5

2
sing@X1 iY#,

a05A5 cosgZ.

In addition, we have identified the way in which the i
trinsic variables (xk and g) transform with regard to the
symmetry operationsRi . These can be summarized as fo
lows: ~a! The variablesxk transform in a similar way as th
coordinates of a vector related to the intrinsic axis;~b! g
transforms in the same way as in the quadrupole case. Th
not at all strange due to the particular relation ofg to the
inertia tensor.

FIG. 1. Spectrum of a symmetric (g50) rigid rotor for K
50,3,6 as a function of the deformation parameterm.
01430
is

The first condition means that the parametersX, Y, andZ
can be considered as positive, as all the other signs ca
obtained by relabeling the axis. The second statement, a
the quadrupole case, tells us that all possible shapes are
tained in the range 0<g<p/3.

A general octupole field can be written in an alternati
way @16# as V35(mamY3m* 5e0A21( i 51

3 e1( i )F1( i )
1( i 51

3 e2( i )F2( i ), whereA1 , F1(k), andF2(k) are related
to the irreducible representations of the octahedron group
Ref. @16# it was proposed that an appropriate parametrizat
can be obtained imposing the cancelation ofe2( i ); i . Using
the parametrization that we are proposing, these parame
have now a rather simple structure:

e050,

e1~1!52sin~g!Z,

e1~2!52sinS g2
2p

3 DX,

e1~3!5sinS g2
4p

3 DY,

e2~1!5A5 cos~g!Z,

e2~2!5A5 cosS g2
2p

3 DX,

e2~2!52A5 cosS g
4p

3 DY.

It must be noted that, for the octupole degrees of freed
the existence of axial symmetry does not necessarily im
that the rotational band must haveK50. The study of the
rigid rotor has illustrated the richness of the octupole ro
tional bands.

Last but not least, it is worthwhile noticing that if on
takes into account simultaneously the quadrupole and o
pole degrees of freedom, and for each one of them the c
dition that the inertia tensor has to be diagonal is impos
the intrinsic system for both degrees of freedom will not
the same: each degree of freedom will have its own ‘‘intr
sic system.’’ It must be remembered that the Euler ang
associated to each intrinsic system are just a way of labe
three of the five~in the quadrupole case! or seven~in the
octupole one! collective dynamical variables.
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