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[. INTRODUCTION In the present paper we return to the idea used for the
definition of the intrinsic system in Bohr's papg2] (also
The collective description of the octupole degrees of freeused by other authors for the collective description of the
dom has been a long standing problem in nuclear physics pairing degrees of freedomin the intrinsic system the iner-
The phenomenological description of low-energy vibrationaltia tensor(related to the rotational part of the kinetic energy
states[2,3] discussed them in terms of simple “surface must be diagonal.
modes” thus allowing for the description of the octupole In Sec. Il we review some features of the collective exci-
degrees of freedom in terms of seven collective variablegations, the Hamiltonian, we discuss how to separate the ro-
a3, [2,4]. In the 1980s, theoretical calculatioff predicted tational and intrinsic degrees of freedom and we propose a
the existence of octupole stable deformations and this prosimple parametrization. We use the Pauli prescription to
lem aroused considerable interest, especially in the Ce-Bguantize the quadratic Hamiltonian. In Sec. lll we discuss
and the Rn-Th regions. The level scheme of a few moderthe structure of the wave functions and of the elementary
ately or weakly deformed nuclei, such &Ge [6], *3sm  scalars or invariantéas defined in Ref.17]), as well as the
[7],%%Ra[8], or 2%32?Ra[9] presents features that may be symmetries of the wave function. In Sec. IV we discuss the
related to octupole instabilities and softness of the nucleusgid rotor that illustrates the differences between the rota-
with respect to possible exotic octupole deformations. Latelyional bands related with octupole deformations as compared
[10] there has been evidence for the existence of stable ogavith the quadrupole onegl8]. Section V summarizes the
tupole deformations in the Rn-Th region making the problenyesults obtained in the present paper.
of the collective description of this degree of freedom more
actual. It has been shown that this type of collective excita- Il. FORMULATION OF THE PROBLEM
tions can significantly change the fusion cross section for
heavy iong11]. Initially, only octupole deformations of the
Y30 type were considered, but the possibility of other type of  The theory of collective oscillations has been developed a
deformations(such asYs, [12] or Y3, [13]) has also been long time ago by several authd®,3,19. The classical case
discussed. The study of more general structures was intendedrresponds to quadrupole oscillations that were described in
without much succedd4]. There were also several propos- detail by Bohr in 1952. A very clear and pedagogical discus-
als related to the appropriate parametrization of the collectivgion concerning the symmetries and wave functions for this
variables. RohozinsKil5] proposed a parametrization basedproblem can be found in a papg¢fi7] by Kumar and
on the symmetries coming from tl@&, group of transforma- Baranger, where a numerical solution for this problem was
tions of the frame of reference. Hamam@i®] wrote octu-  first proposed. A collective treatment was also performed for
pole shapes in terms of the irreducible representations of thihe pairing degrees of freedom: the pairing acting only on
octahedron group\;,F,(k) andF,(k) and suggested that a one type of particles yields a two dimensional collective de-
parametrization that covers all possible octupole deformedcription [20], while the corresponding to th&=1 case
shapegwithout double counting the same shajseprovided  yields a six-dimensional ong21]. In the three cases de-
by removingF,(k) (eliminating in this way three param- scribed, the recipe used to found the collective description
eters. has the same basic ingredients.
(a) The kinetic energy was written explicitly in terms of
the time derivatives of the collective variables.

A. The collective variables

*Present address. (b) The collective variable&f dimension five, two or six,
Ton leave of absence from the ComisitNacional de Enefgt  depending on the caseere written in the intrinsic system,
Atomica. isolating the intrinsic variables from those that describe the

0556-2813/99/6(1)/014305%10)/$15.00 60 014305-1 ©1999 The American Physical Society



C. WEXLER AND G. G. DUSSEL PHYSICAL REVIEW G0 014305

motion of the intrinsic systentthe three Euler angles in the where w; are the three Euler angles. As usual ﬂhﬁ (i)
five- and six-dimensional cases, one angle in the two dimenfunctions, which are related to the matrix element of the
sional ong. In all cases the intrinsic system was defined asotation operation, are defined by
the system where the inertia tensidhe part related with
collective rotationswere diagonal. wa(wi) =(\, u|exp(i gl ) expli 61y exp(i gl )|\, v),

(c) The kinetic energy was written in terms of the Euler (2.9
angles and the intrinsic variables, and the coupling between
both types of degrees of freedom was studied. Regarding theherew;=(,0, ¢) are the Euler angles.
potential energy it has parts that depend only on the collec- From Eq.(2.3) it follows that
tive variables(and not on their time derivativesThis part
can be written in terms of elementary scalgt3] that are
constructed using the collective variables. For example, in
the quadrupole case there are only two of such sc@éfs
and B° cos(3y), using Ref[2] notatior, in the pairing case ith [D (o) :(_1)%#1)%_# ().
(between particles of one typehere is only one of such | order to evaluate the kinetic energy we must write
scalars Az USIng REf[20] nOtathf) and in theT = - 1 palrlng down exp||c|t|y the time derivative o&)\ :
case there are three of such scalph$, A%e=*¢ cos(d), i
using Ref.[21] notation. : . )

(d) The general symmetry properties of the wave func- .= [D)(0)]* 8y, + 2 [D) (@)]%a,,, .
tions that are related to different choices of colleciiZealer . : 2.6
angles and intrinsic variables corresponding to the same col- '
lective variables in the lab system are used to define th§ne time derivative of théD* (®;) functions can be ex-
range of the different intrinsic variables. In some S'mplepressed as
cases it was also possible to write down explicitly some el-
ementary tensorgl7,22,23 in terms of the collective vari- ]
ables. Dy, (0)=i2 A, D) ((0)(M),m, 2.7

In the present paper we will follow this program for the m.«

octupole surface oscillations, relating them to the shape of

the nucleus. Many times the surface of the nucleus, in poIaWhereMK are the (2 + 1) dimensional representation of the

coordinates, has been expressed in terms of the nuclear r?[lgular momentum operator and satisfy the commutation re-

dius as ations

a’)\,,u:EV [D/}_\L,V(wi)]*a)\m1 (25)

[M1,M3]=—iM3, (2.8
R(6,4)=Ro| 1+ ax,ﬂvx,ﬂw,qb)), (2.

W and cyclic permutationgnote the signs It is customary to
use a representation wherd1§),, ,(=ms,, ,. The magni-
whereR, is the radius of the nucleus in its spherical equilib- tudesq, are the angular velocity components in thelirec-
rium shape andk, , are the collective coordinates that de- tion. We can then express the kinetic energy as
scribe the deformation of the nuclear surface. We use for the .
Y, . the spherical harmonics satisfying the Condon and . B N _ _
Shgrtley convention, i.eY}\’_#Z(—l)’L(YA’M)*. As the ra- T 2 % (a')\,,u) A\ u Tvlbrat|on+ Zotatlon‘l‘ %oupllng,
dius has to be real, it follows that, _,=(—1)*(a\ ,.)*. (2.9

It is assumed that these variables change slowly with
time, and therefore it is usual to express their kinetic energyvhere for simplicity a single. is considered, and
as a quadratic function of the velocities as

B .
— A%
T/ibration_E Z D,,, ,,Dlu V/a)\ V,ax v
w,v, v’

I\)IH

; Byay 2, (2.2
B
Trotation™ 2 2 D;\:fm

-, . . . . w,v, v mm’ k k'
whereaM is the time derivative ofr, . It is well known that

y23
the coefficientsy, , written in lab system and the, ,, writ- X *Dz,mfax,vaf,pquqK'(MK)V,m(M K vt
ten in the intrinsic systenithat we will denote bya, , to (2.10
avoid confusionpare related byin what follows we use the '
notation of Ref[19]) B _
Tcoupling: i 2 2 [— a;:,,,fa)\ VDZ*m M,quk( M.) o m
,u,V,V',m,K
= 2 D@, @3 2,85, DD (M ),
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UsLng the linitarity condition for t.hé)z.’y(wi) functions Js=B[4\7{aa}S—2\21{aa}?], (2.17)
[EﬂDﬂ’fy(wi)DM ,(w)=46, ], the vibrational part of the
kinetic energy éimplifies to while the vanishing of the off-diagonal components yiélds
Bw .. - J1o="3B /14 Im{aa}2=0,
TvibrationZE 2 a;:,ya}\,vl (2.1 © 2

while the rotational part is
B Jos=3B 14 Im{aa}?=0. (2.18
T on— YUk’ a ,,a* , MKMKr v.y!
rotation™ 2 2 4. VEV o, 2 It is convenient to define the auxiliary variables,
1 ={aa}?. The definition of the intrinsic system through the
== > 90T en’ » (2.12  cancellation of the off-diagonal components of the inertia
2 = tensor is therefore equivalent to the conditions- 0, u, and
u_, real. It must be noted that similar conditions are held in

where the inertia tensor is defined as the quadrupole case. In this case those conditions are satis-
fied if a,,=a,_,=0 anda,,=a,_, and real. In the octu-
J=B> a, A (MM0), (2.13  Pole case, one must satisfy three nonlinear equations, whose
vy ' solutions are more complicated.

) ) _ The a3, (in what follows we will concentrate on the
The coupling between the internal and rotational degrees of 3 case, and therefore usg) must be expressed in terms
freedom maintains a complicated structure, i.e., of four independent variables. Calling thefmY, Z, andy it

is possible to use as a parametrization

*

B . .
%ouplingzlg 2 qk[a)\,va:‘y’_a)\'V’a)\,V](MK)V,V’

vk 3 ) ) 3 3
Y . az= COSy—7SIny X+i| cosy+ 73“’1'}/ Y,
=iv21B{a{asas}"}3, (2.14
Where{}ﬂ,, means the angular momentum couplingJi, a =isin 7
and the last line corresponds to the-3 case. 2 N7 L
B. Definition of the intrinsic system \/5
— L a;=—siny[X+iY],
We now proceed to the definition of the intrinsic system. 2
We have isolated three rotational variabléghe Euler
angleg, but we also have (+1) coordinatesa, ,. It is ao=/5 cosyZ, (2.19
necessary to reduce their number to\(22). This is cus-
tomary achieved by imposing the condition that automatically makes the off-diagonal components of the
inertia tensor equal to zero.
jKK’:jK5KK’ . (215) d

To simplify the notation we defing,=X,Y,Z and v,

In fact, the requirement is that the off-diagonal elements of, Y i3k for k=1,2,3. In terms of these variables, thg
different from zero can be written as

J <« Vanish. These three conditions, which usually are non-
linear, in principle reduce by three the number of parameters.

ot : Ug= 77 COSY,
The inertia tensor7,,, can be expressed in terms of the 0= 7 EESY

coupling to angular momentum two and zero of the collec-

. > : 7

tive variables, using the fact that uz=\/§SIn y, (2.20

MM, ), = 1uly' |[IMYMMY, . (2.1
(MuMr)s, §<’MM| MMy . (216 where 7="5/2/21% X2 cosy,.

Due to symmetry reasons, the only valuesiahat sur-
vive in the summation related with the inertia tensor are two
or zero. For\ =3 the explicit expressions for the diagonal
components of the inertia tensor are the following:

In the quadrupole casg;, is related to Infaa}3 while 7,5 and
Jo3 are related to[aa}f. The diagonal components of the inertia
tensor are related tmal), {aa}3, and R¢aal3. In a similar way in

_ 0 2 2 theT=1 pairing collective description the off diagonal components
‘71_8[4ﬁ{aa}0+ \/ﬁ{aa}o 3\/ﬂRe{aa}2], of the inertia tensor can be written &&,=—BIm{AA*}3, i3

=—BReAA*}2, J,;=—BIm{AA*}2, The diagonal components
0 2 2

Jo=B[4\T{aa})+\21{aal5+ 314 Rdaa}3], are related tdAA*}2, ReJAA* )2, and{AA*}J.
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TABLE I. The inertia matrixGp, , .

1

a2

ds

—4Z(1+ 2 cosy, CoSys3)

4Y(1+2 cosy, CoSy,)

—2Xsin(2y,)

1+4 cody,

4Z(1+ 2 cosy,C0Sys)

—4Z(1+ 2 cosy; CoSYys,)

—2Y sin(2y,)

1+4 cof y,

+4X(1+2 cosy, coSy;) —4Y(1+2 cosy; COSy,)

—2Z sin(2y3)

1+4 cof y,

—643XZ -63YZ

—643XY

S X2(1+4 sirt y,)

—2Y sin(2y,) —2Z sin(2y3)

—2X sin(2y,)

T3

—6\3XY
—643XZ
—6.3YZ

—4Z(1+2 cosy, CoSy,)

4Y(1+2 cosy; COSYy,)

ds

J2

4X(1+ 2 cosy; COSYys3)

g, —4Z(1+2 cosy; C0oSys)

T

—4Y(1+2 cosy,C0Sys)

4Z(1+ 2 cosy, CoSys)

Q1

PHYSICAL REVIEW G0 014305

If we define

p?=2 |a,|?=2 x¥1+4cody,], (2.2

K

the diagonal components of the inertia tensor can be written
as

J.=B{4p?—2\21p cosy,}. (2.22

C. Quantization of the Hamiltonian

The next problem is that of quantizing the Hamiltonian.
There is no unigue way to perform this quantification but, as
in the quadrupole casgl7], the Pauli prescription can be
used. This recipe is designed to give the right answer when
the generalized variables are transformed to Cartesian coor-
dinates. Given a classical Hamiltonian written in terms of
variablesa, and their time derivatives, with a kinetic energy
given by

1 .o
T=5 2 Gui(@)amay, (2.23
mn

the Pauli prescription replaces the kinetic energy by the op-
erator

1 d d
T=—3 2 |G| —|G|YGc™—, (2.24
2 ™ dam day

where|G| is the determinant of the inertia matr,,, and
G™M"is its inverse matrix. The volume element to be used is
given by

dr=|G|Y[] da,. (2.25
n

In our case, the variables axY,Z,v,q,0,,03, and the in-
ertia matrixG,,, is shown in Table I.

I1l. SYMMETRY PROPERTIES
A. General structure of the wave functions

The total collective Hamiltonian will contain a potential
energy depending on the internal collective varialfesl its
time derivativey in addition to the kinetic energy terms al-
ready discussed. The eigenfunctions of the total Hamiltonian
can be labeled by the parity, the angular momentum and its
projection on the laboratorzaxis (7, I, andl,). They can be
conveniently expressed as a linear combination

IT,IZ(X!Y!Z! 71wi): ; g&,g(x'Y'Za Y)DI)\Z,K(wi)r
(3.)

where the quantum numbeés related to the internal vari-
ables, remain yet unspecified. This set of eigenfunctions con-
stitute a complete set of states and they will be orthogonal
usingdr specified in Eq(2.25 as volume element.
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B. Invariants and the potential energy in Bohr's Hamiltonian dinatesa, . The lab variables are unambiguously defined
As in the collective descriptions studied before While, as Bohr already noted, the intrinsic variabigsare
[19,17,2], there are two types of symmetries that arise in thghot, as therg are 24 ways of defining a right-handed intrinsic
problem of collective motion. The first type corresponds toSYStém starting from one lab system. _ .
the invariance under rotations. The second type is related to ' NiS can be seen more clearly if one defines three basic
the fact that even if the collective variables in the lab systenPerators which can be used to transform a given intrinsic

are uniquely determined, there are 24 different ways of deSyStem in an equivalent one: , o
fining a right-handed intrinsic systefl]. For simplicity, it is R, rotation throughm around the 1-axis of the intrinsic

commonly assumed that the potential energy does not d&ystem. _ o
pend on the velocities, and that it should be an analytic func-, R : rotation throughm/2 around the 3-axis of the intrin-
tion when written in terms of the,, . Naturally, it must also ~ SIC System. _ o

be a scalar under rotations, and it is therefore important to s * €yclic permutation of the three intrinsic axes.

. . . H 2 _pid_p3_ : :
search for simple polynomials in terms of the, that are SinceR 7 =R ,;=R3=1, the 24 possible transformations
scalar under rotations. It is well known that in the quadrupolebewvseenS etsquwalent intrinsic  systems  a®(s;,S;,S3)
case there are two of the so-called basic invaright} (3> =R ['R;R; with 0<s;<1, 0<s;<3, and O<s;<2.

and 8* cos 3y) while in theT=1 pairing case there are three There are then 24 ways of choosing tag for a givenea,,,
basic scalars under rotatiopd? and A2e*#¢ cos(d7)], but  but ¥ must be the same for each of the choices, being in-
only two if one requires invariance with regard to rotationsvariant under the transformation that changes an intrinsic
both in usual space and in gauge spak&andA* cog(2I)]. system to an equivalent one, i.&, must be invariant under

In the octupole case it is possible to find in a simple wayany of the transformation§(s;,s,,s;). All these transfor-
some of these basic scalars with regard to rotatiesuse mations can be considered as acting on the coordinates
the same notation as Kumar and Bararid&f). The firstone  (X,Y,Z,y,0,$,¥). We have therefore that these transforma-
is quite trivial (the upper index denotes the number of bosonsions applied to a point:

needed to construct the scalar
Rl(anaza ’)’1 01 ¢1 w) = (Xyszy '}’,77_ 01 ¢+ 771 - (p)a
R (XiYizl 71 01 ¢5 w) = (Xlezl '}’, 01 ¢y€0+ 7T/2)y

_ 2_ _ 0 2
1@=p?=3 ap0,= = V7{aalg. (3.2 R3(X,Y,Z,y,6,¢,4)=(X,Y,Z,vy, three new Euler angles
M .
very complicategl
The second and third ones can be constructed in a similar

way as in the quadrupole case using, the quadrupole
variables related to the inertia tensor, i.e.,

These very complicated new Euler angles relatedRto
correspond to the cyclic permutation of the axis but we will
not need their explicit form.

In order to obtain the corresponding transformatiynof
I(4)={uu}8=i 7 (3.3 Wwave f_unctionslf we must apply the recipe for active trans-
J5 formations:

new wave function at new point

1) = {{uu}u)d= - \/3257;3 cos 3y. (3.9

= old wave function at old point.

To be sure that one has obtained all the basic scalars it is It is convenient to remember that the application of an
convenient to count the states with angular momentum ZEI9 ive rotationR on a spherical tensdr-.. vields
and check that they can be constructed out of the elementary P im Y
scalars already known. The number of states having angular
momentum zero for each number of bosons can be con- [R(6,, ) TNim= >, Dlm,n( 0,0, 4)7,. (3.5
structed in a simple way using the m-scheme. Studying the n
states obtained considering up to 40 bosons it is found that it - . o
is necessary to introduce a basic scalar formed with ten, Writing the new wave function at the new point in terms
bosoné Its existence shows how much more complicated iCf the old one at the old point one obtains
the octupole case as compared with the other collective treat-

ments already performed. Rl ,|\/|>=2 :D:vI KR™H LK)
= ,

C. Wave function’s symmetry properties

=;[DL,M<9,W>J*II,K>. (3.6

In this subsection we will follow closely Refl17]. The
wave function® must be an analytical function of the coor-
A similar relation holds betweem,, and «,, i.e., an
=2,[D5,,(6.6, )] @, .
e would like thank to Professor J. Blomqvist who called our ~ TO obtain the effect ofR; on the D:(,M matrices it is
attention to the existence of this tenth order invariant. convenient to relat®,; to the operatoR; that performs the

014305-5



C. WEXLER AND G. G. DUSSEL PHYSICAL REVIEW G0 014305

TABLE II. Matrix elements ofDy, (7/2,077/2).

MA\K 3 2 1 0 -1 -2 -3
3 7i_ ,iﬁ 4_\/1_5 ,i@ ,i_\/l—S ,i\/_g 7i_
8 8 8 8 8 8 8
2 Ve 4 \10 0 _ 10 4 _ s
8 8 8 8 8 8
1 i_\/1—5 i@ 7i_ 7|_\/1_2 ! ,@ |_\/1—5
8 8 8 8 8 8 8
0 V20 V2 e /20
- 0 - 0 - 0 =
8 8 8 8
-1 4_\/1—5 i@ I_ 7|_\/1_2 I_ i@ ,iE
8 8 8 8 8 8 8
-2 E ,f @ 0 _@ f 7E
8 8 8 8 8 8
-3 ! _|\/_€ iE _|@ iE _i\/_g I§
8 8 8 8 8 8
same transformation on the lab system, iR+ RR’R‘l, Rig (XY, Z,y)=0/ (X"Y",Z" "), (3.12

whereR corresponds to the rotatiord (¢, ). It is then pos-

sible to express
| 1l it is possible to obtain a condition on the part of the wave
RiDun(0,¢,4) =RRR" "Dy (6,0, 4). (3-7 function that depends on the internal variables:

Applying three times Eq(3.6) on the right-hand side one
gets
gIT,K’(XaYazv’y)zg ng'K(X,aY’,Z,,Y)D:(,‘K(Rilil)_

K;Q Dy k(R Dk p(RI ™ Dp o(R™H) D (6, 6,4) (3.13

— | | r—1
- EK: D k(6,9 D n(Ri ), (3.8 In order to obtain the effect of the symmetry operation on
the internal variables, we must first evaluéﬁ?ﬁK(Ri) ex-
where in the last step the unitarity of tmkN matrices was plicitly. A lengthy yet straightforward calculation yields

used.
Taking into account that the wave functions can be writ-

ten as Dy k(R)=(—1)"8y k., (3.19
\I}T X1Y121 101 ’ = [ X,Y,Z, D)\ 0, y y
" 7.0.6.4)=2 9l V) D k(6. 6.) Dl (Ro) = (1)< (3.15
(3.9
and taking into account that the symmetry of the wave func-
; ; ; ; T T
tion with regard toR;, R,, andR5 implies that DIM,K(RB):D:VI,K<E’O-E)' (3.16
Ri\IflT‘M(X,szg7101¢!w):qlr’M(xinZY’y707¢’¢)’
(3.10
and considering the effect d® on the intrinsic and rota- This last matrix is shown in Table II.
tional degrees of freedom From the transformation properties of the coefficieats
| | C o one can deduce the transformation propertiesorY, Z,
RiDuk(0,¢,4)=Dy (0", ¢",4") andy. In Table 1Il we show all the information related to the
transformation properties of the variables, as well as the
=> D:WK,(G,(b,zp)D'K,VK(R{_1), characteristics of the matrices related \Aﬂ]?h’K,(Ri_l).
K’ With regard to the spatial inversioR®, which is not a

(3.11) symmetry property due to ambiguities in the definition of the

014305-6
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TABLE lll. Action of the different transformation operators on the corresponding intrinsic variables. Also
shown are the explicit representationl@t,K,(Ri’l).

Variable\ Transformation R, R, R,
X! X -Y 4
Y’ -Y X X
z' -Z z Y
Y - 2
Y Y 4 ?
0 70 0 Complicated
¢ T+ 1) Complicated
U - Y+ = Complicated
. ol 33
DK,K'(Rfl)- (—1)'6k, -k (=) k0 KKkri2'2’
intrinsic axis, but must be a symmetry of the intrinsic wave IV. THE RIGID ROTOR

fulnct|(in, onel obtalnz?:(X,Yl,Z, 7) _;]( _,X’ B Y —Z 7; and In this section we study the axially symmetric rotor. Axial
P =(=1) ¢ that replaces they ., in Eq. (3.13. g mmetry implies that at least two of the diagonal compo-
The different transformations will then yield some symmetry nanis of the inertia tensor must be equal. From B2 it

properties of the wave function: follows that for y=0 or y=/3 this condition is satisfied. It
is also possible to make the three components of the inertia
R0 k(X,Y,Z,7)=(~1)'g] _(X,~Y,=Z,7), tensor equal by making all the thrag equal(in this particu-

(3.17  lar casen=0). For y=0 one has7,=., while for y=m/3
one hasJ;=J;. In both cases the remaining component
R0/ «(X,Y,Z,7)=(—)Xg] (=Y. X,Z,— ¥), does not vanish. We will study in some detail the0 case
' ’ (3.18§  because it illustrates some of the complications and features
related to the octupole degrees of freedom.
2 We will assume in this section that thedegree of free-
a . . . .
R359|T,K(X1Y1217):2 ng,(x,y,z,7+ ?) dom is frozen(in partlculary is equal to _zer)) It_follow_s
K" also from the relation between the collective variables in the
intrinsic system 4,) and the intrinsic variablesx;, Y, Z,

X D), K,(f, Zm)_ 3.19 and ) given by Egs.(2.19 that y=0 implies that
w272 the only deformations allowed should hau€=0 or
K==*3, £6,... .ltmust be noted that when the collective
There are some combinations of these operators that yieldescription of theT=1 pairing excitations was studied in
more useful results, such as Refs.[21,23, it was found that for studying the rigid rotor it
was necessary to retain the gauge angle degree of freedom as
Rg:g[K(X,Y,Z,y)=(— 1)Kg[K(_X,_Y,Z,7), the rotational Hamiltonian was coupled to it. In this section,

(3.20 even if the rotational Hamiltonian is coupled to thelegree
of freedom we will assume that it is possible to freeze it and
we will therefore disregard it completely. In this case the two

2 T _(_ |+KNT _ _
RoR1:01 0 (XY, Z,y) = (=100 (= XY, = Z,7). basic quantitiep? and 8 can be written as

(3.21)
p?=2(X?+Y?)+522, (4.)
If the wave function is also an eigenfunction of the parity
operator with eigenvalu#l, i.e., 10 1
B:E _E(XZ+Y2)+ZZ : 4.2
/P\I}ryM(XaYazi’}/101¢1w):H’\I’|T'M(X!Yaza7161(;5!1//)1

(322 and the inertia tensor has a rather simple expression in terms

. of the intrinsic variables:
we obtain that

Ji=To=3(X?+Y?)+30Z2,
P (XY, Z,y)=11(-1)'g[ (=X, =Y, = Z,7).
(3.23 T2=18(X?+Y?). 4.3
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TABLE IV. Inertia matrix G,,,, for the y=0 case.

p m b a1 [P ds
p 1 0 0 0 0 0
P 0 p? 0 0 0 0
b 0 0 p2sirt u —3p?sirf u 0 0
o 0 0 —3p?sirt u 9p?sirt u 0 0
OB 0 0 0 0 6p1— 2 sir? u] 0
s 0 0 0 0 0 6p1— 3 sir? u]

It is convenient to reparametrize the problem in order to
introduce p as one of the dynamical variables and use

“spherical coordinates” by defining two angle variablgs
and/

X=psinu cos{/2,
Y=psinusing/+/2,

Z=pcosul\5. (4.49)
In terms of these variables3=(10//21)p?[ -3 sirfu
+1cog u]. Now theG,, inertia matrix will be a six by six
matrix as shown in Table IV.

We will assume the adiabatic hypothesis foand ... But
it must be noted that, a&is a cyclic coordinate, we cannot

use for it the adiabatic hypothesis and we must, therefore,

consider the coupling of with q;, g,, andqs in an exact
way. For this purpose we use the conjugate momentu
method, i.e., we introduce

aT 3

Q=5 2692{1— ZSinzl’lqlv (4.5
Q2=%=6p2{1— gsinﬂqz, (4.6)
Q3=5—;=992 Sir‘zﬂ[%_ %4=K, 4.7)
Pg:Z—ZT: —3p?sir? M[qs— %4 =—i o7 (4.9

It must be noted tha@; satisfy the commutation relations
given by Egs.(2.8). Besides, the relation between E4.7)
and Eq.(4.8) provides the auxiliary condition:

K=-3m,=0,+3,%6,... . (4.9

The kinetic energy can be written in terms of these new

variablesQ, as

1
Trot= 2,:‘ ﬁQia (4.10

3 2
jlzjzzzp [1+3 cog uml,

9
J3:§p23i¥ . (4.1
The total rotational energy can be written as
1(+1) KA T3)
rot 2]1 2]1.,73
1-9sir?
I(1+1)+ 2 KZ[‘_‘—M]

B Sir? u .12
= 57, )

r;"he structure of the full “rotational band” is now more

complicated than for the quadrupole case. The part of the
band that ha& =0 has a structure similar to that of the usual
rigid quadrupole band, but the part of the band related to the
states withK# 0 has energies determined also dyand

that are related with the energy of the first member of the
ground state rotational band. Note thatrepresents devia-
tions from perfectly axisymmetric deformations, i.e., jor

=0 the deformations havgz=0 and therefor&K =0, only

for w# 0 can nonzerd& be found. Foru=0 the rotational
band has the usual structui@! states havd&K =0, as states
with K#0 have an infinite energy When the states with
angular momentum equal or larger than 3 are considered it is
found that there are more than one state belonging to the
ground state band with this angular momentum: one with
K=0 and parity ¢1)', and two withK=3 and energies
given by Eq.(4.12. Each time that =|K|=3n (with n in-
tege) two new states appedr.e., we will have five states
with 8=1=6, seven states with Ell=9, etc). Figure 1
shows the lowest energy states K+ 0,3,6 as a function of

M.

V. SUMMARY

In the present paper we have obtained a parametrization
of the octupole collective variables that guarantees that the
inertia tensor is diagonal. The relation between the compo-
nents of the octupole intrinsic variables and those defined

where the components of the moment of inertia are given byarameters is given by the equations
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Pszr K=0 The first condition means that the parameérsY, andz
o5 - can be considered as positive, as all the other signs can be
obtained by relabeling the axis. The second statement, as in
20 the quadrupole case, tells us that all possible shapes are con-
15 4 tained in the range € y<=/3.
- A general octupole field can be written in an alternative
10 3 way [16] as Vi=ZpanYin=eohot 3 e(i)F (i)
5 //2 +32 L e,(i)F,(i), whereA;, F(k), andF,(k) are related
1 to the irreducible representations of the octahedron group. In
0 ; : e
20 20 80 8011 (deg) Ref.[16] it was proposed that an appropriate parametrization
Hideg can be obtained imposing the cancelatioregfi)Vi. Using
oT the parametrization that we are proposing, these parameters
p ’2"; K=3 have now a rather simple structure:
|=8
20 €=0,
15 5 ;
€1(1)=—sin(y)Z,
10 4
5 ) 2
3 61(2)=—Sln —? X,
20 40 60 Bou(deg) A
¢ (3):sin< - —77)\(
P?T ot ' 3/
25
20 e2(1)=\5 cogy)Z,
15 2
10 62(2)=\/€COS< —?)X,
° 4
7T
€(2)=—15 co< 'y—)Y.
3
20 40 60 80u(deg)

It must be noted that, for the octupole degrees of freedom,
the existence of axial symmetry does not necessarily imply
that the rotational band must hae=0. The study of the

FIG. 1. Spectrum of a symmetricyE0) rigid rotor for K
=0,3,6 as a function of the deformation parameter

3 J3 r_igid rotor has illustrated the richness of the octupole rota-
az=|cosy— 75iny X+i| cosy+ 7siny Y, tional bands. o . . _
Last but not least, it is worthwhile noticing that if one
takes into account simultaneously the quadrupole and octu-
1 pole degrees of freedom, and for each one of them the con-
afﬁsin YZ, dition that the inertia tensor has to be diagonal is imposed,

the intrinsic system for both degrees of freedom will not be
the same: each degree of freedom will have its own “intrin-
sic system.” It must be remembered that the Euler angles
associated to each intrinsic system are just a way of labeling
three of the five(in the quadrupole cager seven(in the
octupole ongcollective dynamical variables.

5
alzgsiny[XJriY],

ay,=/5 cosyZ.
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