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Three-pion exchange: A gap in the nucleon-nucleon potential
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The leading contribution to the three-pion-exchange nucleon-nucleon potential is calculated in the frame-
work of chiral symmetry. It has pseudoscalar and axial components and is dominated by the former, which has
a range of about 1.5 fm and tends to enhance the one-pion-exchange potential. The strength of this force does
not depend on the pion mass, and hence it survives in the chiral [Bi656-28139)07805-X

PACS numbsgs): 13.75.Cs, 13.75.Gx, 12.39.Fe, 11.30.Rd

[. INTRODUCTION associated with the small pion masses in the effective theo-
ries.

The nucleon-nucleoriNN) interaction has been studied  Chiral symmetry is very important in the theoretical treat-
for more than 50 years, but it is still not fully understood. ment of two-pion exchange because it constrains the inter-
The research program proposed around 1@30and based mediatewN amplitude. At low and intermediate energies it
on the idea that the outer part of the interaction is due tds given by a nucleon pole contribution, superimposed onto a
meson exchanges proved to be very successful. Quite gen@mooth background5]. The symmetry is responsible for
ally, the spatial features of a given process are determined Hgrge cancellations within the nucleon sector that, at once,
the mass exchanged in thehannel and lighter systems cor- Settle the scale of the problem and amplify the role of the
respond to longer interaction ranges. The lightest ex-  Packground. The latter is very important, since the chiral
change, associated with the one-pion-exchange potentiQIUC'eO” s_ector in isolation does not suffice for explaining
(OPEB became a consensus in the 1960s, giving rise to &N experimental data. , _
generation of models in which waves with~5 were treated The_constrgctmn of the TPEP in the framework of chiral
theoretically[2]. dynamics motivated most of the research of this decade, be-

The second layer of the interaction is much more comple>9mm.ng with the work of O'rc.fﬁez' and van KolcH6], who
considered a system containing just pions and nucleons. Sev-

and was studied in the following two decades by means of Qral works followed, dealing with complementary aspects of

detailed treatment of the two-pion-exchange potentiaj, . problen{7,8], and nowadays this part of tiN interac-
(TPEB [3,4]. This Process dePe”dS on an intermediate PI9N%ion 'is well understood. Predictions f&fN observables pro-
nucleo_n ¢rN) scattering amplitude and reflects strongly its duced by just the OPEP and the chiral TPEP, assumed to
dynamical content, represent the full interaction for distances larger than 2 fm,
In the present decade, most of the research work on thgere calculated and shown to agree well with experiment
NN potential was aimed at constructing the TPEP in thgg]. Therefore the effort based on chiral symmetry led to an
framework of chiral symmetry. This symmetry was devel-important refinement of the outer part of this interaction and
oped around 1960 for systems in which pions and nucleongrought theoretical constraints to waves witk 3.
were considered as elementary. Nowadays, one believes In the case of théN interaction, it is worth noting that
QCD to be the basic theory of strong interactions and, acthe importance of chiral symmetry depends strongly on the
cordingly, that pions and nucleons are made of light quarksprocess one is considering. In the case of the OPEP, for
interacting by means of gluon exchanges. As the QCD Lainstance, it is completely irrelevant, for predictions from chi-
grangian predicts that gluons can interact among themselvesl 7N Lagrangians coincide with those arising from inter-
calculations at low and intermediate energies are very diffiactions without any symmetry. All Lagrangians, symmetric
cult. The usual strategy for overcoming this problem consist&ind nonsymmetric, produce exactly the same basic pion-
in working with effective theories that treat pions and nucle-nucleon vertex, showing that chiral symmetry is compatible
ons as elementary and include, as much as possible, the maiith and, at the same time, irrelevant for the OFEB].
features of the basic theory. The fact that the masses af the In the case of the TPEP, on the other hand, the symmetry
andd quarks are close to each other and very small in thes crucial. It produces internal cancellations in the intermedi-
hadronic scale means that QCD is approximately invarianate 7N amplitude which yield a central potential that van-
under the chiral group S) XSU(2). One therefore requires ishes in the chiral limit.
the effective theories to possess approximate chiral symme- To our knowledge, only contributions due to the ex-
try, besides the usual Poincareariance. changes of one and two pions have been so far studied in the
In low energy processes, chiral symmetry is realized inframework of chiral symmetry. In order to extend this pic-
the Nambu-Goldstone mode and the vacuum is filled with aure, here we study the component of thil potential due to
condensate that allows the excitations of massless collectiihe exchange of three uncorrelated pions. This system has a
states, identified with the pions. The breaking of the symmemass around 450 MeV and its effects should be longer than
try, due to the quark masses at the fundamental level, ithose of the vector mesons usually present in one-boson-
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FIG. 1. Diagrams for pion production.

exchange potentials. The basic interaction is closely relatedonstants. It is important to stress that these Lagrangians, in
to the amplitude for the processN— 7N, and hence we spite of their different aspects, have the same dynamical con-
review briefly the main features of this reaction in Sec. Il andtent and physical results do not depend on the particular
calculate the potential in Sec. Ill. version one adopts, as demonstrated on general groliifis
The pion production amplitude has the general form
Il. PION PRODUCTION — — _
iTepa=U[ SpcTa(AT+A) 4 SacTp(B™+B) 4 Sap7(C"+C)
The NN interaction mediated by the exchange of three B
uncorrelated pions is derived fro.,,, the amplitude for +iecpaE]ysU, 4
the processm®(k)N(p)— 7°(q) 7¢(q’)N(p’). This ampli- ]
tude is given by the diagrams of Fig. 1 and written as thevhere the tagsr and overbar refer to the pion-pole and back-
sum of T7, ., representing the class of processes with a piorground contributions. At threshold, this amplitude is usually

pole in thet channel, and a remainder, denoted Ty,,, written as

whose dynamical content is indicated in Fig. 1. In the frame- iTepa"=2mM0o-K[D1(8acTo+ Spate) + D20cb7al,  (5)
work of chiral symmetry, this last amplitude is given by a

basic family of diagrams, involving only pions and nucleons,whereD,; andD, are dynamical coefficients. Their empirical
supplemented by other processes, involving delta, rhoyalues may be obtained from the following specific pro-

omega, and therN sigma term. cesses:
There are many alternative ways of implementing chiral B L i
symmetry. In particular, the subset of diagrams in the pure (m p—m" 7 n)—iT|"=2v2mo-kDy, (6)
pion-nucleon sector, corresponding to the minimal realiza- . - —ith
tion of chiral symmetry in this problem, may be evaluated by (m'p—m N —iT|"=v2me k(D1 +Dy).  (7)

means of nonlinear Lagrangians wi#iN couplings that may
be either pseudovectdPV) or pseudoscalaiPS. Denoting
the pion field bye, and definingf = (f2— ¢?)*2, we have

T _ MOa _
IX P T I cha™ T[UTd')’Su]
f ety 2| MY

The pion-pole amplitude for on-shell nucleons is

mT
dcba

_dcba 8
(p' —p)?—p? ®

I+

Lpy= Ew"‘E[ Yy
whereT ], is the pion scattering amplitude. At tree level, it

9a — It is given by
—_ . M h—
+2fﬁ‘//Yﬂ757¢ (0" ¢ f+fﬂ. ’ (1) L
— — Tacha= 72 {8adducd (A+0")?— w1+ Spadad (k=" )2— p]
Los= L+ NiON—gN(f+i7 dysN, (p oz 0acdhe paac
where + 5cd5ab[(k_Q)2_M2]} 9
1 and yields
L= E(aﬂfaﬂf+au¢-aﬂ¢)+fm2f . (3) , .
are_ MO (P’ =Pk p 10
In these expressiong; and N are the nucleon fields with 2 (p'—p)2—u? '
nonlinear and linear transformation propertigsand m are o
the pion and nucleon masses, dnd g, andg, are, respec- The contributions tdA, calculated with the PV Lagrang-

tively, the pion decay, therN coupling, and the axial decay ian, are given by
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— [mga\® q'k kd' gk
A= 12 ’ ’ 2 + 2 ’ 12 ’ + 2 ’ 2
fr ) 1(@“+2p"-q")(k°+2p-k) (k*=2p"-kK)(q'“—2p-q’) (q°+2p"-q)(k"+2p-k)
ke 4'dq dq'
+ 2 ’ 2 + 12 ’ ’ 2 + 2 ’ 12 ’
(k*=2p"-k)(q°=2p-q) (a°+2p"-q')(q°=2p-q) (q°+2p"-0)(q'“—2p-q’)
1 k k 1-1/g; k (k+d)g  (k+d)¢’ 4(k+4’) 4’ (k+d)
. 2 + 2 ’ + 2 —2—+ 2 + 12 r+ 2 ’ + 12 ’ ’ '
m\k°+2p-k k°—=2p’-k am m gq°—2p-q q'“—2p-q° g°+2p'-q q'“+2p'-q
(11
the corresponding expressions ®rand C are obtained by making— —q andk— —q’ respectively, anc is
= (mgA)3 4’k ke’ 4k
L) @+ 2p g (K+2p-k)  (K2=2p"-K)(q'?=2p-q’) (g*+2p’-q)(K*+2p-K)
ke 4'd4 dq'
+ 2 ' 2 + 12 ’ ’ 2 - 2 ’ 12 ’ . (12)
(k*=2p"-k)(q°=2p-q) (a'°+2p"-q")(q°=2p-q) (q°+2p"-q)(q"“—2p-q’)
|
For future purposes, one notes that if the PS Lagrangian o 9 3u
were used, one would obtain the same structure gjti 1 D,=[DJ]+[D4]= —A3(3+ > a+---
and the last term of the equation fArwould vanish. In the 81
PS case, the signature of chiral symmetry is the contact in- 9
teractions due to the functidnin Eq. (2), which give rise to — _A3 2_2ﬁ+-.- , (17
the terms proportional to a7 in Eq. (11). 8f m
In order to estimate the accuracy of the pion production
amplitude derived from Eq(l), we consider the contribu- O 9 u .
tions to the amplitude®, andD.,, D2=[D2]+[D2]= 82 3tomt
ga 2m  u(o—p)
DI=—" , 13 IR N
Y213 VE+mM om(E—m)+ p? 43 gz | m T ) : (18)

5 _ g5 [2m | 2m w
Y412 VE+m|2m+yu 2E—pu
1 M " M
e 1l s
and
- 9a 2m 3u?
DZ:——S\/E+m > (15)
2f 2m(E—m)+pu
— O 2m 4m? .
2 412 VE+m|2mo—pu2\m 2E-u
m (1+ ) 2\ 1 !
2m+pu 2E—pu gi
M M M
>< — —
(m+2E—,u 2m+,u) ’ (16)

where o=[u(dm+5u)]/[2(m+2x)] and E=m+2u
— w. Expanding these amplitudes in powersudfn, one has

The results for the full amplitudes at threshold, namely,
Dy =ga(1+71/2m)/8f2 and D,=—ga(3+ 17u/2m)/8f3,
coincide with those obtained in the framework of chiral per-
turbation theory[12]. In order to assess the role of chiral
symmetry in this problem, we note that a Lagrangian without
any symmetry, containing just a P8N interaction, would
give rise to the same pion-pole contribution and an amplitude

A corresponding to just the six first terms in Egj1), which
involve two nucleon propagators. Therefore the full elimina-

tion of chiral symmetry would yield51—>gA(2)/8f§, and
D,— —ga(—4+3u/m)/8f2, indicating that chiral symme-

o
try does play a role in this problem. On the other hand, this
role is not as large as in the case ®N— 7N, where the
same procedure would change one of the scattering lengths
by a factor of 200. Numerical results for the amplitudes are
given in Table | and show that predictions from the minimal
chiral model are close to empirical values, although there is
some room for improvement D, .

In this work we are interested in the construction of the
NN interaction due to the exchange of three pions, which is
based on the amplitud&.,,. As indicated in Fig. 1, the
complete evaluation of this amplitude would require the cal-
culation of a large number of diagrams. However, long ago
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TABLE I. Subamplitude®,; andD, in units of » 3. Experimental results correspond to a best fit quoted

in Ref.[12].

Df 51 D1 Dg 52 D2
Egs.(13)—(16) 1.78 -0.91 0.87 —2.02 —0.30 -2.32
ChPT2Egs.(17), (18 181 —0.96 0.85 —2.06 -0.33 -2.39
Experiment 0.80 -3.20

&Chiral perturbation theory.

Olsson and Turndrl3] showed that the leading contribution where the factor 1/3! is due to the symmetry of the interme-
to this amplitude comes from the following effective La- yiate three- pion state, is a pion propagator, anﬂ is the

grangian:
pion production amplitude for nuclean
We adopt the following external kinematic variables:
. 2
gfs 3y . (19 W=py+po=pi+ps, (24
o . Lo — A=p;—p1=P2—Pz, (25)
It gives rise to the following contribution té.:

z=[(p1+py)—(P2+p3)li2. (26)

A= %(Zm—k), (200  As the nucleons are assumed to be on-shell, they are con-
3 strained by
W-z=W-A=z-A=0. (27

and, as beforeB andC are obtained by making— —q and
k— —q’, respectively. This corresponds to the following For the internal variables we define
threshold amplitudes:

Q=(q+q’'+k)/2, (28)
— 2m '—(q' —
o Ga [ 2m +ﬁ):_£2+&,(21) Q' =(a'~9)2, (29
gfy YEfmi m/gifloom so that
k=Q—A/2, 30
> gf2 VE+m|{m 8f3 ’ q=Q/2+ Al4—Q, (31)
q'=QI2+A/4+Q’, (32)

showing that the effective Lagrangian given by EtP) re-
produces correctly the leading contribution at threshold.  and the condition of momentum conservation regedsq’
—k=A.
11l. NUCLEON-NUCLEON INTERACTION As discussed in the previous section, the Ieading contri-
bution to the amplitudd comes from the effective Lagrang-

The basic element in the construction of tiBl potential ian given by Eq(19), which yields the following intermedi-
due to the exchange of three uncorrelated pions is the correge effective vertex for nucleof?):

sponding Born amplitude for the procesd(p;)N(p,)
—N(p;)N(p3), associated with the diagrams of Fig. 2. De-

noting this amplitude byr, one has TE.=

cha™

£ )(uy ¥5U) P Speri (A +0"),,
d*Q + 8,7 2(q" = K) o+ 87 2(q—K) 1. (33
BE f (277)4 2m) 4A(k)A(Q)A(q ) TEbaT coa oo (47K e (G710 (39
(23) The corresponding expression for nuclgdn has the same
form, but is globally multiplied by—1), due to the senses of
flow of internal momenta. Using these results in E28), we

—@— — T p" have
\/*q/Kq 2
—@— %AL%— F(A)= <4f ) 2V AUy ysu) P Uy ysu) P L, (A),

34
FIG. 2. Leading contribution to the three-pion-exchange poten- 39

tial. wherel ,, is given by
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1 [ d“Q 1 d‘Q’ [3Q,Q,— Q,A,/2—A,Q,/2+27A A J4+4Q.Q!]

w8731 ] @rP Q877 | am? [(Q - Q- Ma?— u2I(Q + iz lay—p7 - %

This function is evaluated in the Appendix and reads  where thelU (x) are integrals of Yukawa functions, written in
terms of the variablex=ur and given by Eqs(A19) and
L= 2,8, 1P(8) +9,,1°1%(8), (36)  (A20).
Using the result
with IP andI? given by Egs(A12) and(A13), respectively.

Using the nucleon equation of motion, one has eV V. 6.V |1+ 2+ 3 \e ™
X X ax a2X2 X3
2
9a — 2
F(A)=—| -2 | #Y. #2[4m?u®(Tysu) Y S P 7 271 60 60
( (4f§7) s =5|o e T e T ad
X(Uysu) PIP(A) = Syt ysu) P vo[q, 10, 45 105 105|]e
X (W, vs0) 213(A)]. 37 AT Tax e e At ]
(42

This expression corresponds to the exchanges of pseudo-
scalar and axial systems. In order to make the strength of thaith S;,=30‘?-% 01?.8—0{1. 6?, in Egs. (A19) and
interaction more transparent, we elimingtg in favor ofg,  (A20), we obtain
by means of the Goldberger-Treiman relatigg=gf . /m,

i 1 gu®\% u
and write sz(r): §(4mf2 ET(D' 7_(2){0,(1), 0'(2)[U8(X)
22 i
F(A):_ng(l)'f(z)(;?> (Uysu) M (Uysu) @1P(A) +3U%(x) ]+ S Ub(x)}, (43
2 where
—W(UY"%U)(D(UVM%U)(Z)'a(A)}- (39 1 11 L
US(X):WEJO dafod’y 734{[3+(1—2a)2]
For future purposes, it is worth noting that the corre-
sponding amplitude for one-pion exchange reads X(1=2y)2+2[1-(1-2a)?](1-27y)
7
_ _ 1 —24)2 4
Fr(A) =g 22 (yst) O (Tyst) P 7z | Hlert - 207 1t gt e
(39 60 60 | e
. o +a3x3+a4x4 e (44)
Going to the nonrelativistic limit in the center-of-mass
frame, one has 1 11 1
pr=——fd fd a{[3+(1-2a)?
Az =" \5n : 52
4m 2m 215 X(1-29)2+2[1—(1-2a)?](1-27)
X[—oV-A 0@ A IP(A)+ u?0'Y- oP13(A)]. , 10 45
(40) +[27+(1—2a) ]}(1+a_)(+aTXz
; : ; ; 105 105 e 2
Th_ls result allows the configuration space potential to be + s+ | — (45)
written as a’x® a'x® x
3 1 81 1
riyy = P [ FATAT ] V0= 4 | da [ dya(i-a)yia-yas
V37T(x) = 47JW Mf(A)e (X) @n?3),9%), ya(l—a)y*(1=7y)
_(9r BV Ry ) ) p 6 15 15)e™
- ﬁZ_ffT) ET( 7DV, 0V, UP(X) Nt aet e 5 (48
+ oM. g@Uur(x)], (41) and
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FIG. 5. Ratios between the approximate expressid8s—(51)

FIG. 3. Profile function for the/§, V8, andVv? component of
by the corresponding functiorig4)—(46). All ratios are identical.

the three-pion-exchange potential.

1 4 learns that the contribution of the axial component is quite
a= \/1_ + (1227 (47) small and hence the three-pion-exchange potential is domi-
7y N1-(1-2e)7] nated by the pseudoscalar channel. In bdt and V its

p contribution tends to add to the OPEP and is visible up to 1.5
'fm, as shown in Fig. 4. The influence of this component of
the force over observables will be discussed elsewhere.

The structure of this result is similar to that of the OPE
which is given by

1/{gu\? u Y 2 In order to produce a feeling for the structure of the func-
Vi(D=3\5m ET( -7 tions U(x), in the Appendix we have evaluated approxi-
mately the integrals in Eq$44)—(46) and obtained the fol-
e X 3 3\e* lowing asymptotic resultsx(—):
X 0'(1>-0'(2)(7)+812 1+§+77] g asymp )

(48) U S(X) —

80( 3 13 10 1o)e3x
X

W‘/—g +;+m+$+w -7 (49
The profile functions of the spin-spin and tensor compo-

nents of the three-pion-exchange potential are displayed in

Fig. 3, where it is possible to note that all the curves shovvU B(X)—

the typical divergent behavior of unregularized potentials at” 2

the origin. Therefore we assume that our results are realistic

for internucleon distances larger than 0.7 fm, the usual bag . 5 ( s 5 5 ) Cax

radius. Inspecting the figure for the spin-spin channel, ongja ., , _ c, 202
®2(x) ot 5d) 5 (51)

80( 4 20 16 16)e—3x
X

T
@mt e T ae e e 0

|1
(4m)* 3y3

10 T T T T T T T T T
which are compared with the exact ones in Fig. 5.

A last point we would like to address here concerns the
nature of the force in the chiral limit. The potential given in
Egs. (43)—(47) incorporates two kinds of approximations.

The first of them is associated with the assumption hat
Eq. (19), represents the leading contribution to thl7 77
vertex. The other one is related to the nonrelativistic limit
taken in Eq.(40). On the other hand, no approximations
besides the neglect of contact interactions were performed in
the calculation of the three-pion propagator represented by
the functionsl (A). Therefore the corresponding configura-
tion space expressions, given by E¢#)—(46) also do not
0= ' ' T ' ' ' ' ' ' contain approximations and can be used to evaluate the form
' ' of the interaction in the chiral limit. The strength 6#7(r),

as given by Eq(43), is proportional tox’. Recalling that

FIG. 4. Profile function for the spin-spiSS and tensonT)  X=ur, we obtain the following results whemn—0:
components of th&/” (dashed lingandV™+ V37 (solid line). 1 UB(x)—140[ (4m)*r "], w'UB(x)—245[(47)* "], and

V (MeV)

r (fm)
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w'U3(X)— — 5[ (4m)* "]. Thus the three-pion exchanN potential survives in the chiral limit, where it has the form

1/ g \? 1 1
Va”(ng(W) (47)5111).%2)[125 0'(1)~0'(2)+24581ﬂr—7. (52

Note added in proofFor an early work on three-pion-exchaniy@l potential, see Ref.14].
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APPENDIX: INTEGRALS

In this appendix we evaluate the integtgl, given by Eq.(35), using the following results:

[ d%Q 1 i 1
XKinsd)~ | Gy fro kP TR 7 @ o

KZ
p0—|n<l—ﬁﬂ, (Al)

_ _( d*Q Q. . [ 1 (1—2a) ( KZ)
}uKinsd)= | o fqwi e TR 7 @ ydel | s
(A2)
_ d*Q Q,0Q, i 1 [1-2a\? K2
X’”(K'M'g):f(277')4[(Q—K/Z)z—ﬂz]f(Q+K/2)2—M2§2]:(477)2|K”vaoda( 2 ) ’J°_'”(1_W”
2 1 31— (1-2a)? K?2 K2
+"“7g,wfoda [ (4 ‘ ](1—#222)[p1—ln(1—;52)”, (A3)
where

Aa+(1-a)é]
a2 (Ag)

andpy andp, are constants associated with the dimensional regularization procedure. In order to perform the integrations, it
is convenient to use the following representation for the logarithm:

2 25 2/ p2
|n(1——§ ):fldﬂ<l w218

w752 ) Pt k= p) "

Quite generally, constants appearing in these results correspond to contact interactions, since they do not degend on
we are interested in the long-range part of the potential, these constants will be neglected in the sequence and we write

_ B i 1 1 w3 B2
K58)= = ) ot e
_ o 1 1 w2321 g2 1-2a
K0~ e [ 98t [ A7
i rr wPsYUB [[1-2a)? 31— (1-2a)?](1-B)
X”“(K'“'f)‘_zl(mzfod“fodﬁKz—uzzzfﬂ(( 2 )K“K”_[ 85 }“29“”}' (A8

The integral inQ’ can be performed using these results, and one has
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I !

v

d“Q’ [3Q,Q,—Q,A,/2—A,Q,/2+27A A /4+4Q; Q)]
J(Zw)“ [(Q'—Q/2—A/4)*— u?|[(Q' +QI2+ Al4)*— u?]

=(3Q,Q,~ Q,A,/2—A,Q,/2+27A ,A J4)] u?X(Q+ Al2;11,1) + 4X,, ,(Q+ Al2; 1)
i

NERN 1 ,
) 90 98 g (3 (200,

—[1-(1-2a)?)(Q,A,+A,Q,)/2+[27+(1-2a)?]A ,A JA— N1~ (1-2a)](1~ B) n°],,./2}, (A9)

where

4

2:—
MBI (1—2a7]

(A10)

The functionl ,, is then given by

1 d*Q 1, B i 1 1 (1 \?
I,u,V(A): ? (277)4 [(Q_A/Z)z_,uz] - (477)2 a'uzjo da’fo dﬁﬁ{[?ﬁ'(1—2(1)2]XMV(A,,LL,)\)

—[1-(1=2a)2][A X, (A, M) + A X, (A, 1, N) 12+ [ 27+ (1= 2a)2]X(A, N A LA A= N[ 1~ (1-2a)?]

X (1= B)X(A, 1N g, 12}

=A,A, 1M 1P(A)+g,,ul1%(A), (A11)
where
IP(A)= (477)424f Jdﬂf dyf de [3+(1 2a)?)(1-29)%+2[1-(1-2a)?](1-2y)
+[27+(1 Za)ZJ}W (A].Z)
13(A)= (477 48f daf d/af dyf de {4>\2[1 (1-2a)?](1—-B)+ 67[3+(1—2a)?][1—(1—27)?]
X(l 6)}m (A13)
[
with wherex= ur. Using the result

, Ayt (1= y)\?]
S f1-(1-2y)7"

(A14)

d3A e—iA-r e ox
f e (A16)

(2m)3 A2+ 1202 47 x
Results presented in this appendix are covariant. On thge have

other hand, the calculation of the potential is performed in
the center of mass of thdN system and we us&a=(0;A)

A?=—A UP(x) fd fdﬁf d fde)\ 7

: -~ = | da
The potential in configuration space is determined by the (4m)* 24 Jo 0 o V]o" Be
functionsU(x), given by *{[3+ (1= 2a)2](1—= 27)%+ 2[ 1 (1— 24)?]

477 d3A _iA ) e ™
e ), (A15) X (1—2y)+[27+(1-2a)%]}

U(x)= (A17)
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mately for large values of. In this case, the exponential has
a sharp minimum for=1/2,y=2/3 and varies very rapidly
X{A\[1—(1-2a)?](1—B)+ 03+ (1—2a)?] around it. Thus all the elements in the integrand but the
exponential may be taken as constants, and we have

1 1 (1 1 1 1 N\2%42 The integrals overe and y can be evaluated approxi-
a(X):—W‘l—sf daJ d[ﬁ’f dyJ de ; ;

—ox

X[1-(1-29)°)(1- e} =~ (n1g 1 80/ 1. f | f I
(X)_(4ﬂ,)4 3 3X a 7e 3
The integrations ire and 8 can be performed analytically, (A22)
and we have
a——1161++5+51
) 1 f J j i Vel 3 po2 (0= (4m)* 3x? " 9x®x*
UP(x a a +(1-2«
Xf daf dye & (A23)
X(1-29)2+2[1—(1—2a)?](1-27) 0 0
5 e & In order to perform the last integral, we first use a new
H27+(1-2a) ]} 1+ —+ 72| 3 variableu, related toa by
(A19) 1 1 1 12
a=——|=—
L s 2 |4 4+29u*(4-3y) y(1—y)+yu?
Ua(x)=——(4w)4§f daf dy a(1—a)y3(1—y)a® (A24)
0 0 and then another variable related toy by
1+ £+ 15 + 151e ™ (A20) 3+(3+0v2)%F 4% 2+ 44°+ 1205+ 08
2.2 T 3.3 yd
asx®  a’x®| x y= 231077 , (A25)
where where the(—) and (+) signs refer to the intervals 9y
1 y <2/3 and 2/3& y=<1, respectively. We then obtain
a= \/ — + — — 5. (A21) 1 1 aT e—3X
1=y A1-(1-2a)7] f daf dye ¥=——- . (A26)
0 0 33 X
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