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Quantum Monte Carlo studies of relativistic effects in light nuclei
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Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body
potentials, and their boost corrections. In this work we use the variational Monte Carlo method to study two
kinds of relativistic effects in3H and 4He, using relativistic Hamiltonians. The first is due to the nonlocalities
in the relativistic kinetic energy and relativistic one-pion exchange potential~OPEP!, and the second is from
boost interaction. The OPEP contribution is reduced by;15% by the relativistic nonlocality, which may also
have significant effects on pion exchange currents. However, almost all of this reduction is canceled by
changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding
energy is very small. The boost interactions, on the other hand, give repulsive contributions of;0.4 ~1.9! MeV
in 3H (4He) and account for;37% of the phenomenological part of the three-nucleon interaction needed in
the nonrelativistic Hamiltonians. The wave functions of nuclei are not significantly changed by these effects.
@S0556-2813~99!03607-9#
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I. INTRODUCTION

It is generally accepted that QCD is the fundamen
theory of strong interactions, however, due to quark confi
ment, the genuine QCD degrees of freedom are not exp
at low energies. In low-energy nuclear physics, nucleons
mesons are believed to be the physical~effective! degrees of
freedom. In the nonrelativistic many-body theory, nuclei a
regarded as bound states of nucleons interacting via two-
three-body potentials. All the subnucleonic and meson
grees of freedom, as well as relativistic effects are, in so
way, absorbed in these potentials. Typically the nonrela
istic Hamiltonian is expressed as

HNR5(
i

pi
2

2mi
1(

i , j
v i j 1 (

i , j ,k
Vi jk1•••, ~1.1!

and models of two- and three-body potentials are constru
by fitting observed data. The ellipsis in Eq.~1.1! represents
N-body interactions (N>4) which are thought to be muc
smaller than two- or three-nucleon interactions, and there
neglected.

The central problem is to solve the many-body Sch¨-
dinger equation

HNRuC&5EuC&. ~1.2!
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The eigenvaluesE can be compared with experimental ene
gies, and the eigenstatesuC& can be used both to study th
nuclear structure and probe it through electron-nucleus s
tering experiments, and to calculate rates of nuclear react
which may have important applications in several doma
of physics.

Schrödinger equation~1.2! is difficult to solve due to the
large spin and isospin dependence ofv i j and Vi jk . Several
techniques have been developed, among which are Fadd
Yakubovsky @1#, harmonic-hyperspherical basis@2#, and
quantum Monte Carlo~QMC! @3,4# methods. The first two
methods are limited to solving three- and four-nucleon s
tems, whereas with the third method it is now possible
calculate the ground state energy and wave function foA
52 –8 nuclei with great accuracy.

Some of the results obtained by Pudlineret al. @5# are
listed in Table I. The Argonnev18 two-body potential@6#,
fitted toNN scattering data and the deuteron binding ener
and Urbana IX three-body potential@5# constrained to give
the correct binding energy of3H and density of nuclear mat
ter, are used in these calculations. It works rather well
4He, however, as can be seen from Table I, theA56, 7, and
8 nuclei appear to be systematically underbound. It is in
esting to note that a large fraction of the totalv i j comes from
the one-pion exchange potential~OPEP! and the dominant
part ofVi jk comes from two-pion exchange. Also notice th
the three-body interaction is much smaller than the two-bo
interaction, yet it is crucial to obtain the observed energ
because of the large cancellation between the kinetic en
and the two-body potential energy.

Although the nonrelativistic QMC techniques have a
vanced to such a level that the binding energies of li
nuclei predicted by a realistic Hamiltonian can be calcula
with ,1% error @3,5#, the effective description of nuclea
dynamics by means of nonrelativistic Hamiltonians m

on
©1999 The American Physical Society02-1
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TABLE I. Nonrelativistic Green’s function Monte Carlo~GFMC! results~in MeV! for light nuclei with
the Argonnev18 and Urbana IX potentials. The first line gives the experimental energy while the next
list the calculated total, kinetic, two-, and three-body interaction energies. The last two lines give th
tribution of the pion exchange parts of two- and three-body interactions.

2H 3H 4He 6Li 7Li 8Be

Eexp 22.2246 28.48 228.30 231.99 239.24 256.50
^E& 22.2248~5! 28.47~1! 228.30~2! 231.25~11! 237.44~28! 254.66~64!

^T& 19.81 50.8~5! 111.9~6! 150.8~10! 186.4~28! 246.3~56!

^v i j & 222.04 258.4~5! 2135.4~6! 2179.2~10! 2220.8~30! 2295.8~62!

^Vi jk& 0.0 21.20~2! 26.4~1! 27.2~1! 28.9~2! 214.8~5!

^vp& 221.28 243.8~2! 299.4~2! 2128.9~5! 2152.5~7! 2224.1~9!

^V2p& 0.0 22.17~1! 211.7~1! 213.5~1! 217.1~4! 228.1~8!
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have intrinsic deficiencies. In particular, when the nonre
tivistic potentials are fit to the experimental data, relativis
effects are automatically buried in these potentials. How w
can these effects be represented by means of local non
tivistic potentials is an important question to be answered
other words, we may investigate whether an explicit a
more correct treatment of relativistic effects can resolve
systematic underbinding of the nonrelativistic results forA
56,7,8 nuclei. However, it is possible that this underbind
is not related to relativistic effects. In fact, significantly im
proved results of binding energies ofA<8 nuclei have been
obtained with more realistic models ofVi jk @7#.

Furthermore, with the recently completed multi-Ge
electron accelerator facilities such as TJNAF, experime
will be performed at energy and momentum transfer regim
where relativistic effects are substantial in kinetic energ
and possibly in other aspects. Clearly, investigation of th
effects in nuclear ground states is also necessary. Above
no matter how small the relativistic effects might be, und
standing them is a fundamental quest, just like understan
the fine and hyperfine structures in the hydrogen atom.

We have not yet arrived at a satisfactory relativis
theory of nuclei. That is a formidable task due to the inter
quark structure of nucleons. Several approaches have
developed to study various relativistic effects that may oc
in few-body nuclei. The calculations aim to provide an es
mate of the magnitude of the effect studied, and learn fr
the available experimental data. The approaches can be
sified in two main categories: effective field theories a
relativistic Hamiltonian dynamics. Within the first one, th
Bethe-Salpeter equations for the two- and three-body
tems have been solved using a separable kernel@8#. Also
covariant three-dimensional reductions of the relativistic
tegral equations have been applied, along with one-bo
exchange models for the kernels, to the three-nucleon
tem. Here we refer to minimal relativity in th
Blankenbecler-Sugar equations@9# and, more recently, to the
spectator~Gross! equations@10#. In the relativistic Hamil-
tonian dynamics approach, relativistic covariance is achie
through the Poincare´ group theory. One application of thi
method is the light front dynamics, which has been appl
to the two-body system@11#, and the other is the instan
form.

The present interest in the relativistic Hamiltonian (HR)
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dynamics in the instant form stems from the fact that
ground states of this Hamiltonian can be studied with
quantum Monte Carlo methods that have already been de
oped in the nonrelativistic approach. Earlier studies@12,13#
and the present study are limited to theA52, 3, and 4 nuclei,
but attempts to study larger nuclei are in progress. Comb
tions of meson exchange and phenomenological terms ca
used in the interactions inHR , which allows a very good fit
to the two-body scattering data withx2;1. It is improbable
that the entire short and intermediate range two-nucleon
teraction can be represented as due to the exchange of a
types of mesons. Therefore more general ways of study
relativistic effects in nuclei are desirable.

In this paper we report new results for the binding en
gies of theA53,4 systems, using the relativistic Hamiltonia
dynamics in the instant form, where for the first time t
nonlocalities induced by the relativistic effects in the on
pion-exchange potential are taken into account. In Sec. II
describe the relativistic Hamiltonian used in this work, d
cuss the physical motivation behind its choice and the re
tivistic effects it contains in addition to those in the intera
tions of HNR. In Sec. III we apply variational Monte Carlo
~VMC! techniques and present results. Finally we summa
in Sec. IV. Some of the detailed derivations involved in th
work are given in the Appendix.

II. THE RELATIVISTIC HAMILTONIAN

In relativistic Hamiltonian dynamics in instant form th
momentum (P) and angular momentum (J) generators are
chosen in the conventional way and therefore are indep
dent of interaction, while the Hamiltonian (H) and boost
(K ) generators have interaction terms. Based on the pion
ing work of Bakamjian and Thomas@14# and Foldy@15#, the
relativistic Hamiltonian can be expressed as

HR5(
i

~Ami
21pi

22mi !1(
i , j

@ ṽ i j 1dv i j ~Pi j !#

1 (
i , j ,k

@Ṽi jk1dVi jk~Pi jk !#1•••, ~2.1!

where ṽ i j are two-body potentials in the ‘‘rest frame’’ o
particles i and j ~i.e., the frame in whichPi j 5pi1pj50).
2-2
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Similarly Ṽi jk is the three-body potential in the frame
which Pi jk5pi1pj1pk50. The dv i j (Pi j ) and dVi jk(Pi jk)
are called ‘‘boost interactions’’ and depend upon the to
momentum of the interacting particles. Obviously,dv i j (Pi j

50) anddVi jk(Pi jk50) vanish. ThedVi jk(Pi jk) is neglected
in the present work. It is believed to be much smaller th
the terms considered.

We will now discuss the choice of the terms and inter
tions in the above relativistic Hamiltonian. This Hamiltonia
is not yet derived from QCD, though we hope that in t
future it may be possible to obtain it from QCD. We ha
also made no attempts to derive it from a Lagrangian c
taining nucleon and meson fields. Even though such a
grangian offers a useful language to discuss nuclear force
cannot possibly describe all aspects of nuclear forces s
nucleons are bound states of quarks. For example, the
change of electrons is known to be responsible for the b
ing of two hydrogen atoms to form the hydrogen molecu
as described by Heitler and London. It is not possible
represent this attraction as due to exchange of photon
Bosons such as the various positronium states, by the in
acting atoms. There can be similar quark exchange inte
tions between nucleons that can not be described by m
exchange.

Due to the exceptionally small mass of pions, the lo
range interaction between nucleons is mediated only by p
exchange. This interaction can presumably be described
an effective field theory containing nucleon and pion fiel
The OPEP in thev i j of HNR is derived from the nonrelativ
istic s•“ coupling of the pion field to nucleons, while tha

in the ṽ i j of HR is obtained from relativistic pion-nucleo
field theory as described below.

Parts of the intermediate range attraction are believe
be due to two-pion exchange processes including excita
of the nucleons to Delta- and higher-resonances. This
cess is analogous to the two-photon exchange, dipole-dip
Van der Waals attraction between atoms. In the nucle
meson field theory it is often represented by the exchang
a fictitious s-meson. In effective field theories the sho
range part is attributed to the exchange of vector mes
with mass of;780 MeV. The quarks are confined to nucl
ons with flux tubes having a tension of;900 MeV/fm.
Therefore a valance quark can wander 1 fm away from
nucleon as easily as a vector meson, and the short-ra
interaction can have quark-exchange parts outside of
scope of nucleon-meson field theory. For these reason

parts of thev i j andṽ i j in HNR andHR , other than OPEP are
phenomenological. They obtain their quality only via acc
rate fits to theNN-scattering data. It is therefore absolute
essential that anyHR used to test the accuracy of the pred
tions of HNR must be accurately phase equivalent to
HNR. We assure this as described below.

The boost interactiondv(Pi j ) in the HR is totally ne-
glected in theHNR. It is determined from the ‘‘rest frame’
potential ṽ i j through relativistic covariance@16,17#. The
dv(Pi j ) is expanded in powers ofPi j

2 /4m2 and only the lead-
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ing corrections are considered in this work for reasons d
cussed in Ref.@12# and in Sec. III D. This leading term is
given by

dv~P!52
P2

8m2
ṽ1

i

8m2
@P•rP•p,ṽ#

1
i

8m2
@~s12s2!3P•p,ṽ#, ~2.2!

where the subscriptsi j of ṽ, P, p, and r have been sup-
pressed for brevity. Herep5(pi2pj )/2 is the relative mo-
mentum operator, ands52s are the Pauli matrices for spi
1/2 particles.

Various aspects ofdv(P) are discussed in Ref.@18#. The
first two terms of Eq.~2.2! are denoted asdvRE anddvLC ;
they have simple classical origins in the relativistic energ
momentum relation and Lorentz contraction. The last te
contains contributions from Thomas precession and quan
effects. They are denoted asdvTP and dvQM and are much
smaller than the first two terms. For example, the contri
tions ofdvRE, dvLC , dvTP, anddvQM to the energy of triton
are found @12# to be 0.23~2!, 0.10~1!, 0.016~2!, and
20.004(2) MeV, respectively. Since the main contributi
comes from the first two terms, for simplicity, we neglect
the last two terms in the three-, four-body calculations in t
work.

All realistic models of nuclear forces contain terms wi
pi j

2 dependence as dictated by the scattering data. If the n
relativistic Hamiltonian is defined as that which contains
terms of orderpi

2 , then it must contain these interactions
well as the boost interaction. It is useful to consider a fam
iar example. The Coulomb-Breit electromagnetic interact
@19# between two particles of massm and chargeQ, ignoring
spin dependent terms for brevity, is given by

v~pi ,pj !5
Q2

r i j
S 12

pi•pj

2m2
2

pi•r i j pj•r i j

2m2r i j
2 D , ~2.3!

up to terms quadratic in the velocities of the interacting p
ticles. In our notation it is expressed as

v~pi ,pj !5 ṽ i j 1dv~Pi j !, ~2.4!

with

ṽ i j 5
Q2

r i j
F11

pi j
2

2m2
1

~pi j •r i j !
2

2m2r i j
2 G , ~2.5!

dv~Pi j !52
Q2

r i j
F Pi j

2

8m2
1

~Pi j •r i j !
2

8m2r i j
2 G . ~2.6!

It is obviously inconsistent to include only the terms of ord
pi j

2 , as most realistic nonrelativistic nuclear Hamiltonians d
and neglect the boost interaction of orderPi j

2 . Unfortunately,
even though contributions of the boost interaction to
binding energy of nuclear matter and3H were estimated by
2-3
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Coester and co-workers years ago@20,21#, they have been
neglected in most subsequent studies.

The HR requires, apart from obvious relativistic kinet
energy, a consistency between the rest frameṽ and the boost
interaction given by Eq.~2.2!. If parts of ṽ can be derived
from field theory, we can add them to other phenomenolo
cal parts to obtain the totalṽ. Here we take the OPEP part o

ṽ from relativistic field theory. This, together with the boo
interaction it generates, include all the nonstatic terms in
OPEP predicted by relativistic pion-nucleon field theory
shown in Ref.@18#.

It is interesting to compare the descriptions of known s
tems or models given byHNR andHR to identify the relativ-
istic effects contained inHR beyond those in the interaction
of HNR. The simplest system is the hydrogen atom. TheHNR
with only the Coulomb potential gives results correct up
order a2. Some of the terms, such as the magnetic inter
tions, Darwin correction, etc., which give corrections of o
dera4, can be included in theHNR by adding the appropriate
interactions tov i j . However, theHNR does not give the cor
rect energy up to ordera4 because thep4/8m3 correction to
the nonrelativistic kinetic energy omitted in theHNR gives a
contributions of ordera4. The HR , with a proper choice of

ṽ, gives results correct to ordera4. We have not examined
the reproducibility of thea6 correction by anHR .

Next, we can consider the hypothetical system known
the Walecka model of nuclear matter. The problem of
tended uniform matter consisting of Dirac particles intera
ing with long-range scalar and vector fields has been so
by Serot and Walecka@22# in the mean field limit. The ap-
proximate solutions to this problem obtained withHR and
HNR have been discussed in Ref.@18#. With appropriate
choice ofv i j the HNR can reproduce terms in the expansi
of the energy per particle, of order up tokF

3 . The term of
orderkF

4 comes from the relativistic correction to the kinet
energy while that of orderkF

5 contains boost correction, bot
of which are absent in theHNR. The HR will reproduce all
the terms up to orderkF

10. It is essential to include the boos
correction of orderP2, as given by Eq.~2.2!, to obtain the
correct contribution of orderkF

5 . The three-body force con
tribution is needed for the term of orderkF

8 , while boost
corrections of higher order than considered here are esse
to reproduce terms of orderkF

7 , kF
9, and kF

10. Four-body
forces, neglected in Eq.~2.1!, give contributions of order
kF

11. Three- and more-particle interactions originate on
from the scalar field.

In both the examples considered aboveHR gives a sub-
stantial improvement overHNR. In these examples the dif
ference between the results obtained withHR andHNR gives
the leading relativistic effect neglected inHNR. However,
these systems are much simpler than nuclei. In Sec. IV
will argue that theHR may contain the leading relativisti
correction to nuclear energies.

In the remainder part of this section we discuss the cho
of the OPEP andṽ in the HR . The main focus of this work
is on the treatment of OPEP inHR ; the calculation of boos
interaction and relativistic kinetic energy has been descri
01400
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in detail in Refs.@18,12,13#. In most existing nonrelativistic
potential models, the OPEP has been calculated using
nonrelativistics•“ coupling. WithoutpNN form factors, it
is given in momentum space by

ṽp,NR~q!52
f pNN

2

m2

si•qsj•qti•tj

m21q2
, ~2.7!

where f pNN is the pion-nucleon coupling constant,m is the
pion mass, andq is the momentum transfer

q5p2p8. ~2.8!

Herep andp8 are the initial and final momenta of nucleoni

in the center of mass frame, and theṽp,NR is local, i.e., it
depends only onq.

In contrast, the OPEP in effective pion-nucleon relativ
tic field theories has the form

ṽp,rel~p8,p!5
m

Am21p82
ṽp,NR~q!

m

Am21p2
. ~2.9!

This potential is dependent not only onq but also onp and
p8, which results in a nonlocal potential in the configurati
space. The interaction~2.9! is regarded as energy indepe
dent and used in many-body Schro¨dinger equations. By ex-
panding the square roots it can be easily verified that
leading correction (ṽp,rel2 ṽp,NR) is of orderp2/m2, i.e., of
orderv2/c2 wherev denotes the velocity of the nucleons
the center of mass frame.

In the HR the ṽp,rel(p8,p) is used for allp2 and p82,
whereas in the physically allowed one-pion exchange t
nucleon scatteringp82 must equalp2 to conserve energy
When p25p82 ~on shell!, Eq. ~2.9! is obtained with either
pseudoscalar or pseudovectorp-N couplings and is consid
ered to be model independent, apart from form factors,
The off-shell (p2Þp82) behavior of the OPEP is model de
pendent. It can be changed by using combinations of ps
doscalar and pseudovector couplings. In Friar’s notat
@23,24# the possible off-shell behaviors are characteriz
with parametersm̃ and n, and up to orderp2/m2 they are
related by unitary transformations. Ourṽp,rel has an off-shell
behavior withn51/2 andm̃50. In contrast the OPEP in th
CD-Bonn model has the form

ṽp,CDB~p8,p!52
f pNN

2

m2

ti•tj

m21q2

m

E

m

E8
Fsi•qsj•q

1~E82E!S si•psj•p

E1m
2

si•p8sj•p8

E81m
D G ,

~2.10!

obtained from pseudoscalar coupling@25,26#. Here E
5Am21p2, E85Am21p82. The term proportional to (E8
2E) does not contribute to the on-shell OPEP, and is abs
from the ṽp,rel given by Eq.~2.9!. In Friar’s notationṽp,CDB
2-4
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hasn51/2 andm̃521. In principle, since the various OPE
are related to each other by a unitary transformation, or
nating from the Dyson transformation@27#, the final answers
should not depend upon the choice ofm̃ andn. However, the
current operators as well as theVi jk will depend upon the
choice made@27#. Our choice is made primarily for the sak
of simplicity, and for avoiding the complications of undoin
the unphysical effects of the strong coupling between pi
and nucleon-antinucleon pairs in the pseudoscalar theor

In Ref. @18# it is shown that the relation between the boo
interactiondv(P) and the staticṽNR is independent of the
origin of ṽNR up to orderP2/m2, and thus the knowledge o
the staticṽNR is sufficient to obtaindv(P). In contrast the
relation @Eq. ~2.9!# betweenṽp,rel and ṽp,NR is specific for
the interaction due to exchange of pseudoscalar meson
nucleons represented by Dirac spinors via either pseu
scalar or pseudovector coupling. By expanding the squ
roots in Eq.~2.9! we obtain

ṽp,rel~p8,p!5 ṽp,NR~q!S 12
p82

2m2
2

p2

2m2
1••• D ,

~2.11!

whereas the interactions generated by exchange of scala~S!
or vector~V! mesons have different relations@18#:

ṽS,rel~p8,p!5 ṽS,NR~q!S 12
~p81p!2

2m2
1••• D , ~2.12!

ṽV,rel~p8,p!5 ṽV,NR~q!S 11
~p81p!2

2m2
1••• D .

~2.13!

Realistic models of nuclear forces contain momentum dep
dent central forces. However, most configuration space m
els do not contain long range, momentum dependent te
forces occurring inṽp,rel . In exact calculations the tenso
force can not be generally expanded in powers ofp2/m2. In
any truncated expansion the force diverges at large value
p, and can yield divergent attraction. This poses the m
technical challenge addressed in the present work.

The two-nucleon potential is expressed as

ṽNN5 ṽp,rel1 ṽR , ~2.14!

where ṽR is the remaining part of the two-body potenti
which is phenomenological. We can also write the OP
given in Eq.~2.9! as

ṽp,rel5 ṽp,NR1~ ṽp,rel2 ṽp,NR!. ~2.15!

The term in parentheses is the relativistic correction. T
nonrelativistic potential models do not consider this corr
tion explicitly: the data is fit usingṽp,NR in Eq. ~2.14!, thus
some of its effects go into the phenomenological part of
potentialṽR . The ṽR in relativistic Hamiltonian differs from
01400
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that in nonrelativistic Hamiltonian due to the difference

ṽp,rel and ṽp,NR as well as that in the kinetic energy oper
tors.

We construct ourHR to be phase equivalent to the iso
calar part of the nonrelativisticHNR containing Argonnev18.
The relativistic effects can then be studied by compar
results obtained from ourHR and the isoscalarHNR without
considering the small isospin symmetry breaking terms
the latter. The relativistic Hamiltonian for two-nucleon sy
tem in its center of mass frame is

HR52Ap21m222m1
m

Am21p82
ṽp,NR~q!

m

Am21p2

1 ṽR , ~2.16!

whereṽR has the same form as the isoscalar part of Argon
v18 @6#:

ṽR5 (
p51,14

vp~r i j !Oi j
p , ~2.17!

Oi j
p51,1451,ti•tj ,si•sj ,~si•sj !~ti•tj !,

3Si j ,Si j ~ti•tj !,L•S,L•S~ti•tj !,

L2,L2~ti•tj !,L
2~si•sj !,L

2~si•sj !~ti•tj !,

3~L•S!2,~L•S!2~ti•tj !. ~2.18!

The ṽp,NR used in Argonnev18 is given by

ṽp,NR~r !5
1

3
m

f pNN
2

4p
@Yp~r !si•sj1Tp~r !Si j #ti•tj ,

~2.19!

where

Yp~r !5
e2mr

mr
~12e2cr2

!, ~2.20!

Tp~r !5S 11
3

mr
1

3

~mr !2D ~12e2cr2
!2, ~2.21!

Si j 53si• r̂ sj• r̂ 2si•sj . ~2.22!

We note that thisṽp,NR does not contain the part o
si•sjti•tj interaction which acquires ad(r i j ) function form
in the limit of point particles. Thisd function is probably
spread out by the finite size of the nucleons, and contribu
to the short range part ofvNN . However, it is difficult to
extract it from the phenomenological models. Moreover
dominant contribution and the nonlocality effect seem
come from the tensor part of OPEP.

Recently, after completion of the present work, Kama
and Glöckle @28# found an elegant method to obtain a pote
tial v rel that gives exactly the same phase shifts with rela
istic kinetic energy that a knownvNR gives with nonrelativ-
2-5
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FIG. 1. Phase shifts as a function of lab energy.L: the reference phase shifts obtained withHNR ; 1: those usingṽR from HNR in HR ;

h: those with the new relativistic HamiltonianHR with readjustedṽR .
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istic kinetic energy. Our objective here is not just to find
v rel that is phase equivalent to the Argonnev18; we addition-
ally require it to have theṽp,rel long range behavior. Both
relativistic and nonrelativistic models ofṽ contain theoreti-
cal long range OPEP; the scattering data is used to deter
only the phenomenological partṽR in these interactions. Ou
two models are not as exactly phase equivalent as Kam
and Glöckle’s v rel and vNR are, however the differences i
their phase shifts are negligibly small compared to the
certainties in the Nijmegen phase shifts@29#.

The parameters of the functionvp(r i j ) of ṽR are obtained
by fitting the phase shifts and deuteron binding energy. T
ditionally phase shifts are calculated in configuration spa
however, in the relativistic case, the Hamiltonian conta
Am22¹2 which is nonlocal in configuration space, therefo
we calculate them in momentum space. The details of
momentum-space technique have been discussed in
@30#.
01400
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-
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e
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Some of the important phase shifts are plotted in Fig.
The diamond symbols represent the reference nonrelativ
phase shifts obtained withHNR, the plus symbols represen
those calculated fromHR before readjusting the paramete
in vp(r ), and the square symbols correspond to those a
The reference phase shifts are almost exactly reproduce
the relativistic HamiltonianHR as indicated by the good
overlap of the diamond and square symbols in Fig. 1. T
deviations between the plus and diamond symbols reflect
total effect of replacing nonrelativistic kinetic energy an

TABLE II. Deuteron properties.

HNR HR

binding energy~MeV! a 22.242 22.242
quadrupole moment (fm2) 0.269 0.271
% of D state (PD) 5.776 5.732

aWithout electromagnetic interactions.
2-6
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FIG. 2. Comparison of relativistic~solid lines! and nonrelativistic~dashed lines! potentialsv12v14 of the operator format@refer to Eq.

~2.17!#. Note thatv4 andv6 contain contributions from bothṽp and ṽR , and only a local nonrelativistic OPEP is used.
in
.
ly

r

va-

ent
ṽp,NR by the relativistic kinetic energy andṽp,rel in HNR,
and are not too large except for the mixing parameterE1 of
3S123D1. This indicates that relativistic nonlocal effects
two nucleon scattering atElab,400 MeV are rather small
E1 is primarily determined by the tensor force; the relative
01400
large change inE1 is due to the nonlocality of the tenso

force in ṽp,rel .
The new two-body potential is essentially phase equi

lent to isoscalar part of Argonnev18 and predicts similar
deuteron properties as listed in Table II. Note that the pres
2-7
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J. L. FOREST, V. R. PANDHARIPANDE, AND A. ARRIAGA PHYSICAL REVIEW C60 014002
HNR andHR do not contain electromagnetic interactions. T
experimental value of deuteron binding ener
(22.224 MeV) can be obtained from the full Argonnev18
with electromagnetic interactions. The 14 operator com
nents of the relativistic and nonrelativistic potentials a
compared in Fig. 2. Only the static part of the relativis
OPEP, obtained by settingm/Ap21m2 equal to unity is used
in Fig. 2. Since it is the same as the nonrelativistic OPEP,
difference between the potentials shown in the figure is
tirely due to that in the phenomenological partṽR . Equation
~2.9! shows that theṽp,rel is smaller than theṽp,NR for p or
p8Þ0.

The deuteronS- andD-wave functions are shown in Fig
3. Here the relativisticD wave is slightly smaller than the
nonrelativistic one, presumably because the relativistic t
sor potential is smaller than the nonrelativistic tensor pot
tial @Eq. ~2.9!# for largep andp8. The deuteron wave func
tions in momentum space are shown in Fig. 4. Note that
relativistic wave functions are not very different from th
nonrelativistic ones. The ratio of the two momentum spa
D-wave functions can be easily understood as discussed
low.

FIG. 3. Deuteron wave functions.

FIG. 4. Deuteron wave functions in momentum space.
01400
-

e
n-

n-
-

e

e
e-

The exact ground state wave functionC can be expanded
in a complete set of statesu i &:

uC&5(
i

f i u i &. ~2.23!

For a Hamiltonian given byT1v, whereu i & are eigenstates
of T, the amplitudesf i are given by

f i52
^ i uvuC&

^ i uT2E0u i &
, ~2.24!

as can be verified from the Schro¨dinger equationHuC&
5E0uC&. HereE0 is the ground state energy.

In the case of the deuteron we can chooseT as the kinetic
energy operator andu i & asSandD waves with momentump,
denoted byupl&, for l 5S,D. The amplitudesf l(p) of these
waves give the deuteron wave function in momentum spa
We can estimate the difference between the nonrelativi
and relativistic deuteronD-state wave function at large mo
mentum by assuming that it is primarily generated by
OPEP. In the nonrelativistic case this gives

fD,NR~p!52
m

p2
^pDuṽp,NRuC&, ~2.25!

where we have neglected theE0 in the denominator of Eq.
~2.24!, since it is much smaller than the kinetic energyp2/m
at largep. In the relativistic case

fD,rel~p!52
1

2~Am21p22m!

m

Am21p2
^pDuṽp,NRuC&,

~2.26!

where the first factor is the relativistic kinetic energy d
nominator, and the second comes from them/E8 factor in
the ṽp,rel @Eq. ~2.9!#. The otherm/E factor in theṽp,rel op-
erates on theC. It is set to unity because most of the de
teron wave function has small relative momenta.

Neglecting the small difference between the relativis
and nonrelativisticC, the ratio of thefD(p) is found to be

fD,rel~p!

fD,NR~p!
5

p2

2~Am21p22m!Am21p2
. ~2.27!

The above estimate is fairly close to the ratio of the cal
lated D-wave functions as can be seen in Fig. 5. Note t
this ratio is smaller if theṽp,rel is used with the nonrelativ-
istic kinetic energy infD,rel(p) ~dotted line!, and it is larger
than one when theṽp,NR is used with the relativistic kinetic
energy~dot-dashed line!. The relativistic corrections to the
interaction and kinetic energies have opposite effects on
wave function. The difference between theS-wave functions
is influenced by the changes in the kinetic energy and

ṽR . The effects of these changes on the phase shifts and
deuteron energy must cancel by construction, and they s
to largely cancel in thefS(p).
2-8
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QUANTUM MONTE CARLO STUDIES OF RELATIVISTIC . . . PHYSICAL REVIEW C60 014002
Some of the deuteron momentum space results are li
in Table III. This table offers a microscopic view of ho
various relativistic effects were buried in the nonrelativis
models. Relativistic nonlocalities reduce the OPEP contri
tion by ;2.6 MeV, while the relativistic kinetic energy i
smaller by ;21 MeV, giving a net effect of 1.6 MeV
which is canceled by the change in the phenomenolog

ṽR .
The variational Monte Carlo calculations for theA.2

systems have to be carried out in configuration space.
therefore have to Fourier transform theṽp,rel which depends
on bothp andp8 @Eq. ~2.9!#, yielding a nonlocal potential in
configuration space

ṽp,rel~r 8,r !5E d3p

~2p!3

d3p8

~2p!3
e2 ip8•r8ṽp,rel~p8,p!eip•r.

~2.28!

The exact integral in Eq.~2.28! is extremely difficult to cal-
culate. The series obtained by expandingṽp,rel(p8,p) in
powers ofp2/m2 is given by

FIG. 5. Ratio of deuteron relativistic to nonrelativisticD-wave
function in momentum space~solid line!, and the simple estimate o
Eq. ~2.27! ~dashed line!. The dotted and dot-dashed lines repres

results calculated usingTNR , ṽp,rel andTrel , ṽp,NR in fD,rel in Eq.
~2.27!, respectively. The wiggle in the calculated ratio arou
7 fm21 comes from a node in the wave function.

TABLE III. Results of momentum space deuteron calculatio

^CNRuHNRuCNR& ^CRuHRuCR&

^E& 22.242 22.242
^T& 19.882 18.877

^ṽ i j & 222.125 221.119

^ṽp& 221.356 218.797

^ṽR&5^ṽ i j 2 ṽp& 20.769 22.322

^ṽp,rel2 ṽp,NR& 2.589
01400
ed

-

al

e

ṽp,rel~p8,p!5 ṽp,NR~q!S 12
p21p82

2m2

1
3p412p2p8213p84

8m4
1••• D . ~2.29!

However, this series does not have good convergence. In
case of deuteron, the expectation value ofṽp,NR, for the
eigenfunction of our relativistic Hamiltonian is221.39
MeV. The term in ṽp,rel , of order 1/m2, contributes 3.48
MeV to the ^ṽp,rel&, while that of order 1/m4 gives 21.45
MeV, and the exact̂ṽp,rel2 ṽp,NR& is 2.59 MeV. Therefore
the series converges slowly to the exact value. This m
appear surprising because the expectation value of the
netic energy of the deuteron~Table III! is only about 20
MeV, giving p2/m2'0.02 on average. However, the de
teron has large momentum components via theD wave, or
equivalently the tensor correlations, and most of the OP
contribution is from those. Thus it is not surprising that t
expectation value of OPEP is sensitive to higher powers
nucleon velocities.

For the relativistic OPEP, a good convergence is achie
by using the variables

Q5
1

2
~p1p8!, q5p2p8, ~2.30!

x5
1

2
~r1r 8!, y5r2r 8, ~2.31!

for which

ṽp,rel5 ṽp,NR~q!
m2

A~m21Q21q2/4!22~Q•q!2
,

5 ṽp,NR~q!F12
Q21 q2/4

m21Q21q2/4

1
1

2

m2~Q•q!2

~m21Q21q2/4!3
1•••G . ~2.32!

Here we expanded theṽp,rel in powers of (Q•q)2/(m21Q2

1q2/4)2. This series appears to converge rapidly. In the c
of deuteron, the leading relativistic correction given by t
second term is 2.7 MeV, the third term gives20.18 MeV,
and the exact value is 2.59 MeV. The third term containsuQq
dependence and results in complicated operator forms
shown in the Appendix. Moreover, the third and higher ter
account for only;4% of the relativistic correction to OPEP
expectation value in the deuteron~i.e., ;0.6% of ^ṽp,rel&).
Therefore only the first two terms are considered in t
work, and the relativistic OPEP is approximated by

ṽp,rel5
m2

m21Q21q2/4
ṽp,NR~q!. ~2.33!

t

.

2-9
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J. L. FOREST, V. R. PANDHARIPANDE, AND A. ARRIAGA PHYSICAL REVIEW C60 014002
With this ṽp,rel in Eq. ~2.14!, we refit the phase shifts an
deuteron binding energy. The parameters invp(r ) are very
similar to those obtained with the exactṽp,rel given by Eq.
~2.9!. The new phase shifts and the relativistic potentials
very similar to those shown in Figs. 1 and 2.

The configuration space potential@Eq. ~2.28!# is given by

ṽp,rel~x,y!5E d3Q

~2p!3

d3q

~2p!3

m2

m21Q21q2/4

3 ṽp,NR~q!ei (Q•y1q•x), ~2.34!

and is simple to evaluate. Theṽp,NR @Eq. ~2.19!# in momen-
tum space is given by

ṽp,NR~q!5E ṽp,NR~r !eiq•rd3r ,

5
1

3
m f pNN

2 FYp~q!si•sj1Tp~q!

3S si•sj2
3

q2
si•qsj•qD Gti•tj , ~2.35!

where

Yp~q!5E Yp~r ! j 0~qr !r 2dr, ~2.36!

Tp~q!5E Tp~r ! j 2~qr !r 2dr. ~2.37!

Substituting these into Eq.~2.34! gives

ṽp,rel~x,y!5
1

3
m

f pNN
2

4p
f ~y!@Fst~x,y!si•sj

1Ftt~x,y!Si j ~ x̂,x̂!#ti•tj , ~2.38!

with

Fst~x,y!5
2

pE q2dqYp~q! j 0~qx!e2(Am21q2/42m)y,

~2.39!

Ftt~x,y!5
2

pE q2dqTp~q! j 2~qx!e2(Am21q2/42m)y,

~2.40!

f ~y!5
m2

4p

e2my

y
, ~2.41!

Si j ~ x̂,x̂!53si• x̂sj• x̂2si•sj . ~2.42!

In the limit m→`, f (y) becomes d3(y), Fst(x,y)
→Yp(x), and Ftt(x,y)→Tp(x). When y→0, we haver 8
5r , x5r and Eq.~2.38! becomesṽp,NR. Figure 6 shows
Fst(x,y) andFtt(x,y) as a function ofx for various values
01400
e

of y. Note that the solid lines fory50 correspond to the
nonrelativistic Yp(x) and Tp(x). The volume integral of
Fst(x,y) is independent ofy, whereas that ofFtt(x,y) de-
creases withy. Therefore relativistic effects mostly com
from the tensor part of OPEP.

III. VARIATIONAL MONTE CARLO CALCULATIONS
AND RESULTS

A. VMC techniques

With the relativistic Hamiltonian discussed in the prev
ous section, we can proceed to evaluate the energy exp
tion value

^HR&5^T&1^ṽ i j &1^dv i j &1^Ṽi jk& ~3.1!

for A>3 nuclei using the Monte Carlo technique. The Mon
Carlo method@31# offers a useful way to handle the mult
dimensional integrals which would otherwise be impracti
by the usual numerical methods. The basis of this metho
that instead of integrating over a regular array of points,
sum over a set of configurations$Ri% distributed with prob-
ability w(R). HereR5(r1 ,r2 , . . . ,rA) denotes the configu
ration of all the nucleons in the nucleus. There are vario
techniques for samplingw(R) @31#, and in this work Me-
tropolis sampling method@32# is used to treat the compli
cated distributions.

The variational Monte Carlo~VMC! technique is based
on variational principle that the minimum expectation val
of the Hamiltonian is closest to the ground state energy
the system. Starting from a variational wave function, wh
depends upon several variational paramet

FIG. 6. Fst andFtt as a function ofx for various values ofy.
2-10
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QUANTUM MONTE CARLO STUDIES OF RELATIVISTIC . . . PHYSICAL REVIEW C60 014002
(a1 ,a2 , . . . ,an), we evaluate the expectation value of t
Hamiltonian using the Monte Carlo configuration samp
Ri :

^Ĥ&5

E dRCv
†~R!ĤCv~R!

E dRCv
†~R!Cv~R!

5

~1/Nc!(
i 51

Nc

@Cv
†~Ri !ĤCv~Ri !#/w~Ri !

~1/Nc!(
i 51

Nc

@Cv
†~Ri !Cv~Ri !#/w~Ri !

6d,

~3.2!

whered is the standard deviation. Typically block averagi
scheme is used to obtain a normal distribution and the e
can be conveniently evaluated from it. We divideNc con-
figurations intoNb blocks each containingN05Nc /Nb con-
figurations. The average

H̃b5

~1/N0!(
i 51

N0

@Cv
†~R_i !ĤCv~Ri !#/w~Ri !

~1/N0!(
i 51

N0

@Cv
†~Ri !Cv~Ri !#/w~Ri !

~3.3!

is evaluated for each block. The expectation value ofH is
given by

^H&5
1

Nb
(
i 51

Nb

H̃b ~3.4!

with the standard deviation

d5
1

Nb
A(

i 51

Nb

~H̃b2^H&!2. ~3.5!

The Monte Carlo result is exact when the number of confi
rationsNc→`, although in practiceNc550 000 seems to be
enough to obtain results with sufficiently small statistical
rors. The weight function is usually chosen to be

w~Ri !5Cv
†~Ri !Cv~Ri ! ~3.6!

to maintain small Monte Carlo error. Note that whenCv is
the eigenstate ofH, the Monte Carlo sampling error becom
zero. Finally, the parameters (a1 ,a2 , . . . ,an) are varied to
minimize the energy.

Some of the terms in̂HR& @Eq. ~3.1!# can be calculated
straightforwardly and have been discussed in Refs.@33# and
@13#. The terms that require special techniques are the r
tivistic kinetic energŷ Am22¹2& andṽp,rel in the two-body
potential. The kinetic energy term has been calculated pr
ously in Ref.@12#, and the calculation of̂ṽp,rel& is discussed
in Sec. III C.
01400
s
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B. Relativistic wave functions

In the nonrelativistic case, variational wave functions
the form

uCv&5S 11 (
i , j ,k

Fi jk D S S)
i , j

Fi j D uF&, ~3.7!

having symmetrized product of pair correlation operatorsFi j
and a sum of triplet correlationsFi jk operating on an anti-
symmetric, uncorrelated wave functionuF&, have been com-
monly used. TheFi j andFi jk correlation operators reflect th
effects of two-, three-body interactions on the wave functi
The uncorrelated wave function has no spatial depende
for A<4 nuclei. A good representation of such a wave fun
tion is given in Ref.@33#.

The pair correlation operatorFi j is constructed from cor-
relation functions which satisfy Schro¨dinger-like two-body
equations, with appropriate boundary conditions. Their so
tions are similar to deuteron wave functionsCNR and CR
displayed in Fig. 3. In the case ofA52 deuteron, both non-
relativistic and relativistic correlation functions can be eas
solved in momentum space; they are not very different fr
each other as can be seen in Fig. 3. InA.2 nuclei, the
nonrelativistic pair correlation equations can be easily sol
in configurations space, however, the relativistic equati
are more difficult to solve. Therefore we seek good appro
mations for the relativistic pair correlation functions.

Our method can be easily illustrated using the example
deuteron. Its variational wave function is expressed as

C5CNR1l~CR2CNR!, ~3.8!

^CuHRuC& is calculated using VMC, andl is varied to
minimize it. The results are shown in Fig. 7. The error ba
shown in Fig. 7 originate from the statistical sampling a
are,1% of the binding energy. The same configurations
used to calculate the energies for alll, hence the errors are
correlated. The minimum value of̂HR& does occur atl
51 whereC5CR as expected. The difference in^HR& be-
tween l50 ~using a nonrelativistic wave function! and l
51 ~using a relativistic one! is ;0.04 MeV. This means

FIG. 7. VMC results for deuteron with 100 000 configuration
2-11
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J. L. FOREST, V. R. PANDHARIPANDE, AND A. ARRIAGA PHYSICAL REVIEW C60 014002
that if we were to use the nonrelativistic wave function
calculate the expectation value ofHR , the result will be off
by only 2% for the deuteron.

In heavier nuclei we also expect the optimum nonrela
istic wave function to provide a good approximation for re
tivistic wave function. The difference between the two
presumably largest in3S123D1 and 1S0 correlation func-
tions at smallr. We therefore define

f 0,1
c 5 f 0,1,NR

c ~11lj 1S0
!, ~3.9!

f 1,0
c 5 f 1,0,NR

c ~11lj 3S1
!, ~3.10!

f 1,0
t 5 f 1,0,NR

t ~11lj 3D1
!, ~3.11!

wherejc for the channelc is defined as

jc~r !5
fc,R~r !2fc,NR~r !

fc,NR~r !
. ~3.12!

At small r, the centralf 1,0
c and tensorf 1,0

t correlation func-
tions in spin-isospinS,T51,0 states are proportional to theS
and D radial wave functions of the deuteron, respective
Therefore thej3S1

and j3D1
can be calculated exactly in mo

mentum space using the relativistic and nonrelativistic d
teron wave functions for thefc,R andfc,NR. Thesej ’s are
rather short ranged~Fig. 8!, and we do not expect them t
vary significantly in larger nuclei. Wiringa@4# has shown
that the nonrelativistic correlation functions for2H, 3H, and
4He are almost the same at smallr.

A similar calculation ofj1S0
is not possible because of th

absence of a bound state in that channel. However, we
obtain an artificial1S0 bound state by slightly increasing th
strength of intermediate range attraction inv(1S0). The bind-
ing energy and the wave function at larger are very sensitive
to small changes inv(1S0), however,j1S0

is relatively insen-

sitive. As an example, thej1S0
obtained from artificial1S0

bound states with energies of21 and210 MeV, shown in
Fig. 8, are very similar.

FIG. 8. j5( f R2 f NR)/ f NR as a function ofr.
01400
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The VMC energy of3H with the relativistic Hamiltonian
is shown as a function ofl in Fig. 9. The minimum occurs a
l50.5 instead of 1~the expected value!, however, the dif-
ference in̂ HR& betweenl50.5 and 1 is rather small and o
the order of the Monte Carlo sampling error. The minimu
energy for 4He occurs at the expectedl51.0.

C. Expectation value of the nonlocal potential

Consider anA-nucleon system whose wave function
denoted asC(r1 ,r2 , . . . ,rA). We define

xi5
1

2
~r i1r i8!, xj5

1

2
~r j1r j8!, ~3.13!

so that

x5xi2xj ,
y

2
5r i2r i85r j82r j , ~3.14!

as illustrated in Fig. 10. The expectation value of relativis
OPEP is then given by

^ṽp,rel&5(
i , j

E )
kÞ i , j

d3r kd
3xid

3xjd
3y

3C†S r1 , . . . ,xi2
y

4
, . . . ,xj1

y

4
, . . . ,rAD

3 ṽp,rel~ uxi2xj u,y!

3CS r1 , . . . ,xi1
y

4
, . . . ,xj2

y

4
, . . . ,rAD ,

~3.15!

where ṽp,rel(uxi2xj u,y) is previously calculated in Eq
~2.38!. The integration over ther k’s, xi , xj and the solid
angle ofy is carried out by the Monte Carlo method, whi
that over the magnitude ofy is carried out with Gauss
Laguerre integral.

FIG. 9. VMC results for triton with 50 000 configurations.
2-12
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QUANTUM MONTE CARLO STUDIES OF RELATIVISTIC . . . PHYSICAL REVIEW C60 014002
D. VMC results

The VMC results for3H and 4He are listed in Table IV.
Note that in principle we should use GFMC to calculate
exact binding energies, but the relativistic effects result
from the difference between̂HR& and ^HNR& are small and
presumably not too different from those estimated us
VMC.

The total relativistic effect on the binding energy
;0.3 MeV for 3H and ;1.8 MeV for 4He. Most of the
effect comes from the boost correction which is 0.42 M
for 3H and 1.94 MeV for4He. The net effect of relativistic
corrections to the kinetic energy and the two-body potent
on the binding energy is rather small:;20.12
60.06 MeV in (3H) and ;20.1760.10 MeV in (4He).
Since bothHNR and HR are constrained to give the sam
deuteron binding energy, the changes in^T& and^ṽ i j & cancel
exactly in 2H. In 3H and 4He they appear to largely canc
and give a rather small net effect.

In view of the slow convergence of the^uṽp,rel2 ṽp,NRu&,
when expanded in powers ofp2/m2, one may question the
validity of calculating the boost interactiondv only up to

FIG. 10. A diagram to illustrate the calculation of nonlocal i
teraction contributions.
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e
g

g

l,

first order inP2/4m2. The average kinetic energies of nucl
ons in nuclei are rather small giving averagepi

2/m2,0.1.
The expansion has good convergence for such values. H
ever, two nucleons can occasionally have large relative m
menta when they come close together as illustrated in
11. In that configurationpi;p and pj;2p are both large
due to strong short-range interaction between nucleonsi and
j. Such configurations are responsible for the slow conv
gence of the expansion of^uṽp,rel2 ṽp,NRu&. In these configu-
rations the squares of the total pair momenta are of or
Pik

2 ;Pjk
2 ;p2, while Pi j

2 has small, near average value. Th
the expansion parameterP2/4m2 for the boost interaction is
effectively four times smaller than that of (ṽp,rel2 ṽp,NR)
when the momenta are generated by pair correlations, th
fore we expect the boost expansion to converge more
idly. Moreover,^uṽp,rel2 ṽp,NRu& is much larger (;6 and 13
MeV in 3H and 4He, respectively! than^udvu& and has to be
calculated with higher relative accuracy to obtain a final to
energy with error;1%.

IV. CONCLUSIONS AND OUTLOOK

We find that the relativistic effects in OPEP are qu
substantial. The expectation values ofṽp,rel are smaller than

FIG. 11. A naive picture of3H to illustrate large momentum
contribution from a configuration where two nucleons are clo
together.
TABLE IV. VMC results for 3H and 4He, calculated with 50 000 configurations.

3H 4He

HNR HR HR2HNR HNR HR HR2HNR

^E& a 28.24~3! 27.94~4! 0.30~5! 228.09~7! 226.32~8! 1.8~1!

^T& 50.1~5! 48.6~5! 21.5~7! 104.8~9! 98.4~8! 26~1!

^ṽ i j & 257.3~5! 256.0~5! 1.3~7! 2127.6~9! 2121.5~9! 6~1!

^Ṽi jk& 21.06~3! 21.03~3! 25.29~9! 25.20~8!

^dv i j & 0.42~1! 1.94~3!

^Ṽi jk
R & 0.98~3! 1.01~3! 5.26~7! 5.38~8!

^ṽp& 244.0~2! 238.3~2! 5.7~4! 297.1~5! 283.8~4! 13.3~1!

aWithout electromagnetic interaction.
2-13



of
t

ab
n
b

ss

nu
ti
e
h

ex
to

d

e

nd
ac

o
3

n

e
rm

di
an
u

in
b

n
s

o

y
o
th
e
e

er
co
c

a
d

e

t
re
n,
rst

-
e-
tter
ei

o
r-
for

r
ther

un-
tion

the

is

nd
is-
ied

s
the

pre-

ve

ia-
or
n.
e-
n,
la-
ell
rgh
the
94-
a,

-

J. L. FOREST, V. R. PANDHARIPANDE, AND A. ARRIAGA PHYSICAL REVIEW C60 014002
those of ṽp,NR by ;15%. Since the expectation values
OPEP are much larger than nuclear binding energies,
differences in the OPEP expectation values are compar
to the total nuclear energy. However, nuclear Hamiltonia
are not derived from first principles, they are obtained
fitting data. The substantial difference betweenṽp,rel and

ṽp,NR is compensated in theHNR by that in the kinetic en-
ergy T and ṽR so thatHNR gives the same scattering cro
sections and deuteron energy as theHR . We find that this
compensation works rather well for three- and four-body
clei. In absence of the boost interaction our nonrelativis
and relativistic Hamiltonians seem to give very similar r
sults for the binding energies and wave functions of lig
nuclei. It is probably necessary to examine one-pion
change current contributions to elastic scattering form fac
and radiative capture reactions to see the effect of them/E
factors in the OPEP.

The modern two-nucleon potential models, which inclu
the Nijmegen models I, II, and Reid-93@34#, Argonnev18
@6#, and CD-Bonn @25#, accurately reproduce th
NN-scattering data in the Nijmegen data base. Friaret al.
@35# have studied the triton energy with the Nijmegen a
Argonne models, without boost or three-nucleon inter
tions, using accurate Faddeev calculations. The energies
tained with the three local potential models, Reid-9
Nijmegen-II, and Argonnev18 are, respectively,27.63,
27.62, and27.61 MeV. These energies are very close, a
these models also give very similar values~5.70, 5.64, and
5.76 %! for PD , the fraction ofD state in the deuteron. Th
boson exchange Nijmegen-I model contains nonlocal te
and gives27.72 MeV for triton energy and 5.66% forPD .
Comparison of the results of Nijmegen I and II models in
cates that the total effect of the nonlocalities on energies
the wave functions could be small. The present results s
port this conclusion; inclusion of relativistic nonlocalities
OPEP and kinetic energy lowers the triton energy
;0.1 MeV andPD by 0.04%.

In contrast the CD-Bonn potential gives rather differe
results from the Nijmegen and Argonne models. It give
triton energy of28.00 MeV andPD54.83%. The deuteron
wave functions predicted by the five modernNN-interaction
models are compared in Ref.@36#. The CD-BonnD-state
wave function is smaller at intermediate distances than th
of the other models. The OPEP in the CD-Bonn model@Eq.
~2.10!#, has additional off-shell nonlocalities predicted b
pseudoscalar pion-nucleon coupling. It is interesting to n
that the difference in the OPEP is the main cause of
difference between CD-Bonn and the other models. A pot
tial containing ṽp,CDB and ṽR parametrized as in Argonn
v18, re-tuned to fit the scattering data, gives a smallerD state
with PD54.98% @37#. After choosing the OPEP, the short
ranged parts of the nuclear forces seem to be better
strained by the data. Perhaps, the correct form of OPEP
be derived from chiral perturbation theory or QCD. TheVi jk
also depends upon the choice of OPEP, however, Coon
Friar have argued that the final observables should not
pend up on that choice@27#.

The boost interactiondv gives the dominant relativistic
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correction to the binding energies of light nuclei in th
present formalism. Contributions ofdv are very small, only
;1% of that of ṽ in 3H and 4He. However they are no
canceled, sinceHNR does not have this term, and therefo
dominate the net effect. As with the two-nucleon interactio
the three-nucleon interaction is also not derived from fi
principles. Urbana models ofVi jk contain two terms: the
attractive two-pion exchange termVi jk

2p and a repulsive phe
nomenological termVi jk

R . Their strengths are chosen to r
produce the triton energy and the density of nuclear ma
without considering any relativistic effects. In light nucl
the repulsivedv contribution is about 37% of that ofVi jk

R .
Thus the strength ofVi jk

R in HR has to be reduced by 37% t
obtain the experimental energies of light nuclei. The diffe
ence in the three nucleon interaction then compensates
the omission ofdv in conventional nonrelativistic nuclea
Hamiltonians. It appears that this compensation works ra
well in light nuclei having up to eight nucleons@38#, as well
as in nuclear and neutron matter up to normal densities@39#.
However, at several times nuclear matter densities, enco
tered in neutron stars, the effective three-nucleon interac
overestimates thedv contribution significantly@39#.

The energies and the wave functions predicted by
nonrelativistic Hamiltonian@Eq. ~1.1!# seem to be little
changed by including the relativistic effects studied in th
work, provided the interactionsv i j and Vi jk are obtained
from accurate fits to the scattering data, triton energy a
nuclear matter density. We have not studied all the relativ
tic effects in nuclei. There are presumably many more bur
in the phenomenologicalṽ. However, the pair distribution
functions at smallr do not change from nucleus to nucleu
@40#. Therefore the deuteron provides an excellent test of
NN wave function at smallr in nuclei. The recently com-
pleted experiments at Jefferson Lab@41# show that the deu-
teron form factors are in reasonable agreement with the
dictions of the Argonnev18 model @6# up to momentum
transfer of two GeV. It thus appears unlikely that the wa
functions predicted byHNR are significantly wrong at dis-
tances larger than;0.5 fm.
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APPENDIX: RELATIVISTIC OPEP IN CONFIGURATION
SPACE

The third term in Eq.~2.32! gives the second-order rela
tivistic correction to OPEP and is denoted asv (2):
2-14
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v (2)~x,y!5E d3Q

~2p!3

d3q

~2p!3
g~q,Q!

3cos2uqQṽp,NR~q!ei (Q•y1q•x), ~A1!

whereuqQ is the angle betweenq andQ, and

g~q,Q!5
1

2

m2Q2q2

~m21Q21q2/4!3
. ~A2!

Expressing cos2uqQ as

cos2uqQ5
2

3
P2~cosuqQ!1

1

3
, ~A3!

we get

v (2)~x,y!5
1

3E d3Q

~2p!3

d3q

~2p!3
g~q,Q!

3 ṽp,NR~q!ei (Q•y1q•x)

1
2

3E d3Q

~2p!3

d3q

~2p!3
g~q,Q!

3P2~cosuqQ!ṽp,NR~q!ei (Q•y1q•x). ~A4!

The first integral denoted byv1
(2)(x,y) is independent ofuqQ

and can be easily evaluated by using Eq.~2.35! and the fol-
lowing identities:

eiq•r54p(
lm

i lYlm* ~ q̂!Ylm~ r̂ ! j l~qr !, ~A5!

E Ylm* ~ q̂!Yl 8m8~ q̂!dVq5d l l 8dmm8 , ~A6!

E v~r !si• r̂ sj• r̂ eiq•rd3r

52si•“qsj•“qE v~r !eiq•r
1

r 2
d3r . ~A7!

We obtain

v1
(2)~x,y!5

m

9p3

f pNN
2

4p

3F E Q2dQq2dqg~q,Q!

3Yp~q! j 0~Qy! j 0~qx!si•sj

1E Q2dQq2dqg~q,Q!Tp~q!

3 j 0~Qy! j 2~qx!Si j ~ x̂,x̂!Gti•tj , ~A8!
01400
whereYp(q) andTp(q) were previously given in Eqs.~2.36!
and ~2.37!.

To calculate the second integral in Eq.~A4!, we use

Pl~cosuqQ!5
4p

2l 11 (
m

Ylm* ~Q̂!Ylm~ q̂!. ~A9!

The integral over the solid angles becomes

E dVQdVqei (Q•y1q•x)P2~cosuqQ!

5~4p!2P2~cosuxy! j 2~Qy! j 2~qx! ~A10!

and the second term in Eq.~A4!, denoted byv2
(2)(x,y), is

v2
(2)~x,y!5

2m

9p3

f pNN
2

4p H P2~cosuxy!E Q2dQq2dqg~q,Q!

3@Yp~q!1Tp~q!# j 2~Qy! j 2~qx!si•sj ,

13si•“xsj•“xFP2~cosuxy!

3E Q2dQdqg~q,Q!Tp~q! j 2~Qy! j 2~qx!G J
3ti•tj . ~A11!

Hereuxy is the angle betweenx andy. The gradient opera-
tors “x in the second term act on bothP2(cosuxy) and
j 2(qx).

The Q integral in Eqs.~A8! and ~A11! can be performed
analytically and results in

E Q2dQg~q,Q! j 0~Qy!5 f ~y!@Z2~q,y!2Z1~q,y!#,

~A12!

E Q2dQg~q,Q! j 2~Qy!5 f ~y!Z1~q,y!, ~A13!

where f (y) is the Yukawa function given in Eq.~2.33! and

Z1~q,y!5
~pqy!2

8
expF2SAm21

q2

4
2mD yG ,

~A14!

Z2~q,y!5
3

Am21~q2/4!y
Z1~q,y!. ~A15!

v (2) is finally obtained as

v (2)~x,y!5
m

3

f pNN
2

4p
f ~y!@ I 1~x,y,uxy!si•sj

1I 2~x,y,uxy!Si j ~ x̂,x̂!1I 3~x,y,uxy!Si j ~ ŷ,ŷ!

1I 4~x,y,uxy!Si j ~ x̂,ŷ!#ti•tj , ~A16!

where the tensor operatorSi j ( x̂,ŷ) is defined as
2-15
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Si j ~ x̂,ŷ!5
3

2
~si• x̂sj• ŷ1si• ŷsj• x̂!2 x̂• ŷsi•sj ,

~A17!

and I 1 , I 2 , I 3, andI 4 are given by

I 1~x,y,uxy!5F 20
Y ~x,y!2F 10

Y ~x,y!

12F 12
Y ~x,y!P2~cosuxy!, ~A18!

I 2~x,y,uxy!5F 22
T ~x,y!23H 13

T ~x,y!13F 14
T ~x,y! cos2uxy ,

~A19!

I 3~x,y,uxy!56H 12
T ~x,y!, ~A20!

I 4~x,y,uxy!5212H 13
T ~x,y!cosuxy , ~A21!
B

W

. C

e

hi

v.

e

01400
where

F a l
Y ~x,y!5

1

3p3E q2dqZa~q,y!Yp~q! j l~qx!,

~A22!

F a l
T ~x,y!5

1

3p3E q2dqZa~q,y!Tp~q! j l~qx!, ~A23!

H a l
T ~x,y!5

1

3p3E q2dqZa~q,y!Tp~q!
j l~qx!

~qx!42 l
.

~A24!
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