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Quantum Monte Carlo studies of relativistic effects in light nuclei

J. L. Forest and V. R. Pandharipantle
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, lllinois 61801

A. Arriaga’
Centro de Fisica Nuclear da Universidade de Lisboa, Avenida Gama Pinto 2, 1699 Lisboa, Portugal
and Departamento de Fisica, Faculdade dé @ias da Universidade de Lisboa, 1700 Lisboa, Portugal
(Received 18 May 1998; published 16 June 1999

Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body
potentials, and their boost corrections. In this work we use the variational Monte Carlo method to study two
kinds of relativistic effects ir’H and *He, using relativistic Hamiltonians. The first is due to the nonlocalities
in the relativistic kinetic energy and relativistic one-pion exchange potef@RBEP, and the second is from
boost interaction. The OPEP contribution is reduced4#6% by the relativistic nonlocality, which may also
have significant effects on pion exchange currents. However, almost all of this reduction is canceled by
changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding
energy is very small. The boost interactions, on the other hand, give repulsive contributiefs4df..9) MeV
in 3H (*He) and account for-37% of the phenomenological part of the three-nucleon interaction needed in
the nonrelativistic Hamiltonians. The wave functions of nuclei are not significantly changed by these effects.
[S0556-28189)03607-9

PACS numbegs): 21.45+v, 21.60.Ka, 24.10.Jv

I. INTRODUCTION The eigenvalue& can be compared with experimental ener-
gies, and the eigenstatp®) can be used both to study the
It is generally accepted that QCD is the fundamentalhuclear structure and probe it through electron-nucleus scat-
theory of strong interactions, however, due to quark confinetering experiments, and to calculate rates of nuclear reactions
ment, the genuine QCD degrees of freedom are not explicivhich may have important applications in several domains
at low energies. In low-energy nuclear physics, nucleons andf physics.
mesons are believed to be the physigdfective degrees of Schralinger equatior(1.2) is difficult to solve due to the
freedom. In the nonrelativistic many-body theory, nuclei arelarge spin and isospin dependencevgf andV;;, . Several
regarded as bound states of nucleons interacting via two- artédchniques have been developed, among which are Faddeev-
three-body potentials. All the subnucleonic and meson deYakubovsky [1], harmonic-hyperspherical bas{®], and
grees of freedom, as well as relativistic effects are, in somguantum Monte Carl¢QMC) [3,4] methods. The first two
way, absorbed in these potentials. Typically the nonrelativmethods are limited to solving three- and four-nucleon sys-
istic Hamiltonian is expressed as tems, whereas with the third method it is now possible to
calculate the ground state energy and wave functionAfor
2 =2-8 nuclei with great accuracy.
HNR:E p_,+2 vy + E Vit (1. Some of the results obtained by Pudlireral. [5] are
To2m S i<j<k listed in Table I. The Argonne ;g two-body potential6],
fitted toNN scattering data and the deuteron binding energy,

and models of two- and three-body potentials are constructe nd Urbana .IX _three-body potentigd] co_nstralned to give
by fitting observed data. The ellipsis in E{..1) represents the correct bmphng energy oH gnd density of nuclear mat-
N-body interactions l=4) which are thought to be much t4er, are used in these calculations. It works rather well for
smaller than two- or three-nucleon interactions, and thereforgHe' however, as can be seen irom Table |, Ake§, 7, and
neglected. n.uclel appear to be systemqncally underbound. It is inter-
The central problem is to solve the many-body Sehro esting to r!ote that a large fractlpn of the tatgl comes from
dinger equation the one-pion exchange potept(&DPEB and the dom-lnant
part of V;;, comes from two-pion exchange. Also notice that
the three-body interaction is much smaller than the two-body
Hnel W) =E|P). (1.2 interaction, yet it is crucial to obtain the observed energies,
because of the large cancellation between the kinetic energy
and the two-body potential energy.
*Present address: Jefferson Lab Theory Group, 12000 Jefferson Although the nonrelativistic QMC techniques have ad-
Ave., Newport News, VA 23606. Electronic address: vanced to such a level that the binding energies of light

jforest@ijlab.org nuclei predicted by a realistic Hamiltonian can be calculated
TElectronic address: vijay@rsml.physics.uiuc.edu with <1% error[3,5], the effective description of nuclear
*Electronic address: arriaga@alf1.cii.fc.ul.pt dynamics by means of nonrelativistic Hamiltonians may
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TABLE I. Nonrelativistic Green’s function Monte Carl@&FMC) results(in MeV) for light nuclei with
the Argonnev 1g and Urbana IX potentials. The first line gives the experimental energy while the next four
list the calculated total, kinetic, two-, and three-body interaction energies. The last two lines give the con-
tribution of the pion exchange parts of two- and three-body interactions.

2H 3H “He 5L L Be
Eexp —2.2246 —8.48 —28.30 —31.99 —39.24 —56.50
(E) —2.22485) —8.47(1) —28.302) —31.251)) —37.4428 —54.6664)
(T) 19.81 50.85) 111.96) 150.810) 186.428) 246.356)
(vij) —22.04 —58.45) —135.46) —179.210) —220.830) —295.862)
(Vi) 0.0 -1.202) —6.41) -7.21) -8.92) —-14.95)
(v —21.28 —43.82) —99.42) —128.95) —152.57) —224.19)
(V2 0.0 —2.1771) —11.711) —13.51) —17.14) —28.18)

have intrinsic deficiencies. In particular, when the nonrela-dynamics in the instant form stems from the fact that the

tivistic potentials are fit to the experimental data, relativisticground states of this Hamiltonian can be studied with the

effects are automatically buried in these potentials. How welbjuantum Monte Carlo methods that have already been devel-

can these effects be represented by means of local nonrelaped in the nonrelativistic approach. Earlier studi®,13

tivistic potentials is an important question to be answered. Irand the present study are limited to the 2, 3, and 4 nuclei,

other words, we may investigate whether an explicit andbut attempts to study larger nuclei are in progress. Combina-

more correct treatment of relativistic effects can resolve theions of meson exchange and phenomenological terms can be

systematic underbinding of the nonrelativistic results Aor used in the interactions iHg, which allows a very good fit

=6,7,8 nuclei. However, it is possible that this underbindingto the two-body scattering data wigf~ 1. It is improbable

is not related to relativistic effects. In fact, significantly im- that the entire short and intermediate range two-nucleon in-

proved results of binding energies A8 nuclei have been teraction can be represented as due to the exchange of a few

obtained with more realistic models fj, [7]. types of mesons. Therefore more general ways of studying
Furthermore, with the recently completed multi-GeV relativistic effects in nuclei are desirable.

electron accelerator facilities such as TINAF, experiments In this paper we report new results for the binding ener-

will be performed at energy and momentum transfer regimegies of theA= 3,4 systems, using the relativistic Hamiltonian

where relativistic effects are substantial in kinetic energieslynamics in the instant form, where for the first time the

and possibly in other aspects. Clearly, investigation of thesaonlocalities induced by the relativistic effects in the one-

effects in nuclear ground states is also necessary. Above alpjon-exchange potential are taken into account. In Sec. Il we

no matter how small the relativistic effects might be, under-describe the relativistic Hamiltonian used in this work, dis-

standing them is a fundamental quest, just like understandinguss the physical motivation behind its choice and the rela-

the fine and hyperfine structures in the hydrogen atom. tivistic effects it contains in addition to those in the interac-
We have not yet arrived at a satisfactory relativistictions of Hyg. In Sec. Il we apply variational Monte Carlo

theory of nuclei. That is a formidable task due to the internalVMC) techniques and present results. Finally we summarize

quark structure of nucleons. Several approaches have be@nSec. IV. Some of the detailed derivations involved in this

developed to study various relativistic effects that may occukork are given in the Appendix.

in few-body nuclei. The calculations aim to provide an esti-

mate of the magnitude of the effect studied, and learn from Il. THE RELATIVISTIC HAMILTONIAN

the available experimental data. The approaches can be clas- S o o

sified in two main categories: effective field theories and In relativistic Hamiltonian dynamics in instant form the

relativistic Hamiltonian dynamics. Within the first one, the mMomentum P) and angular momentumJ) generators are

Bethe-Salpeter equations for the two- and three-body Syschosen in the conventional way and therefore are indepen-

tems have been solved using a Separab'e kqﬁielA|so dent of interaction, while the Hamiltoniar‘"o and boost

covariant three-dimensional reductions of the relativistic in-(K) generators have interaction terms. Based on the pioneer-

tegral equations have been applied, along with one-bosofg work of Bakamjian and Thomdd4] and Foldy{15], the

exchange models for the kernels, to the three-nucleon syselativistic Hamiltonian can be expressed as

tem. Here we refer to minimal relativity in the

Blankenbecler-Sugar equatiof® and, more recently, to the He= E (VmZ+p?—my) + 2 [;ij + 603 (Py)]

spectator(Grosg equations[10]. In the relativistic Hamil- i i<

tonian dynamics approach, relativistic covariance is achieved

through _the Po_incérgroup theor_y. One_ application of thi_s + E [vijk+ Vi (Py) ]+ - -+, (2.2)

method is the light front dynamics, which has been applied i<j<k

to the two-body systenill], and the other is the instant _

form. wherev;; are two-body potentials in the “rest frame” of
The present interest in the relativistic Hamiltoniag) particlesi andj (i.e., the frame in whichP;;=p;+p;=0).
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Similarly vijk is the three-body potential in the frame in ing corrections are considered in this work for reasons dis-
which Py = p;+p;+px=0. The dv;;(P;) and Vi (Pij) cussed in Ref[12] and in Sec. llID. This leading term is
are called “boost interactions” and depend upon the total@Ven by

momentum of the interacting particles. Obviousdy;;(P;; p2 i
=0) andéVjjk (P =0) vanish. ThesVj (Pij«) is neglected Sv(P)=— —o+—[P-1P-p,0]
in the present work. It is believed to be much smaller than 8m? m?

the terms considered. _

We will now discuss the choice of the terms and interac- | ~
tions in the above relativistic Hamiltonian. This Hamiltonian +W[(Ul 72)%P-p.v], 22
is not yet derived from QCD, though we hope that in the
future it may be possible to obtain it from QCD. We havewhere the subscript§ of v, P, p, andr have been sup-
also made no attempts to derive it from a Lagrangian conpressed for brevity. Herp=(p;—p;)/2 is the relative mo-
taining nucleon and meson fields. Even though such a Lamentum operator, and=2s are the Pauli matrices for spin
grangian offers a useful language to discuss nuclear forces, ¥2 particles.
cannot possibly describe all aspects of nuclear forces since Various aspects ofv (P) are discussed in Reff18]. The
nucleons are bound states of quarks. For example, the efirst two terms of Eq(2.2) are denoted asvge and év ¢;
change of electrons is known to be responsible for the bindthey have simple classical origins in the relativistic energy-
ing of two hydrogen atoms to form the hydrogen molecule, Momentum relation and Lorentz contraction. The last term
as described by Heitler and London. It is not possible tgeontains contributions from Thomas precession and quantum
represent this attraction as due to exchange of photons &ffects. They are denoted @+p and vy and are much
Bosons such as the various positronium states, by the ime?__maller than the first two terms. For example, the contribu-
acting atoms. There can be similar quark exchange intera

tions of Suge, v c, Svrp, anddvqy to the energy of triton
tions between nucleons that can not be described by meséti€ found [12] to be 0.282), 0.1Q1), 0.0162), and
exchange.

—0.004(2) MeV, respectively. Since the main contribution
Due to the exceptionally small mass of pions, the lon

comes from the first two terms, for simplicity, we neglected
. . . . -“the last two terms in the three-, four-body calculations in this
range interaction between nucleons is mediated only by PO o
exchange. This interaction can presumably be described by All realistic models of nuclear forces contain terms with
an effective field theory containing nucleon and pion fields. 2 dependence as dictated by the scattering data. If the non-

i . i i jv- R . o . . .
The OPEP in the); of Hyg is derived from the nonrelativ- o (a4istic Hamiltonian is defined as that which contains all
istic o~ V coupling of the pion field to nucleons, while that

. terms of orderpiz, then it must contain these interactions as

in the v;; of Hg is obtained from relativistic pion-nucleon well as the boost interaction. It is useful to consider a famil-

field theory as described below. iar example. The Coulomb-Breit electromagnetic interaction
Parts of the intermediate range attraction are believed tp19] between two particles of massand charge®, ignoring

be due to two-pion exchange processes including excitatiogpin dependent terms for brevity, is given by

of the nucleons to Delta- and higher-resonances. This pro-

cess is analogous to the two-photon exchange, dipole-dipole, Q2 Pi-Pj  Pi-TijPj-ri

Van der Waals attraction between atoms. In the nucleon- v(py *pi):? 1- 2 202 " 2.3

meson field theory it is often represented by the exchange of J !

a fictitious o-meson. In effective field theories the short- up to terms quadratic in the velocities of the interacting par-

range part is attributed to the exchange of vector mesongcles. In our notation it is expressed as

with mass of~780 MeV. The quarks are confined to nucle- _

ons with flux tubes having a tension o900 MeV/fm. v(pi,pj)=vij+ v (Py), (2.4

Therefore a valance quark can wander 1 fm away from the

nucleon as easily as a vector meson, and the short—rand\é‘th

interaction can have quark-exchange parts outside of the

2m 2m

2 2 2
scope of nucleon-meson field theory. For these reasons all ;i:Q_ 4 ﬂJr (pij - Tij) ] 2.5
parts of the; andEij in Hyg andHg, other than OPEP are b 2m? 2m2ri2j
phenomenological. They obtain their quality only via accu-
rate fits to theNN-scattering data. It is therefore absolutely Q% P: (Pj-ryj?
essential that aniiz used to test the accuracy of the predic- v(Pyj)=— K WJF W : (2.6
ij

tions of Hyg must be accurately phase equivalent to the

Hyr. We assure this as described below. It is obviously inconsistent to include only the terms of order
The boost interactionsv (Pj;) in the Hg is totally ne- pizj , as most realistic nonrelativistic nuclear Hamiltonians do,

glected in theHg. It is determined from the “rest frame”  and neglect the boost interaction of ordidy . Unfortunately,

potentiaIEij through relativistic covarianc¢16,17. The even though contributions of the boost interaction to the

ov(Pj;) is expanded in powers ®¥2/4m? and only the lead-  binding energy of nuclear matter ariti were estimated by

]
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Coester and co-workers years a@b,21], they have been in detail in Refs[18,12,13. In most existing nonrelativistic
neglected in most subsequent studies. potential models, the OPEP has been calculated using the
The Hy requires, apart from obvious relativistic kinetic nonrelativistico- V coupling. WithoutrNN form factors, it

energy, a consistency between the rest franamd the boost IS given in momentum space by

interaction given by Eq(2.2). If parts ofv can be derived £2
from field theory, we can add them to other phenomenologi- TN/ =— 7NN @i 40} (7 - 7] 1 2.7
cal parts to obtain the total. Here we take the OPEP part of ' u? uP+q?

v from relativistic field theory. This, together with the boost wheref is the pion-nucleon coupling constant, s the
interaction it generates, include all the nonstatic terms in the. 7NN P piing '

OPEP predicted by relativistic pion-nucleon field theory agh'on mass, and is the momentum transfer
shown in Ref[18]. q=p-p’. 2.9

It is interesting to compare the descriptions of known sys-
tems or models given bi\r andHg to identify the relativ-  Herep andp’ are the initial and final momenta of nuclebn
istic effects contained ikl g beyond those in the interactions in the center of mass frame, and the g is local, i.e., it
of Hyg. The simplest system is the hydrogen atom. Fhg depends only o, ' : T
with only the Coulomb potential gives results correct up to In contrast, the OPEP in effective pion-nucleon relativis-
order . Some of the terms, such as the magnetic interacﬂC field theori'es has the form
tions, Darwin correction, etc., which give corrections of or-
dera*, can be included in thel g by adding the appropriate m m
interactions ta;; . However, theH g does not give the cor- v, 'p)=——— v, I
rect energy up o ordes® because th@*/8m? correction to rAPP) ymé+p’? N Vm?®+p?

the nonrelativistic kinetic energy omitted in thi gives a , L
contributions of ordew®. The Hy, with a proper choice of 1 NiS potential is dependent not only gnbut also onp and

~ . . p’, which results in a nonlocal potential in the configuration
v, gives results correct to order*. We have not examined space. The interactio2.9) is regarded as energy indepen-
the reproducibility of thex® correction by arHp. pace. ] 9 9y P

Next, we can consider the hypothetical system known agent _and used in many-body Sctifeger equations. By ex-
the Walecka model of nuclear matter. The problem of ex_pan(?lmg the squarNe rOOtf it car-w be easily 2ver;f|§d that the
tended uniform matter consisting of Dirac particles interact-le""d'ng2 correction {rre— U NR) IS OF Orderp”/me, ie., of
ing with long-range scalar and vector fields has been solve@rderv“/c® wherev denotes the velocity of the nucleons in
by Serot and Waleckf22] in the mean field limit. The ap- the center of mass frame.

proximate solutions to this problem obtained wkty and In the Hg the v, o(p’,p) is used for allp? and p’?,

Hyr have been discussed in Régfl8]. With appropriate Wwhereas in the physically allowed one-pion exchange two
choice ofv;; the Hyg can reproduce terms in the expansionnucleon scatteringd'> must equalp? to conserve energy.

of the energy per particle, of order up k§ . The term of ~Whenp?=p’Z (on shel), Eq. (2.9 is obtained with either
orderk? comes from the relativistic correction to the kinetic PSeudoscalar or pseudovectorN couplings and is consid-
energy while that of ordek? contains boost correction, both €red to be modzel n}glependent, apart from form factors, etc.
of which are absent in thelygs. The Hg will reproduce all 1€ off-shell o p’) behavior of the OPEP is model de-
the terms up to ordekéo. It is essential to include the boost pendent. It can be changed by using comb|na_t|o,ns of pseu-
correction of ordeP?, as given by Eq(2.2), to obtain the doscalar and p;eudovector coupllngs. In Friar's nota}t|on
correct contribution of ordek? . The three-body force con- [23,24 the possible off-shell behaviors are characterized

tribution is needed for the term of ordé&, while boost with parameters: and », and up to Prdelpzlmz they are
corrections of higher order than considered here are essentflated by unitary transformations. Qwl, . has an off-shell
to reproduce terms of ordet’, k?, and k°. Four-body behavior withy=1/2 andu=0. In contrast the OPEP in the
forces, neglected in Eg2.1), give contributions of order CD-Bonn model has the form
k}:l. Three- and more-particle interactions originate only
from the scalar field. ~ ,
In both the examples considered abdvg gives a sub- UrcoB(P'P) =~ —5- qu Eg’ i
stantial improvement ovetg. In these examples the dif- woR

(2.9

ference between the results obtained wtith andH g gives o,-po.-p o-pao-p
) L , e i i
the leading relativistic effect neglected Hyg. However, HE-B)| ey -
these systems are much simpler than nuclei. In Sec. IV we E'+m
will argue that theHz may contain the leading relativistic (2.10

correction to nuclear energies.
In the remainder part of this section we discuss the choicebtained from pseudoscalar couplin®5,26. Here E

of the OPEP and in the Hg. The main focus of this work = Vm“+p®, E'=ym°+p’“. The term proportional tof’
is on the treatment of OPEP Hg; the calculation of boost —E) does not contribute to the on-shell OPEP, and is absent

interaction and relativistic kinetic energy has been describeérom the%wm given by Eq.(2.9). In Friar's notatiorv .CDB
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hasy=1/2 and= — 1. In principle, since the various OPEP that in nonrelativistic Hamiltonian due to the difference in

are related to each other by a unitary transformation, origif?md andEmNR as well as that in the kinetic energy opera-

nating from the Dyson transformati¢@7], the final answers tors.

should not depend upon the choicezofind ». However, the We construct ouHg to be phase equivalent to the isos-

current operators as well as M, will depend upon the ~calar part of the nonrelativistié ys containing Argonn@g.

choice madé27]. Our choice is made primarily for the sake The relativistic effects can then be studied by comparing

of simplicity, and for avoiding the complications of undoing results obtained from ourir and the isoscalayr without

the unphysical effects of the strong coupling between piongonsidering the small isospin symmetry breaking terms in

and nucleon-antinucleon pairs in the pseudoscalar theory. the latter. The relativistic Hamiltonian for two-nucleon Sys-
In Ref.[18] it is shown that the relation between the boosttem in its center of mass frame is

interaction 5v(P) and the statia g is independent of the
origin of vy Up to orderP?/m?, and thus the knowledge of  H_=2\/pZ+ m?— 2m+ ———7 _ \a(q) —
the staticu g is sufficient to obtaindv(P). In contrast the Vm?+p'2 Vm?+ p?
relation[Eq. (2.9)] betweenu . o and v, N iS Specific for ~

the interaction due to exchaﬁge of pséudoscalar mesons by tUR, (2.19
nucleons represented by Dirac spinors via either pseudo-
scalar or pseudovector coupling. By expanding the squar@’

m m

hereuvg has the same form as the isoscalar part of Argonne

roots in Eq.(2.9) we obtain v1g[6]:
-~ p’? p? vr= 2 vp(r;j)Of, (2.17
Vel P ’p):UW,NR(q)(l_ﬁ_ﬁ—'—"')x p=T14
(211 Of "=14- 7,01 0}.(01- o)) (7 7)),
whereas the interactions generated by exchange of d&lar XS;,Sj(7-7),L-SL-S(7-7),

or vector(V) mesons have different relatiohs8]:

, L% LA(7- 7)), L%(0y- 0),L%(07- o) (7 7)),
~ , ~ (p"+p)
Usrell P ,P):US,NR(Q)< 1- W‘*‘ o]y (212 X(L-9)%(L-9 7 7). (2.18

TheZmNR used in Argonne g is given by

2

"y 2
1L PR
2m?

;V,rel(p,ap):;V,NR(q) ~ 1 fiun
(2.13 Uw,NR(r):glL yp [Yr(r)oi o+ T(r)S]5- 7,

' (2.19
Realistic models of nuclear forces contain momentum depen-
dent central forces. However, most configuration space mod¥here
els do not contain long range, momentum dependent tensor —ur
forces occurring in'ugmeb In exact calculations the tensor Y (r)= (1—e‘°r2), (2.20
force can not be generally expanded in powerp@m?. In mr
any truncated expansion the force diverges at large values of 3
p, and can yield divergent attraction. This poses the main _ a erdy2
technical challenge addressed in the present work. Ta(r)=| 1+ ur * (ur)? (1=e )% (229

The two-nucleon potential is expressed as

UNN=U mrelT VR, (2.14

-~ . . . We note that thisEmNR does not contain the part of
wherevg is the remaining part of the two-body potential .. o 7. 7. interaction which acquires &(r ;) function form
which is phenomenological. We can also write the OPERy ihe |imit of point particles. Thiss function is probably

given in Eq.(2.9 as spread out by the finite size of the nucleons, and contributes
~ ~ ~ ~ to the short range part afyy. However, it is difficult to
U rel= V., NR (U 7, rel ~ U, NR) - (219 extract it from the phenomenological models. Moreover the

. . L ) dominant contribution and the nonlocality effect seem to
The term in parentheses is the relativistic correction. Th%ome from the tensor part of OPEP.

nonrelativistic potential models do not consider this correc- Recently, after completion of the present work, Kamada
tion explicitly: the data is fit using , ng in Eq. (2.14), thus  and Glakle [28] found an elegant method to obtain a poten-
some of its effects go into the phenomenological part of thejal v . that gives exactly the same phase shifts with relativ-
potentialvg. Thevg in relativistic Hamiltonian differs from istic kinetic energy that a knownyg gives with nonrelativ-
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FIG. 1. Phase shifts as a function of lab energy. the reference phase shifts obtained withr; +: those usingg from Hyg in Hg;
O: those with the new relativistic Hamiltonidfg with readjusted 5 .

istic kinetic energy. Our objective here is not just to find a Some of the important phase shifts are plotted in Fig. 1.
v, that is phase equivalent to the Argonng; we addition-  The diamond symbols represent the reference nonrelativistic
ally require it to have th@ ,,  long range behavior. Both Phase shifts obtained witHyg, the plus symbols represent
relativistic and nonrelativistic models of contain theoreti- '0S€ calculated frorhig before readjusting the parameters
cal long range OPEP; the scattering data is used to determir%]lép(r)’ and the square symbols correspond to those after.

. ~ . _ . reference phase shifts are almost exactly reproduced by
only the phenomenological par, in these Interactions. Our he relativistic HamiltonianHg as indicated by the good
two models are not as exactly phase equivalent as Kama%:b

d Glkle d h the diff . erlap of the diamond and square symbols in Fig. 1. The
and LITKIE'S vy ANAuyg are, NOWEVEr e dilterences N yqiations petween the plus and diamond symbols reflect the
their phase shifts are negligibly small compared to the un

P . fotal effect of replacing nonrelativistic kinetic energy and
certainties in the Nijmegen phase shif28]. P 9 %Yy

The parameters of the functiany(r;;) of v are obtained TABLE II. Deuteron properties.
by fitting the phase shifts and deuteron binding energy. Tra=
ditionally phase shifts are calculated in configuration space, Hnr Hr

however, in the relativistic case, the Hamiltonian containsDinding energy(MeV) 2

—2.242 —2.242
Jm?=V?Z which is nqnlocal in configuration space, thereforequ‘,jdmpme moment () 0.269 0.271
we calculate them in momentum space. The details of thg, ¢ siate eo) 5.776 5.732

momentum-space technique have been discussed in Ref.
[30]. AWithout electromagnetic interactions.
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FIG. 2. Comparison of relativisti¢solid lineg and nonrelativistigdashed linespotentialsv, —v 4 Of the operator formdfrefer to Eq.
(2.17]. Note thatv, andvg contain contributions from botﬁﬂ andvg, and only a local nonrelativistic OPEP is used.

ZW,NR by the relativistic kinetic energy anamel in Hyg, large cklange irE, is due to the nonlocality of the tensor
and are not too large except for the mixing param&gof  force inv . .

33,—3D,. This indicates that relativistic nonlocal effects in ~ The new two-body potential is essentially phase equiva-
two nucleon scattering &,,,<<400 MeV are rather small. lent to isoscalar part of Argonne;g and predicts similar

E, is primarily determined by the tensor force; the relatively deuteron properties as listed in Table Il. Note that the present
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0.5

The exact ground state wave functidhcan be expanded

—— Relativistic in a complete set of statéi):
———- Nonrelativistic
04 |
-~ [w)=2 #ili). (223
2 For a Hamiltonian given b +v, whereli) are eigenstates
£ of T, the amplitudesp; are given by
Q
=]
s __ (il (2.2
£ T (ITEdliy '

e
=

as can be verified from the Schiiager equationH|¥)
=Eq| V). HereE, is the ground state energy.

In the case of the deuteron we can chodses the kinetic
energy operator and) asSandD waves with momenturp,
_ denoted by|p,), for |=S,D. The amplitudesp,(p) of these

FIG. 3. Deuteron wave functions. waves give the deuteron wave function in momentum space.

Hyr @andHg do not contain electromagnetic interactions. TheWe can ggtimate the difference between.the nonrelativistic
experimental value of deuteron binding energyand relativistic deu';eroﬁ)-sta@te_ wave fu_nctlon at large mo-
(—2.224 MeV) can be obtained from the full Argonng,  MeNtum by assuming that it is primarily generated by the
with electromagnetic interactions. The 14 operator compo@PEP. In the nonrelativistic case this gives
nents of the relativistic and nonrelativistic potentials are
compared in Fig. 2. Only the static part of the relativistic . m ~
OPEP, obtained by setting/\pZ+m? equal to unity is used ¢o.NR(P) = E<DD|U”'NR|\P>’ (229
in Fig. 2. Since it is the same as the nonrelativistic OPEP, the
difference between the potentials shown in the figure is enwhere we have neglected tiig in the denominator of Eq.
tirely due to that in the phenomenological pagt. Equation  (2.24), since it is much smaller than the kinetic enefgfym
(2.9 shows that the , ¢ is smaller than the , s for por  atlargep. In the relativistic case
p’#0.

The deuterors- and D-wave functions are shown in Fig. bo ol D)= — 1 m (PolT » nel T
3. Here the relativisti© wave is slightly smaller than the D.rellP 2(m?+ p?—m) ym?+p? PoltaNRIY 7,
nonrelativistic one, presumably because the relativistic ten- (2.26)
sor potential is smaller than the nonrelativistic tensor poten-
tial [Eq. (2.9)] for largep andp’. The deuteron wave func- where the first factor is the relativistic kinetic energy de-
tions in momentum space are shown in Fig. 4. Note that th@ominator, and the second comes from thé&E’ factor in
relativistic wave functions are not very different from the the v, e [EQ. (2.9]. The otherm/E factor in thev ,. ) Op-

nonrelativistic ones. The ratio of the two momentum spacrates on thel. It is set to unity because most of the deu-

low.

0.0

r (fm)

Neglecting the small difference between the relativistic
1o , . . , and nonrelativistic?, the ratio of thegp(p) is found to be

2

) — Relativis.tic. ‘ | b0 rel( D)
S—wave ———- Nonrelativistic

- P 2.27
$onr(P)  2(ym?+ pZ—m)ymZ+p?’ '

The above estimate is fairly close to the ratio of the calcu-
lated D-wave functions as can be seen in Fig. 5. Note that
this ratio is smaller if thé?me, is used with the nonrelativ-
istic kinetic energy ingp (p) (dotted ling, and it is larger
than one when thEmNR is used with the relativistic kinetic
energy(dot-dashed ling The relativistic corrections to the
interaction and kinetic energies have opposite effects on the
wave function. The difference between tBevave functions

is influenced by the changes in the kinetic energy and the
vr. The effects of these changes on the phase shifts and the

deuteron energy must cancel by construction, and they seem
FIG. 4. Deuteron wave functions in momentum space.  to largely cancel in thebg(p).

Wave functions (fmm)

: »
momentum (fm )
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2 2+ 12
calculated ; (p, p):; (q) 1— p p
——— estimated using Eq. (2.22) m,rel 1 m,NR om2
""""""" estimated with T, and v eRel ]
' estimated with T and v, /_,—/ ] 3p4+2p2p’2+3p,4
+ 7 +.--]. (2.29
8m

However, this series does not have good convergence. In the

case of deuteron, the expectation vaIuequNR, for the
eigenfunction of our relativistic Hamiltonian is-21.39

MeV. The term inv,, ., of order 1m2, contributes 3.48
MeV to the (v, ), while that of order Ih* gives —1.45

MeV, and the exactv . e~ v ».ng) IS 2.59 MeV. Therefore

00 : : N : the series converges slowly to the exact value. This may
p(fm™) appear surprising because the expectation value of the ki-

_ L . netic energy of the deuterofTable Ill) is only about 20

FIG. 5. Ratio of deuteron relativistic to nonrelativisiiewave MeV, giving p2/m2~0.02 on average. However, the deu-

function in momentum spadsolid line), and the simple estimate of teron has large momentum components via Ehe/ave, or

Eq. (2.27) (dashed ling The dotted and dot-dashed lines reloresentequivalently the tensor correlations, and most of thé OPEP

contribution is from those. Thus it is not surprising that the

expectation value of OPEP is sensitive to higher powers of

nucleon velocities.

) For the relativistic OPEP, a good convergence is achieved
Some of the deuteron momentum space results are listgsl, ysing the variables

in Table 1ll. This table offers a microscopic view of how

O P)p iz ()

results calculated usinGygr, v ;e @NdTyg, U NR N dp e iN EQ.
(2.27), respectively. The wiggle in the calculated ratio around
7 fm~! comes from a node in the wave function.

various relativistic effects were buried in the nonrelativistic 1 , ’
models. Relativistic nonlocalities reduce the OPEP contribu- Q=35(p+p ), q=p—p’, (2.30
tion by ~2.6 MeV, while the relativistic kinetic energy is
smaller by ~—1 MeV, giving a net effect of 1.6 MeV 1
which is canceled by the change in the phenomenological XZE(Hrl)’ y=r—r’, (2.3)
UR-
The variational Monte Carlo calculations for the>2 ¢, \vhich
systems have to be carried out in configuration space. We
therefore have to Fourier transform t"ﬁg,,e, which depends _ _ m>
on bothp andp’ [Eqg. (2.9)], yielding a nonlocal potential in Ve = U NR(D) ——— >
configuration space V(m*+ Q%+ q%4)*~(Q-q)
5 ol Q*+ g%/4
~ d®p d3p’ ., - . TUaNR Q)| TS
vmrel(r/,r):fﬁ(z p)ae—|p o Uqr,rel(p,ip)elp'r- m°+Q°+q-/4
T T 2(0.0)2
(2.28 1 m@a (2.32
2 (m?+Q%+q%4)*

The exact integral in Eq2.28 is extremely difficult to cal-

culate. The series obtained by expandiﬁgj,e,(p’,p) in
powers ofp?/m? is given by

TABLE lll. Results of momentum space deuteron calculations.

Here we expanded the,, ¢ in powers of Q-q)%/(m?+ Q?
+¢2/4). This series appears to converge rapidly. In the case
of deuteron, the leading relativistic correction given by the
second term is 2.7 MeV, the third term give€.18 MeV,

and the exact value is 2.59 MeV. The third term conta#igs
dependence and results in complicated operator forms as

(¥ el Hiel ¥nie) (WrlHel V) shown in the Appendix. Moreover, the third and higher terms
(E) —2.242 —2.242 account for only~49% of the relativistic correction to OPEP
(T) 19.882 18.877 expectation value in the deuterdie., ~0.6% 0f (v, re))-
(vy;) —22.125 —21.119 Therefore only the_ first two terms are gonsidered in this
@) —21.356 —18.797 work, and the relativistic OPEP is approximated by
(OR)=(0i~ v —0.769 —-2.322 >
<ZWJ9|_;7T,NR> 2.589 ;w,relz ~7T,NR(q)- (233

Y 5 5. U
m*+ Q%+ q*/4
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With this?}wm in Eq. (2.14, we refit the phase shifts and

deuteron binding energy. The parameters jir) are very
similar to those obtained with the exaﬁ:;,,rd given by Eaq.

(2.9). The new phase shifts and the relativistic potentials are

very similar to those shown in Figs. 1 and 2.
The configuration space potentf&lq. (2.28] is given by

d®Q d%q m?
(2m7)% (2m)° m*+Q2+q?/4

Vel %,Y) = f

X;w,NR(Q)ei(Q'wq'x),

(2.39

and is simple to evaluate. The, \g [Eq. (2.19] in momen-
tum space is given by

v NR(D) = J v nR(D)ETTdr,

1
:§:u’f§TNN|: V) oy o+ T(q)

3
X a'i'aj—ga'i-qa'j-q> 7.7, (2.39
where
V(@)= [ Ya(nictanrar, (2.36
TW(Q)=f T.(r)ja(qr)radr. (2.37
Substituting these into E2.34) gives
~ 1 2
Uﬂ,rel(x’y)zglb{’ A f(y)[FaT(Xiy)gi'o'j
+F () S (6017 7, (2.38

with

2
ForXy)= ;f AV H(Q)]o(ax)e” (M Fammy,
(239

2 _ . .
FWW):;f g7, ()j(ax)e” (T Tmy,

(2.40
m? e~
(=27 (249

In the limit m—o, f(y) becomes &%(y), F,.(X.y)
—Y.(X), and F,(x,y)—T.(x). Wheny—0, we haver’
=r, x=r and Eq.(2.39 becomesT;mNR. Figure 6 shows
F..(x,y) andF,.(x,y) as a function ofk for various values

PHYSICAL REVIEW &0 014002

x (fm)

FIG. 6. F,, andF,, as a function ok for various values of.

of y. Note that the solid lines foy=0 correspond to the
nonrelativistic Y (x) and T_.(x). The volume integral of
F..(x,y) is independent of, whereas that oF,,(X,y) de-
creases withy. Therefore relativistic effects mostly come
from the tensor part of OPEP.

lll. VARIATIONAL MONTE CARLO CALCULATIONS
AND RESULTS

A. VMC techniques

With the relativistic Hamiltonian discussed in the previ-
ous section, we can proceed to evaluate the energy expecta-
tion value

(HR)=(T)+(vij) +(Svij)) +(Vijk) 3.9
for A=3 nuclei using the Monte Carlo technique. The Monte
Carlo method 31] offers a useful way to handle the multi-
dimensional integrals which would otherwise be impractical
by the usual numerical methods. The basis of this method is
that instead of integrating over a regular array of points, we
sum over a set of configuratiod®&;} distributed with prob-
ability w(R). HereR=(rq,r,, ... rp) denotes the configu-
ration of all the nucleons in the nucleus. There are various
techniques for samplingv(R) [31], and in this work Me-
tropolis sampling metho@32] is used to treat the compli-
cated distributions.

The variational Monte CarlgvMC) technique is based
on variational principle that the minimum expectation value
of the Hamiltonian is closest to the ground state energy of
the system. Starting from a variational wave function, which
depends upon several variational parameters

014002-10
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(al,az, -
Ri:

J’dR\PI(R)H\PU(R)
(H)=

J dR¥T(R)W,(R)
NC
(1/NC>Z1 [VI(R)AY,(R)IW(R))
= ~ +5,

(1/NC>ZCl [WI(R)W,(R)I/W(R;)

(3.2

where$ is the standard deviation. Typically block averaging
scheme is used to obtain a normal distribution and the error

can be conveniently evaluated from it. We divitle con-
figurations intoN,, blocks each containindly=N./Ny con-
figurations. The average

No
(INg) 2, [W}(R_DAW,(R)J/w(Ry)

Ho= No (3.3

(1/No)2:l [WI(R)W,(R)I/W(R;)

is evaluated for each block. The expectation valugHos
given by

N

1 0
()= 2 Hy (3.4)
pi=1
with the standard deviation
1 X
o=\ 2 (Fo—(H))2. (3.5
b i=1

The Monte Carlo result is exact when the number of configu-
rationsN,— <0, although in practicé.=50 000 seems to be
enough to obtain results with sufficiently small statistical er-

rors. The weight function is usually chosen to be
W(R) =W (R)W,(R) (3.6

to maintain small Monte Carlo error. Note that whén is

the eigenstate dfl, the Monte Carlo sampling error becomes
.,a,) are varied to

zero. Finally, the parameters(,a,, . .
minimize the energy.

Some of the terms ifHR) [Eqg. (3.1)] can be calculated
straightforwardly and have been discussed in R&3] and

.,a,), we evaluate the expectation value of the
Hamiltonian using the Monte Carlo configuration samples

PHYSICAL REVIEW G50 014002
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FIG. 7. VMC results for deuteron with 100 000 configurations.

B. Relativistic wave functions

In the nonrelativistic case, variational wave functions of
the form

¥,)=

1+i<j2<k Fijk>(si1:[j Fij)|cp>, (3.7

having symmetrized product of pair correlation operatays

and a sum of triplet correlations;;, operating on an anti-
symmetric, uncorrelated wave functip®), have been com-
monly used. Thé;; andF;;, correlation operators reflect the
effects of two-, three-body interactions on the wave function.
The uncorrelated wave function has no spatial dependence
for A<4 nuclei. A good representation of such a wave func-
tion is given in Ref[33].

The pair correlation operatdt;; is constructed from cor-
relation functions which satisfy Schitmger-like two-body
equations, with appropriate boundary conditions. Their solu-
tions are similar to deuteron wave functiodgg and ¥y
displayed in Fig. 3. In the case &f=2 deuteron, both non-
relativistic and relativistic correlation functions can be easily
solved in momentum space; they are not very different from
each other as can be seen in Fig. 3.Ar2 nuclei, the
nonrelativistic pair correlation equations can be easily solved
in configurations space, however, the relativistic equations
are more difficult to solve. Therefore we seek good approxi-
mations for the relativistic pair correlation functions.

Our method can be easily illustrated using the example of
deuteron. Its variational wave function is expressed as

V=V\r+NVr—V\r), (3.9
(P|Hg|WP) is calculated using VMC, and is varied to
minimize it. The results are shown in Fig. 7. The error bars
shown in Fig. 7 originate from the statistical sampling and
are<1% of the binding energy. The same configurations are

[13]. The terms that require special techniques are the relgjseq to calculate the energies for &llhence the errors are

tivistic kinetic energy(ym?—V?) andv ,, ¢ in the two-body

correlated. The minimum value gHg) does occur ai

potential. The kinetic energy term has been calculated previ=1 whereW =W as expected. The difference {hig) be-
ously in Ref.[12], and the calculation o(fﬂmep is discussed tween\=0 (using a nonrelativistic wave functiprand \

in Sec. IlI C.

=1 (using a relativistic oneis ~0.04 MeV. This means
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FIG. 8. ¢é=(fr—fyr)/fnr @S a function of.

that if we were to use the nonrelativistic wave function to
calculate the expectation value df;, the result will be off
by only 2% for the deuteron.

In heavier nuclei we also expect the optimum nonrelativ
istic wave function to provide a good approximation for rela-
tivistic wave function. The difference between the two is
presumably largest ifS;—3D,; and 'S, correlation func-
tions at smallr. We therefore define

01~ 8,1,NR(1+)\§180)1 (3.9
f10=fLond 1+ NEss), (3.10
ftl,o:ftl,o,NFe(1+)\§3Dl), (3.1)
whereé; for the channet is defined as
r)— r
£(r)= $e,r(M) = denr(T) (3.12

denNr(T)

At small r, the centralf{ , and tensorftL0 correlation func-
tions in spin-isospirs, T= 1,0 states are proportional to tBe
and D radial wave functions of the deuteron, respectively.
Therefore thefssland &3p can be calculated exactly in mo-

mentum space using the relativistic and nonrelativistic deu
teron wave functions for the; g and ¢, \r. Theseé's are
rather short rangedFig. 8), and we do not expect them to
vary significantly in larger nuclei. Wiringd4] has shown
that the nonrelativistic correlation functions féH, 3H, and
“He are almost the same at small

A similar calculation ofglsois not possible because of the

absence of a bound state in that channel. However, we can

obtain an artificial'S, bound state by slightly increasing the
strength of intermediate range attractioniftS,). The bind-
ing energy and the wave function at langare very sensitive
to small changes in(1Sy), however,glsois relatively insen-

sitive. As an example, thélsoobtained from artificial'S,

bound states with energies efl and—10 MeV, shown in
Fig. 8, are very similar.
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FIG. 9. VMC results for triton with 50 000 configurations.

The VMC energy of*H with the relativistic Hamiltonian
is shown as a function of in Fig. 9. The minimum occurs at
A=0.5 instead of 1(the expected valye however, the dif-
ference in(HR) betweem\ =0.5 and 1 is rather small and of
the order of the Monte Carlo sampling error. The minimum
energy for*He occurs at the expected=1.0.

C. Expectation value of the nonlocal potential

Consider anA-nucleon system whose wave function is
denoted agb(rq,r,, ... rp). We define

1
xj=§(rj+rj’), (3.13

!
xi——;(ri+ri),
so that

X=X-X, 5

. (3.14

r—ri=ri—rj,

as illustrated in Fig. 10. The expectation value of relativistic
OPEP is then given by

2]

<Un-,rel>: 1__[ d3rkd3xid3xjd3y

] K1)
Xyt rl,...,xi—%,...,xﬁ—, A
XV el 1% = X1[,Y)
XW\ry,... ,xﬁ—%, . ,xj—%, . ,rA),
(3.1

where Zmre|(|xi—xj|,y) is previously calculated in Eq.
(2.39. The integration over the,’s, Xx;, X; and the solid
angle ofy is carried out by the Monte Carlo method, while
that over the magnitude of is carried out with Gauss-
Laguerre integral.
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s i FIG. 11. A naive picture offH to illustrate large momentum
! contribution from a configuration where two nucleons are close
FIG. 10. A diagram to illustrate the calculation of nonlocal in- together.

teraction contributions. . . L .
first order inP?/4m?. The average kinetic energies of nucle-

ons in nuclei are rather small giving averagé’m2<0.1.
The expansion has good convergence for such values. How-
The VMC results forH and “He are listed in Table IV. ever, two nucleons can occasionally have large relative mo-
Note that in principle we should use GFMC to calculate thementa when they come close together as illustrated in Fig.
exact binding energies, but the relativistic effects resultingl1. In that configuratiorp;~p and p;~—p are both large
from the difference betweefHg) and(Hyg) are small and due to strong short-range interaction between nucleamsl
presumably not too different from those estimated using- Such configurations are responsible for the slow conver-
VMC. gence of the expansion v ;. e~ v - nrl)- IN these configu-
The total relativistic effect on the binding energy is rations the squares of the total pair momenta are of order
~0.3 MeV for 3H and ~1.8 MeV for *He. Most of the Pj~P%~p? while P has small, near average value. Thus
effect comes from the boost correction which is 0.42 MeVthe expansion paramet®/4m? for the boost interaction is
for H and 1.94 MeV for*He. The net effect of relativistic effectively four times smaller than that oﬂ,rm—ZmNR)
corrections to the kinetic energy and the two-body potentialwhen the momenta are generated by pair correlations, there-
on the binding energy is rather small~—0.12 fore we expect the boost expansion to converge more rap-
+0.06 MeV in $H) and ~—0.17-0.10 MeV in (*He). idly. Moreover,(ﬁme|—5mNR|> is much larger <6 and 13
Since bothHyg and Hi are constrained to give the same MeV in 3H and “He, respectivelythan(|v|) and has to be
deuteron binding energy, the changeg and(Zij> cancel calculated with higher relative accuracy to obtain a final total
exactly in 2H. In 3H and *He they appear to largely cancel energy with error~1%.
and give a rather small net effect.

In view of the slow convergence of tf{@ ,Tyre|—5,,,NR|>,
when expanded in powers @fz/mz' one may question the We find that the relativistic effects in OPEP are quite
validity of calculating the boost interactiofv only up to  substantial. The expectation values'z;q,f,rm are smaller than

D. VMC results

IV. CONCLUSIONS AND OUTLOOK

TABLE IV. VMC results for *H and *He, calculated with 50 000 configurations.

H “He
HNR HR HR_HNR HNR HR HR_HNR

(E) @ —8.2403) —7.944) 0.305) —28.097) —26.349) 1.811)
(T) 50.1(5) 48.65) —1.57) 104.89) 98.48) —6(1)
(o3) —-57.35) —56.05) 1.37) —127.69) —121.59) 6(1)
Vi) —1.063) -1.033) —-5.299) —5.208)

(Svij) 0.421) 1.9473)

(VR 0.9403) 1.01(3) 5.267) 5.398)

(v.) —44.02) —-38.32) 5.7(4) —97.1(5) —83.94) 13.31)

aVithout electromagnetic interaction.
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those ofv . yg by ~15%. Since the expectation values of correction to the binding energies of light nuclei in the

OPEP are much larger than nuclear binding energies, thB"€Sent formalisin._C%ntributians v are very small, only
differences in the OPEP expectation values are comparable1% of that ofv in ®H and "He. However they are not
to the total nuclear energy. However, nuclear Hamiltonianganceled, sincélyg does not have this term, and therefore

are not derived from first principles, they are obtained bydominate the net effect. As with the two-nucleon interaction,
- . . ~ the three-nucleon interaction is also not derived from first
fitting data. The substantial difference betweep . and

- ) ! . mrel principles. Urbana models o¥;;, contain two terms: the
VxR IS compensated in thelyg by that in the kinetic en- attractive two-pion exchange terfy and a repulsive phe-
ergy T andvg so thatHyr gives the same scattering cross nomenological tern\/f}k. Their strengths are chosen to re-
sections and deuteron energy as Hhe. We find that this  produce the triton energy and the density of nuclear matter
compensation works rather well for three- and four-body nuwithout considering any relativistic effects. In light nuclei
clei. In absence of the boost interaction our nonrelativisticthe repulsivesv contribution is about 37% of that Nﬁk.

and relativistic Hamiltonians seem to give very similar re-Thus the strength d"ﬁk in H has to be reduced by 37% to
sults for the binding energies and wave functions of lightobtain the experimental energies of light nuclei. The differ-
nuclei. It is probably necessary to examine one-pion exence in the three nucleon interaction then compensates for
change current contributions to elastic scattering form factorthe omission ofév in conventional nonrelativistic nuclear
and radiative capture reactions to see the effect ofhe Hamiltonians. It appears that this compensation works rather

factors in the OPEP. well in light nuclei having up to eight nucleof38], as well
The modern two-nucleon potential models, which includeas in nuclear and neutron matter up to normal dendi8ek
the Nijmegen models |, II, and Reid-934], Argonnev,;  However, at several times nuclear matter densities, encoun-

[6], and CD-Bonn [25], accurately reproduce the tered in neutron stars, the effective three-nucleon interaction

NN-scattering data in the Nijmegen data base. Feiaal. overestimates thév contribution significantly39].
[35] have studied the triton energy with the Nijmegen and__1h€ €nergies and the wave functions predicted by the

Argonne models, without boost or three-nucleon interac-nonre'atiViStiC Hamiltonian[Eq. (1.1)] seem to be little

tions, using accurate Faddeev calculations. The energies ofranged by including the relativistic effects studied in this
tained with the three local potential models, Reid-93 work, provided the interactions;; and Vi are obtained

Nijmegen-Il, and Argonnev,s are, respectively—7.63, from accurate fits to the scattering data, triton energy and

—762 and-7.61 MeV. Th . | ({wclear matter density. We have not studied all the relativis-
-0z, and=/.b1 MeV. These energies are very close, anG;s effects in nuclei. There are presumably many more buried
these models also give very similar valués70, 5.64, and

5.76 99 for Pp, the fraction ofD state in the deuteron. The in the phenomenological. However, the pair distribution

boson exchange Nijmegen-I model contains nonlocal termfunctions at smalt do not change from nucleus to nucleus
and gives—7.72 MeV for triton energy and 5.66% fdt, . f40]. Therefore the deuteron provides an excellent test of the

i . . NN wave function at smalt in nuclei. The recently com-
Comparison of the results of Nijmegen | and Il models indi- y

c X leted experiments at Jefferson Liatl| show that the deu-
cates that the total effect of the nonlocalities on energies anﬁeron form factors are in reasonable agreement with the pre-
the wave functions could be small. The present results su

) Lo : Lo r ultS SUljictions of the Argonnev ;3 model [6] up to momentum
port this conclusion; inclusion of relativistic nonlocalities in transfer of two GeV. It thus appears unlikely that the wave
OPElP Marl(/j k'gst'cb energg; lowers the triton energy byt nctions predicted byHyg are significantly wrong at dis-
~0.1 MeV andP, by 0.04%. L . tances larger thar-0.5 fm.

In contrast the CD-Bonn potential gives rather different

results from the Nijmegen and Argonne models. It gives a ACKNOWLEDGMENTS
triton energy of—8.00 MeV andP,=4.83%. The deuteron . .
wave functions predicted by the five modéiN-interaction The authors would like to thank J. Carlson and R. Schia-

models are compared in Rei36]. The CD-BonnD-state  Villa for many interesting discussions and R. B. Wiringa for
wave function is smaller at intermediate distances than thos@is help on the nonrelativistic variational wave function.
of the other models. The OPEP in the CD-Bonn mdée|.  A-A. acknowledges the kind hospitality of the Physics De-
(2.10], has additional off-shell nonlocalities predicted by Partment of the University of Illinois at Urbana-Champaign,
pseudoscalar pion-nucleon coupling. It is interesting to notévhere a large part of this work was performed. The calcula-
that the difference in the OPEP is the main cause of théions were performed on IBM SP machines at Cornell
difference between CD-Bonn and the other models. A potenTheory Center, and on Cray supercomputers at Pittsburgh

tial containing"z;ﬂ,CDB and vk parametrized as in Argonne 3uge’r\lcotr_npuflnsg_CenteFr. Thd|st_work \(/jvas(;up[t)ol\ztedpa);g;e
v1g, re-tuned to fit the scattering data, gives a smadlistate ->. National Science Foundation under trant NO. )

with Pp=4.98%][37]. After choosing the OPEP, the shorter 213’?96 ar:d th?. v!orkcpf ffA byTUniveIIrs.idade dde (IEisboa,
ranged parts of the nuclear forces seem to be better cor?-un a de Investigao LIentilica e fecnolgica under t.on-

strained by the data. Perhaps, the correct form of OPEP catttnaCt No. PBIC/C/CEN/1108/92.

be derived from chiral perturbation theory or QCD. Mg AppeNDIX: RELATIVISTIC OPEP IN CONFIGURATION
also depends upon the choice of OPEP, however, Coon and SPACE

Friar have argued that the final observables should not de-

pend up on that choici27]. The third term in Eq(2.32) gives the second-order rela-

The boost interactiorv gives the dominant relativistic tivistic correction to OPEP and is denotedig®:
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3Q d3q
(2) =
v(xy) j(z 7 (2m )3g(q Q)

X COS Oy nr(Q)€ QYN

(A1)

where 6 is the angle betweeg andQ, and

1 2Q2 2
9(a.Q =3 (Pt QP gl

(A2)
Expressing cd¥,q as

2 1

oS o= 3Pz(cos@qQ) + = (A3)

we get

11 dd d3
f Q@ 9 a0

(2) —

SRS RPmC P
X;w,NR(Q)ei(Q'wq'x)
2( d®Q d3q
'3 J(Z )2 (27)

X PZ(COSQqQ); »nr(Q)€ (@YX,

—9(a.Q)

(Ad)
The first integral denoted by(lz)(x,y) is independent 0t q

and can be easily evaluated by using Ej35 and the fol-
lowing identities:

eiq'r=4w% 'Y (@)Yim(Dii(ar), (A5)

J Yl*m(EI)YI’m’(E])quZ5II'5mm’ ) (A6)

f v(r)o-i~Fa'j-Feiq'rd3r
(A7)

1
—O'i-VqO'J"qu v(r)e'q'rr—2d3r.

We obtain

M waN
93 4w

P (xy) ==

X f Q%dQcfdqg(q,Q)
XVADjo(QY)jo(aX) oi- 0

+f Q%dQq?dqy(d,Q)7,(q)

Xjo(QY)j2(aX)S;(X,X) |- 7,  (A8)
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where).(q) and7_(q) were previously given in Eq$2.36)
and(2.37.
To calculate the second integral in E&4), we use

Pi(cosfgq) = 2|+1 2 Vi QYim(@.  (A9)
The integral over the solid angles becomes
fdQQquei<Q'y+q'X>Pz(cosan)
:(477)2P2(0039xy)jZ(Qy)jZ(qX) (AlO)

and the second term in E¢A4), denoted by 2)(x,y), is

2u quNN
93 4w

X[Va(a) +To(a)1j2AQY)2(aX) 0y 07,

v (xy)=—— [Pz(cosaxy) f Q%dQq?dqy(q,Q)

+ 30'i . VXO'J : VX[ P2(CO$Xy)

|

(A11)

« [ @%dQdaga @ T(@ixQyix(ax
X7 7.

Here 6,, is the angle betweer andy. The gradient opera-
tors V, in the second term act on botR,(cos,,) and

j2(0x).
The Q integral in Eqs(A8) and(A11) can be performed
analytically and results in

JdeQg(q,Q)jo(Qy)=f(y)[Zz(q,y)—Zl(q,y)],
(A12)

fdeQg(q,Q)J'z(Qy)=f(Y)Zl(q,y), (A13)

wheref(y) is the Yukawa function given in Eq2.33 and

2 2
Z,(q,y)= (W:y) exr{ —( \ m2+qz— mM,

(A14)

Z5(9,y) Z1(q,y). (A15)

3
I+ (gZd)y
v@ is finally obtained as

2
waN

U(Z)(ny): f(y)[ll(x Y, Bxy)o'l O

+Iz<x.y,axy>aj<i,%>+I3<x,y.0xy)$j<9,9>
+140%,Y, 0x) S (X Y) 17 7, (A16)

where the tensor operat&;(x,y) is defined as
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Sj(x,y)= g(ai';(aj'§/+ 0i-yo;-X)—X-Yoi- oy,
(A17)
andl,, I,, I3, andl, are given by
11(X,Y, Oyy) = F36(X,Y) = F1o(X.Y)
+2F75(%Y)Pa(coshyy),  (AL8)

12(X,Y, Oyy) = F2o(X%,Y) — 3H 15(X,Y) + 3F 1 4(X,y) COS by,

(A19)
13(X,Y, 0xy) = 6H 1,(X,Y), (A20)
L4(X,Y, 0x) = — 12H {5(X,y)cO%,y,  (A21)
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where

1
Y _ 2 :
Fa(Xy) Swafq daZ,(9,y) V()i (ax),

(A22)
T 1 2 .
fa.(x,y)=—3Jq daZ,(a,y)Z(q)ji(ax), (A23)
3
T _i 2 j|(qx)
Hau(xy)= 3773] q qua(q,y)Tw(q)(qX)4_|.
(A24)
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