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Potential energy surfaces have been calculated for the mass range 180 ~ A~212 by using the

shell-correction method on the basis of a symmetric two-center shell model. All calcula-
tions have been performed both with a constant and with a surface-dependent pairing strength.
The results show that the fission barriers calculated with the latter prescription are incom-
patible with experimental data. The calculations for a constant pairing strength, however, in

which the shells at the saddle are calculated on the same basis as those at the ground state,
agree reasonably well with experimental data of the Berkeley group. The shell corrections
for these nuclei are analyzed separately in detail and are found to exhibit remarkable regular
structures which can be explained by an interplay between the shells of the fragments and

those of the fissioning nucleus. Finally, the existence of shape-isomeric states and the treat-
ment of the zero-point energy in these calculations are discussed.

I. INTRODUCTION

In recent years a large number of calculations
of potential energy surfaces (PES) in heavy nuclei
has been reported. " Nilsson et al. have pub-
lished a thorough and complete survey of saddle-
point properties of the actinides by using an ex-
tended Nilsson model' in combination with the
Strutinsky prescription. ' This model is suitable
for the description of nuclear shapes that can be
described essentially as small distortions of spher-
oidal shapes as they are encountered between the
ground state and the saddle point in the actinides
and superheavy nuclei. In these regions the cal-
culations of ¹ilsson et al. and later on also other
groups' have contributed substantially to the under-
standing of the systematic behavior of shell ef-
fects between the ground state and the saddle point.

As has been pointed out, however, some time
ago, ' the center point of the Nilsson potentials re-
rnains the deepest point of the potential, even for
distortions that correspond to the development of
a considerable constriction. This property makes
it impossible to describe with these potentials
shapes that are highly constricted, e.g. those
which are encountered on the path between saddle
and scission in heavy nuclei and already at the
saddle point in lighter elements (A~ 200).

The recently developed two-center model (TCM)
avoids these restrictions. ' In this model it is pos-
sible to describe the Nilsson potentials (one-cen-
ter potentials) as well as configurations of two
completely separated fragment nuclei with their
correct asymptotic shell structure. The effects
of shells of the fissioning nucleus can thus be
treated on the same basis as thyrse of shells of
the fragment nuclei.

This model has already been applied to a thor-

ough investigation of the effects of fragment shells
in the actinide and Pb region. ' It was the main
concern in Ref. 7 to investigate systematically the
behavior of fragment shell influences in heavy nu-
clei over a wide mass range rather than to study
in a very detailed manner the properties of specif-
ic nuclei. Such a study was also prohibited by the
restriction to symmetric nuclear shapes which
are not appropriate for a detailed investigation of
potential energy surfaces in the heavy-element
region where asymmetric fission prevails at low
excitation energies.

The elements with masses A& 226 are known, how-
ever, to fission symmetrically. Since calcula-
tions in an extended Nilsson model are not able to
describe the highly constricted saddle points in
this region and since only very few and incomplete
theoretical results have been reported for this
area" so far, it is worthwhile to do more sys-
tematic calculations over a larger range ofmasses.
This paper, therefore, contains the results of cal-
culations of Qssion barriers for 20 nuclei in the
mass region 180 & A & 212. A first short note on
these calculations already has been published else-
where. '

We will show two-dimensional PES's for these
nuclei in comparison with the liquid-drop model
(LDM) predictions and discuss the differences be-
tween the predictions of these two models. We
will also specifically analyze the influence of the
pairing interaction on the PES's. It is hoped that
this study will thus contribute to the rather impor-
tant question if the pairing force should be made
surface dependent. Because of their larger con-
strictions, and thus also larger surface areas,
fission barriers in lighter elements are much
more suitable for an investigation of this problem
than those of heavy elements. It is hoped to get
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some insight into this question from a comparison
of fission barriers and BCS gap parameters at the
saddle obtained in calculations both with and with-
out a surface dependence of the pairing strength.

The shell corrections alone will the be specif-
ically analyzed. It will be shown that these quan-
tities contain regular structures in deformation
space. The reasons for this behavior will be dis-
cussed, especially in connection with the transi-
tion from compound nucleus to fragment shells.

Finally we will address ourselves to the ques-
tion of the existence of shape-isomeric structures
in fission of lighter elements as well as to the
problem of nuclear zero-point energies and their
influence on potential energy surfaces.

II. TWO&ENTER MODEL

Since the mathematical details of the model have
already been published, "we restrict ourselves
here to a short review of its basic properties.
The Hamiltonian of the model is given by

H= T+—
&u 'p2+ —m, ( jz i

—zo) +V„„(z)+V(1,s),

where V(1, s) is defined as a direct generalization
of the Nilsson model:

V(1, s) =
C(zo}1, ~ s+D(zo)[1,' ——,'N(N+3)] z&0

C(zo)12 s+D(zo)[ 12 —
2 N(N + 3)] z& 0 .

(2)

In Eq. (2) 1, and 1, are the two pseudoangular mo-
menta with respect to the two centers at z = zo and
z = -z„respectively (for their definition see Ref.
7). The dependence of C and D on zo and the
definition of the N-dependent term in (2) agree
with those of Ref. 6.

The parameters C and D depend as usual on the
Nilsson parameters z and p. . Their values in the
present calculation are given in Table I."0 The
term V„„in (1) is the same as in Ref. 7 and
achieves a smoothing of the nuclear shape in the
neck region

(3)
zo

where 8 is a step function [8(x) =0 for x& 0, 8(x) = 1
for x&0].

For all further details of the Hamiltonian, we
refer the reader to Refs. 6 and 7 and for the de-
tails of its diagonalization to Scharnweber et al. '

The single-particle levels have been calculated
only once for a nucleus with the mass A = 204 and
the oscillator constant k&50=41 x(204) ' MeV. The

where the last two summations run only over oc-
cupied states, and G, is the pairing strength at the
spherical state.

The total PES, EDF» is then given by

@DEF @LDM+ ~U+@P (6)

TABLE I. The table lists the single-particle param-
eters K and p, for protons and neutrons for the mass
region 180~A (212 and for the fragment region A &100.
They are, except for very small changes, taken from
Nilsson eg gl. (Ref. 1) for the compound-nucleus region
and from Arseniev, Sobiczewski, Soloviev (Ref. 10) for
the fragment region.

Mass region
Protons
K

Neutrons
K p

A M100

A ~200

0.0688 0.558

0.0610 0.626

0.0638 0.491

0.0636 0.370

use of these levels for nuclei down to A =180 cor-
responds for this nucleus to the use of a constant
of 39.3 instead of 41 for the calculation of h(do,

which is still reasonable. Otherwise this use of
the same levels introduces an error of =0.5 MeV
in the saddle energy of '"W as has been checked
by an independent calculation with levels corre-
sponding to A = 180 and h~, =41x(180) '" MeV.

For the BCS treatment of the pairing force we
have taken Z levels for the protons and N levels
for the neutrons into account. The strengths have
been chosen such as to reproduce the empirical
odd-even mass differences at the ground state
(Malov, Soloviev, and Khristov "}.The values of
G which give a good fit to these quantities are (in
MeV):

G~ = [20.8 —0.0933(A —180)]/A;

G„=[14.5 —0.0233(A —180)]/A .

Only for the Z = 74 isotopes a different proton
strength has been used: G~= 19.5/A MeV. We
have performed calculations both for the case of
constant and of surface-dependent pairing strengths.
In the latter case the quantities in (4) have been
multiplied by a shape factor B, which gives the nu-
clear surface in units of that of the corresponding
spherical shape.

The pairing energy itself has then been deter-
mined under the assumption that only the diagonal
matrix elements at the spherical shape are includ-
ed in the LDM. No further renormalization has
been made. Thus Ez is given by

UF UF
Q2

E~ =g 2g e, v, ' ——-g e„+g(G —G,)
Prt - v Ii V

(5)
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Here 5U is the shell correction calculated by using
the Strutinsky prescription' with a correction poly-
nomial of sixth order and a smearing width of
y = 1.2k', . The LDM energy E~D„hasbeen calcu-
lated for a drop whose shape coincides with that
of the equipotential surface of (1). The parame-
ters of Myers and Swiatecki" have been used.

As in Ref. 7 we have transformed the two inde-
pendent shape parameters in (1) into two more
imaginative quantities [the third parameter in (1)
can be eliminated by using a volume conservation
requirement for that equipotential surface that co-
incides with the nuclear surface]. These are an
elongation parameter l and a constriction parame-
ter d, defined by

z»/'
l= '

~ d=1-~=1- 1—
Ro a 2

where Ao is the radius of the fissioning nucleus
(R, = r,A"') and c and a are defined by

0 0
(d (dc=~R a=~R, ke =41xA ' ' MeV .

g P

Thus I gives directly the length of the nuclear
shape in units of the radius of the fissioning nu-
cleus. The constriction parameter d is a measure
for the relative neck thickness with do being the
radius of the nuclear neck.

In the following sections we will thus discuss the
PES in a two-dimensional representation, giving
ED«as a function of l and d.

III. POTENTIAL ENERGY SURFACES

A. Ground-State Deformation

and Shell Corrections

in the rare earths and actinides. "
The comparison of calculated ground-state shell

corrections with experimental results, however,
is not so straightforward. The ground-state shell
correction is defined as the deviation of a mea-
sured mass from its average value, i.e. its pre-
diction by a macroscopic mass law, like the LDM.
The "experimental" shell correction thus depends
on the macroscopic mass law used. A consistent
comparison of "experimental" and theoretical
shell corrections, therefore, necessitates a refit
of the LDM to the experimental masses with the
inclusion of the calculated shell corrections (sum
of 6U and Ep). The experimental corrections
could then be extracted from the data by taking
the difference between the measured masses and
the LDM determined in this way.

This procedure, however, is rather involved.
We have, therefore, restricted ourselves here to
taking as "experimental" shell corrections the
quantities extracted from experimental masses by
Myers and Swiatecki, "and therefore use the term
"experimental" only in quotation marks.

In a comparison of these numbers with the cal-
culated ones, one then has to bear in mind that the
"experimental" shell corrections may still contain
contributions from a background that varies
smoothly with nucleon numbers. There are indeed
indications that the Myers and Swiatecki mass for-
mula implicitly contains shell contributions in its
LDM part (see Sec. III B for a discussion of this
point).

Keeping all these reservations in mind, we com-
pare in Fig. 1 the "experimental" and the theoret-
ical ground-state energy shell corrections. (In
the following we will consistently use the term,
energy shell corrections, for the total contribu-

The ground-state deformations obtained from
these calculations can be directly compared with
experimental information on nuclear quadrupole
moments and ground-state masses. The low sin-
gle-particle level density at the Fermi surface
around the double magic nucleus ' 'Pb leads in this
region to strongly negative shell corrections at
zero deformation and thus spherical ground states.
With decreasing proton and neutton numbers, the
nuclei become softer at their ground state accord-
ing to these calculations until finally below mass
A = 190 the first deformed shell is populated. This
behavior is in agreement with the experimental
results as could be expected, since all ground-
state deformations have the constriction parame-
ter d =0, i.e., can be described by a pure Nilsson
model without a center separation. It is well
known that the Nilsson model gives a very satis-
factory description of ground-state deformations
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FIG. 1. The calculated ground-state shell corrections
(6U+ Ep) (solid lines) are compared with the "experi-
mental" values of Myers and Swiatecki (Ref. 11).
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It is seen that except for Z& 84 all calculated
barriers are loire~ than the LDM prediction for
the shapes used by about 2-5 MeV. Part of this
discrepancy can be understood by observing that
the mass formula used" has been fitted to repro-
duce the experimental barrier height of '"Tl. This
fit has been performed under the assumption of no

single -particle corrections at the barrier. Even
if the model of a homogeneous level distribution
at the saddle with a corresponding vanishing shell
correction 5U is accepted for the moment, these
levels, however, will still lead to a pairing ener-
gy. In Table II the pairing energies Ez + at the
saddle point are listed for all nuclei considered
here. They are found to be of the order of -2 MeV.
Since these numbers are added to the LDM bar-
rier, it is to be expected that the resulting total
fission barriers will be too low, since the LDM
alone already gives by construction the right value.

Part of the discrepancy is, of course, also due

TABLE II. The table lists the BCS gap parameters
&& and g„for protons and neutrons at the ground state
(gs). These can directly be compared with the experi-
mental quantities given by Malov, Soloviev, and Khristov
(Ref. 10). The total ground-state energy shell correction
(5U+ EP) is denoted by Eo. The barrier heights E~ are
given both for a constant and a surface-dependent pairing
strength G. The next column lists the shell corrections
6U at the saddle point (sp) as obtained in the calculations
with a constant pairing strength G. In the last column
the pairing energies E at the saddle point (sp) as ob-

P
tained with a constant G are listed for all nuclei. All
energies are given in MeV.

to the existence of sizable shell corrections 6U at
the saddle. These corrections are usually nega-
tive for A ( 200 (see Table II), thus lowering the
saddle-point energy and possibly shifting it away
from its LDM position. This latter effect is clear-
ly seen in Figs. 2-4 which show that for nuclei
above '~Pt the shell-corrected saddle lies at re-
markably smaller deformations (mainly smaller
constrictions) than the LDM saddle.

It may seem that this shift to smaller deforma-
tions is incompatible with experimental informa-
tion on the moment of inertia at the saddle which
can be described rather adequately with LDM
shapes. However, it has been shown that this
same effect appears in the actinides too, where
the LDM saddle shapes lead to better moments of
inertia in comparison with experimental results
than the shapes corresponding to the shell-correct-
ed saddle. " The explanation for this behavior is
that shell effects tend to wash out rather soon with
excitation energy so that the experimental mea-
surements of fission anisotropies performed at
rather high excitation, are indeed sensitive only
to the LDM saddle. "

In order to understand some properties of the
negative shell corrections at the saddle, the total
energy shell correction is shown in Fig. 7 in com-
parison with the total PES for the case of ' Hg
(Fig. 8). One sees that at nonzero constrictions
the 6U+F~ surface is dominated by a ridge of
about 15-MeV height perpendicular to the l axis
and a valley nearly parallel to the ridge at l= 2.0.

&p, gs A, gs

74 180 0.87 0.71
74 182 0.80 0.88
74 184 0.80 0.86

76 186 0.80 0.80
76 188 0.73 0.77
76 190 0.66 0.73

78 192 0.66 0.70
78 194 0.67 0.85
78 196 0.63 0.77

80 198 0.49 0.74
80 200 0.46 0.64
80 202 0.43 0.52

82 202 0.03 0.61
82 204 0.0 0.49
82 206 0.0 0.27
82 208 0.0 0.0
84 210 0.56 0.0
84 212 0.53 0.47

86 210 0.76 0.21
86 212 0.73 0.0

2 ~ 7
-1.4
-1.8
-2.5
-2.8
-3.1
-3.4

303

-4.6
-6.0
-7 5
-9.2
-9.0

-10.7
-12.5
-14.0
-11.8
-9.9
-8.5
-9.9

G=c G-S G=c G=c
EI3 E~ QJ~ Ep ~

24.2 18.8 —0.3 —2.3
24.3 18.6 -0.2 -2.6
24.6 19.3 -0.9 -2.6
21.2 17.0 -2.4 -1.4
21.4 17.7 -3.3 -1.1
21.7 18.4 -4.2 -0.8
18.7 15.8 -3.0 -1.6
19.2 16.6 -3.9 -1.2
20.7 18.5 -1.5 -1.5
19.3 18.7 -2.1 -1.4
21.4 20.6 -2,1 -1.2
23.1 22.7 0.2 -1.8
21.1 21.0 1.3 -2.1
24.0 23.1 -0.1 -1.9
26.2 25.2 0.2 -1.9
28.1 27.1 0.3 -1.9
24.7 23.6 1.4 -1.9
22.9 22.0 1.3 -1.8
19.7 18.3 3.9 -2.8
21.2 20.3 2.6 -1.5

75@

v EXR
~ THE
& THE

X
O
EIi
lA 2O

l5
IOO

74~- =~@75 ~76
@76
761 g77

O
740- r 7&

Q'

760

0
/

/
/

/
/

D

78a

IIO I20
N, NEUTRON NUMBER

84

084—

84

v85-

130

FIG. 5. Comparison of calculated fission-barrier
heights both for the pairing strength G = const. and G
-S with experimental numbers. No zero-point ener-
gies have been taken into account in this comparison.
The experimental values are those of Moretto et aL.
(Ref. 14) and have an uncertainty of +1 MeV (Ref. 14).
The numbers in the figure give the charge numbers Z
of the nuclei.
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the Periodic Table and for rather large ranges of
deformation is the rule and not the exception. One

would, therefore, a prioyi expect the existence of
single-particle effects also at the saddle.

A further consequence of the existence of shell
effects at the saddle would be an uncertainty in the
experimental barrier energies of Morreto et al."
For the determination of these barriers from the
measured excitation energy dependence of I'z/I'„,
the level densities at the barrier have to be known.
For the experimental numbers, quoted above, the
a priori assumption of a uniform level density at
the saddle has been made thus again minimizing
possible shell effects at the saddle. This assump-
tion may have influenced the experimental barrier
energies.

Up to now only the Los Alamos group of ¹ixet
al. has calculated barriers in this mass region,
namely, for the two cases '88Os and '"Po. These
authors as well as all others listed in Ref. 2 have
used for their calculations a finite-depth single-
particle potential. The advantage of using such a
potential as compared to a harmonic-oscillator
model like the one presented here, however, is
lost as far as the finite depth is concerned: This
is so because in all calculations of shell correc-
tions in finite-depth potentials made to date', the
continuum states in the Strutinsky smearing pro-
cedure have been replaced by an artifact, usually
the bound states that appear at energies E)0 in
the diagonalization of a finite-depth potential in a
harmonic-oscillator basis which has been used in
all these calculations. These states, however, all
converge to zero energy with increasing basis

dimensions. ' In a very comprehensive study it has
been shown by Nix et al. ' that thus in these models
the shell correction, calculated with the Strutin-
sky prescription, ' depends even on the size of the
basis used. The only essential difference that re-
mains then between the use of a finite depth and an
infinite potential is not the more realistic finite
depth, but the better description of the nuclear
surface region in the former one. This makes the
use of the rather ambiguous 1' term of the oscil-
lator models unnecessary.

In spite of this difference, the two fission bar-
riers calculated by Nix et al. agree with the pres-
ent theoretical results remarkably well. This and
the disagreement with experiment of both calcula-
tions for '"Po seems to indicate a model-indepen-
dent, rather general difficulty in this mass region
especially in view of the excellent agreement
reached in the actinide region. "

C. Fission-Barrier Heights, 6 —S

Since there have been both theoretical" and ex-
perimental" suggestions that the pairing strength
might be a function of the surface area, all calcu-
lations reported above also have been done with a
pairing strength proportional to the nuclear sur-
face. The results for the barriers are also listed
in Table I and one example of the PES is shown in
comparison with that corresponding to G = const.
in Fig. 9.

In the lighter elements especially, the barrier
energies are drastically decreased, by up to 5

MeV, compared with the results obtained with a
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&04
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FIG. 8. Contour plots of energy surfaces for Hg. The left part of the figure shows the LDM PES, the right part the
total PKS.
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FIG. 9. The total PES's calculated with a surface-dependent pairing strength (right) and with a constant pairing
strength {left) are compared for the nucleus +Pt. For other details see Fig. 2.

TABLE III. For the two nuclei given the table lists
the BCS gap parameters both for a constant and a sur-
face-dependent pairing strength G. The gap parameters
are given separately for protons and neutrons {p,n) and
both for the ground state (gs) and the saddle point {sp)
as calculated in this paper. All gap parameters are
given in MeV. The corresponding experiments have
been performed by Moretto et al. (Ref. 18) and Natowitz
and Chulick (Ref. 19).

Q =const. Q~g
+p, gs +n, gs +p, sp n, sp +p, sp +n, sp

2fOPo

i98H

0.56

0.49

0.0
0.74

0.63 0.61 1.00 1.01

0.59 0.56 1.12 0.94

constant strength, whereas the suppression is
rather small (=I MeV) for the nuclei around Pb.

The effect of the assumption G-S is in general
appreciably larger than, for example, in the acti-
nides because of the much larger surface area at
the saddle for these lighter nuclei. These nuclei,
therefore, constitute a better test for the assump-
tion of a surface-dependent pairing strength. The
reason for the relatively small effect in the Pb,
Po region reflects the fact that here the saddle
points appear already at rather small deforma-
tions (see Fig. 4).

A natural by-product of these calculations is
the gap parameters 4 in the BCS formalism. The
conclusion that the experimental angular distribu-
tions of fission products of" Po indicated a pair-
ing strength larger at the saddle than at the ground

state were based on the observation of a very low
variance of the K quantum number at the saddle.
This was interpreted as being due to an abnormal-
ly large gap there. " A comparison of the theoret-
ical gaps at the saddle-point deformation for both
G=const. and G-S is, therefore, given in Table III
for the case of "'Hg (Natowitz and Chulick") and
for '"Po. It is seen that in these two nuclei both
the proton and the neutron gaps increase by going
from the ground state to the saddle by about a fac-
tor of 1.5 for G-S, whereas they stay practically
constant for G = const. (The apparent strong in-
crease of 4„in the case of" Po is a trivial con-
sequence of the strong neutron shell at the spheri-
cal ground state. ) The increase for G-S is much
smaller than the change the anisotropy experi-
ment seems to indicate (factor of 2-3)." It should
here also be noted that an experiment similar to
that of Ref. 18 for '"Po has been performed by
Kuvatov, Okolovich, and Smirenkin" for the two
nuclei '"Po and '"Po. In these two cases no
anomaly in the anisotropies at low excitation ener-
gies has been observed.

We see, therefore, that the assumption of a pair-
ing strength proportional to the nuclear surface
and increasing with it leads, on the one hand, to
fission barriers in the lighter nuclei that are too
small by about 6 MeV, and on the other hand to
gaps which are not sufficiently large to explain the
observed anisotropy. We thus conclude that the as-
sumption of a pairing strength directly proportion-
al to the nuclear surface area is incompatible with
experimental data on fission-barrier heights.



ULRI MOSg80

0.7
iSOW

Su0.6—
192PI

3u

O.S

z
O
I- 0 4
lLI-
COzo 0.3—

0.2

-2
O. i

sq

'i.o'

) ~4 0.-'o- w~', /&
I.O

),~(/ &L4-

i6 & isi.2
~ ELONG4TIOt

surfaces are1O. The she ll-correctio

~A+2-x
) s z.o

Z, EL.ONGATIO

isrptfor W Qeft) and

24

shown

n decrease agn ain=0.5, and then
e do

ximum at d=
sidered here,1

is behav-
ln lc'

d cates that a i
shell effec st alone whic iof fragment s

valleys run ou
ms o

t that these va ya y
essentially a o

!

rds scission es

FIG. (right).

ner Shell Correctionstu e of the Energy eD. Structure o

0.7

0.6—

0.5—

~ 0.4—
(ZI-
V)
Z'
O

0.3—

0.2—

2.42.22.01.6
2, ELONGATION

for the'
n surface is shownshell-correction suFIG. 11. The s e n su

Sec. IIIB, thediscussed br'iefly in Sec.
than the val-

LDM that is corre'ven by a
It has been s ohell effect.nd-state s e

is due to the pairing
wa

f the barrier i

h pa agraph
andtoap

n. In thzs p

energy
ll correction. pin the ene gy

h'nvestigate t
d i 11 111-d 1e that is we

observed, oh 1 b
th

lot ho
PES the she 11-correc &onthe LDM

n 5U+Ep,
giving th

-s ell correction,' H Iti thtt tal PES, EDEF~
hell correction

contrl-
gy

5U behavior alon
s the shell corrse it counteracts rr

e shell-correction surnl smooths the s etion, only sm e s e

ruc-
extent.

e of these stru-o s
tures in

ll the
=1.gradual s i

M

— Att t i
g

1 do not runnoticeable th at these va
aller energies but are deep-continuous y

est at small constric on



FISSION BARRIERS FOR NUCLEI LIGHTER THAN RADIUM 981

degree of freedom may be too simplifying.
An analysis of the single-particle levels at @= 0.5

shows that states with the same projection of the
angular momentum on the nuclear symmetry axis
but different parity are practically degenerate with
this degeneracy broken at the Fermi surface by
less than 1 MeV. This means that these states
are already highly localized in either one of the
two fragments. " The structure at large constric-
tions (d & 0.5) thus is to a large extent due to frag-
ment shell effects. In order to corroborate this
point we show in Fig. 12 5U(l) corresponding to
cuts at d =0.5 through the 5U planes in comparison
with the prediction of a two-spheroid scission mod-
el consisting of two noninteracting Nilsson models
with the same elongation l and using the same sin-
gle-particle parameters ~ and p. (see also Mosel

l82g

l88os

O
I-
LLI

CL
O
C3

LLJ

X
ffl 0—
so 200HQ

212PD

l.4 I.S 2.0 2.2
+, ELONGATION

2.4 2.6

FIG. 12. The shell correction 6U is shown as a func-
tion of the elongation / at d = 0.5 (solid lines) in compar-
ison with the prediction of a two-spheroid scission mod-
el (dashed curves). The nuclei indicated in the figure
give the compound nuclei (solid lines) and the correspond-
ing pairs of fragments (dashed lines). The positions of
zero shell correction for each nucleus are given on the
M axis in vertical order. The separation between two
marks on this axis is 5 MeV.

and Schmitt'). The general behavior of these
curves can be understood by observing that the
fragments lie in a transition region between spher-
ical and permanently deformed nuclei. They have
thus first only a small change in 5U when going
from the spherical shape (l=1.6) to the deformed
one (I& 1.6) (=2.5 MeV in "Sr) with this difference
increasing with increasing mass when the de-
formed shell is more strongly developed (=7.6
MeV in '"Mo).

The remarkable agreement between these two
models both as a function of mass as well as of
elongation indicates that at these constrictions the
shell corrections are to a very large extent due to
the fragment shell structure. The Figs. 7, 10,
and 11 show, however, that the structures in the
5U surfaces appear already at very small con-
strictions (d= 0.0-0.05). This cannot be a con-
sequence of the fragment shells, since at small
d's the single-particle potentials are essentially
one-centered potentials and thus describe only the
shells of the Qssioning system.

The question then arises how can one understand
the appearance of the dominant structures in the
6U surfaces parallel to the constriction axis and
especially their very early onset with constriction.
The answer to this question lies in the special de-
formation dependence of nuclear shells. It has
been shown by Geilikman, "Myers and Swiatecki, "
and especially in great detail by Wong ' that in
pure deformed harmonic-oscillator model shells,
i.e., zones of low single-particle level density at
the Fermi surface, appear when the ratio of axes
of the nucleus is that of two integer numbers.
These simple shells can also be identified, though
perhaps somewhat shifted, in more sophisticated
potentials like the Nilsson or Woods-Saxon poten-
tial." The actual influence of these deformed
shells on the nuclear structure depends, of course,
also on the proton and neutron numbers which de-
termine if a given shell is indeed populated. In
Wong's" notation the (1:1) shell is responsible
for the existence of spherical nuclei, the ground
states of the deformed rare earths and actinides
are due to the (3:4} shell, the fission isomeric
minima in the actinides originate in the (1:2} shell,
and the (2: 3} shell is responsible for the appear-
ance of second minima in the Pb region (see, for
example, Fig. 3 at d =0, l= 1.4 and discussion of
this point in Sec. IIIE).

These ratios of the semiminor to the semimajor
axis of the spheroidal nucleus (m: n) can easily be
converted into the elongation parameter l. One ob-
tains l, =(n/m}'" for a given deformation of the
compound nucleus. One sees, for example, by an
inspection of the 5U surface for '

Hg (see Fig. 7)
that on the d =0 axis minima in 5U appear at l=1.0,
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l= 1.40, and l= 2.1 corresponding to the shells
(1:1), (2: 3), and (1:3).

It is obvious from Fig. 7 that the (1:3) shell
appears at d =0 at the same elongation l as frag-
ment shells appear at d = 0.5. The fragment and
compound-nucleus shell effects in this case are
thus in the (d, l) plane aligned.

The reason for this remarkable behavior can be
understood in a model in which the scission con-
figuration is approximated by that of two equal
noninteracting touching spheroidal nuclei, each of
them described by, e.g., a Nilsson model. The
fragment shell effects lead to local minima in the
dependence of the total energy at scission as a
function of elongation at deformations close to one
of the values (m: s) listed above.

It can easily be calculated that these favorable
elongations of the fragments correspond to l~
=(2njm)"' (I is the total elongation relative to the
radius of the fissioning nucleus). This means
that the fragment shells and those of the fission-
ing nucleus can only appear in line, i.e., for the
same l, if l, =l~. This can only be fulfilled for two
cases: The (1:1}and the (2: 3) fragment shells
coincide with the (1:2) and the (1:3) compound
shells, respectively.

The present calculations show that of these two

only the (1:3) compound shell at I= 2.1 is actually
effective in the Pb region. At the same time the
(2: 3) shell in the fragment region is dominant.

This latter shell actually is responsible for the
existence of a new region of deformed nuclei
around A =100." This may be the reason why
these nuclei show even larger ground-state de-
formations than the rare earths corresponding to
the less deformed shell (3:4).

This alignment of fragment and compound shells
explains the observed structures in 6U and their
nearly exclusive d dependence: Fragment shell
effects reach in from scission to smaller constric-
tions, whereas compound shells reach out at the
same elongation towards larger constrictions,
meeting each other halfway. The appearance of
a local maximum in the 6U valley at d = 0.5 is a
consequence of this special behavior. The ridge
in 6U observed in all nuclei is a consequence of
the antishell in the fragments at I= 1.59 (1:1 shell)
corresponding to a positive shell correction at the
spherical shape of these permanently deformed
fragment nuclei.

The slight bending of the 6U valleys towards
larger d's starting at d=0.4-0.5 is a consequence
of the fact that the actual scission configuration in
the shape parametrization used here is longer than
that of two corresponding touching spheroids with
this extra length increasing with d. A better sim-
ulation of the true scission con5guration would

thus be given by two spheroidal fragments whose
surfaces are separated by a certain distance. This,
however, does not affect the comparison of the
6U's presented above which has been made at
d =0.5.

A further analysis of the shell corrections 6U in
the valley shows that they originate mainly in the
neutron shell structure with the neutrons contribut-
ing approximately 60-70'%%uq of the total shell correc-
tion. This might be due to the fact that in the frag-
ments formed (Zr = 40, N~ = 60} the protons are
close to a magic number, whereas the neutrons
are located more in the middle of a shell thus
favoring deformed shapes.

E. Local Minima in the PES
Below the Barrier

As already mentioned briefly in Sec. IGD, the
(2: 3) shell is populated in some of the nuclei in
the Pb region thus leading to a second minimum in
the total PES at d = 0 and I= 1.4 (see, e.g. , Fig. 3).
For a few cases these secondary minima had al-
ready been observed. '"

The present results show that these minima ap-
pear for all nuclei above A = 198, first in '"Hg at
9-MeVexcitation energy, then, due to the increas-
ing shell effect at the ground state, the minima
increase in energy up to 17.1 MeV in '"Po and de-
crease again to 13.4 MeV in '"Rn. These excita-
tion energies, taken together with the barrier en-
ergies, show that the propability for possible
states in these minima to decay by fission is van-
ishingly small because of the high and broad bar-
rier which has to be penetrated. Instead -if these
states can be populated at all -delayed y decay or
neutron emission should be the predominant decay
channels. An experimental search for delayed y
rays of about 10 MeV should be initiated in these
nuclei.

F. Local Minima in the PES
at the Bamer

Figures 3, 4, 8, and 9 show that besides the
minima mentioned above in Sec. III E minima also
appear on top of the fission barrier if a constant
pairing strength is used for all deformations.
These minima exist around the nucleus "'Hg and
have a depth of about 2 MeV. They are a conse-
quence of the rather broad and flat LDM barrier
in this region (see Fig. 3) and the existence of the
energy correction valley at l=2.0 which counter-
acts the increase of the LDM barrier and thus
flattens the total barrier even more. It is, of
course, possible that in these nuclei shell effects
at the barrier may lead to structures similar to
those in the actinides which are there responsible
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for the existence of fission-isomeric states. The
difference between the two mass regions lies only
in the fact that for A = 200 the barriers and thus
the minima on top of them appear at higher ener-
gies and larger constrictions (see Fig. 1$) than in
the actinides. This might suggest an interpreta-
tion of states in these minima as "quasimolecular"
states. (The term quasimolecular state is used
here to indicate a metastable configuration con-
sisting of two, to a large extent preformed, na-
scent fragments, ' this definition does not neces-
sarily imply a separation between these two frag-
ments. )

One should be aware, however, of the possibility
that these local minima might be a consequence of
a special shape parametrization. Nevertheless,
it will be interesting to look for these structures
in other independent calculations that might soon
become available.

IV. INFLUENCE OF ZERO-POINT ENERGIES
ON BARRIER HEIGHTS

In all the interpretations discussed above, the
zero-point energy has been completely neglected
in contrast to calculations of other authors who
chose to subtract an arbitrary number (usually
about 0.5 MeV) from the calculated fission-barrier
heights in order to take the change in zero-point
energies between the ground state and the saddle
into account (see, e.g., Nix et al.' and Nilsson
et al. ').

The problem here consists in determining the
differ ence between the zero-point energies at the

FIG. 13. For the nucleus +Pt the shapes at the ground
state (solid line), at the saddle point (dashed line), and
at l =2.4, ff =0.7 (dot-dashed line) are shown.

saddle and the ground state, bE„since the mea-
sured barrier is given by E~+4E,. Here E~ is
the energy difference between the static saddle
point and the static ground state as calculated
from Eq. (6).

The nuclear mass formula (LDM+ shell correc-
tion) has been fitted to the experimental ground-
state masses which, of course, already contain
the effects of the zero-point energy, by identifying
the energy surface minimum with the experimental
mass. It is, therefore, evident that the ground-
state minima in the energy surfaces calculated as
described above do not represent potential minima
but do give directly the energy of the ground state
with the zero-point energy included. (In this
sense, therefore, the term potential energy sur-
face is misleading. ) As far as a calculation of the
absolute mass is intended, therefore, no addition-
al zero-point energies may be added.

For the saddle point obviously a similar argu-
ment would hold: If in a fit of the mass formula,
exPerimental values of fission barriers as &veil as
ground-state masses have been used, then no ad-
ditional corrections to the barriers due to the
zero-point energies may be added. This is so be-
cause again the experimentally measured barrier
energies already contain all zero-point energy ef-
fects. The question then is if and how the condi-
tions mentioned above are taken into account in
commonly used mass formulas.

Myers and Swiatecki" have indeed used one ex-
perimental barrier height in their mass formula,
namely, that of "'Tl with the assumption of no
shell effects at the saddle. This means that for
this one nucleus "'Tl at least a part of the saddle
zero-point energy, namely, that originating in the
LDM, has implicitly been taken into account.

The conclusion from above is that one should not
take additionally into account zero-point energies
if one is working with a mass formula that has
been explicitly fitted to the experimental ground-
state and barrier energies in that particular mass
region in which one is working. At least in a first
approximation this is the case for the Myers and
Swiatecki mass formula for the nucleus "'Tl and
presumably also other nuclei not too far away. In
this sense Figs. 2-4 and 8 should not be consid-
ered as potential energy surfaces but as energy
surfaces which pass at the stationary points through
the energies of the lowest possible quantum-mech-
anical states.

This conclusion, however, is in principle true
only for the calibration nucleus "'Tl and depends
on the tacit assumption that these zero-point ener-
gies behave smoothly with mass. It, therefore,
cannot directly be generalized to other mass re-
gions. Especially in the region of superheavy nu-
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clei, far away from the calibration nucleus '"Tl,
zero-point energies may have an important influ-
ence on the effective barrier heights and thus the
lifetimes of these elements as has already been
discussed elsewhere. '"

V. SUMMARY AND CONCLUSIONS

Calculations of fission barriers in the mass re-
gion 180 ~ A & 212 have been presented for 20 even-
even nuclei in the framework of the symmetric
TCM. Except for two earlier preliminary and in-
complete attempts (Nix et al.' and Mosel and
Schmitt'}, these calculations represent the first
theoretical approach to a determination of the sad-
dle points and the ground state in this mass re-
gion on the same basis.

A. Shell Corrections at the Saddle

The calculations have consistently led to nega-
tive shell corrections at the barrier thus casting
some doubt on the implicit assumption of recent
mass-formula fits that no shell effects exist at the
saddle. It was pointed out that because of the rath-
er widespread appearance of shell effects there is
no a priori reason why these should be nonexistent
at the barriers around A =200. The neglect of
shell effects at the saddle may have led to a wrong
decomposition of the saddle-point mass into the
LDM and the shell-correction part thus influencing
the determination of the LDM parameters.

B. Baler Heights

Although in view of the exploratory character of
this calculation, the agreement with experiment
is quite satisfactory, the calculated barriers for
A ~ 200 are found to underestimate the experimen-
tal fission barriers. This may be partly due to
the reasons mentioned above and to an imperfect
description of the pairing energies at the saddle
which are essentially counted twice because they
are implicitly already included in the LDM that
has been fitted to an experimental barrier height.
Since here the calculated barriers are usually too
low, the discrepancy cannot be attributed to non-
optimal nuclear shapes. It is worthwhile to men-
tion that the only independent calculations of bar-
riers for two nuclei in this region by Nix et al.
agree well with the present theoretical values and
thus disagree as much as the latter with the exper-
imental barrier height of '"Po.

C. Surface Dependence of the Pairing Strength

Since the fission barriers in the mass region
considered in this paper are considerably more
deformed than those in the actinides, the results

for the nuclei around A =200 are more sensitive to
a surface dependence of the pairing strength. All
calculations have, therefore, been performed both
with a surface-dependent and a constant pairing
strength. The assumption of a pairing strength
directly proportional to the surface area of the nu-
cleus, leads to a lowering of the fission barrier by
about 5 MeV compared with the value obtained with
a constant G that describes the experimental bar-
rier height reasonably well. At the same time,
the BCS gaps increase from the ground state to
the saddle only by about a factor of 1.5 instead of
the experimentally postulated factor of 2-3 in
210Po 18

The conclusion thus is that the assumption of a
pairing strength proportional to the surface area,
of the nucleus is incompatible with the experimen-
tal data on fission-barrier heights and transition-
state properties.

D. Connection Between Fragment

and Compound-Nucleus Shells

An analysis of the shell corrections alone has
shown that these reveal remarkable structures
which are due to an interplay between shells of
the fissioning nucleus and those of the two frag-
ments. It was especially pointed out that for spe-
cific particle numbers shells in the compound nu-
cleus appear at the same geometrical configura-
tion as those of the fragments thus explaining the
onset of structures (valleys and ridges) in 6U at
very small constrictions and their much stronger
dependence on the elongation than on the constric-
tion degree of freedom.

E. Zero-Point Energies

Finally the treatment of the zero-point energy
and its influence on the theoretical determination
of fission barriers was discussed. It was argued
that in a model in which both experimental ground-
state and fission-barrier masses have been used
for a mass-formula fit, no additional zero-point
energies should be added in the calculations be-
cause they are contained already in the experimen-
tal masses. The mass formula most widely used
in these calculations, namely that of Myers and
Swiatecki, has indeed used the experimental fis-
sion barrier of '"Tl in its fit, though without in-
clusion of shell effects at the barrier. Neverthe-
less this mass formula should at least in a first
approximation be considered to contain the effects
of the zero-point energies when used around
A =200. In other mass regions, however, and es-
pecially in the region of superheavy nuclei, this
assumption may not be true any more so that there
the inclusion of the difference between the zero-
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point energies can lead to drastic changes in the
effective fission barriers and lifetimes.

It is furthermore clear from these considera-
tions that energy surfaces calculated by using a
shell-correction method on the basis of an empiri-
cal LDM may not be used in a quantum-mechanical
calculation, since they already contain the zero-
point energies.
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