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A steady-state point of view is used to examine the conditions under which rescattering
corrections to the sequential-decay model are important in considering direct reactions to
m.sound states. Expressions are derived which can give semiquantitative estimates of the
size of these effects. A qualitative interpretation is provided for the factors which enter
these. expressions, and they are evaluated for two specific cases, one where the rescatter-
ing effects are expected to be large, and one where they are expected to be small.

I. INTRODUCTION

With the increasing use of experiments involving
direct nuclear reactions to unbound final target
states, there is interest in the analysis of data
along the lines of the sequential-decay model
(SDM}." This model is useful for two-stage re-
actions of the form

I+T -R*+3-1+2+3.
The first stage is treated as a direct reaction lead-
ing to the compound-nuclear state or resonance R*,
while the second stage is treated as the decay of

R*-1+2. (I.2)

It is the practice to incorporate the decay stage
into the direct-reaction formalism by using the ex-
pression for the wave function of R*, obtained by
considering the resonant scattering, ' '

1+2-R*-1+2. (I.3)

This procedure implies that in the full reaction of
Eq. (I.1) the decay of R* and the final distribution
of particles 1 and 2 are treated as if particle 3
were absent. There are two types of corrections
which might be required to improve upon this ap-
proach: (a) those which stem from interactions of
particle 3 with R* before decay (for small dis-
tances between 1 and 2); and (b) those which arise
from the interaction of particle 3 with 1 and 2 af-
ter the decay (for large distances between 1 and 2).
The corrections of the first type call for amend-
ment of the assumption that the reaction, I + 7-R *
+3, is a direct reaction. This may require either
the use of the multistage approach of Penny and
Satchler, ' or a more complete treatment of com-
pound effects. These corrections may be impor-
tant whether or not R* undergoes a decay and will
not be dealt with here. The corrections of the sec-
ond type, often called "rescattering" corrections, "

shall be our primary concern.
We shall discuss criteria for determining the

situations under which rescattering effects may be
ignored, i.e., conditions under which the use of
the SDM may be valid with respect to these effects.
We are especially concerned with determining
these criteria without recourse to those widely
used arguments which are based on a time-depen-
dent view of the decay process. " The latter ap-
proach, while heuristically helpful, is difficult to
use in making quantitative estimates. This would
require assumptions about the localization of wave
packets, and, in principle, the analysis of the
time evolution of a three-body process. (Even for
the much simpler two-body problem, the time de-
pendence of the emerging flux is strongly depen-
dent on the specific nature of the incoming wave
packet. ) Furthermore, since the practical conse-
quence of the SDM is the simplification of T ma-
trix elements, conditions for its valid use should
not depend on special time effects. We, therefore,
have sought the validity criteria from the T ma-
trix itself.

Since the resonance width, or lifetime, of R is
presumed to play an important role, we have tried
to obtain the validity criteria in such a way as to
highlight this dependence. As a substitute for the
simple physical interpretation associated with the
time-dependent arguments, we have tried to pro-
vide a qualitative interpretation relevant to the
steady-state point of view.

In Sec. II, we shall briefly review the time-de-
pendent arguments leading to criteria for the val-
idity of the SDM. We then present alternative phys-
ical arguments appropriate to the steady-state ap-
proach. In Sec. HI, we quantitatively establish the
validity criteria for the steady-state approach by
carrying out a model calculation involving the es-
sential features of reaction (I.1}. Finally, in Sec.
IV, we apply the criteria obtained in Sec. III to
specific situations and draw conclusions about the
effects of rescattering.
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II. SIMPLE PHYSICAL PICTURES
FOR VALIDITY CRITERIA

Let us begin by considering the SDM from a time-
dependent point of view. The labels we use for the
particles correspond to those given in Eq. (I.l).
The argument goes roughly as follows": If parti-
cle 3 has a velocity v, such that during the lifetime
of R* (i.e., k/I') it travels a distance large com-
pared to the range (L) of immediate vicinity of R*,
then particle 3 is "gone" by the time of decay and
does not interact with the decay products. The
smallness of the parameter p,

p=I L/Kv, ,

then gives the criterion for assuming the validity
of the SDM. This picture has been modified by the
introduction of the concept of proximity scatter-
ing, "which argues that it is possible for one of
the decay products, e.g. particle 2, to overtake
particle 3 if v, & v, and if v, is parallel to v, . It is
argued that since the decay products may leave in
any direction, the rescattering is only appreciable
if it occurs near particle 1, before the flux has
been diminished by the 1/r' consideration. These
arguments are all reasonable, but can only be
made quantitative if the decay were to occur at a
well-defined time, and if all the particles are well
localized. For consideration of approximations to
the T matrix (a steady-state quantity) these con-
siderations are not relevant.

We look next at the full T matrix for a process
involving three bodies in the final state as indicat-
ed in Eq. (I.l),

(11.2)

Here, X, describes particles I and T noninteract-
ing, and P) ' describes the full wave function which
asymptotically has incoming boundary conditions
for particles 1, 2, and 3. The SDM gives

also find it convenient to consider the reaction, in-
cluding rescattering, run in reverse,

1+2+ 3-' (1+2)'+ 3'-"R*+3'-'I+ T . (11.4)

Here, the process a represents "prescattering"
(the reverse of rescattering). For processes b
and c to be enhanced it is essential for the relative
energy in the (1, 2) system, after a, to be within
the width I of the resonance energy E~. The
chance that the prescattering process mill lead
to this situation will depend on the width F, or the
effective "window" for resonance. For example,
if I' is very narrow and the (1, 2) system is already
on resonance at energy E~, then the scattering in
process a is likely to remove the conditions for
resonance, by producing a relative energy of the
(1, 2) system which lies outside of the resonance
peak. On the other hand, if the (1, 2) system is
originally off resonance, then process a is essen-
tial, and again the entire process depends on the
relative energy ending up within F of E~.

If, for simplicity, we assume that particle 3 in-
teracts with particle 2 but not particle 1, then pro-
cess a must depend on the strength of the (2, 3) in-
teraction. This may be taken into consideration by
assuming process a is proportional to the (2, 3)
scattering amplitude, f(2, 3).

The T matrix for the prescattering process
shown in Eq. (II.4) might well look something like

I'(» 2)f(2») &T&~.
Sv SDM y

where v is a characteristic velocity, required to
give the appropriate dimensions. tWe will show in
Sec. IH that an appropriate velocity is that of the
(2, 3) system relative to 1.] Our qualitative argu-
ments would indicate that the dimensionless quan-
ti

&T&sDM= &Xs '0~, 2 I I
g I Xg & i (II.3)

where Q~&,' describes the scattering of particles 1
and 2 with appropriate boundary conditions.

(T&snM will be large when the relative energy of
particles 1 and 2 is near a resonance. Watson dis-
cussed this enhancement, and gave a simple pic-
ture to clarify this effect, by considering the pro-
cess described in Eq. (I.l} run in reverse 'He.
argued that such a process would require three
particles, originally separated, to come together
and to interact in a single localized region. The
probability of this occuring is enhanced if two of
the three are resonating, thereby increasing the
chance for all three of the particles to overlap in
any one region.

To examine the importance of rescattering, we

should give some indication of the importance of
the prescattering. Considering now the sequential
decay process in its natural order where particles
1, 2, and 3 are the final products, we would ex-
pect the smallness of a parameter, identical to p,
to indicate when rescattering might be ignored.

In the succeeding section we will establish such
a criterion in a more precise and quantitative fash-
ion. The arguments given above are only to show
the general form one might expect from steady-
state arguments. In summary, one can expect the
importance of rescattering to depend on: (a) the
width, here related to a "window" for achieving
resonance, rather than a lifetime; (b) a length,
here the scattering amplitude, rather than some
measure of the vicinity of R; and (c) a character-
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istic velocity which in the steady-state approach
is not necessarily the velocity of particle 3.

III. DETAILED CALCULATION

In this section we establish more precisely the
validity criteria by considering the full T matrix
for process

I+T-1+2+3. (m. l)

(T) =(P& '(1, 2, 3) I v&lx(I, T)), (m. 2)

For simplicity, let us assume the interaction be-
tween particles 3 and 1 is zero, but that between
3 and 2 is finite. We will also assume that there
is a narrow resonance in the (1, 2) system, for
relative energy E„and of width I'. We choose to
calculate the T matrix in a frame in which the as-
ymptotic value of the momentum of particle 1 is
zero. The choice of this particular frame is mo-
tivated by the desire to concentrate on the rescat-
tering of particles 2 and 3 as they move relative
to particle 1. If the mass of particle 1, m„ is
much larger than m, + m„ then this frame is near-
ly the same as the laboratory frame.

The full T matrix is

(H, +H, + V„)(II&' '(1, 2) =E,2&t&
' '(1, 2) . (III.4)

Here, P' '(1, 2) includes both relative and center-
of -mass coordinates, and E12 includes both energy
contributions. For particle 3, we have

H~X& '(3)=E~X& '(3). (III.5)

We shall ignore the internal degrees of freedom of
each of the three particles, so that

x' '(3) =e'"3''3 (III.6a)

&' '(1 &&=ax (iX
' ' ' ') ' '(K(r -r »

12

(III.6b)

where X and K are center-of-mass and relative
momenta,

1=k, +k

m, k2 —m2k,K=
m 12

(III.Va)

(III.7b)

and X(I, T) describes the noninteracting initial par-
ticles, I and T. Let us consider the set of wave
functions &&I&

& '(1, 2) which describes the (1, 2)
system,

where

(H, +H, +H, + V„+V~, )g& '=Eg& ', (III.3)
(We use the notation m&». ..= m, +m&+m~+ ~ ~ ~ .)
For the reference frame with k, =O, we have in

the asymptotic region (1 and 2 widely separated),
I / x l~m. . . exp[ ig, (m, /-m„)&r, -r, ~].

& &1, 2) =exp sk .
m 12 m [ r2 —r1

where f & ' is the appropriate scattering amplitude.
Let us now express the full three-body wave function P& &(1, 2, 3) as follows,

(III.8)

p& '(1, 2, 3) =x& &(3)p& '(1, 2)+ . V23$& '(l, 2, 3) .
12 3

The T matrix then becomes

(1, 2, 3 [ T JI, T) = (X & '(3)(I& ' '(1, 2) ( V, J X(l, T)&

(III.9)

(III.10)(Q' '(1& 2& 3) I vg. l
0'-'(I'& 2')x' '(3 )) ( ( &(3&)~& &(I' 2')

( v ( (I T)X
1 2 3 3 12

The first term on the right-hand side is the result retained in the SDM (or Watson-Migdal'" expression).
We introduce the notation,

&T&sDM=&x' '(3)4' &(» 2) I v& I x(» T)&. (III.11)

We assume that this amplitude is enhanced near the resonance in the (1, 2) system, so that it has the
form,

( )
N(k~)

(ji 2/2m, )(m, /m»)(k, ' —k02) + 2 il" '

N(k, ) =-,'ir(T&„,

(m. 12a}

(III.12b)

where (m, /m»)k, is the relative momentum for particles 1 and 2; (m, /m»)k, is the relative momentum for
resonance; and N(k, ) is a numerator function, depending significantly only on the direction of particle 3.
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The second term on the right-hand side of Eq. (III.10) represents the full correction due to the rescatter-
ing effects, (T)RR,

d'k,'d k,'d kg(g' '(1, 2, 3) I V„I P '(1', 2')e'"' ") 1
)R$= kg kg(k&+k&)2 If 2

&&2 k& &&» k& 2 (2(»)g( s r I I )sDM '

+ZC
2»»3 ' 2»»12 (2m, mg/»212) m, g

(III.13)

The remainder of this section deals with estimat-
ing the size of this contribution.

To evaluate (T)Rs we replace (1', 2', O'I T
I IT) SDM

by the expression in Eq. (III.12), and we replace
(&&& '(1, 2, 3) by e» "3'Q ' '(1, 2) (analogous to a sec-
ond Born approximation). Before carrying out the
integral in Eq. (III.13) we must evaluate the term

(V,g) =(e'"3'3$' '(1, 2}lV2, I
e' 3'3&&&&' '(1', 2')) .

(III.14)

This involves the interaction of 2 and 3 throughout
all space. Here, we can simplify the result by as-
suming the bulk of the contribution to this matrix
element comes when particle 2 is away from the
vicinity of particle 1. We may then use the asymp-
totic form for Q( '(1, 2),

e-& "12~»
y & &(1 2) —e» 12' 12 B» 12 012+ f ( &(&( )

P
12

12

(III.15)

where X» and K12 are the center -of -mass and rela-
tive momenta, and R12 and P» are the respective
coordinates. This assumption is consistent with
our concern for the effects of the interactions of
2 and 3, where 2 is significantly far from 1. We
defined these as the "rescattering" corrections in
the Introduction.

Putting Eq. (III.15) into the expression for the
(2, 3) interaction, Eq. (III.14), we find there are
four types of contributions: ( T)@0&, with the
plane waves on each side; (T)&~1'1&, with scattered
waves on each side; and (T)'gg" and (T)R&S0&, with
plane waves on one side and scattered waves on
the other.

Since the contribution from the scattered terms
goes as 1/r, we first evaluate (T)(R030', which in-
volves only the plane-wave contributions to Q

& &

in Eq. (III.14). With some simplifying approxima-
tions outlined in the Appendix, we obtain

( )&0, 0& m» F r&»23fB(R, O)( )mph' 1 k0+C R
ma' lR+kl " ' k -CR

(III.16)

where

and

R 3 ™23
m23

(ID.17a)

c=lcl= '(k, +R,) .
m23

(III.17b)

1
(I 2/2 m 2)( m, /2&» „)(k,"—k02) —,' iI—

(III.18)
to reflect the resonance in the (1, 2) system as-
sumed in obtaining (T) SDM. The following expres-
sion for (T)(~0' "results from assumptions similar
to those used in obtaining (T)'R030'.

Here, fB(R, 0) is the first Born approximation to
the forward-angle scattering amplitude for the
(2, 3) system, with R as the relative momentum.
(T)SDMis the maximum value (as a function of k,)
for the amplitude (T) RDM which is appropriate to
the process [see Eq. (111.12b)]. The quantities R
and C are parameters of a sphere which character-
izes the elastic scattering of the (2, 3) system.
For the scattering k, +k, -R,'+kg' the allowed val-
ues of k,' are given by

lk.'-c I
= IHI, (111.17c)

as indicated graphically in Fig. 1.
The expression given in Eq. (III.16) has logarith-

mic singularities near k, =R +C, for C & R, and
near both k, =R + C and k, =R —C, for C& R. From
the Feynman-diagram treatment of the triangle
singularity, "one would be led to expect only the
singularity for C&R. The contribution to the in-
tegral leading to Eq. (III.16) comes primarily from
k,'=ko. Thus for the condition ko=R+C and R& C,
this contribution comes from k,'=R+C. This is
seen (Fig. 1}to be the case when k,' is parallel to
k,', and k,'& k,' (these are the well-known require-
ments for large rescattering). '" In Eq. (111.16),
however, two other singularities appear.

We next evaluate the contribution (T)'Rgs" which
comes from including the scattered portion of the
wave function on the right-hand side of Eq. (III.14).
We use

I" 1(

1»t'2

Z
2»
m 1

(T)(0, 1& 21 fB( 1 }(T)mgx 23]n( )m k I% +kgl 2

(III.19)
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where the argument of the logarithm is given by

I

12 23

123 2

m 12 m23
m 123 m2

1/2
g2+ 1 3 C2 1 3 kl2 kl 12 23 C0 0m„,m, m123m2 m„, m2

(
-1/2

g2+ 1 3 C2 1 3 kl2 kI+ 12 23 C0 0m„,m, m„,m, m„,m,

(111.2O)

The contribution in Eq. (III.19) may be readily combined with (T)'oso' to yield

(T)(0, 0+1) 21 ™2$fs( & ) (T) (I)Ox ~ (y
1 + 3

where the factor F, is given by

(III.21)

( 'I„
F'=2ln ™23

1/2
23 g2 + 1 3 C2 1 3 kr2

0m, m„,m, m„,m,
) 1/2

23 g2 + 1 3 C2 1 3 kr2
0

+R+ ' C
m ]23m2

+R — ' 'C
m ]23m2

(III.22)

The effect of adding the scattered part of the reso-
nance wave function is to remove the two singular-
ities for R & C and to yield a logarithmic expres-
sion identical with the Feynman-diagram expres-
sion of Ref. 11.

Finally, we look at the contributions coming
from adding the scattering portions of (I) ' '(1, 2) to
the left side of the matrix element given in Eq.
(III.14). These contributions provide no new sin-
gularities. To estimate their size we consider the
case in which m, » m23, and obtain

= (T)soMI
1" 0

(111.26)

even near the resonance condition.
We next examine those conditions under which

the factor E„given in Eq. (III.22), is large, and
those under which it is small. First note that for
k3» k, =k0, which is far from the singularity, the
kinematic parameters become

sociated with proximity scattering. Its maximum
is determined by the width of the resonance in such
a way that F, is proportional to lnI' at the reso-
nance. Since I lnl" vanishes as I' goes to zero,

(III.23) R =C =(m, /m„)u„ (III.27)

where E, is given by and we have for E„

F, —m ' im-~ln 1+~ -ln 1+~ Ii, = —,
' ln( m»/m, ) . (m.2s)

(III.24)

It should be noted that the term in Eq. (III.23) is
proportional to the leading term, (T) snM, whereas
(T)(oso+" is proportional to the maximum value of
(T)sDM. If we combine all of the derived contribu-
tions, and replace fs(R, 0) by the full scattering
amplitude, f(R, 0), in an effort to improve on one
of our approximations, we obtain the following gen-
eral form for the total T matrix,

( ) ( ) (I
If(R, O)

~ ( )
If(R, O)' '

(III.25)

This leads to the following expression for the 7.
'

where the factors E, and E, are given by Eqs.
(III.22) and (III.24), and where v, and v» are the
velocities of particle 2 and the (2, 3) system center
of mass. The factor F1 contains the singularity as-

FIG. 1. Kinetic constraints for two-body elastic
scattering.
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k+k k
g yn2

Since k, & ko, we obtain as an upper bound,

(III.30)

E&2ln 8
2

zr =-.'ln (m.sl)

Under the conditions that E~ = 10I', for example,
we obtain

—,'ln . [=2.2 —0.8i .8E
sr~ (m. s2)

matrix:

(T) (T) (I
I'f((m, /m„)k„0) . m„

+(~) "f(- k 0)-* ln(-'*)

(III.29)

At the other extreme let us consider an upper
bound for F,. Near the singularity k, =R+C, F,
becomes (for m, » m, = m, )

Furthermore, if the conditions for the logarithmic
maximum in I', are to occur, then

A.2& ' -' k' (m.38)

In Fig. 2 are plotted the lines of constraint for
different initial momenta, i.e., different values of
A. The line- ko=R +C also appears on the graph.
This line represents the conditions for approach-
ing the singularity. The condition indicated in Eq.
(III.35) insures that the smallest A gives an arc
which is tangent to the line k, =R+C. The mini-
mum A thus results in a peak at R = (m, m, /
m», no~)C Fr.om Eq. (III.22) it may be seen that
the singularities only occur for R ~(m, m, /
m», m, )C. Therefore as A increases from its
minimum value, the singularity moves to higher
C and lower R, until R =0 at A'=(m, m, /m», rn2)ko'.
For A. greater than this value, one can no longer
approach the logarithmic singularity.

In addition to the conservation of energy, the
definition of C,

Using the variables R and C, defined in Eq.
(m. 17), it is easy to display the conditions for ap-
proaching the logarithmic singularity. Conserva-
tion of total energy provides

c= '
[%, +&, f,

m23

restricts its values to
' lg+k. I .

(m. 37)

(III.38)
R2+ 1 3 C2 ~2

fPS ]23Pl 2
(m.33)

r(~a)
m23 2mr Ml ~ ]

(III.34)

On a plot of (m, m, /m», m, }'I' C versus R, energy
conservation constrains the values of R and C to
circles of radius A (see Fig. 2). It can be shown
that for the reaction to occur at all,

mIm3 2
~

m i2SZ23
(m.35}

M) Mg
C

M~~~M~

/Mi M~

Mi M3
A ko) M12~ M~ 0

where A.2 depends only on the laboratory momentum
of the incident particle, P«~», and the Q value for
the entire process,

If either k, or k3 is much larger than the other,
then C is restricted to a very small range of val-
ues along the appropriate arc indicated in Fig. 2.
If k3» k„ then C must be near the intersection of
the arc with the line R =C. If k, » k„C is limited
to values near the line R = (m, /m, )C. For a large
difference between k, and k„we move further
from the line k, =R +C with larger A (initial ener-
gy), and we also move to larger R. If it is the
case that the (2, 3) scattering amplitude drops with
increasing R, then raising the incident energy can
reduce the rescattering effects in three ways:
(a) by moving the kinematic conditions away from
the logarithmic singularity; (b) by increasing R,
thus reducing f(R, 0); and (c) by increasing veloc-
ity v» which is proportional to C.

With the T matrix we have derived, one can pre-
dict the differential cross section for observing
both particle 2 and particle 3. We next develop an
expression for the differential cross section ob-
tained if only the angular distribution of particle 3
is observed. We begin with

dv- ~(T) ~'k, dk, dQ, k,~dk, dQ, 5(R, —Zq), (III.39)

and obtain

FIG. 2. Kinematic constraints relevant to the rescat-
tering singularity (see text).

dk'
~ —

[ I(» I'k, k, 'dk, dfI,
4 f

(III.40)
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For simplicity in estimating this cross section,
we consider the case with my» m, = m, . The dif-
ferential volume element may then be written in
terms of the variables C, R, and A, as follows:

with C=A.
Putting all the contributions to (do/dQ, ) together,

we have

k3k 'dk dQ -8wC'v'A' —C dCd(d,

where

(III.41)

where, for large values of A,

(III.48)

&o=C R/CR. (III.41')

For (T), we use the expression given in Eq. (III.25),
and then find those contributions to (do/dQ, ) which
are lowest order in F. The largest of these comes
from taking (T) equal to (T) sD» and gives

0-Re I f( '", 0)(inc i0" In2)

+ Inl~2 1
'kok»(-f(' ~

%a+I
E 2 —1

(In.49)

0
)) I(T}SDM I kR0ko @Rk R /2

3
(III.42)

Re ink0 ~k30 0

+Re i(ln2) ' k0f(Rk», 0) ~,
R 30

(III.43)
where we have taken

F2- im, (III.44a}

ff(R, 0)RdR - f(—',k,o, 0), (III.44b)

where k,0 is the momentum of particle 3 which oc-
curs when particle 2 has momentum k0. There are
other contributions to (do'/dQ, ) which involve (T)SDM

as a factor, and consequently arise primarily when

k, =k, and k, =k„. In the limit k30»k0 these yield

IV. CONCLUSIONS

W'e have found that rescattering introduces two
corrections to the SDM scattering matrix. One of
these is the addition of a contribution of the form

&T&sDM&. f(R 0)F~
V23

(IV.1)

E, - -' I In. "),2 nI iF (IV.2)

where E~ and F are the energy and width of the
(1, 2) resonance. This is precisely the form of
the expression anticipated in the introductory re-
marks of Sec. II. In addition, there is a second
correction, a renormalization of the leading SDM
term, given by

where f(R, 0} is the (2, 3) forward-angle scatter-
ing amplitude for relative momentum R, and where
F, is given by Eq. (III.22). F, ranges in value,

fRdR (T) sDM@ f(R) 0)FR)
F

Sv,
(IV.3)

dC F,(C}-—,'k, o ln2 . (III.44c)

—ln kk

where

J, R(f(R, 0)i'dC
I

I'=
f,"RdC

and where we have used
1A = 2k, 02,

(III.45)

(n1.46)

(III.41)

and have evaluated F, at its maximum value, i.e.,

One final term must be considered among the por-
tions of (do/dQ, ) which are of lowest order in F.
This term receives contributions from the entire
range of k, and k„and arises from the square of
the last term in Eq. (III.25}. An estimate of the
size of this term is given by

where F„given in Eq. (III.24), approaches iv for
large incident energies. At high energies the sec-
ond correction may be larger than the first near
the (T)SDM resonance, but its effect is only to
change the amplitude of the Watson-Migdal reso-
nance peak of the SDM. Off resonance, the first
correction term dominates.

For the differential cross section, (do/dQ, ), we
have found corrections to the SDM of the form

(IV.4)

where G is given in Eq. (1II.4S). The existence of
such corrections must be a concern in the extrac-
tion of spectroscopic factors.

To estimate the size of the various rescattering
terms, let us consider a case in which particle 2
is a proton, particle 3 is a neutron, EI, = 1 MeV,
F = 100 keV, 8 = 0, and C = k0. Then,

f(R, O)E, =0 E,f(0, 0)in( . "). {Iv.5)
z EZ
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With If(o, o) I-12 fm, we obtain

fF, -0.3.
23

(IV.6}

Qff resonance the cross section which is due to
this rescattering term becomes

+RS 0.09O 117 (IV.7}

This effect may be observed in the data for d+ "C
—"C+P+n found in Ref. 8, where the actual phys-
ical parameters approach those assumed in the
above example. There, it is seen that the cross
section at the rescattering peak or shoulder (for
E&, below the resonant value) is indeed on the or-
der of 10%%u&& of the maximum cross section, at the
resonance energy.

We next consider a stripping reaction leading to
an unbound state "O(d, P)&70*(5.08 MeV). Let us
take 1 -100 keV, k'k, '/2m=E„= I MeV, E„=12
MeV, Q-2 MeV. These parameters correspond
roughly to those employed in Ref. 3. The above
conditions lead to

may be made to determine: (a) to what degree re-
scattering effects may be ignored; (b) the approx-
imate size of these effects if they must be includ-
ed; and (c) the conditions under which the effects
may be large. The expressions were obtained
from a steady-state point of view, which seems
to provide a good basis for arriving at quantitative
criteria for testing the validity of the SDM.

APPENDIX

(A1)N(k,') = N(k, ) .
We used the following forms for (V»)«'~' of Eq.
(III.14) to obtain the corresponding (T)&t&s~&:

(V„)&"& =(2»)'(V) 5(%, +k, —k,' —k'), (A2a)

In obtaining the expressions given in Eqs. (III.16),
(III.19), and (III.23), we have inserted Eq. (III.12)
and Eq. (III.14) into the integral expression given
in Eq. (III.13). As an approximation, we removed

(T)soM from the integration taking

h2k
Z = " =13 MeV.

2m
(IV.8)

(V)(m„/m, )'f ' &(&&')

Ik, +k, —R,'I' —I(m„/m, )&&'I'+ie '

With R= —,'k», we have If(R, 0)I-2.5 fm which gives

f(R, 0)F, = (ln2) k„f(R, 0) = 0.005 .
A@23

' ' 2g 0

i&&. 0 & 4&
&v)f *(ka)

"Ik,'+k,'-k, I'-k' —i&I
'

(A2b)

(A2c)

We also have

r f(R, 0}F, = — kof(R, 0}&& = 0.1 .1 j."

Se2
' ' 2 EJ,

(IV.9)

where

)f (ka) f '(k2)

~

~

k, -k,'- Ik, -k, I+i~
k, —k,'+ Ik, -k,'I+ i@

(A2d)

Finally, for (do/dQ, ) we obtain

(IV.10)

(IV.11)

(v) =- 2 I 'm » fs(R, 0)
m2m3

x(2&&)'5(k, +k, —k,' —k,' —k,'), (A2e)

where G is given by Eq. (III.49). Using the ener-
gies given above,

m, k ' —m, k,'
K

m
(A2f)

G= -2+o.o7lf I', (IV.11')

o- I(1/E, )GI-0.8. (IV.12}

The precise value depends on the value of If I'. It
is clear from this example that rescattering may
have a significant effect on the determination of
spectroscopic factors, which requires calculation
of the absolute normalization of cross sections.

With the aid of the expressions discussed in the
preceding sections, semiquantitative estimates

where
I f I' is defined by Eq. (III.46). Because

If I' is less than 144 fm', i.e., If,„I', G is less
than 8. We thus obtain the following range for re-
scattering corrections:

The expressions above for (V»)"' ' are exact for
a zero-range potential V23j but are only approxi-
mate for a finite-range potential. [The forms giv-
en in Eqs. (A2c) and (A2d) assume m, » m» for
simplification. ] With the above expressions, the
integrals in Eq. (III.13) can be evaluated using"

cPk. [(k-a}'+ m, '][(R -5}'+m, ']
&&' m, +m, + ila-bl

iIa-bI m, +m, -iIa-bI
(A3)

and standard integrals with the assumption that r
be vanishingly small.
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The reaction N(p, y) 0 was used to examine the resonance structure in 50 between 8.8
and 9.0 MeV. The resonance previously reported at E&

——1.742 MeV was found to have two
components corresponding to excitations in ~50 of 8.920 and 8.925 MeV, respectively. The
decay properties of these two levels were studied with high-resolution Ge(Li) detectors,
showing that they closely resemble the properties of probable mirror levels at 9.23 and 9.155
MeV in ~5N.

I. INTRODUCTION

/

The mass-15 nuclei "0 and "N have been the
subject of extensive study. ' The properties of the
T = —,

' states below 8.75 MeV are well understood,
and the energies and decay properties of all except
the two J'=-,"states are as expected for mirror
nuclei. The situation is much less clear above
this energy range, where experiments" have
shown that the state in "N previously reported at
9.16 MeV is really a close-lying doublet, with the
two members having energies of 9.152 and 9.155
MeV, and spins J"=-,' and —,", respectively. More
recently, Steerman and Young' have studied the
reaction "C('He, p) "N and determined the spin of
the 9.22-MeV state to be J'=-,' . Since Coulomb
shifts between mirror nuclei much greater than
300 keV are uncommon, one should expect the
three corresponding states in "0 to fall between
8.8 and 9.1 MeV. However, only two states have
been reported. Elastic proton experiments' '
show a large resonance at E~= 1.74 MeV and a
weaker one at E~=1.81 MeV, corresponding to
8.91 and 8.98 MeV excitation in "O. The analysis
of these data has been inconclusive except for fix-
ing the parity of the 8.91-MeV state as negative.
Experiments using the "N(p, y) reaction have con-
firmed the existence of these two resonances, ' but

the cross section in the capture channel has been
too small to determine the spins and parities.

We have reexamined the resonance structure of
"0 between 8.8 and 9.1 MeV in the capture chan-
nel, to search for the existence of a third state.
Since it appeared unlikely that previous experi-
ments could have overlook an isolated state in this
energy range, we have examined the two known
resonance structures in detail to determine if
one of these could possibly be a previously un-
resolved doublet.

II. EXPERIMENTAL PROCEDURE

The states in "0 above 7.3 MeV are unbound.
Information about these states is most readily ob-
tained, therefore, from a detailed study of the
observed resonance structure. Experimentally,
one measures the excitation function either for
one of the particle channels or the proton-capture
reaction. In the energy region of interest (8.9 to
9.0 MeV) the analysis of such an excitation func-
tion is complicated for two reasons. First, it is
well known' that there is a large nonresonant
background, originating in part from two broad
states at 9.48 and 9.72 MeV, respectively. Proper
subtraction of this background requires that a
complete y-ray spectrum be taken at each proton


