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The generator-coordinate method based on projection from constrained Hartree-Fock
states is applied to obtain the T=0 energy levels of ONe. The results obtained with the
strength of the external quadrupole field as a generator coordinate compare very well with

those of exact shell-model calculations.

INTRODUCTION

After the established success of the projected
Hartree-Fock (PHF) method to obtain the ground-
state bands of nuclei, ' it is natural to look for a
generalization based on this method to obtain high-
er bands of levels in the nuclear spectra. The
validity of such a generalization has to be assessed
by comparison with exact shell-model calculations.
The aim of the present note is to show that the gen-
erator-coordinate' calculations with constrained
axial Hartree-Fock (HF) states as a basis do pro-
vide such a generalization which is simpler and
computationally less involved than the alternative
formalism of projecting the states from particle-
hole excited intrinisic states. ' Such calculations
may also give some insight into the physical na-
ture of the excited states in shell-model spectra.

It may be noted that the generator-coordinate
(GC) calculations with Nilsson states as a basis is
able to explain' the ground-state band of "Ne.
However, it is well known that the PHF method is
equally successful and much simpler. Hence one
would look for the natural unification of the GC
and PHF methods by using constrained HF solu-
tions in projection formalism.

METHOD OF CALCULATIONS

We minimize free energy E =(P~~ H —XQo~ &f&~) in
the HF procedure to obtain the state p~ for the
nucleus "Ne. Then we solve the Hill-Vfheeler in-
tegral equations;

)I F(A.')[H (X, P. ') —E I (g, A. ')] dg'= 0,

mhere

e'(X, Z') =(@,( aP,', ) y, ,),
I '(~, ~ ) =(@,(P'

( y, ,),
and P~~ is the well-known projection operator. '
The constrained HF solutions are obtained by pick-
ing out that branch of the solution which is gener-

ated, as smoothly as possible, out of the lowest
prolate HF solution. This is achieved by using the
HF solution Q„as the starting point for the itera-
tion of the solution f~,~„where dA. is a small
increment in the strength of the external quadru-
pole field. These calculations enable us to plot
the graph of free energy (E) vs the quadrupole mo-
ment (Qo) as shown in the Fig. l. It may be noted
that the curve is not continuous but sharply divid-
ed into two distinct and separate branches, one
corresponding to the prolate solutions and the oth-
er to the oblate solutions. This feature has al-
ready been observed by Bassichis and %'ilets"
and Giraud, LeTourneux, and Vfong' independent-
ly for the case of "Ne. In the region of the dis-
continuity the HF solutions are unstable and there-
fore one has to use different iterative techniques
to obtain the intermediate points. Giraud, Le-
Tourneux, and Wong have tried to obtain the inter-
mediate points by using what is called "stabiliza-
tion procedure. " This procedure has given rise to
multivaluedness in the energy kernels with re-
spect to the quadrupole moment (Q', ) as shown
schematically in the Fig. 1. On the other hand
Bassichis and Wilets' could obtain the continuous
single-value curve connecting the two branches by
adopting a different iterative method as shown
schematically in the Fig. 1. Thus, a unique way
of connecting the two branches does not exist. Vfe
have also plotted the curves of the energy F. vs X

a,nd the quadrupole moment ( Q,') vs X as shown in
the Fig. 2. The curves indicate the response of
the "Ne HF solution to the strength of the external
quadrupole field. The response curves are char-
acterized by a single discontinuity at A. =0.79. The
existence of this discontinuity does not affect the
integrability of the kernels in the Hill-wheeler
integral equation. This encourages us to proceed
with the generator coordinate calculations using
X as the generator coordinate. However, the re-
gion of the discontinuity if joined by using, for ex-
ample, the iterative procedure of Bassichis and
Wilets' leads to multivaluedness with respect to
A, also. It mould be necessary to incorporate the
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TABLE I. k = $, orbitals of the three constrained HF
solutions for 2 Ne with the corresponding HF energy and
quadrupole moments. b, the harmonic-oscillator con-
stant is equal to 1.65 fm.

A, b

(MeV)
E(A.)
(MeV) d5/2 f/2 si/2 1/2 d3/2 1/2 ~@0)+

0.0
0.77
1.20

-21.23 0.7703 -0.4985 -0.3976 15.45
-19.54 0,8745 -0.2563 -0,4118 12.69
-12.57 0.4870 0.8361 -0.2526 -7.80
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making the coordinate A. discrete as follows:

FIG. 1. The variation of HF energy E with the quadru-
pole moment (Qp) (solid-line curve). The dashed-line
curve would be the curve connecting the two branches
using the method of Bassichis and Wilets and the circled-
line curves are those obtained by Giraud, LeTourneux,
and Wong, both being shown schematically.

branch sequence as an additional label for the
generator coordinate in the case of multivalued
kernels to solve the Hill-Wheeler integral equa-
tions. However, since one obtains different re-
sults for this part of the multivalued kernels using
different methods" we prefer to stick to the ker-
nels obtained in a simple iterative procedure lead-
ing to stable solutions. It is gratifying to note that
the results of our calculations indicate that the
points in the discontinuous region are not neces-
sary for the description of the excited states be-
low 18 MeV in the "Ne spectrum.

The curves of the energy E vs A. and quadrupole
moment ( Q,') vs A. (Fig. 2) are quite flat owing to
the stiffness of the HF solution around prolate as
well as oblate deformations. Hence we can ap-
proximate the Hill-Wheeler integral equation by
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It is enough to take few points with sufficiently
different deformations as otherwise the Hilbert
space f/~~) is overcomplete. We have given the
single-particle orbits in the case of "Ne for the
three points which have been used in our calcula-
tions in Table I.

W'e have employed the effective-interaction ma-
trix elements derived by Kuo' from the Hamada-
Johnston potential, renormalized for the 1d-2s
configuration space used in these calculations
along with the experimental single-particle ener-
gies of "O. We have also calculated the "Ne
spectrum by diagonalizing the above Hamiltonian
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FIG. 2. The variation of Hartree-Fock energy E (solid-

line curve) and that of quadrupole moment (Qp) (dashed-
line curve) with A. . Both the curves are drawn in arbi-
trary units. The circled points (see Table I) are used in
GC calculations.

FIG. 3. Positive-parity T = 0 energy levels in the Ne
spectrum: (a) the experimental; (b) the shell model; (c)
the GC method; (d) the projected one particle-one hole
as explained in the text.
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in the space of good angular momentum states
projected from the prolate HF state as well as
the K= 0, T =0 states obtained by one-particle-
one-hole (1p-1h) excitations, taking proper care
of nonorthonormality. The results of the GC cal-
culations along with the above results are com-
pared with the results of the exact shell-model'
calculations for T =0 states in Fig. 3. We have
plotted the energies in absolute scale to facilitate
a meaningful comparison of different methods.

RESULTS AND DISCUSSIONS

In general the agreement between the GC spec-
trum and the corresponding T =0 levels in the
shell-model spectrum is quite good. We have
been able to identify 11 levels in shell-model spec-
trum which are generated in these axially symme-
tric GC calculations. For the highest levels in
the GC spectrum with angular momentum 2 and 4
we do not have the corresponding results of exact
shell-model calculations for comparison; there
are several levels in the shell-model spectrum at
excitation of 8-10 MeV, which are not obtained in
axial GC calculations. However, as the K=2,
1p-1h excited band is around the same region of
excitation, we expect that these states also could
be generated with a nonaxial GC calculation. For
example, the band of levels starting with the 2'
at -16.8 MeV is presumably nonaxial. Otherwise
the GC results are consistently better in agree-
ment with the exact shell-model results than
those obtained through 1p-1h projection calcula-

tion. It is known that the shape mixing with high-
er HF solution is required to improve the agree-
ment" between the particle-hole spectra and the
shell-model results.

We have shown that the constrained HF solutions
with axial symmetry can be chosen as a basis for
the GC calculations, and give an excellent agree-
ment with a major part of the shell-model spec-
trum below 18 MeV excitation even though we have
omitted points in the unstable region. It may be
possible to reproduce all the T = 0 shell-model
levels below 18 MeV excitation through addition
of the nonaxial deformations in the GC method
rather than extending the kernels to the unstable
region. At the same time it will be of great in-
terest to study the correlations between the gener-
ation of states and the transition probabilities. In
the experimental spectrum (Fig. 3), however,
there are many levels which presumably arise
from core excitations. The results of the present
calculations encourage us to perform the GC calcu-
lations taking into account all the nucleons in the
nucleus and a suitably large Hilbert space. Such
calculations, though lengthy, are feasible. " It
would also be interesting to study the connection
between the important shape-mixing effects pres-
ent in the neutron excess nuclei" and correspond-
ing GC calculations. Attempts in this direction
are in progress.
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