Core-Excited 5⁺ State in ${}^{14}N^{\dagger}$

J. W. Noé, D. P. Balamuth, and R. W. Zurmühle Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 17 May 1972)

The proton and γ -ray decay of the T = 0 level at $E_x = 10.81$ MeV in ¹⁴N has been studied with the reactions ${}^{12}C({}^{3}\text{He},p){}^{14}\text{N}(p'){}^{13}\text{C}_{g.s.}$ and ${}^{12}C({}^{3}\text{He},p\gamma){}^{14}\text{N}$ at an incident ${}^{3}\text{He}$ energy of 14 MeV. The state was populated in an axially symmetric geometry in which the outgoing reaction protons were detected at 0° to the incident beam direction at the focus of a magnetic spectrometer. Analysis of the decay proton and γ -ray angular correlations leads to an assignment of $J^{\pi} = 5^+$ to the 10.81-MeV state. The γ -ray decay goes entirely to the $J^{\pi} = 3^+$, T = 0 state at E_x = 6.44 MeV; the fractional γ -ray branch of the 10.81-MeV state was measured as $\Gamma_{\gamma}/\Gamma_{\text{total}}$ $= (4.1 \pm 0.8)\%$.

I. INTRODUCTION

In the simple shell-model picture of ¹⁴N¹ based on the coupling of two nucleons in the $1p_{1/2}$ and sd orbitals outside an inert $(1p_{3/2})^8$ core, discussed by Warburton and Pinkston,² True,³ and others, only one 5⁺ state can occur; True's calculation³ places this T = 0 $(d_{5/2})^2$ state at $E_x \cong 9.3$ MeV. The $(d_{5/2})^2|_{5^+}$ configuration is expected to be very strongly excited in the ${}^{12}C(\alpha, d)^{14}N$ reaction and consequently has been associated with the $J^{\pi} = 5^+$ state^{4, 5} at $E_x = 8.96$ MeV which is observed⁶ to be strongly excited in that reaction.

We report here the identification of the T = 0 level at $E_x = 10.81 \text{ MeV}^7$ as the second $J^{\pi} = 5^+$ state in ¹⁴N. [The strength of the 10.81-MeV level in the ¹²C(³He, p)¹⁴N reaction led to its previous tentative assignment⁸ as a two-particle shell-model state having $J^{\pi} = 4^+$, T = 0.] The present result was obtained from an analysis of the angular correlations of protons and γ rays resulting from the decay⁹ of the 10.81-MeV state; the state was aligned by populating it in an axially symmetric geometry.

At the time of a preliminary report of the present experiments¹⁰ no theoretical prediction of a second 5⁺ state at such a comparatively low excitation energy in ¹⁴N existed. Very recently however, Lie¹¹ has presented a calculation of ¹⁴N levels based on the weak coupling of particle and hole configurations. The calculation predicts two 5⁺ states below 11 MeV excitation in ¹⁴N, one of which is the $(d_{5/2})^2$ state discussed above and the other of which is built out of core-excited configurations.

II. EXPERIMENTAL RESULTS AND ANALYSIS

The 10.81-MeV state was populated using the ${}^{12}C({}^{3}\text{He}, p){}^{14}\text{N}$ reaction at an incident ${}^{3}\text{He}$ energy of

14 MeV. The proton group corresponding to the 10.81-MeV state was detected by a position-sensitive detector located in the focal plane of a magnetic spectrometer placed at 0° with respect to the incident beam direction. Deexcitation γ rays were detected in coincidence with the 0° protons by an array of four 7.6×10.2 -cm NaI(Tl) crystals. To study proton emission this assembly was replaced by four silicon surface-barrier detectors placed inside the target chamber. Coincidence data and the 0° proton singles spectrum were written on magnetic tape during the experiments using a PDP-9 computer; angular correlations were then obtained off line by a multiparameter sorting procedure using the same computer. The apparatus has been described in greater detail elsewhere.12

The angular correlation of protons emitted by an aligned state of spin a is given by¹³

$$W(\theta) = \sum_{\alpha b l l'^{k}} w(\alpha) (a\alpha a - \alpha \mid k0) (-)^{b - \alpha} \overline{Z} (lal'a; bk)$$
$$\times \langle a \parallel l \parallel b \rangle \langle a \parallel l' \parallel b \rangle^{*} P_{k}(\cos \theta) .$$
(1)

Here b denotes the channel spin in the final system, the \overline{Z} coefficients are defined in Ref. 13, and the $P_{\mathbf{b}}(\cos\theta)$ are Legendre polynomials. The population of the magnetic substate α is given by $w(\alpha)$. In the present work $w(\alpha)$ is zero for $|\alpha| > 1$ and only the relative population of the $\alpha = 0$ and $\alpha = \pm 1$ magnetic substates must be determined from the analysis. The quantities $\langle a \| l \| b \rangle$ are reduced matrix elements for proton decay via orbital angular momentum l to channel spin b. Note that the sum over the allowed values of l, l' is coherent, whereas the sum over channel spins is incoherent. In fitting experimental data the over-all normalization is treated as a variable parameter, so that only ratios of reduced matrix elements can be measured. In the following we restrict our attention

780

6

FIG. 1. Angular correlation of decay protons from the 10.81-MeV state in ^{14}N to the ^{13}C ground state with best fits for $J^{\pi}=5^+$ and 5^- .

to proton decay to the $J^{\pi} = \frac{1}{2}^{-1}$ ground state of ¹³C; the possible channel spins are then 0⁻ and 1⁻. For a natural-parity state with $J \neq 0$ in ¹⁴N the conservation of angular momentum and parity restricts the channel spin to 1⁻ and permits orbital angular momenta $l = J \pm 1$. For states with unnatural parity l must equal J; however, both channel spins 0⁻ and 1⁻ are allowed and the channel-spin ratio δ_c = $|\langle a \| l \| 0 \rangle | / |\langle a \| l \| 1 \rangle|$ is an additional unknown parameter that must be determined from the analvsis. In the case of natural-parity states, a completely general treatment would require varying the quantity $\delta_l = \langle a \| l + 2 \| 1 \rangle / \langle a \| l \| 1 \rangle$ where the coherence in the sum over l, l' requires that both the magnitude and phase of δ , be known. Since the reduced matrix elements contain the penetrability

FIG. 2. Four-crystal sum spectrum of γ rays observed in true coincidence with protons populating the 10.81-MeV state. The decay scheme of the 6.44-MeV level is taken from Ref. 1.

for orbital angular momenta l+2 and l, respectively, as factors, it is reasonable to assume that $|\langle a \| l+2 \| 1 \rangle| \ll |\langle a \| l \| 1 \rangle|$, that is to consider only the lowest allowed l value. It should be noted, howhowever, that structural effects can compensate for differences in penetrabilities, so this approximation should be applied with caution.

No assumption concerning the *l* value need be made to restrict the spin of the 10.81-MeV state to $J \ge 5$. This follows from the presence of a nonzero coefficient $(a_{10} = -0.76 \pm 0.06)$ of $P_{10}(\cos\theta)$ if the experimental correlation is fitted to evenorder Legendre polynomials. [The coefficient $(a\alpha a - \alpha | k0)$ in Eq. (1) is zero for k > 2a.] A best fit to the data was next determined for spins J^{π}

FIG. 3. Experimental γ -ray correlations for the 10.81 \rightarrow 6.44 MeV and 6.44 \rightarrow ground-state transitions, with best fits for J=3, 4, and 5 and corresponding χ^2 plot. Not shown here, J=0, 1, 2 and J=6 ($\delta=0$) are excluded at the 0.1% confidence level.

 $=5^+$, 5⁻, 6⁺, and 6⁻ using Eq. (1). All physical values of the parameters $w(\alpha)$ and δ_c were considered, but for $J^{\pi} = 5^{-}$ and 6^{+} the *l* value was restricted to l = 4 and 5, respectively. With this restriction only the choice $J^{\pi} = 5^+$ gives an acceptable fit to the data (see Fig. 1).

The properties of the 10.81-MeV state were further investigated by studying its electromagnetic decay. Although unbound to proton emission by ~3 MeV the 10.81-MeV state was expected to have an observable γ decay due to the low penetrability of l=5 protons. A four-crystal sum spectrum of the observed γ rays is shown in Fig. 2. The decay scheme of the 10.81-MeV state is identical to that reported^{4, 5} for the $(d_{5/2})^2$ 5⁺ state at 8.96 MeV; the decay occurs entirely (>90%) to the 3⁺, T = 0 state at 6.44 MeV. The angular correlations of the 10.81 - 6.44 MeV and 6.44 -ground-state transitions were analyzed in the standard manner¹⁴ with the computer $code^{15} M2$. As shown in Fig. 3, a unique assignment of J = 5 to the 10.81-MeV state results from this analysis. The mixing ratio obtained for the 10.81 - 6.44-MeV primary transition is consistent with pure quadrupole radiation: the secondary transition is known¹ to be pure E2. By comparison of the proton singles at 0° with the observed number of γ rays the width ratio $\Gamma_{\gamma}/\Gamma_{\text{total}}$ was deduced to be $(4.1 \pm 0.8)\%$. The efficiencies of the γ -ray detectors required for this comparison have been measured separately in the same experimental geometry. A similar comparison was made for the decay protons to the ¹³C ground state, and the p_0 and γ branches are estimated to account for >95% of the decay strength.

The angular-correlation results presented here lead to a model-independent spin assignment of J = 5 to the 10.81-MeV state. A parity assignment cannot be made in a model-independent way from these data. However, in order to fit the observed proton-decay angular correlation for $J^{\pi} = 5^{-}$ an l=6 amplitude of about 15% is required. When the relative penetrabilities for l=4 and 6 are considered, this implies that the l = 6 reduced width is greater than the l=4 reduced width, which is considered to be unlikely. In addition, the fact that the observed γ decay is identical with that of the known 5⁺ state at 8.96 MeV is strongly suggestive of positive parity. A 5⁻ state, on the other hand, might be expected to decay by E2 radiation to the 3⁻, T = 0 state¹ at 5.83 MeV. The observed decay would then correspond to a $\Delta T = 0$ M2 transition, which should¹⁶ be retarded in a self-conjugate nucleus.

III. DISCUSSION

On the basis of this evidence, we assign $J^{\pi} = 5^+$ to the 10.81-MeV state in ¹⁴N. Concerning the configuration of the new 5⁺ state, it is clear that it must involve a broken $p_{3/2}$ core. Also, any suggested configuration must accommodate the fact that the state is quite strongly populated^{6,8} in twonucleon transfer on ¹²C. As mentioned above, the recent calculation¹¹ of Lie predicts two 5⁺ states, the higher of which is predicted to have essentially no strength in two-nucleon transfer, being composed principally of two nucleons in the sd shell coupled to the 2^+ first excited state of ${}^{12}C$. If this is the dominant configuration of the 10.81-MeV state, then it can be excited only by multistep processes in the (³He, p) and (α , d) reactions. However, as Lie emphasizes, his calculations have neglected any tensor component in the particlehole interaction. The effect of any such tensor interaction would be to mix the two 5⁺ states in the model, the lower one of which is very strongly excited^{6,8} in two-nucleon transfer. This could possibly explain the observed strength of the higher 5⁺ state.

- †Research supported by the National Science Foundation.
- ¹F. Ajzenberg-Selove, Nucl. Phys. <u>A152</u>, 1 (1970).
- ²E. K. Warburton and W. T. Pinkston, Phys Rev. 118, 733 (1960).
- ³W. W. True, Phys. Rev. <u>130</u>, 1530 (1963).
- ⁴R. W. Detenbeck, J. C. Armstrong, A. S. Figuera,
- and J. B. Marion, Nucl. Phys. 72, 522 (1965).
- ⁵A. Gallmann, F. Haas, and B. Heusch, Phys. Rev. 164, 1257 (1967).
- ⁶R. H. Pehl, E. Rivet, J. Cerny, and B. G. Harvey, Phys. Rev. 137, B114 (1965).
- ⁷The excitation energy and T=0 assignment are taken from Ref. 1.

- ⁸N. F. Mangelson, B. G. Harvey, and N. K. Glendenning, Nucl. Phys. A117, 161 (1968).
- ⁹The ${}^{12}C({}^{3}He,pp'){}^{13}C$ reaction (for $E_{3He} = 10-15$ MeV) is known to proceed predominantly by a sequential mechanism through proton-unbound excited states in ¹⁴N. See W. Focht, R. W. Zurmühle, and C. M. Fou, Bull. Am. Phys. Soc. 12, 35 (1967); and J. W. Noé, R. W. Zur-
- mühle, and D. P. Balamuth, ibid. 15, 521 (1970).
- ¹⁰J. W. Noé and D. P. Balamuth, Bull. Am. Phys. Soc. 16, 489 (1971). ¹¹S. Lie, Nucl. Phys. <u>A181</u>, 517 (1972).
- ¹²R. W. Zurmühle, P. F. Hinrichsen, C. M. Fou, C. R. Gould, and G. P. Anastassiou, Nucl. Instr. Methods 71, 311 (1969).

¹³A. J. Ferguson, Angular Correlation Methods in Nuclear Spectroscopy (North-Holland, Amsterdam, 1965). ¹⁴D. P. Balamuth, G. P. Anastassiou, and R. W. Zur-mühle, Phys. Rev. C <u>2</u>, 215 (1970), and references

therein.

¹⁵D. J. Church, private communication.
¹⁶E. K. Warburton and J. Weneser, in *Isospin in Nuclear* Physics, edited by D. H. Wilkinson (North-Holland, Amsterdam, 1969), pp. 173-228.