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Using a removal-time-dependent separation energy, the relationship of nucleon removal
energies to observed spectra and single-particle eigenvalues is demonstrated. Three differ-
ent choices of the nuclear single-particle potential are discussed and the observability of
their eigenvalues is explained. It is shown that “observed” spectroscopic factors should vary
with energy and that single-particle energies determined by measuring centroids will also
vary with incident energy. Possible evidence for these removal-time-dependent effects in
(d,t) and (p,2p) experiments is presented and other experiments are suggested to verify

these effects.

I. INTRODUCTION

The lingering problem of the relation of eigen-
values to observables where little progress was
reported beyond Koopmans’s 40-yr-old result!
has recently been clarified for atoms (Meldner
and Perez,? hereafter referred to as MP). In the
present paper, we will extend and apply the prin-
ciples of MP to atomic nuclei. The solution of
this problem for the strongly interacting particles
in the nucleus pertains to: (1) the theoretical foun-
dations of the shell model,® (2) the validity of the
Nilsson-Strutinsky* prescription, (3) the calcula-
tion of nuclear charge densities as measured in
elastic electron scattering, (4) the proper inter-
pretation of particle-removal spectra, and (5) the
extraction of spectroscopic factors from experi-
mental data.

In the general framework of Brueckner theory,
we investigate three choices of nuclear single-
particle potentials currently in use in the litera-
ture. These choices can be viewed as varying de-
grees of approximation, and so far no uncondition-
al criterion for which is best seems to exist. In
a separate paper,® we deal with the basic question
of the optimal description of finite many-nucleon
systems, i.e., what single-particle potential
yields the best wave functions, particle and hole
spectra, and other observables. Our conditional
result is that the Brueckner-Goldman® choice
(No. 3, cf. Sec. II) is best. However, it clearly
requires complex and more involved calculations.
The other choices or approximations could there-
fore be more practical in many cases. It is thus
important to investigate the relationship to observ-

L

ables for the other choices, too.

The connection to the nuclear physics literature
is made by showing how the removal-time-depen-
dent effects are described by the three choices.
In this way, we clarify major features inherent in
the three choices of approximation.

We discuss how the removal-time-dependent ef-
fects described in MP can be measured in nuclei.
We show that “observed” spectroscopic factors
should vary with removal time and that single-
particle energies determined by measuring the
centroids of removal spectra also depend on the
incident energy.

We begin with a review of those results of MP
which are relevant to the present work. An ob-
servable separation energy s,(r) for the removal
of the hth particle, which depends on the removal
time 7, is defined as the weighted average of the
energies of the states of the residual system minus
the (initial) ground-state energy:

s =Sl eaMPEMN - 1) - EW)]. (1)
oy

The index ¢, denotes states of the residual system
with a hole in the hth level, beginning with 0, which
has no extra excitation besides the one hole. All
other states in the sum integral are of the same
spin and parity and have monopole excitations of
the remaining particles. The « states can be divid-
ed into two groups: (1) “shake-up” states with dis-
crete energies and monopole excitations of some
of the remaining particles into bound states, and
(2) “shake-off” states with particles excited into
the continuum.

The weighting factors c,,(r) contain the removal-
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time dependence. If the removal is adiabatic or
infinitely slow, 7 - «, only the configuration denot-
ed by a =0, which has the lowest missing energy,
is excited, i.e.,

[Cap)? =840 ()
and
Sp(®) =E°"N-1) - E(N). (3)

[Note: It is this adiabatic limit of our quantity
s,(7) which is usually referred to as the separation
energy.]

In the atomic case, one can closely approximate
the adiabatic limit experimentally.? However, in
the nuclear case, hole lifetimes for deeply bound
nucleons are too short to allow a good approxima-
tion to adiabaticity. (See Sec. IV.)

In a sudden removal, 70, all the states are
excited to their maximal strength — the value given
by spectroscopic factors, and we have

lca,O)1%= (N =1, 04| a, | N)|? )

and

50 =SIN -1, &y g, | MPESWN - 1) - EW) .
“ (5)

MP showed that the separation energy or centroid
in the sudden limit,

sy(0) = ~¢,. 6)

This is the complete statement of Koopmans’s
theorem® conveniently quoted as s,() = —€, +cor-
rections. This relation holds in the single-parti-
cle approximation where |N) is given by a single
determinant and where

€ =tm* 25 (Onjng = Ongga) » Q)
o{b'i):acls

which corresponds to the Hartree-Fock (HF)
choice of the single-particle potential. There-
fore it can be directly applied to atoms. In Sec. II,
we show the relationship of single-particle eigen-
values to observed spectra for the three proposed
choices of the nuclear single-particle potentials.

The removal-speed-dependent rearrangement
energy is defined by the equation

A,,(T) = sn(T) - Sh(°°) . (8)

This rearrangement energy moves from zero in
the adiabatic limit to the difference between the
energy of the threshold peak, s,(«), and the single-
particle eigenvalue, ¢,, in the sudden limit; i.e.,
the maximum of A,(1) is A,(0) = | €, ] - s,(=).

It is clear that the quantity s,(r), defined above,

|

is in principle observable. For the case of hard
x-ray photoionization of a K electron in neon, MP
showed that it is in fact observable. However, for
the removal of a nucleon from the nucleus, the
existence of small far-off contributions from the
continuum’ may make a quantitative determination
of the centroid almost impossible. In fact, in the
atomic case, the continuum or shake-off states
were the major part of the centroid shift in the
sudden limit. We certainly expect a similar effect
for nuclei.

In Sec. II, we relate the results of MP to nuclear
single-particle pictures and describe the relation-
ship of the eigenvalues of three choices of the po-
tential to observables. In Sec. III, a model is pre-
sented to illustrate the magnitude of the nuclear
rearrangement energy. This allows us to make
some interesting observations about the Nilsson-
Strutinsky* shell-model phenomenology.

Removal -speed-dependent effects can be ob-
served by noting that the full spectroscopic factors
are displayed only in the sudden limit. We expect
an increase in the ratio of the strength of the
shake-up and shake-off states to that of the low-
est missing energy peak as the removal speed is
increased. In low-resolution experiments, we
expect the removal-speed dependence to cause
shifts in the measured removal energies. In Sec.
IV, we quote experimental evidence which is con-
sistent with our predictions, but which is not ab-
solutely conclusive. We therefore suggest experi-
ments to verify these effects. Section V contains
our conclusions.

II. SINGLE-PARTICLE POTENTIALS

The relationship of the single-particle eigenval-
ues to the observable quantities s,(<) and s,(0)
clearly depends on the choice of the single-particle
potential. There have been three proposals for the
nuclear single-particle potential that make use of
the Brueckner reaction matrix® which provides an
effective two-body interaction without singularities
and for which we assume that an expansion in
terms of the number of independent hole lines con-
verges.®

The choice which is simplest and most closely
analogous to the HF choice in atoms is

65.”=t;.+ 2 [Khjhj 'Khjjh]- 9)

J occ

orbitals
This is the original choice of Brueckner® and was
advocated and used by Eden and collaborators.®
By a derivation perfectly analogous to that of MP
for Eq. (6), we can show that €} is given by a cen-
troid which is weighted by a step-function-occupa-
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tion probability, i.e., a “one-sided centroid,”

2 =GlA - 1, a3 g, | WIPEMA - 1) - E(A).
an (10)

It is straightforward to show!! that this single-
particle spectrum gives large differences of eigen-
values and separation thresholds s(»), i.e., “rear-
rangement” energies. The spacing of eigenvalues
€® is normally 2 to 3 times larger than that of
separation energies, s,(~), and implies an effec-
tive nucleon mass ratio of only ; or even less.'* 2
This clashes with the conventional notion of the
shell model in which it is essentially assumed that
eigenvalues equal real separation thresholds.

A partial squeezing of the single-particle levels
was proposed by Brandow®® and Baranger,'* and
calculated by Becker and others.!® A set of dia-
grams whose leading term is given by Fig. 1(a)
is added to the potential of Eq. (9). The series
can be summed and expressed in terms of partial-
occupation probabilities. The eigenvalues are then
given by the two-sided centroid:

€7 =S|<A -1, a ah,A>|2[Eah(A -1)-E@A)]

op

- Sl +1, 8,0} |A)FE2HA +1) - E(A)).
o (11)

Baranger™ discussed how this eigenvalue is deter-
mined by the short-time behavior of the system
so that it is related to the results of a fast reac-
tion.'® This choice of the potential is considered
appealing because more diagrams are included
than in €}’ and because of its symmetrical appear-
ance. However, this centroid is even more diffi-
cult to determine experimentally than the “one-
sided centroid” of Eq. (10) because it requires
both a complete particle-addition and particle-
removal spectrum.

A proposal made in the development of the

(a) (b)

FIG. 1. Lowest order (in K) Brueckner-Goldman re-
arrangement diagrams: (a) resulting from ée, and (b)
from 6Q, as discussed in the text.

Brueckner theory by Brueckner and Goldman®
(BG) is to have eigenvalues equal to the energy
required to remove a particle, i.e.,

4
(@25

1
kb’ (12)

where E is the total energy of the many-body sys-
tem, and #», is the occupation number of the level
h. This is the definition of the single-particle en-
ergies used in Landau’s'” theory of a normal sys-
tem of fermions. It results in nearly independent
quasiparticles with a long lifetime from which the
transport properties of the Fermi liquid can be
predicted.’® At the Fermi energy, ¢ is the mean
energy per particle, and thus fulfills the Hugen-
holtz -VanHove theorem.'® Recent papers by Jones
and Mohling® and Becker and Jones® claim that
this choice cancels most diagrams in the perturba-
tion expansion for the ground-state energy. It is
also closer to the idea of a local shell-model poten-
tial, and gives an “effective mass ratio” of unity.?

For nuclear matter, BG showed that € defined
by Eq. (12) differs from €' due to the changes in
the Pauli operator, 6Q, as well as changes in the
single-particle spectrum, 6e. The 6e corrections
are those contained in Brandow’s!® partial-occupa-
tion probabilities, and consequently in €2, The
leading term in the series for the 6@ corrections
is shown in Fig. 1(b).

The original BG® estimate yielded almost equal
energies (about 6 MeV) for both diagrams 1(a) and
1(b) near the Fermi energy, and considerably
more for 1(b) than for 1(a) at the deepest bound
states (27 vs 9 MeV). Similar results were re-
ported more recently.?~? The estimates for 1(b)
are rather safe, since this diagram depends most-
ly on the unambiguous long-range part of the inter-
action. Becker® recently calculated 19.5 MeV for
the energy difference of the deepest bound states
in No. 2 and No. 3 in Ca. This number times (0.8)~2
is to be compared with the above 27 MeV estimated
for diagram 1(b).

For finife nuclei, there are additional terms due
to changes, 6¥, in the basis wave functions. The
resulting finite size effects have been called or-
bital rearrangement.?>2* Such distinctions are
problematic: If an orbit changes in a strongly in-
teracting finite system, the interference of all
three shifts, 6¥, 5Q, de, is important.

For the No. 3 choice of the single-particle poten-
tial, the eigenvalue is no longer given by a cen-
troid, but is rather a complex number with an
imaginary part which is zero at the Fermi sur-
face and which increases with distance from the
Fermi level?s:

€ =5,(w). (13)
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All three proposals for the single-particle poten-
tial coincide in the weak coupling limit, i.e., if
terms in the energy of higher order than the first
can be neglected (as well as orbital rearrangement
in No. 3). If the hole-line expansion converges to
the degree estimated by Day,?® all three give the
same result for s,(«) in Eq. (3) up to negligible
corrections. However, finite system wave func-
tions ave diffevent for the three choices of the
potential and, consequently, the density distribu-
tions are not identical.

Note that the single-particle wave functions of
No. 3 have a tail which falls off with a decay con-
stant corresponding to the real hole energy, and
thus typically have “longer” tails than the wave
functions corresponding to choices Nos. 1 and 2.

As mentioned above, the rearrangement dia-
grams 1(a) and 1(b) each give a repulsive contri-
bution of about 6 MeV at the Fermi level. Hence,
the rms radius of the most weakly bound particle
increases in choice No. 2 relative to No. 1, and
No. 3 relative to No. 2 by approximately the same
amount. Brandow?’ recently estimated 0.4 fm for
the radial shift of Fermi level neutrons in No. 2
relative to No. 3.

III. ILLUSTRATIVE MODEL

As a practical example, we derive the potential
of choice No. 3, v®, from a semiempirical non-
local nuclear v which was determined from a fit
to mass defects, radii, etc. throughout the Period-
ic Table?; viz.,

WE, ) =0 F-1'1/a 2[1"<2p1> ]’

where v, a, and p, are parameters (cf. Ref. 28
and Meldner and Shakin?®). The Fourier transform
v'®(k) is plotted in Fig. 2. Given this v**, we can
calculate the total binding energy

E=)(t+30") =Zi;+—’, (15)

and thus the difference between the total energy of
the ground state of A particles and the energy of

the one-hole system, i.e., the separation threshold.

In this section, we neglect imaginary parts so that
v® has this real threshold energy as eigenvalues,

€®. Therefore, v can be calculated from V.
Since the density dependence is explicitly given
in this model, we can estimate the “rearrange-

ment potential,”
A=y _ 0 =c® _ s (16)

from the density derivative of v at constant vol-

|o

ume. Such an approximation yields for A
U(S)('f, 'fl) - ,U(l)('f’ 'fl)

2/3
<1 w(?,?)ﬁfa(h?)@%(—%) ]
1

1/3 1/3
X<a ELTZ.E. _tan'1 a 3_ﬂ2f)_ ,
2 2
(17
i.e., alocal and a repulsive nonlocal potential with

the same nonlocality as ™. Finite nucleus calcu-

lations® show that this is, in fact, a good approx-
imation to get eigenvalues €® close to separation
thresholds. Brueckner,® and Johnson and Teller'’
have shown a long time ago that the empirical nu-
clear ™ has a strong nonlocality, corresponding
roughly to an effective mass ratio'? of 3. Equa-
tion (16) shows that half the nonlocality of v is
removed in v, This is a general result for mod-
els where v™ depends explicitly on momentum and
density. Combined with the purely local part, this
yields effectively a rather weak momentum depen-
dence for the single-particle potential, v, as
shown in Fig. 2.

To the extent that the local potential in Eq. (17)
can be neglected, the fotal binding energy becomes
the sum of the separation energies, i.e., simply
the sum of the eigenvalues in v®. The latter being
widely used in connection with the Nilsson-Strutin-
sky prescription.* We find it holds here in a rough
approximation only for somewhat exotic param-
eters. Realistic parameter sets in this model

k(fm™') ke
0.4 0.8

-40

Mev
-80

-120

FIG. 2. Lower and upper solid lines are e ,e® and
dashed lines are v® ,»® | respectively, as defined by
Egs. (15) through (17). The parameters are very close
to those of Refs. 20 and 26, namely, nonlocalitya =0.8
fm, potential strength » =370 MeV, and saturation pa-
rameter p; =0.36 fm™. This corresponds tok p=1.32
fm™, and a compressibility x =196 MeV. For details,
see also Ref. 27.
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yield local potentials that have approximately the
same magnitude as the nonlocal one (i.e., 3v'*)
near the Fermi level. Note in this connection that
the sum of “realistic” Nilsson eigenvalues is equal
to at least three times the observed nuclear bind-
ing energy. It is interesting to note that the param-
eters determined from the fit to finite nuclei in
Ref. 28 give €® and €® curves (cf. Fig. 2) which
lie within a few percent of the original Brueckner-
theory calculations (cf. Fig. 2 of Brueckner, Gam-
mel, and Kubis®!).

IV. DETECTION OF REMOVAL-SPEED-
DEPENDENT EFFECTS

For all three choices of the nuclear single-par-
ticle potential, we have shown how the eigenvalues
are related to observable spectra. For choice
No. 3, measurement of the position and width of
the leading peak (the one with the lowest missing
energy) in the removal spectrum gives the eigen-
value. Whereas, the eigenvalues of choices No. 1
and No. 2 require the measurement of the energies
and strengths of all shake-up and shake-off con-
tributions.

The existence of high momentum components in
the nucleus will give rise to shake-off contribu-
tions to the centroid which are very far from the
lowest energy peak. So, even if the strength is
small, a significant shift in the centroid energy
may occur.” Since these would be extremely diffi-
cult to observe, a quantitative determination of
the centroids may be impossible.

However, it is possible to detect the removal-
speed-dependent effects by observing the strengths
of a few shake-up peaks for a nearly adiabatic and
then for a sudden removal.

The removal time cannot be made arbitrarily
long, since the lifetime of the hole is finite. So,
an adiabatic removal means a removal time which
is long compared with single-nucleon-orbit periods,
but not longer than the lifetime of the hole. These
conditions cannot be realized to a good approxima-
tion when removing the deepest bound nucleons.
The (p,2p) experiments®® show that the width of
the 1s proton-hole state is of order 15 MeV with
a real separation energy of 45 MeV for A = 40.

For less strongly bound nucleons, we can approach
adiabaticity by choosing incident energies near the
Coulomb barrier. This is above the single-hole-
state width but below the average kinetic energy

of the nucleons, 25 MeV, and allows experiments
with conveniently large cross sections.

For sudden removals, the speed must be large
as compared to nucleon velocities. This is com-
plicated by the fact that short-range correlations
give rise to very high momentum components.

The correlations are described by the defect
wave function which has approximately 15% over-
lap with the full nucleon wave function. (For a
list of references, see Ref. 22.) As an illustra-
tive example, we have Fourier transformed the
defect wave functions of a recent Brueckner-
Hartree-Fock calculation for finite nuclei.’® The
corresponding momentum distributions in Fig. 3
show that roughly half the momenta in the defect
wave functions are above 2.0 fm™!, corresponding
to 100-MeV Kkinetic energy. Therefore, the out-
going particle should have at least 100-MeV Kkinet-
ic energy in order to achieve a reasonable approx-
imation to the sudden limit.

We have seen that, in the adiabatic limit, the
threshold peak has all the strength [see Eq. (3)].
As the removal speed increases, shake-up and
shake-off peaks appear and increase in strength
until the removal is sudden and their full strength
(given by the spectroscopic factors) is reached.
From our estimates of the high-momentum compo-
nents, we expect a variation in the ratio of the
area under the shake-up peaks to the area of the
threshold peak of roughly 15%. This variation in
the strengths should be no less than 10%, accord-
ing to an analysis®* of the strength depleted from
the threshold peak to the shake-off states.

The present literature contains some evidence
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FIG. 3. Fourier transforms of s-state defect wave
functions for finite nuclei.
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for these effects. A plot of spectroscopic factors
determined from neutron removal at energies be-
tween 15 and 50 MeV *® seems to indicate the re-
moval-speed dependence expected from our con-
siderations above. Unfortunately, uncertainties

in the distorted-wave Born-approximation analysis
for spectroscopic factors make definite conclusions
difficult.

Another way to observe removal-speed-dependent
effects is by actually looking at shifts in partial
centroids. In a low-resolution experiment, the
main peak and some of the shake-up peaks will not
be resolved so that effectively one measures a par-
tial centroid. Possible evidence for such an effect
can be seen in comparing (p, 2p) data on %®Ni for
the removal of an f,,, proton with incident protons
of energy 46 MeV 3¢ and 385 MeV.3* The 46-MeV
experiment yields outgoing protons of 15-20 MeV,
and therefore should be near the adiabatic limit.
The f,,, peak is centered at 8.77-MeV separation
energy. At 385 MeV, the analogous peak starts
at about 7 MeV, but is centered at approximately
12 MeV. It is suggested that at 385 MeV more
strength is in the nearby shake-up peaks leading
to a partial centroid with larger separation energy.

In order to verify the removal-time-dependent
rearrangement effects, we propose that the rela-
tive heights of about three or more peaks with the
same spin and parity be observed. Two classes
of experiments could be performed to observe the
shifts in the relative strengths of the peaks:

(1) A photonuclear, i.e., (y,p) or (y,n), experi-
ment with monoenergetic y rays at a series of
energies (varying from slow to fast removals) to
observe the energy spectrum of the outgoing nu-
cleons, i.e., for energies near the Coulomb bar-
rier of light nuclei to at least 100 MeV. This is
the experiment most analogous to the photoioniza-
tion experiments which were discussed in detail
by MP. However, a drawback might be the small
cross sections.

(2) A (p,d), (p,2p), or (e,e’p) experiment where
the energy of the incident particle is varied and
the energy spectrum of the outgoing particle or
particles observed.

The strong interaction experiments might be eas-
ier, but the analysis is not as clean as in the photo-
nuclear or (e, e’p) reactions.

V. CONCLUSIONS

We have defined a separation energy which de-
pends on the removal time and have related it to
observed binding energies for nucleon removal
from the nucleus. Two limits, when the removal
time is either very short, -0, or very long,

T -, have been considered.

In these two limits, it is possible to demonstrate
the relationship of the observed spectra to various
choices for the nuclear single-particle potential:
(1) For the choice in which no rearrangement
graphs are included [see Eq. (9)], the eigenvalues
are equal to a one-sided centroid of energies in the
residual nucleus [see Eq.(10)]. This eigenvalue
can be observed only by performing a complete
spectral measurement in the sudden limit, 7-0.
(2) The choice which includes partial occupation
probabilities [diagrams of the type shown in
Fig. 1(a)] has eigenvalues which are given by a
two-sided centroid [see Eq. (11)]. Again, it can
only be observed in the sudden limit and requires
complete spectrum measurements for botk remov-
al and capture (pickup and stripping) experiments.
(3) The Brueckner-Goldman choice which adds all
the rearrangement graphs is shown to have eigen-
values equal to removal thresholds. These can
be observed for any value of the removal time
which is shorter than the lifetime of the hole, as
discussed in Sec. IV. As discussed in a separate
paper,’ we can also show that this choice is op-
timal under certain conditions. Phenomenological
analysis with (local) Nilsson and Woods-Saxon po-
tentials seem to lie very close to this choice.

In conclusion, we can state that although the real
eigenvalues of choices No. 1 and No. 2 are simpler
to calculate, the experimental determination of
centroids is very difficult. Whereas choice No. 3
requires more elaborate and complex calculations,
but is directly related to easily measured data.

In any case, it is possible to observe removal-
time-dependent effects in nucleon-removal exper-
iments. These effects would be displayed by an
energy dependence of spectroscopic factors and
indeed hints of such dependence have been observed.
It is also possible to resolve these effects by inves-
tigating the shift of partial centroids in low-resolu-
tion experiments. We have cited evidence for such
a shift from two (p, 2p) experiments done with high
and low incident proton energy.

But at this point evidence is certainly insufficient.
We therefore propose experiments to observe the
heights of two or more shake-up peaks relative to
the threshold peak as the removal speed varies
from the adiabatic to the sudden limit. By employ-
ing our present knowledge of the relative two-nu-
cleon wave function, we have estimated the high-
momentum components present in the nucleus.
Thus, we are able to make predictions about the
energy required to reach the sudden limit and how
large a shift in the relative heights of the peaks
is to be expected. On the other hand, analysis of
such experiments would yield information about
the correlations and high-momentum components
present in the nucleus.
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