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We consider the effect on the binding energies of A4He-4&H of inclusion of admixing the Z

particle, based on a A-N potential derived from A~He. This mixing explains the discrepancy
in Coulomb energy of AHe-AH and leads to a consistent set of potential parameters.

I. INTRODUCTION

It has long been recognized that in theoretical
treatments of the hypernuclear problem the cou-
pling between the A and Z hyperons will have sig-
nificant effects. ' ' Many authors have speculated
on the consequences of this coupling, ' " in partic-
ular on what role the virtual coupling term might
play in explaining a number of puzzling difficulties
in our understanding of the AHe isosinglet and the
~H-A'He isodoublet systems. "" We wish to pre-
sent here certain quantitative estimates of the A-Z
coupling effects and to show that these effects are,
in fact, of the size and sign required to resolve
several discrepancies in our models of these
nuclei.

The experimental A-separation energy of ~He is
3.08 MeV, and those of A4H and A4He are 2.31 and
2.02 MeV, respectively. ' A number of theoretical
attempts have been made to determine these ener-
gies in terms of basic A-N potentials. """ The
conclusions resulting from these calculations may
be summarized as follows:

(1) It is possible to determine a reasonable A N-
potential well depth and range that will produce
the correct A-separation energy in AHe. It is
found that the presence of the A tends to compress
the 'He core only slightly. "'" This potential, how-
ever, is then insufficient to bind the A in the AH-

~He hypernuclei. It proves necessary to increase
the A-N well depth appreciably to achieve the em-
pirical binding energies of these two hypernuclear
systems. Since the potentials for the isosinglet
and isodoublet cases represent different combina-
tions of the A-N triplet and singlet interactions,
one is lead to infer a strong spin dependence for
the A-N potential. This spin dependence is much
stronger than that required to understand the free
A-N scattering data.

(2) The difference in the A-separation energies
(ABA) of the gH-)He isodoublet, which has general-
ly been assumed to be purely a Coulomb effect, is
not explainable as such. As in the case of AHe,
the presence of the A tends to compress the nu-

clear core. Unfortunately, the corresponding 'He
core compression produces a shift in the Coulomb
energy that is of the wrong sign and generally too
small to account for the observed difference in the
A-separation energies. This has led several au-
thors to propose a charge-symmetry breaking
term jn the A-N interaction. '

Bodmer first recognized that the effects of the
A-Z coupling had been neglected in these calcula-
tions, and that this coupling would tend to alleviate
the theoretical difficulties. ' For reasons dis-
cussed in Sec. II, the A-Z coupling term, which
is present in the AH-AHe doublet, is greatly sup-
pressed in the AHe singlet leading to a correspond-
ing reduction in the A-separation energy. Further-
more, the admixture of the Z(T = 1) state into the

&H wave function gives a contribution of the cor-
rect sign to account for the AB& energy difference.

In this paper we wish to show quantitatively that
these speculations tend to be confirmed. Further-
more, we show that the ~H-~He energy difference
arises not only from the admixture of the charged
Z hyperons, but equally from the mass splitting
in the Z isotriplet state. In Sec. II we outline the
methods used in the calculation. In Sec. III we pre-
sent numerical results. Finally, in Sec. IV we use
results from previous calculations to generate a
spin-flip excited state in the ~He system, in agree-
ment with that recently observed.

II. THEORETICAL ANALYSIS

Although a number of quite elaborate models for
the ~He and AH-&He doublet have been developed
and explored, for our purposes a simple extension
of the original Dalitz-Downs model" is quite suffi-
cient. In this model the AHe hypernucleus is as-
sumed to consist of a A interacting with an inert
4He core. The potential acting between the A and
the core is then the basic A-N potential integrated
over the He mass density. The rationale behind
this model lies in the fact that while the A-N poten-
tial is not very strong [i.e. , not strong enough to
form a bound (A-N) system], the 'He core is quite
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compact and tightly bound. Such a model can also
be used to describe the „'H-~He doublet. Here the
justification is not as strong, since the 'H or SHe

cores are more diffuse than 'He. Nevertheless,
the model can be expected to give relatively rea-
sonable results and has done so in the past when
the Z coupling was omitted.

Within our model the ~~He wave function is simply
l )He) =4„(r)x l'He), where l'He) represents the
free 'He eigenstate and 4~(r} describes the rela-
tive motion of the A with respect to the 4He center
of mass. Dalitz and Downs" were slightly more
general in that they allowed for a radial compres-
sion in the l'He& function. The resulting compres-
sion was small (-5%%uo) and for our purposes can be
neglected. The

l
~5He) state described necessarily

has isospin T =0. And since the lowest-energy
state of the system is presumed to have l =0 in
4~(r), the spin and parity is Z' =-,' .

In a similar fashion, the model wave function for
the „'He (or „'H) system is

l ~He& =4„(r)x l'He),

where we have T = —„J'= —,
' . [Note that 4~(r) does

not represent the same wave function in l „'He) and
I~He& 1

If we then write 4 „(r)= [P„(r}/~4']}t, where y
is a spin--,' spinor, the equation satisfied by P~(r)
for each of the hypernuclear systems is

d r, P&(r) + V&(r)P„(r) =EP„(r),
2p, dr'

where p, is the reduced mass appropriate to the
problem in question": p =(4m, mz/4m~+m~) for
~He and p =(3m~m&/3m~+m~) for ~He, with m~
and m~ representing the N and A masses respec-
tively Here .V„(r) is the potential describing the
interaction between the A and the core nucleus and
is given by

V„(r) = Jt d'r'p(r') Vz„(r —r'),

where V~„(r —r') is the basic A Npotential and-
p(r') is the mass density of the core nucleus nor-
malized according to f d'rp(r) =A (A = 3 for ~~He

and A =4 for ~He}.
Any admixture of the Z isotriplet state into the

wave functions will be small, because this repre-
sents a virtual excitation of at least 80 MeV (the
A-Z mass difference). By virtue of the Z's iso-
spin this admixture enters into the ~He and „'H-~He
hypersystems in qualitatively different ways. In
the case of the ~H-~He doublet, the core state ('H
or 'He} has isospin T = —', as does the hypernucleus
Thus the (T =1) Z can couple directly with the un-
excited core maintaining the T =-,' hypernuclear
state. In the case of ~5He, however, the core 'He

has in its ground state T =0 as does the hypernu-
cleus. Hence, the (T =1}Z can couple only to T =1
excited states of the core, 'He. Since the thresh-
old for excitation of the T =1 4He states is at least
20 MeV above the ground state, the effective A-Z
mass difference is increased and the admixture of
the Z is presumably decreased. For this reason
it had been thought that the Z coupling could be ne-
glected entirely in the 'He system but could play
an important role in the ~H-~He systems. While
this conclusion appears to be correct, the above
reasoning is incomplete. One must note that the
observed T =1 resonant states in He all have odd
parity. Hence, to preserve the quantum numbers
of the primary component of ~5He (T =0, J' =0')
the relative Z-'He state must have odd I (I=1,
3, . . . ). Such a Z wave function is strongly exclud-
ed from the region of the origin by the centrifugal
barrier. On the other hand the large excitation en-
ergy concentrates the Z within a very small region
about the origin. The net effect of these competing
mechanisms is to reduce the Z probability consid-
erably. It is this combination of odd l and large
excitation energy, rather than just the high 'He
excitation threshold, that provides the physical
basis for the Z suppression in ~He.

For the reasons discussed above it appears valid
to use the Dalitz-Downs model" to describe ~He,
where the relative A- He motion is assumed to be
in an s state and the radial dependence of the or-
bital is governed by Eq. (1).

The ~H-~He states, on the other hand, do permit
mixing of the Z component without exciting the
core nucleus. One may write the states as

l gH& =e„(r)l'H) +~4 zo(r) l'H) —~34 z-(r) l'He),

(2)
l ~He& = 4 ~(r) l

'He) -~&@zo(r) l
'He) +~4 z+ (r) l

'H)

The function 4zo z~ includes the radial dependence
of the relative Z core orbital and the spin-isospin
properties of the Z hyperons. The wave functions
are subject to the normalization condition

We again assume isotropy (i.e. , only relative I =0)
in the spatial coordinate r, the hyperon-nucleus
relative coordinate,

A ~4 XA y

where X~ describes the A-nucleus spin properties.
Similarly we can write

(t)'z«z+- )@z(z) I~ Xz(z )y

where, in this case, X~o(~~) includes also the Z iso-
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spin projection. If we further assume that the Z-N
potentials are charge-independent, so that

4,H(r} = P, (r),
then one obtains the following equations describing
the P~ and Pz functions [for („He-~H)]:

d
d, 4~(r) + VH(r)4„(r)+ V~z(r)(j)z(r) =EA~(r),

Pn dh

5 d
(8)„,yz(r) +Amzyz(r)

2p. g A
+ V»(r)y, (r)+ Vz(r)y, (r) =Ey,(r).

In these equations hm~ represents the excitation
energy of the virtual Z state; i.e. , the A-Z mass
difference, and V~(r) is again the A-nucleus poten-
tial given above. The Vz(r) is the Z-nucleus poten-
tial defined by

Vz(r) = tdH«'p(r')Vz„(r —r'),

is seen that if we assume the simplified Dalitz-
Downs" model without core distortion [Eq. (1)]
then Ec('He) =Ec('He) and Ec(~HH) =0, so that ABc
=0. All previous modifications which allow for
core distortion result in AB~& 0. If, however, we
use the Z admixed state given by Eq. (2), we obtain

ABc = —
H PzEe( He) +

H
e

d'rd r' Pz'(r)

x [Pc('He «')+P, ('H, «')]

Here Pz is the probability of the admixed Z,

3(@zHI c zH& + H&c z~ I @z~) =
Jl «'tl z'(«) .

pc('He, r) and pe('H, r') are the charge densities
of 'He and 'H, respectively, normalized accord-
ing to f d r pe(r} = Z.

where Vz„(r —r') is the Z Ninterac-tion. The
term V~z(r) represents the A-Z coupling:

V~z(r) =
Jl d 'r' p(r') V~z„(r —r'),

where VHz„(r -r') represents the A-Z transition
coupling at r in the presence of a nucleon at r'.
In the next section we shall present results for
the A-separation energy E for various depths and
ranges of the hyperon-nucleon interactions V»,
VgN, and Vp~g.

We also have estimated the b,~z energy splitting
of the ~4H-~4He isodoublet. The Coulomb energy dif-
ference between ~~He and ~H is

B =E ('He) -E („'H),

with E~ the Coulomb energy of the appropriate
hypernucleus. The splitting in the A-separation
energies, measured to be approximately 0.29 MeV,
is then

ABc =Bc —Ec( He),

where Ec('He) is the Coulomb energy of 'He, 0.764
MeV. These Coulomb energies are given by

4

E ( He)=e He „Q(
(

He),r,. -rfj~f

where e, is the charge of the ith baryon (e, =+1 for
p and Z', e, =0 for n, A, ZH, and e, =-1 for Z ). It

III. NUMERICAL RESULTS

Many forms have been proposed for the basic
A-N potential. Since one is attempting to compute
only the binding energy of weakly bound systems,
it should suffice to take a simple potential with
variable depth (and perhaps range). We have chos-
en to assume a Gaussian form for the potential:

V~„(r —r') = —V, exp[-(r —r')'/g, ']
+ V, exp[-(r —r')'/hH'].

For the reasons stated in Ref. 13 it proves conven-
ient to include the possibility of a soft repulsive
core, represented by the second term. We make
two choices for the parameters b, and b, . If we
omit the repulsive term, we take b, to correspond
to the exchange of two pions between the hyperon
and the nucleon. ' V, =0, b, =1.05 fm. When we in-
clude the repulsive term, we assume: V, =145
MeV, b, =0.82 fm, b, =1.21 fm. In both cases
is chosen to produce the correct ~He A-separation
energy.

We also require the mass density of HHe, p( He, r).
For simplicity we choose this to be of Gaussian
form also

p(He r)=
gH He
4

0

where a is chosen so that the calculated rms mass
radius agrees with the rms point proton charge
radius, a' =-',(r,„'—r~') with r,„ the 'He charge
radius (1.71 fm) and r~ the proton radius (0.8 fm).

Using these functional forms and the parameters
indicated, we solved Eq. (1) numerically, varying
the depth V, so as to reproduce the experimental
A-separation energy for ~He, 3.08 MeV. The re-
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suiting parameter values were

38 2 MeV,

Vx =82.7 MeV,

for V, =o,

for V, =145 MeV.

These parameter values were then used for the
A-N potential throughout the computations de-
scribed below.

For the A4H-A4He case, we again chose the mass
density to be Gaussian

No core
Ug W) Eg

(Me V) (Me V) (Me V)

Soft core
Ug Wg E~

(Me V) (Me V) (Me V)

36.0 -10.0 1.78
1.0 2.02

10 2.27

82.7 20.0
30.0
40.0

1.89
2.03
2.20

TABLE II. Value of E&, the 4&H separation energy as
a function of W& for various values of U&.

p('H, r) =p('He, r) =+„+e "" 25.0 40.0 1.68
48.0 2.00
60.0 2.73

40.0 90.0
96.0

100.0

1.73
2.02
2.28

One notes that the charge radii of 'H and 'He are
not equal:

H: r,&=1.70 fm, 3He: r,&=1.84 fm.

TABLE I. Values of U& and W& which reproduce the
A-separation energy in 4&H, 2.02 MeV. P& is the amount
of Z admixture. ABc is the Coulomb energy difference
with Qm& =78 MeV. AB is the "Coulomb energy differ-
ence" due to mass splittings of the Z ' . VB is the total
Coulomb energy difference. The second part has a soft-
core repulsive potential.

No core: V& = 38.2 Me V, V2 =U2 = W2 =0, b
&

——1.05 MeV
Ug Wg ABc P g EB 6B

(Me V) (Me V) (Me V) (Me V) (Me V) (Me V)

38.2
36.0
30.0
25.0
20.0
15.0

-11.0 0.04
-1.0 0.05
29.0 0.07
48.0 0.10
64.0 0.15
77.0 0.25

0.04
0.04
0.07
0.09
0.14
0.24

0.04
0.06
0.08
0.11
0.15
0.23

0.08
0.11
0.15
0.21
0.30
0.48

Soft core: V, =82.7 MeV, V, =U, =W, =145 MeV, b,
=1.21 fm, b2 =0.82 fm

Ut Wi +Bc Pz AB b B
(MeV) (MeV) (Me V) (Me V) (MeV) (MeV)

Thus the charge radius contains both isoscalar and
isovector components. The mass radius, on the
other hand, is an isotopic scalar. We, therefore,
set the mass radius equal to the isoscalar part of
r,„(after proton size effects have been removed);
l.e. y

a' = -', (-',[r,„'('He) —r~'] + —,
' [r,„'('H) —r~'] )

If we now use the potential depths V, given above
to solve for the A-separation energies of the &~H-

AHe hypernuclei by means of Eq. (1), we find that
neither potential set yields a bound state. It is
necessary to increase the well depth to V, = 53 MeV
(for V, =0) and V, =93 MeV (for V, =145 MeV) to
obtain bound states with eigenvalue 2 MeV.

TABLE III. Values of E&, the 4&H separation energy
as a function of U& for various values of W&.

No core
U& W& Ez

(MeV) (Me V) (MeV)

Soft core
Ug Wg E~

(MeV) (MeV) (MeV)

20.0
25.0
30.0

48.0 1.27
2.00
2.93

75.0
82.7
90

30.0 1.36
2.03
2.94

In the Z coupled model given by Eq. (3}we must
choose potential parameters for the A-Z coupling
and the Z-N potentials. Again we assume the
Gaussian forms,

V~z„(r —r') = -U, exp[-(r —r')'/b, ']
+ U, exp[-(r —r')'/b, '],

Vz„(r —r') = -W, exp[-(r —r')/b, ']
+W, exp[-(r —r')'/b, '] .

As with V» we investigate the case with no core
(U, =W, =0} and the case with a soft core (U, =W,
=145 MeV) keeping the corresponding values for
the ranges b, and b, .

Finally we choose the A-Z mass difference to be
the mean of the charged Z mass differences, Am~
=78 MeV.

The coupled equations, Eq. (3), were then solved
numerically for various values of the parameters
U, and W, . The results are shown in Tables I-III.
In Table I we indicate the sets of parameters U,
and Wy which reproduce the A-separation energy
for zH, 2.02 MeV. The fraction Pz of the Z ad-
mixed into the A-Z state and the Coulomb energy
differences AB~ is also given for each set of pa-
rameters. Without the coupling term Eq. (3) pro-
duces no bound state at all, as we have noted pre-
viously. Yet with a coupling which gives only a
small (4%) Z admixture one can reproduce the de-

82.7 30.0 0.005 0.01 0.04
40.0 96.0 0.15 0.14 0.08

100.0 -126.0 0.003 0.005 0.02

0.05
0.23
0.02

30.0
36.0
40.0

1.0 1.36
2.02
2.57
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sired 2.02-MeV separation energy. It is clear that
even moderate A-Z coupling is significant in the
~H-AHe system. Table II indicates the sensitivity
of the separation energy EA to the Z-N potential
for several choices of U,. Table III indicates the
sensitivity of the separation energy E„to the A-Z
coupling potential for several values of W,. As
might be expected, the results are much more
sensitive to the A-Z coupling term U, than to the
Z-N potential W, because the effect of the latter
is, essentially, inhibited by the large mass differ-
ence.

We return now to the point mentioned in the pre-
vious section concerning the effect on the A-Z cou-
pling in „'He of the large threshold (20 MeV) for ex-
citation of 'He. If we now solve Eq. (3) for the ~He
A-separation energy using Am =100 MeV, rather
than 78 MeV, we find that nonzero U, and W, pro-
duce not negligible, but rather quite large contri-
butions to the A-separation energy. For V', =38.2
MeV and Uy W'y =0 this energy is 3.08 MeV. Choos-
ing from Table I the values U, =25 MeV and 8',
=48 MeV, we then obtain E~ =10.5 MeV. One must
realize that the addition of an extra nucleon plus
the compactness of the 4He core both serve to in-
crease the effective A-core potential; in AHe it is
almost twice as large as it is in ~He. Hence, the
suppression of the A-Z coupling in AHe, if indeed
this coupling is suppressed (as we have assumed),
must arise from the nature of the 4He state rather
than simply its large excitation energy. That is,
the absence of low-lying observed excited states
in 4He capable of coupling with the Z means such
states are at sufficiently high excitation that these
wave functions are sufficiently diffuse or compli-
cated as to reduce the coupling. This is the as-
sumption that one is really making in neglecting
the Z in~He.

The Coulomb energies in Table I have the sign
required to account for the experimental differ-
ence in E~ between AH and AHe. But in general
the values of AB~ are somewhat too small to ac-
count for the quoted difference of 0.29 MeV. How-
ever, this value is experimentally uncertain, and
there appears to be sufficient freedom in the
choice of potential well depths U, and 8', to give
the desired value. Whether such depths are rea-
sonable is another matter. In any case, there is
a second effect, hitherto neglected, which contrib-
utes in the correct manner to this energy differ-
ence, namely the mass splitting within the Z iso-
triplet state.

The mass differences of the Z triplet are

4mz+ =73.8 MeV, Amzo =76.9 MeV,

~m, =81.7 Mev.

~Bz =4Bc+~B~.

In view of the experimental uncertainties in the
measured ABA, the agreement in most cases is
quite acceptable.

IV. EXCITED STATES AND

HYPERNUCLEAR SPINS

There is some evidence "that the angular mo-
mentum of the ground state of (AHe-A~H) is J =0.
We cannot judge the reliability of that conclusion.
If one were to give up that "fact" then something
of a simplification results in our understanding of
the ground and excited state of this system. " In
any case, as one can infer the spin dependence of
the A-N interaction from the spin of the ground and
excited state, we wish to indicate the delicacy of

TABLE IV. Values of the spin-flip excited state
E(J=O) and AE, the difference in energy between the
ground and excited state under the assumptions of
Sec. IV.

No core: U&=~5U&

Ug

(Mev)
Wg

(MeV)
U, E(q =0)

(Me V) (MeV) (MeV)

38.2
36.0
30.0
25.0
20.0
15,0

-11.0
-1 0
29.0
48.0
64.0
77,0

30.6
28.8
24.0
20.0
16.0
12.0

1.24
1.22
1.27
1.27
1.31
1.43

0.78
0.80
0.75
0.75
0.71
0.59

The ~He hypernucleus contains components of the
Z and Z', while the AH hypernucleus contains the
Z and Z . Hence the mass difference parameters
used in Eq. (3) are different for the two compo-
nents of the isodoublet. It is shown in the Appen-

dix that the mass difference appropriate to each
case is given by

2 1
AHe: &m z = g&m z++ 3&m zo

=74.8 MeV,
=2 1

qH: 4mz = &4mz-+ 3bmzo

=80.1 MeV.

Use of these mass differences in Eq. (3) will, of
course, lead to different eigenvalues, which we
label as E(AHe) and E(AH). The quantity hB in
Table I is then the energy difference, 4B =E(AHe)
—E(~H). Note that hB has the same sign as ABo
and therefore contributes constructively to the en-
ergy splitting between the components of the iso-
doublet. It is also comparable in magnitude to
4Bc in most cases. The sum of the two terms is
listed in Table I under the column ABA, where
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that conclusion relative to inclusion of the Z admix-
ture.

The potential depths determined in Sec. III are,
of course, combinations of spin singlet and triplet
A-N and Z-N interactions. %e have assumed that
the singlet and triplet potentials are central and
have the same form and ranges, differing only in
their depths. The relation of the effective depths

V1 U1 and W, to the singlet and triplet depths
V', ', V', ', V', ', etc. , depends on the spin J of the
hypernucleus. %e note that

V 2 V(T) + & V(S)

U 2U(T) + 1U(S)

W = 2 W(T) + 1 W(S)
3 1 3

V 5 V(T) + 1 V(S)
1 6 1

J 1 U 5 U(T) + 1 U(S)
1 6 1 6 1

W =-,' W"'+-,'W"'.
1 6 1 6 1

From the summary given by Alexander, equal-
ity of the A-N triplet and singlet scattering lengths
appears to be consistent with the experimental data,
although the errors are quite large. Neglecting
coupling to the Z channel we assume that V1 V1 '.
Further, analysis of the Z +P- A+n reaction near
threshold" indicates that the process goes predom-
inantly through the triplet state, and hence it is
consistent with an assumption of U', ' =0. This,
of course, produces an effective spin-dependent
interaction.

It is clear that the above model, combined with
these (perhaps rather drastic) assumptions about
the hyperon-nucleon potentials, requires the
ground-state spin of ~He or „H to be J =1. One
can understand this from Eq. (5): U',~'=0 implies
that for the J=1 state U, is stronger than for the
J=0 state. This unfortunately, disagrees with
other analyses of the ~H-„'He spin, in particular
the angular distributions in the hypernuclear de-
cay which conclude that the ground-state spin is
J=0."~ (We cannot resolve this disagreement. )
If, however, we assume that the ground state does
have J=1, and we use Eq. (5) to generate an effec-
tive AZN potential coupling term U, for the J=0
state, then we obtain from Eq. (3) the eigenvalues
given in Table IV. Here, AE is the excitation en-
ergy of the J=O excited state relative to the J=1
ground state at E =2.02 MeV. An excited state in
~He has, in fact, been reported with an excitation
energy of approximately 1 MeV." On the basis of
this model, the state would represent a spin-flip
excitation, decaying to the ground state via an M1
transition. Of course it is neither likely that the
ground state is J= 1 etc. , nor that the potentials

are as simple as we have assumed from the im-
perfect scattering data. Furthermore, it is al-
ways dangerous to infer that the phenomenological
potentials for bound-state calculations have a sim-
ple relationship with the free potentials due to spin-
and isospin-dependent polarization corrections.

V. CONCLUSIONS

The calculations reported above are not suffi-
ciently realistic to even attempt to represent the
final word on this subject. Rather they are intend-
ed as a (primarily qualitative) guide. However,
within the rather broad experimental uncertainties
prevalent in hypernuclear work (both in scattering
data and bound-state energies} they are consistent
with most of the data, and at the least indicate the
importance of a hitherto neglected mechanism rele-
vant to these hypernuclei.

Our conclusions may be summarized as follows:
(1) The A-Z coupling produces a significant ef-

fect in the binding energies of AH and A4He. If one
assumes that this coupling is suppressed AHe, then
it is possible to obtain the A-separation energies
for both systems with reasonable potentials. This
suppression, however, arises not from the large
excitation energy of 'He, but rather from the odd
parity of the T =1 resonant He states and the ab-
sence of low-lying even-parity T =1 states in He.
It is clear that one must eventually consider virtual
excitations of the 'He core (in addition to the virtu-
al excitation of the A} as well as possible resonant
states in 'H and 'He. One such state to be consid-
ered is the 0' state in 4He at 20.2-MeV excitation.

(2} The A-separation energy difference in the
AH-„He doublet results from the virtual admix-
ture of the Z state. The splitting is due in part to
Coulomb effects (due to the T =1 isospin of the Z
and its resulting charge density} and in part to the
mass splitting within the Z triplet.

(3) Within a number of extreme assumptions
about the A-N potential spin dependence, the
ground-state spin of AHe can be inferred to be
J=1, in contradiction with the previously assigned
value of J=0. An excited state at approximately
0.7-MeV excitation is then predicted theoretically
to represent the J=0 state. As we have indicated
in Sec. IV, we do not have any evidence that this
is correct but perhaps a more modern look at the
evidence would not be inappropriate.

If one accepts the basic implication of this work,
that the Z admixture can qualitatively account for
all the previous difficulties in explaining ~He and
(A'He-AH), one is still left with the possibility that
an intrinsic spin dependence in the force may still
be important. Moreover, if the Z is really ad-
mixed as we have described, then its omission in
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calculations of related phenomena may lead to mis-
leading conclusions. A case that comes immediate-
ly to mind is in A scattering from He recently
studied by Gibson and Weiss" and Londergan and
Dalitz. " For the P-wave phase shifts, the argu-
ments previously applied to Z suppression in AHe

no longer hold and conclusions drawn there about
the A-N force would have to be reconsidered. A
calculation of this effect is in progress.
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APPENDIX

The effective A-Z mass differences in A~H and
A4He can be determined by considering Eq. (2) of
the text where we have written the wave functions
for the two hypernuclear states:

I AHe& =@A I'He& —~Bc zo I'He) +~c z. l'H),

I gH& =C AI'H&+~3C'zol'H& —~sc'z- I'He&.

We define a mass splitting operator b3f, such that

~Me, =0,

EM4 zo, ~ = bm zo,~bozo, ~,

where amzo, ~ are the Z-A mass differences for
each member of the Z triplet,

4mz+ =73.8 MeV,

Amz- =81.7 MeV.

Amzo =76.9 MeV,

As is well known, Eq. (2) of the text is obtained
from a variational principle, minimizing the ex-
pectation value of the Hamiltonian with respect to
variations in 4 A and 4z subject to the normaliza-
tion constraint. The Hamiltonian contains a term
hM, which contributes to the expectation value

gHe: l&@zol~l@zo)+l&@z l~l@z &

= 3&ma&4'zo I 4'zo) +-', nm+(@z+ l@z+& ~

AH: g(4zolnMI4zo&+ 3&hz- I bMI4z-&

3nmo&c zo I + zo& + s™&@z- I + z-& .

Since 4zo, ~ are written as [Qz(r)/v 4'] multiplied
by normalized spin and isospin factors, we have

, Cz(r)
&+zol+zo&=&cz I+z )=&c -I+.-)=

4m

Thus the variational principle applied to &He di-
rectly leads to Eq. (2) with the mass parameters
discussed at the end of Sec. III.
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Total cross sections for collisions between high-energy neutrons and nuclei are calculated

by means of the Glauber approximation. Both Woods-Saxon and Gaussian density distributions
are assumed for the nuclei. The two distributions yield results which may differ from each
other by as much as 15%. For light nuclei harmonic-oscillator wave functions are used. The
calculations are compared with measurements for neutron energies above 1 GeV. A simple
explanation is given to show why the dependence of the cross sections on the mass number A

is greater than A ~ . Although the multiple scattering series for a mass-A nucleus contains
A terms, it is shown that excellent accuracy is obtained by retaining only approximately 3A
terms and a geometrical argument leading to this result is given. The ratios of the real to
imaginary parts of the hadron-nuclei forward elastic scattering amplitudes are calculated and

the decrease of their magnitudes with increasing mass number is explained. The neutron-nu-
clei data are consistent with little or no regeneration.

I. INTRODUCTION

Some years ago it was predicted"' that double
collisions (i.e. , collisions with two target nu-
cleons) are more probable than single collisions
in high-energy hadron-deuteron scattering at an-
gles away from the forward direction. Since that
time a considerable number of experi. mental
studies of hadron-deuteron scattering have been
made, and analyses of the measurements have
confirmed this prediction. ' " Recently a number
of analyses of high-energy hadron-nucleus colli-
sions have been based upon the diffraction approxi-
mation due to Glauber. " This approximation is
most accurate for collisions involving small mo-
mentum transfers. Consequently it is not unrea-
sonable to expect that high-energy hadron-nucleus
total cross sections, which depend only upon the
forward elastic scattering amplitudes via the opti-
cal theorem, could be calculated quite reliably for
a given nuclear model. Such calculations have
been carried out for a simple model in which nu-
clei are described by Gaussian density distribu-
tions. " Such a model, although quite unrealistic,
is very useful because it leads to an analytic ex-
pression for the total cross sections which exhibits
some qualitative features that are likely to re-
appear in more realistic calculations. "Alterna-
tive approaches for calculating neutron-nucleus

cross sections are possible using, for example,
the optical-model methods of Francis and Watson, "
Bethe, "and of Kerman, McManus and Thaler. "
The accuracy of the optical model is, however,
less satisfactory for calculations of nucleus-nu-
cleus cross sections. The present analysis can
be extended to treat nucleus-nucleus collisions. "

We have performed analyses of total cross sec-
tions in which the explicit multiple scattering
form of the Glauber approximation has been re-
tained. We use both a model in which the nuclei
have Gaussian density distributions and a model
in which the nuclei have Woods-Saxon shapes for
the density distributions. " (We have also per-
formed the calculations for light nuclei using har-
monic-oscillator wave functions. ) The quantita-
tive results obtained with the Gaussian and Woods-
Saxon models differ by as much as 15%%uo. This
seemingly small difference is significant, since
recent measurements have uncertainties which
are much smaller than 15%%up. Nevertheless, over
the current physical range of nuclei (A s 240) the
quantitative results are not grossly sensitive to
the nuclear model. Consequently our predictions
could serve as a rather severe test of the basic
theory. Alternatively, if we have confidence in
the theory, our predictions could serve as a test
of the reliability of total cross-section measure-
ments. To the degree that the theory is sensitive


