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A unified analysis of semileptonic weak and electromagnetic interactions in nuclei is applied
to the A =12 system. The particle-hole model is used to describe the nuclear dynamics of
B, C, and N . Neutrino reaction cross sections are presented for comparison with future
experiments.

I ~ INTRODUCTION

A unified discussion of semileptonic weak inter-
actions in nuclei: neutrino reactions, charged-
lepton capture, and P decay, has recently been
presented' in close analogy to the theory of elec-
tron scattering. ' The topic of semileptonic weak in-
teractions in nuclei is of interest for two reasons.
First, most of the fundamental tests of our ideas
on weak interactions have involved nuclei, and if
nuclei are to serve as laboratories with which to
conduct experiments on weak interactions, it is
essential that the nuclear physics of these pro-
cesses be well understood. Second, once the
fundamental nature of the weak interactions is
understood it can be used as a known probe for
testing our theoretical ideas on nuclear structure
and for exciting new and unusual states in nuclei.
The electromagnetic interaction in electron scat-
tering also plays such a role and because of the

close analogy between the processes, it is impor-
tant to discuss semileptonic weak processes and
electron scattering together. In fact, the con-
served-vector-current (CVC) theory states that
half the matrix elements in the weak processes,
those coming from the vector current are identical
to those measured in electron scattering. In addi-
tion, electron scattering data at all q provide a
test of the nuclear wave functions, allowing us to
have some confidence in predictions for new pro-
cesses, and serving in many cases to eliminate
nuclear physics uncertainties in examining the
basic structure of the weak interaction itself. The
weak interactions are, in principle, a richer
source of information on nuclear structure be-
cause of the interaction of the leptons with the
axial-vector current, as well as the vector cur-
rent in the target.

Donnelly et al.' and Donnelly have recently pre-
sented a detailed comparison of the predictions of
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the particle-hole model for the T = 1 states in C"
with experimental large-angle inelastic electron
scattering results. Donnelly computed the parti-
cle-hole interaction from a nonsingular Serber-
Yukawa two-nucleon potential fit to low-energy
nucleon-nucleon scattering and took the unper-
turbed particle-hole configuration energies from
neighboring nuclei. Harmonic-oscillator single-
particle wave functions were used with an oscilla-
tor parameter determined from elastic electron
scattering. This particle-hole model is extreme-
ly successful in predicting the location of the
states, generally to better than 1 MeV and in pre-
dicting the inelastic form factors out to momen-
tum transfers as large as Iql = 700 MeV. The
calculated amplitudes in this simple model, how-

ever, are too large by a factor of the order of
v 2 for the negative-parity oscillations and about
2 for the positive-parity doublet. In this paper we
use the particle-hole configuration-mixed wave

k

X
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functions of Donnelly to compute the semileptonic
weak processes in C". The computed matrix ele-
ments are then normalized by the factors found

in the comparison to the measured electron scat-
tering form factors of these states. We present
some theoretical arguments for this procedure.

There is one discrete transition for which all
the weak (except neutrino} and electromagnetic
processes have been measured and that is the
0+ ~ 1+ transition jn the B -C -N multiplet and

we discuss this case in some detail.
There has been a great deal of theoretical work

done on weak interactions in C". An extensive
review of this work is contained in Ref. 1, and we
shall not attempt to repeat all the references here.
We would just point out that no one has carried
out a single, unified calculation of all the semilep-
tonic processes involving a single nucleus and
fully brought detailed inelastic electron scatter-
ing data to bear on the weak processes. In addi-
tion, neutrino excitation of the high-spin particle-
hole states, which actually dominates the neutrino
cross section to discrete levels at high energies,
has never been considered.

In Section II the main results of Ref. 1 are re-
viewed. Section III contains a detailed discussion
of the results for C' and Sec. IV is the conclusion.
An appendix relating neutrino cross sections with
those for inelastic electron scattering within the
framework of certain assumptions is also included.

II. FORMALISM

(b)

CHARGED —LEPTON CAPTURE

(l=e OR p. )

The semileptonic weak processes to be consid-
ered here are shown in Fig. 1.' If we denote the
weak Hamiltonian which contains the interaction
between the leptons and the nuclear systems by
H~, then we may use first-order perturbation
theory to obtain the reaction rates between dis-
crete nuclear levels. For P decay from nuclear
state Ii) to state

If) [Fig. 1(a)] we obtain the re-
action rate'

(c)

v v
I I

V

NEUTRINO AND ANTINEUTRINO REACTIONS

(I= e ORg )

'q = k~ — 7/~

FIG. 1. (a)-(c) Semileptonic weak processes. The
four-momentum transfer q& = (q, -i~) is given in terms
of the lepton four-momentum 0& ——(K, ie) and the neutrino
four-momen~ v~ = (v, iv).

d d=(2d) ''d'kd(d', —d)'d f dO„J dQ,

Z 2g 1 P l(fl+ I &I',
pep~on
spins & f

where the kinematics are defined in Fig. 1(a) (k
=

I k) here), Wo is the maximum electron energy
(including rest mass), and F is a normalization
volume. The full differential rate has been inte-
grated over neutrino and electron solid angles 0„
and Q~, respectively, and the summations are
over all magnetic quantum numbers, since no po-
larizations are measured. From this p spectrum
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we can obtain the total decay rate:

coa= dEq

where m, is the electron mass. The second weak
process we consider is muon capture shown in
Fig. 1(b). For the capture rate again using first-
order perturbation theory one obtains'

(u„=(2v) 'v'v' Q 2 1 g l&flavli&I',
lepton &» &y
splns

with coupling constant G given by' GM~'=1.023
y 0.002 x 10-', where M~ = proton mass. The lepton-
ic part of the current is given by

j~& (leptonic) =i[/ y&(1+y5)g„+p„-y~(I+y5)g„],

(6)

where g, g are the relativistic quantum fields de-
scribing the leptons. The Hamiltonian we require
for the semileptonic weak processes in Eqs. (1),
(S}, and (4} is given by

where the kinematic variables are defined in the
figure. Finally the neutrino reactions are shown
in Fig. 1(c). These proceed with differential cross
sections'

In all cases nuclear recoil has been neglected, but
will be included later.

These processes involve matrix elements of the
weak-interaction Hamiltonian H~. To obtain a
form for this operator we can first consider the
interaction of leptons with hadrons as expressed
by the current-current interaction

Xw(x) = (6)

where

g(„ ' =8(„ '(hadronic) + j'„ '(leptonic),
y(+) (g (-)t ig(-)t)

"=(sv)-'v'ue g „g I&flu, li&I2,
lepton

'
N» Nf

spins
(4)

where k= Ikl or expressing this in terms of the
variable q'

„".=-.'(»)-'v'-' g,,„Z 1 &flN. li& I'.

or using the four momentum q„defined in Fig. 1

for the various processes and denoting the lepton-
ic matrix element by l~ e ' ", we require the nu-
clear matrix elements of the Hamiltonian

involving the Fourier transform of the hadronic
current-density matrix elements. The only as-
sumptions we will make at this point are that
there exists a local current-density operator
g~(x} for the target (this could, for example, in-
clude meson-exchange-current contributions) and
that the target is sufficiently well localized in
space that partia1. integrations on the transition
matrix elements (f I j~(x}Ii) —= [J„(x}]«,discard-
ing the vanishingly small contributions at infinity,
may be carried out at will. We also assume that
the initial and final states of the target are char-
acterized by definite angular momentum and par-
ity, J", and neglect target recoil in the transition
matrix elements.

The same procedure as employed in studying
electromagnetic interactions which involve only
the vector current density is then followed; that
is, a multipole analysis is performed on the had-
ronic-current matrix elements yielding the

following expression'

2

1 g l&fla, li&/'=2 2,', Z t, t*, Z2vl&z, lie", +x&7'all@(&l'2J»+1 ~ ~ k=&1 /~1

+ Z4v[t t*l«rll& ll~(&l'+t. t.*l&~gll+ II&(&l'

-»et 3 to &'g II%IIJ(& &'y IIX gll'(& ]

where the appropriate lepton traces are listed in Tables I and II.
If we assume that the excited states in the A(Z, N) nucleus involved in electron scattering are the iso-

baric analogs of states in the A(Z+ 1, Ny 1) nuclei reached in the weak processes considered here, then
the matrix elements differ only in their isospin dependence: 2v, for the electromagnetic isovector operators
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TABLE I. Lepton matrix elements and sign factors in lepton traces.

Process Sg S2 S(S2 s)

p decay(e v~}

p+ decay(e+ v,)
Charged-lepton capture(p v„), (e v )

Neutrino reactions(v, l )

Antineutrino reactions(v&L+)

u (k)y~(1+y, )e {—v)

u (v)y&(1+F5)v {-k)
u (v)y& {1+F5)u(k)

u (k}y),(1+y~) u(v)

v(- v) y„(1+y, )v (-k)

sgn {E—v)

sgn (e —v)

—1

and w, =v(v, pizza)/2 for the weak operators. The matrix elements are related by the identity

)( T+1, Mr =T(g —,'v, (i) 8(i)[ T, Mr-—T)( = ((T+1, Mr =Ty l)g r, (i)e(i)( T, Mr = T)[',
2(T+ 1

(12)

where the sum is over nucleons and 6(i) is any one of the multipole operators in first quantization.
The multipole operators involved above are given in terms of the hadronic current and in terms of the

functions (involving spherical Bessel functions, spherical harmonics, and vector spherical harmonics)'

(Is)

(14)

where s =
( q~. The operators then are

gg~~=—M~~+M~~= dx M~ x Qo x, (15)

g~~=—I.~~+I q~=—i dx —V M~ x ~ g x .
K

A e]r,"„=- T~+ T,„'-=i
J

dx —VxM,",(x) ~ g(x),
K

&zg =-T~ss +T~P' = dx M~~(x} g(x),

namely, the Coulomb, longitudinal, transverse electric, and transverse magnetic multipole operators,
each containing a vector part and an axial-vector part (denoted by 5) coming from the respective combina-
tions of the current density

g „(hadronic) =J„+Z„,. (19)

The rates for the weak processes we are interested in here can now be written in terms of nuclear ma-

TABLE II. Lepton traces: a' v2 Q& . . Here v = v/(v(, q=q/(q], k=eP and p=[P (.

Summand

p~(1 ~ 1* —l 3 L3)

L3L3

General result

(v I)(P '@
A1+v.P

1 —v P+2(vvA q)(P q)

Threshold
P 0

ERL
P 1

2

cos'(~&0) +2sin ($8)

2cos (P())

Q)
2

~ 2cos2(~ 9)q2 2

g——(lx1 )32

A

(v+ P)

-S&q. (v -P)

S2

S)S2

+ —~ 2cos2 (~8)
I ql

2
2 '

((8) -', '((N+ '
'($8)) S,S,

q
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trix elements of these multipole operators. For P decay we get'

d&u8~ =p O'Pc'(W,' —e)'de
Jl

«z'&z, )(P((( ~ « i))ll&z, ill)((, lllz, &ll' I( — i) ~ o(o &))(0 o)III&z, lllz, lllo &I'

7=0
—e. (v+p)2Re&d II& ll~ &&~ II Ild &*)

(2o)

+$61-(v i)(i P)J(l&&illiti'lid(&l'+ I&dill&i" Ild;&I'&
/=I

+o ( o&-oez&zll ,z"
Illz)( z, IIIz llIlo)*)).

Here k =eP, v = v/I v f, q =q/Iq f, Wa is the maximum e' energy, and E'(Z, e) is a factor which takes into

account the distortion of the electron wave function by the Coulomb field of the daughter nucleus of charge
Z and is given' approximately by

F'(Z, e) =2vii'/(e" —1), (21)

where i)* =+Za/p, p=
I pl, and a is the fine str-ucture constant. The reduced matrix elements are evalu-

ated at momentum transfer x =
I q I.

For muon capture from the ls Bohr atomic orbit (where we may treat the muons nonrelativistically) we

obtain for the decay rate'

I
O„('.„oz', ( (Z l(z, llloz, -z, lllz, & II' E I

&z II ;-zzllo, & II*), (22)

where a phase-space factor (1+v/Mr) ' accounting for nuclear recoil has now been included and
I (t&„l',„ is

the muon atomic wave function averaged over the volume of the nucleus given by

(23)

with m„ the muon mass, M~ the target mass, and R a reduction factor taking into account the finite extent
of the nuclear charge distributions (=0.86 for C'2, see Ref. 1). The neutrino energy v at which the multi-
pole operators are evaluated is determined from energy conservation using the atomic binding energy and
the initial and final nuclear energies.

Finally the neutrino and antineutrino reaction cross sections can be similarly obtained and are given by'

Z((1+v.p&l&~ill3gill~(&l'+I:1-v p+2(v @«p)ll&~ill&ill~(&l'2~)+ ~ s=o

—i (v+p) 2Re&~gll@ll~(&&~ill5gill~g)*)

+ Z 4 Il —(v @(q p &1(l ~ill &i"
II ~(& I'+

I & ~ill &i" If ~(& I'

+0 ( -z)oR«(z, llzllz&&z«llz ,"Ilz&, )), '
(24)

with the reduced matrix elements of the multipole operators being evaluated at momentum transfer x=
I ql.

This formula correctly includes nuclear recoil in the density of final states. In the extreme relativistic
limit (ERL) when p= 1 we obtain

ERL E' 1 1

1
c&&s ( e)i g I& «f)zll'Ki+ & ) Sill of( & I'+

2
-'. +tan'(ze)

2 ~ X/2

x g I:I& z, ll ii'llz, &
I'+ l&J, II r, II z, &l'Jvtan(ke &; +t»'(-', e)

J=l g

xg 2Re&Z, II r, lid, &&a, ll&,"IIj(&*
/=1

(25)
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where y ~ P/p = cose. This result can be directly compared with the corresponding formula for inelastic
electron scattering. (See Refs. 1 and 2 and the Appendix. )

To proceed further, we need a prescription for obtaining the nuclear weak current density. We first ob-
serve that the matrix elements of the current between nucleon states of momenta p and p' may be written

using Lorentz covariance and isospin invariance as

(p I~i Ip& = @p )[Fil'i+F2~ix q~ + ' sq J'r-a(p) (26)

(p'l~&,'lp& = @p')[F~y.y~ —fF»ysqi-Frysoi~ qi ]& &(p-) (27)

|Fj,2-Fj, 2y

F",(0) =1,

F, (0) + 2 M„F, (0) = p (0) = 4.706,

(28)

(29)

(30)

where M„ is the nucleon mass. For the other
coupling constants we use

F„'(0)=F"„(0)= -1.23~0.01, (31)

from studies of neutron p decay and of the ratio
(v- e+ v)/(v- p+ v), and for the pseudoscalar cou-
pling constant we assume pion-pole dominance and
use the Goldberger-Treiman relation to obtain

2M»F~(q q ) (32)

where m, is the pion mass. The coupling con-
stants Fv, (q~'), p"(q„), and F„(q~2) are all as-
sumed to have the momentum dependence of the
nucleon charge form factor, namely [1+q~'/(855
MeV)'] ', whereas F»(q~') has the momentum de-
pendence implied by Eq. (32). See Ref. 1 for a
more complete discussion of the coupling con-
stants including further references. In addition,
if the true hadronic current has the same parity,
charge-conjugation, time-reversal, and isospin-
transformation properties as the V-4 current
made of bare nucleons, then the second-class cur-
rents vanish, that is F~ = F~ =0. We shall assume
CVC and omit the second-class currents in all of
the following formalism.

Having a form for the interaction Hamiltonian
between the lepton current and the current for in-
dividual nucleons we moreover make the assump-
tion that the second-quantized nuclear-current-

where u(p), s(p') are Dirac spinors for the nucleon.
These form factors are all functions of four-mo-
mentum transfer q~'=(p —p')&'. Beyond this gen-
eral current-current theory one can consider a
more restrictive theory obtained by making the
CVC hypothesis, in which case one can identify
the vector coupling constants Fj, with their elec-
tromagnetic counterparts Wj

( Xg
(pX) =~ (34)

where yz is a two-component Pauli spinor. This
is carried out in detail in Ref. 1. We shall only
give the results here. The single-particle multi-
pole operators required in studying these weak or
electromagnetic processes can be given in terms
of the basic nuclear multipole operators we can
form. They include four vector operators (note
we have used current conservation in the second
line),

M~» (x) = F", M~ (x),

I.,„(x)= —-F', M,"(x),

(35)

(36)

T~„(x)= [F,' A~»(x) + -,'p" g~»(x) ], (37)

density operator is given by

& (o)= Z Z q,',,(p'o'p'IS (0)lpop&o-...
p'a'p' pap

(33)
where [pop] are a complete set of momentum,

spin, and isospin quantum numbers for a nucleon,
a and a~ are annihilation and creation operators
in the nuclear Hilbert space, and the matrix ele-
ment is taken to be the single-nucleon expression
given in Eqs. (26) and (2'I). In using this prescrip-
tion we have (i) assumed that the nucleon coordin-
ates provide a complete description of the nuclear
many-body system and so have neglected meson-
exchange currents; and (ii) used matrix elements
evaluated for free particles (on-mass-shell),
whereas we expect some small modifications when

the nucleons are bound in a nucleus.
For most discrete transitions of interest, the

interesting q' region is determined by the nuclear
form factors and the motion of the nucleons in the
target can be treated nonrelativistically. The sin-
gle-nucleon amplitudes in Eqs. (26) and (27) can
then be reduced through order

~ p~ /M» = (v/c)„„„„„,
by writing the Dirac wave functions as
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i T,»I(x) = [F",d,,"(x) ——,'pvZP(x)],JN M 1 J' (38) 1 -~ 1
n,p(x) —= i-—v x M~~ (x) ~ —~,

and four axial-vector operators,

iM~»(x} = [F~O~(x)+ ~(F~ —XM»Fp)Z~ (x)],J'N M 4 J'

(39)

K
iLg»(x) = Fg 3 X M» Fp Zg (x) &

N

(40)

-iT 5(x) = F„Z™(x),

T~~ '(x) = F~Z~ (x) .

(41)

(42)

Here M„ is the nucleon mass, X =m„/M„ for muon

capture, a = &o/M» for the neutrino processes and

X=m, /M„= 0 for all electron processes. The pa-
rameter X'= 0 except in the neutrino processes,
where X' = 1. The multipoles in Eqs. (35)-(37) and

(42) have parity (-)~, whereas the rest have par-
ity (-) ". There are only seven fundamental sin-
gle-particle operators that enter and they are

1/2J
M~~„(x)

J+ 1 1/2
t 1

+ M,"~,(x) —V,2J+1

Z~»(x) -
=M~~(x) ~ g,

Z~™(x)—= i -—V x M~~(x) ~ (y
K

1/2 ~
M~»~„(x}

J+1
+ M~», ,(x) ~ o,2J+1

I

Z~»(x) =- —VM~»(x) ~ o
K

—(;,) M,„,(e
1/2

+
2 1 M~q 1x ~ 0'

(45)

(46)

(4S)

(48)

M,"(x), (43) and

a~»(x) = M~~ (x) —V,
K

(44) Q~»(x) =M~»(x)(7.—v .
K

(49)

Expressions for the single-particle reduced matrix elements of all of these operators have been given
previously, "excepting the last which yields

(2j'+ 1)(2j+ l)(2l'+ 1)(2J+ 1)(n'l'-,'j'I Az nl —,
' j

4m

(50)

where p = Kx. In this expression

&n'l'I i~(p)lnl} = x'dxR.*& (x) f, (»x)R„,(&),
0

Hilbert space:

T~»=Pc„( ™IT~»I p) c8, (52}

(51}

with R„,(x) the normalized radial wave functions.
Analytic expressions for these matrix elements
when the radial wave functions are obtained using
an infinite harmonic-oscillator potential have been
given elsewhere. '

The final connection with nuclear physics is
made by using second-quantized transition multi-
pole operators in the nuclear many-particle

where T~„ is any one of the first-quantized opera-
tors given in Eqs. (35)-(42). The matrix elements
and creation and annihilation operators c~, c bear
single-particle labels e, P. The reduced matrix
elements (J~ II T~ II 4, ) can then be evaluated once
a specific model is assumed for the initial and
final nuclear states. For the many-body nuclear
system we shall employ shell-model wave func-
tions which are not translationally invariant and
give rise to a center-of-mass correction. ' For
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the special case of harmonic-oscillator wave func-

tions, used throughout this work, this entails mul-

tiplying all matrix elements by e"'" where y
=(2bs)' and A is the nuclear mass number. In the
next section we shall consider the mass-12 sys-
tem in detail treating these nuclear excited states
in the Tamm-Dancoff approximation (TDA) as
single-particle-hole states.

III. RESULTS AND DISCUSSION

In this section we present detailed results for
the mass-12 system B", C", and N" obtained
within the framework of the single-particle-hole
model. The ground state of C with J"7"=0'0 is
treated as a closed 1P„,shell. The low-lying T
= 1 excited states of C" are taken as linear com-
binations of the even-parity (lp„,)(lp„,) ' or odd-
parity (Id,»)(IP,») ', (2s»s)(lp, ») ', (Id,»)(IP,„) ',
(IP», )(ls»~) ' single-particle-hole states combined
to form a specific J"T:

IE d" TibfzMr) =Zks, z~r&z'r;s, s l0).

Here IO) is the closed-shell ground state, gs ~mr
are the admixture amplitudes, and the particle-
hole creation operators are given by

A

A,., „s,= p Q (j m,j 'm,' IjjvM, )
m J m . i mt fft t I

x (2 m t 2 m, I 2 2 Tl[f T)a a b a '
s

(54)

MeV. The point of view taken in considering this
isobaric multiplet is to consider all pieces of the

current on an equal footing. Since the electron
scattering form factor is the best determined ex-
perimentally, we use it to fix the oscillator pa-
rameter and the amplitude reduction factor and

then use these unchanged in discussing the weak

processes. In fact, electron scattering only yields
information about the vector part of the current
and perhaps a closer comparison exists among
the weak processes themselves, for example be-
tween P decay and muon capture. However, the
fact that all the calculated results are in good
agreement with experiment with the same param-
eters strongly suggests that the particle-hole
model may be used in the present manner as a
vehicle to relate all these processes to each other.

It is then straightforward to calculate the doubly
reduced matrix elements of any one-body operator
(in the present context any one of the transition
multipole operators in Sec. II):

(E,j'T:.T~~r.::.0) =ggs ~ r(a. .T~ r.".a ), (55)
K

[recall K—= a(a') '] that is, we have a linear com-
bination of single-particle matrix elements
weighted with the admixture amplitudes.

IO

where n and a' represent the set of single-parti-
cle quantum numbers {nl,'j m„' -,'m, }and -K stands
for the quantum numbers identifying the pure par-
ticle-hole pair, a ={nlj}for the particle, a'
= {n'I'j '} for the hole. The admixture amplitudes

g~ ~~~ in the TDA are determined by diagonalizing
the Hamiltonian. In the present work we use the
TDA amplitudes determined in previous electron
scattering studies of C", where a Serber-Yukawa
interaction with parameters adjusted to fit low-
energy nucleon-nucleon scattering was employed. "
The energy eigenvalues E obtained in this calcula-
tion are in quite good agreement with experiment,
usually within an MeV of the experimental value
and this model provides an excellent description
of the entire inelastic electron scattering spectrum
to T = 1 states of C" up to about 30-MeV excitation
energy. The other states needed in the present
work, that is the ground and excited states of B
and N", are treated as isobaric analog states of
these T = 1 particle-hole states in C". For exam-
ple, the ground states of B and N" are both
taken to have the same wave functions as the 1'1
state in C' which occurs experimentally at 15.11

4
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tU

4
-5

IO

ELECTRON SCATTERING
I'I (l5. ll MeV) STATE IN C

b= i 77 F, (= 2.2.5

-6
IO

IO
I I I I I I III

20 50 IOO

K = Iqt (MeV )

200 500

FIG. 2. Inelastic electron scattering form factor I'z2(&)
[see Eq. [AS)] as a function of t& = Iq I for the 1+1 state at
15.11 MeV in C . The curve is a best fit with 5 and ( as
adjustable parameters. References to the data are given
in a previous study of electron scattering (see Ref. 6).
The photon point at ~ =c is given in the figure but has not
been used in fitting the curve.
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%e have at this point left open the possibility
of there being two remaining free parameters:
the oscillator parameter b = (()f~,} '" and an ef-
fective over-all reduction of all admixture ampli-
tudes by a scale factor

(56)

fdp
-I

sec
MUON CAPTURE

b=I.Tr F, /=2. 25

In past studies of electron scattering" the oscil-
lator parameter has been fixed by requiring that
the C" elastic electron scattering form factor
have its diffraction minimum at the correct ex-
perimental momentum transfer and that the cal-
culated Coulomb energy differences agree with
experiment. These both suggest a value of 5 = 1.64
F. In studying all of the states except the 1+ 1 state
we will consistently use this value, so that in fact

the oscillator parameter is not really a free pa-
rameter in the present work. In Sec. IIIA, where
we study the 1'1 state alone and try to do a more
accurate calculation, we will vary the oscillator
parameter slightly to obtain the best over-all fit
with the 1'1 inelastic electron scattering form
factor and then use this value in the weak inter-
action calculations. However, in Sec. III B where
all of the particle-hole states are considered to-
gether we will use the value 5 =1.64 F for every-
thing.

The reduction factor $ is not really an arbitrary
parameter either. Recent studies' of C" in which
the ground state was taken to involve particles in
both Ip„, and 1p», shells (intermediate coupling' )
show that for electron scattering the dominant ef-
fect is to scale the form factor in amplitude but
leave largely unchanged the momentum transfer
dependence. A preliminary investigation of the
0'0 —1'1 weak processes indicate that the factor
$ can be essentially explained by the opening of
the p shell. Here we continue to use the TDA and
show how excellent agreement among all the elec-
tromagnetic and weak processes can be obtained

I
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FIG. 3. Muon-capture rate as a function of the cou-

pling constants p (0) and C~ =—~J,/E~. The values used
throughout the present work are p (0)cvc = 4.706 and
Cjp(0) pi poIe=10 18. The value of the latter frequently
quoted is Cz=—Cz(0)m~ /(q& + m„), where q&2 is appro-
priate to p capture on a proton, C&=6.72. The shaded
regions correspond to the experimental capture rate
(see E. J. Maier, R. M. Edelstein, and R. T. Siegel,
Phys. Rev. 133, B663 (1964)].

0.95—

FIG. 4. Shape-correction factor in p decay defined as
(deus~/ds)x [G Ps (W~o-s) ] . In accordance with the data
from Ref. 9 the curves are normalized to unity at elec-
tron energy e =5.45 MeV.
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once the parameter $ is fixed by any one of them.
Since the electron scattering form factors are the
best determined experimentally, we use these data
to determine $ in our study of the 0'0 —1'1 tran-
sitions in the next subsection.

+ C12 CI2+ +

12'

B12 CI2 + e-+-
N12 C12+ ++

p, +C ~B +p p

v)+C N + l, l=e or

(5Va)

(57b)

(57c)

(5Vd)

(5Ve)

(57f)

The first two involve only the vector current, while

the remaining involve both vector and axial-vector
currents. With TDA as our basic assumption for
the wave functions, so that the 0'0 ground state
is a closed 1p,~, shell and the 1'1 states are pure
(1p„,)(lp, ~) ' in nature, we obtain the following
for the reduced matrix elements of the necessary
multipole operators

&P,i. ill&, llf.i&=~ 5
e ",

1 4W
&f„,liE,'lie.d=~, (l--'y)e ",

(56)

(59)

(60)

(6l)

Here y=(-,'b~)'. To fix the oscillator parameter
b and the reduction factor $ we compare the elec-
tron scattering form factor [reaction (57a)] with

A. 0'0~1'1 Transitions in Mass 12

The reactions studied here involve the 0'0 ground

state of C", the 1'1 excited state at 15.11 MeV in
C", and 1'1 ground states of B"and N"; they are
the following:

experiment in Fig. 2. The best g' fit was ob-
tained with b=1.77 F and )=2.25, that is with a
reduction in the inelastic electron scattering cross
section by (2.25}'. Calculations using the particle-
hole states obtained in the open-shell random-
phase approximation (RPA)' suggest that the form
factor here may not be completely due to the 1'1
contribution, but may also have contributions from
nearby 7=0 states. In particular these calcula-
tions indicate that a nearby 2 0 state yields a form
factor which is small at low momentum transfer,
but rises at high momentum transfer to increase
the net form factor for I(. -300-400 MeV and pro-
duce better agreement with experiment. Since the
experimental error bars are generally large at
high momentum transfer, the y' fit is not changed
significantly by ignoring all but the 1' 1 state.
This determines the isovector matrix element of
the electromagnetic current and by CVC gives us
the vector current contributions in the weak pro-
cesses. The dominant operator in this electro-
magnetic transition is the spin multipole Z,'" [Eq.
(47}]. The spin multipoles are also the dominant
operators in the axial-vector current. We there-
fore assume here, as is true within the framework
of an RPA' or more complete shell-model' calcu-
lation, that the same model will apply to the axial-
vector-current matrix elements, that is, that
there is an over-all reduction factor due to the
use of the TDA wave functions which becomes com-
pletely unnecessary with the use of better wave
functions. The results are then given in Table III.
Here we have used the value b =1.77 F and in com-
paring with experiment for the measured reactions
have given the reduction factors required in each
case. It is very encouraging that the agreement is
so good: With $ =2.25 as determined by electron
scattering, the results for all these reaction rates
are in essential agreement with experiment.

If we confine our attention to the partial muon-
capture rate, then with our assumption of no sec-
ond-class currents we have in principle four weak-

TABLE III. 0+0 1+1 transitions.

Theoretical value
(5 =1.77 F) Experimental value

Amplitude reduction

Electron scattering
y-decay width

p -decay rate
p+ -decay rate
p, -capture rate

148 eV
171 sec ~

339 sec ~

33.6x10 sec

(see Fig. 2)
36.68+1.08 eV '
32.98+0.10 sec
59.55 + 0.22 sec

6 75+0.30x10' sec

2.25
2.01+0.03 b

2.28+ 0.03 b

2.38+0.04 b

2 23+0.141

' See B. T. Chertok, C. Sheffield, J. W. Lightbody, Jr., S. Penner, and D. Slum, to be published.
B~Ttge obtained from experimental uncertainty.' Including the branching ratios. See F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A114, 1 (1968).
See E. J. Maier, R. M. Edelstein, and R. T. Siegel, Phys. Rev. 133, B663 (1964).
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coupling constants at our disposal; F, , p. , F„,
and M„F~. F", is given by CVC (the muon-capture
rate is very insensitive to F", ) and the (v-e+ v)

(v —p+ v) branching ratio indicates that F"„=F„
By fitting the inelastic electron scattering form
factor we have no freedom in choosing p. for the
weak processes, and yet as shown in Fig. 3, the
agreement for the muon-capture rate between the
calculated value using CVC and the experimental
value is excellent. Moreover, the rate depends
sensitively enough on the value of p to show that
for reasonably small deviations from CVC the
agreement would be significantly worse. In the
same figure the dependence on F~ is shown and
we see that even for fairly large deviations from
the pion-pole value the capture rate is relatively
unchanged. This gives us a rather convincing
demonstration of the presence of weak magnetism
in muon capture, as has been pointed out previous-
ly I

The classic demonstration of the presence of
weak magnetism in P decay' is the experiment of
Lee, Mo, and Wu' on the deviations of the e'
spectra for reactions (57c) and (57d) from the
allowed shape. Figure 4 shows a comparison of
our calculated e' spectra [both normalized to I
at e5.45 MeV] with the data of Ref. 9. Again,
the present calculation uses the matrix elements
of T, ~ from electron scattering to determine b

and $; there are then no free parameters in the

37—
MUON CAPT URE

b= I.64 F, g=l
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calculation of the weak processes and the agree-
ment between theory and experiment in Fig. 4 and
Table III convincingly reaffirms the presence of
weak magnetism in P decay for if p, were taken
as zero in P decay, the two curves would be identi-
cal and essentially flat (recall that F~ makes no
appreciable contribution to electron processes).
The present theoretical calculation has the advan-
tage of treating retardation correctly in the nu-
clear matrix elements and consistently evaluating
the nuclear amplitudes in the leptonic processes
up through order (v/c)„„„„„.It is interesting
that this calculation introduces some curvature
into the theoretical curves in Fig. 4; however,
this curvature is evidently not significant at the
present stage of comparison between theory and
experiment.

B. Muon Capture and Neutrino Reactions

in Mass 12

In this section we extend our study to include all
the even- and odd-parity single-particle-hole T = 1
states studied previously in electron scattering.
In the remainder of this work we shall use b = 1.64
F for the oscillator parameter as determined by
the elastic electron scattering form factor. In
accordance with the past work on inelastic elec-
tron scattering we shall require reduction factors
of -2 for the even-parity states (cf. Sec. IIIA) and
-vT for the odd-parity states. This is a rough
rule of thumb for the actual reduction we would ob-
tain using improved wave functions where the 1p
shell was opened, and where backward- as well
as forward-going amplitudes were permitted (RPA).'
The actual single-particle-hole states used are
given in Ref. 4.
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FIG. 5. Partial muon-capture rates. To compare with
experiment the even-parity doublet should be reduced in
amplitude by a factor $ -2 (a factor of 4 in the rates) and
the odd-parity states should be reduced by $ -W2 to pro-
duce agreement in electron scattering (see text).

FIG. 6. Neutrino reactions in the extreme relativistic
limit (ERL) at neutrino energy v =250 MeV. For even-
(odd-) parity states the amplitudes should be reduced by-2 (-v 2 ) to produce agreement in electron scattering
(see text).
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FIG. 7. Neutrino reaction cross sections {unreduced)
as functions of momentum transfer K = (q) at neutrino en-
ergy v =250 MeV. The scattering angle 8 varies arith ~
up to 0 =180, marked by vertical bars on the curves.

The unreduced partial muon-capture rates are
shown in Fig. 5. We note in particular the domi-
nance of the 1', 2, 1, and 0 states, whereas the
2', 3, and 4 states are relatively unimportant
for muon capture T. his should be contrasted with
inelastic electron scattering, where at low mo-
mentum transfer the low multipolarity transitions
dominate (except 0'-0 which is forbidden in
first Born approximation) while at medium to high
values of momentum transfer the high spin states
play a crucial role. For example the 4 state domi-
nates the inelastic electron scattering spectrum at
momentum transfers around 300 MeV. The effec-
tive momentum transfer for muon capture on the
other hand is in the range 70 to 90 MeV and in addi-
tion muon capture involves axial vector as well as
vector-current matrix elements so that different as-
pects of the same nuclear wave functions are being
explored. The total calculated capture rate with
the reduction factors of 2 for even parity and vT
for odd parity is 29 &10' sec ', to be compared
with the experimental value' 36-39 &10' sec '.
The remaining strength unaccounted for here is
presumably due to the excitation of states outside
of the assumptions made in the present calcula-
tion, for example, states involving two or more
major shells. An estimate of this strength (which

is necessarily positive) is given by Foldy and
Walecka" amounting to -5 X10' sec ' and brings
the total calculated rate into essential agreement
with exper iment.

With the same wave functions we Qnally con-
sider the neutrino reactions (57f) in mass 12."
In Fig. 6 we show the unreduced integrated par-
tial cross sections as functions of the excitation
energy & for a neutrino energy of v=250 MeV.
These results are obtained in the ERL although the
results obtained using the full kinematics only dif-
fer by a few percent at this neutrino energy. Thus
the results apply equally to electron and muon
neutrinos. However, once the muon-production
threshold is approached the cross sections will
differ, since there the ERL will still be valid for
electrons, but not for muons. As in electron scat-
tering, the neutrino reactions may involve higher
values of momentum transfer than the other weak
processes and again we find the high-multipolarity
transitions playing a prominent part in determin-
ing the neutrino spectrum. This is a particularly
interesting region of neutrino energies to be ex-
plored, since again we can learn more about the
nuclear wave functions and about the electromag-
netic and weak interactions themselves by com-
paring results from these various reactions.

In Fig. 7 we show the differential neutrino cross
sections as functions of q' for a few of the states
which proved to be particularly important in elec-
tron scattering. These are not exactly the equiva-
lent of electron scattering form factors, since the
neutrino energy is held fixed at 250 MeV and as
q' varies the scattering angle 8 also varies. In
fact the upper limit where 6) = 180' is indicated by
a vertical bar on these curves. The behavior is
similar to what has become familiar from inelas-
tic electron scattering: at low momentum transfer
the low multipoles dominate while at medium to
high momentum transfer the high-spin states
come into prominence.

To display the dependence on neutrino energy
we show the total cross sections for all even- and
all odd-parity states in Fig. 8. The solid lines
marked electrons are essentially the ERL calcula-
tions, since the electron mass is so small. We
see that at v = 250 MeV and higher the muon curves
(dashed) differ only by a few precent from the ERL
curves. These results are unreduced and for corn-
parison with experiment (when available) should
be multiplied by 1/$', where g

- vY (odd-parity)
or 2 (even-parity). The "asymptotic" total cross
sections (v=20 GeV) are indicated by arrows at
the right of the figure. For all states of given
parity taken together we show the unreduced dif-
ferential cross sections in Fig. 9.

Since the first experiments with neutrinos to be
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done at LAMPF are to be for electron neutrinos
at energies between 0 and 53 MeV obtained from
the decay of stopped muons we also calculated
the total neutrino cross section weighted with the
electron neutrino spectrum and including the re-
duction factors for even- and odd-parity states.
The theoretical result obtained is 1.46&10 "cm'.
The peak in the weighted cross section occurs at
about 45-MeV neutrino energy and at that point is
made up from 72% even-parity and 28% odd-parity
excitations (with reduction factors included). More

In the present work we have considered the semi-
leptonic weak processes (P decay, p, capture, and

neutrino reactions) and electromagnetic processes
(y decay and electron scattering) on a unified basis.
The leptons involved are allowed to interact with

the mass-12 nuclear system (B", C", N"), where

for the dynamics of the nuclear many-body prob-
lem we employ the single-particle-hole model.

We first consider inelastic electron scattering in
detail to determine the matrix elements of the vec-
tor current in the electromagnetic case and by the
CVC hypothesis take these matrix elements to be
the same in the case of weak interactions. In
addition, the comparison of calculated electron
scattering form factors with experiment provides
a stringent test of the nuclear wave functions in-
volved. We proceed to use the same wave func-
tions in studying the weak processes, where in
addition to the vector current we must also deal
with the axial-vector current. In principle the
weak interactions provide us with a richer source
of information on the nuclear many-body system.
We find for example that the simple particle-hole
model, with amplitudes reduced to give agreement
in studying electron scattering form factors, gives
essential agreement with all the weak interaction
processes which have been investigated experi-
mentally. Many interesting features seen in elec-
tron scattering such as the high-spin states also
play a vital role in the weak reactions.

Once we have carried out such a unified analysis
and have some confidence in our description of
the nuclear system, we can proceed to say some-
thing about the interactions themselves: For ex-
ample, we are able to make some meaningful state-
ments about the coupling constants involved in the
semileptonic weak interactions.

Finally, with some confidence as to the validity
of both nuclear and particle aspects of the prob-
lem obtained in this unified treatment, we can
proceed to calculate the cross sections for neu-
trino reactions where experimental data are not
presently available.

O. I

~ 2
(GeV }

0.2

FIG. 9. Momentum transfer dependence of the (unre-
duced) neutrino cross sections at neutrino energy of v

=250 MeV.
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APPENDIX by

In this Appendix we relate the neutrino cross
section to the electron scattering form factors so
that, under several assumptions which may be
realized in practice, experimental electron scat-
tering results can be used to predict neutrino
cross sections. The cross section for the scatter-
ing of electrons of initial energy F., through angle
8 with energy loss co and three-momentum trans-
fer»= lq I is given by'

do cK cosy 8

2

+ ~+tan'(-,'8) E,'(», &u),

(A2)

+r'=2~ 1 Z(l«yllTz' ll&;& I'+ I«, IIT."II&;& I')

(A2)

If the convection current part of the vector opera-
tors can be neglected [rF~ = r ~"= 0, Eqs. (44), (45)],
which is equivalent to the approximation that the
nucleon velocity in the ground state is small
[(v/c)„„„„„«1] then we can relate the electric and
magnetic axial-vector and vector operators to one
another [cf. Eqs. (37), (38), (41), (42)]:

(A1)

where we neglect the center-of-mass, nucleon
form factor, and recoil corrections. Here the
longitudinal and transverse form factors are given

~E el & mag5Tgg —Zd = TgAf
KP. F~

"Tzg=ZP =-—T~%

(A4)

(A5)

Then we find that for the weak processes

2~„+(I«,Ilail II&&I' 'I«, II&;"II&&I*&= & ~
( "„")

J' =1
(A5)

and

q mag J' g gael J + N PF 2 (A7)

for states of either parity. The longitudinal vector operators for the neutrino reactions in ERL may be
directly related to the longitudinal electron scattering form factor

i, lie &
I' =

( ~ ) 2~—, g lie II M, Ilz &
I'

J' =0 K /P

(A8)

while we have for the axial-vector operators in ERL neglecting the operator Q~ [Eq. (49)] whose contribu-
tion is small if (v/c)„„„„„«1:

~g ~~'+—L~' J&
~-0 N

(A9)

These matrix elements multiplied by cos'(~8} [Eq. (25)] compete with the matrix elements involving Tz„'
which involve F„Z~", but with kinematic factor (q~'/2» ) cos'(-,'8}+sin'(-,'8). Since the matrix elements of
the spin multipoles are of the same order of.magnitude and we have

( cos'(-,'8}«+~ cos'(-,' 8) + sin'(-,' 8)
K

in a large region of interest, i.e., except in the very forward direction, we may then to a good approxima-
tion neglect the longitudinal axial-vector contributions altogether. The final result for the neutrino cross
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sections in ERL is, using Eq. (12),

2 2 2 2

=2G' — 2(T+ 1) cos'(-,'8) ~ Fl, '(g, ~)+ ++tan'(-,'8) 1+ «"F„
V

2

a n(-' ti) ~ tan (-' ~)
'" 4M„

«Fx Fr (&i ~) ~.
KP,

(A10)

As long as the momentum transfer and scattering angle are large enough so that in electron scattering the
isoscalar contributions may safely be neglected with respect to the isovector contributions, but not so
large that the longitudinal axial-vector contributions can compete with the transverse axial-vector electric
contribution, this is a useful relationship for predicting neutrino cross sections using the electron scatter-
ing inelastic form factors.
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