
PHYSICAL REVIEW C VOLUME 6, NUMBER 3 SEPTEMBER 1972

Variational Approach to the On- and Off-Shell T Matrix*

Ian H. Sloanf and T. J. Brady
Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742

(Received 3 April 1972)

A variational procedure for calculating the two-body T matrix T, (p, p';s) is proposed, and

studied numerically for the case of the Reid So soft core potential. The method is based on

a variational principle of the Schwinger type, in which the trial functions are themselves off-
energy-shell T matrices with fixed s andp (or fixed s andp'), which are expressed as lin-
ear combinations of a convenient basis set. The variationally calculated T matrix turns out to
have the interesting form T =V+VAN'V, where 6' is a finite-rank approximation to the full
Green's function, of rank equal to the number of basis functions. It also turns out that for
potentials of finite rank the approximation is exact, provided that the space spanned by the
basis functions includes the form factors of the potential. Numerical results are given for the
Reid potential at energies from -50 to 300 MeV, and show good convergence for both on- and

off-shell T matrix elements. The nonvariational estimates obtained directly from the trial
functions also converge quite well, but less rapidly than the variational results.

1. INTRODUCTION

In this paper we propose and study a variational
approach to the Lippmann-Schwinger equation for
the two-body, off-shell, partial-wave T matrix
Ti(p, p'; s),

T (p, p'; s) = V (p, p')
"

&,( p, p"),(p",p'; ) „.
Q

(1)

where V, (P, P') is the potential, p the reduced
mass, and s the complex energy parameter; and
the normalization is such that the on-shell T ma-
trix and the phase shift 5, are related by

In the following pages we describe the method,
and show by numerical calculations that it does
indeed provide a satisfactory way of calculating
the T matrix for a realistic soft-core nucleon-
nucleon potential. Our fundamental aim, however,
is not really to present a new way of solving the
Lippmann-Schwinger equation, since there already
exist' ' a number of perfectly satisfactory numer-
ical methods for solving that equation, and in par-
ticular, for dealing with the singularities in the
kernel for real positive energies. The two most
popular methods of handling the singularities are
perhaps the Kowalski-Noyes method' of reducing
the equation to an integral equation with a non-
singular kernel; and the method of converting Eq.
(1) into a principal-value equation for the reac-
tance matrix. 2

Equations of a similar kind also arise in other
contexts, however, with singularities in the ker-
nel that are not at all easy to deal with. In par-
ticular, we are interested in the set of coupled
integral equations that arise in the three-body
problem, when finite-rank approximations to the
two-body potentials or T matrices are used. In
this case the singularities in the kernel depend
on both variables, and are therefore not so easy
to subtract out. The most popular method of solv-
ing these equations has been to deform the integra-
tion contour' in the complex momentum plane away
from the singularities, but the method is unattrac-
tively hard to use' in calculations involving three-
particle final states. The amplitudes needed in
this case are analogous to half-off-shell solutions
of Eq. (1). Even more difficult to calculate are
the fully off-shell three-body amplitudes that will
presumably be needed for solving the four-body
problem.

Problems of this kind provided the motivation
for the present work, since unlike most other
methods for solving the Lippmann-Schwinger equa-
tion, the method to be developed here generalizes
in a straightforward way to these more difficult
equations. %'e have thought it desirable, however,
to explore the method first in the more familiar
context of two-body scattering, so that it can be
tested numerically in an area where other numer-
ical results are available, and so that we can con-
centrate initially on the essentials of the method
itself, rather than on the complexities of the three-
body problem.

The variational method to be described here is
rather closely related to the method of solving the
Lippmann-Schwinger equation by expanding the T
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matrix in terms of a suitable set of functions. In
the latter method, suppose for example, that our
aim is to calculate the particular T matrix ele-
ment T,(p„p„'s). Then the solution of Eq. (1}
could be expanded in the form

(3)

where the functions f,(p), f,(p), . . . are a conven-
iently chosen set of functions, presumably com-
plete in some relevant sense, and the coefficients
c„(p,) are constants to be chosen in some suitable
way, so as to make the expansion an approximate
solution of Eq. (1).

This expansion procedure is a perfectly sensible,
though little explored, way of tackling the Lipp-
mann-Schwinger equation. (We know of no appli-
cations for the Lippmann-Schwinger equation itself,
but the approach has been used successfully for
solving similar three-body equations. '} One would

expect that only a few terms would be needed in

Eq. (3) if the basis functions f„(p) are well chosen,
and a particularly attractive feature of this method
is that the solution is available as an analytic func-
tion of P, rather than just as a table of numbers.

The essence of the variational method to be de-
scribed in Sec. 2 is that we use expansions of the
form of Eq. (3) as trial functions in a variational
expression for T,(P„P„s). The variational prop-
erty then ensures that the final error is of the
order of the square of the error in Eq. (3). The
numerical calculations of Sec. 4 show that even
the nonvariational estimates obtained directly
from the trial functions converge quite well, but
that as expected from the variational property,
the variational results converge still faster, even
though they are scarcely more difficult to calcu-
late than the nonvariational results.

The variationally calculated T matrix turns out
to have the interesting form T = V+ VG' V [see Eq.
(25)], where G' is a finite-rank approximation to
the full Qreen's function, of rank equal to the num-
ber of basis functions in Eq. (3). We also find in
Sec. 3 a very encouraging property of the varia-
tional calculation, and indeed even of the nonvaria-
tional result given by the trial function (3), that
the approximate result becomes exact for the case
of a finite-rank potential, provided that the space
spanned by the basis functions includes the form
factors of the potential.

The variational method is based on a variational
principle [Eq. (8}]of the kind associated with
Schwinger, and can be used to calculate T ma-
trix elements of all types: fully off-shell, half-
off-shell, and on-shell. Even in the latter case,
however, the method is not equivalent to what is
usually referred to as the Schwinger variational

method, "because the variational principles on

which the methods are based are not identical.
However, there is a formal relationship between
these variational principles, and this is discussed
in Sec. 3. A slight variant of the Schwinger meth-
od proposed by Schwartze is also discussed in
Sec. 3.

The variational method described in this paper
does not automatically satisfy unitarity, or in oth-
er words, does not automatically produce real
phase shifts. It would be very easy, however, to
modify the method so as to ensure real phase
shifts: all that is needed is to apply the same
techniques to the principal-value equation for the
reactance matrix. We have chosen not to do this,
partly because we prefer to have a method that is
uniformly straightforward for all T matrix ele-
ments at all energies (positive, negative, and

complex), and that generalizes easily to more
difficult equations; but also because to us it seems
an advantage rather than a disadvantage that the
phase shifts are not automatically real: The size
of the imaginary part of the phase shift then serves
as a useful indicator of numerical accuracy.

In Sec. 2 we describe the variational method,
and then in Sec. 3 discuss some of its properties.
Numerical calculations on the Reid soft-core 'S,
potential are described in Sec. 4.

2. VARIATIONAL METHOD

Let us write the Lippmann-Schwinger equation
(1}in operator form as

T(s) = V+ VG, (s)T(s},

and its transpose as

T(s) = V+T(s)G, (s) V,

(4)

(5)

and let us introduce an alternative Dirac notation
for the momentum-space matrix elements,

(6)

The starting point for the variational method is
the identity (now omitting the label s}

[T]= V+ VGOT, + T2GO V —T2(GO —Go VG0)T, , (8)

T = V+ VGOT, + TIG0 V - Tl(GO —Go VGO)T,

+ (T2 —T)(Go —Go VGO)(T, —T) .

It is easy to see from Eqs. (4) and (5) that this is
valid for arbitrary operators T, and T2. Our in-
terest, however, is in taking T, and T, to be ap-
proximations to T. The last term in Eq. (7) is
second order in the differences T, —T and T, —T,
so that we get a variational principle for T by omit-
ting this term, thus obtaining
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where T, and T, are independent approximations
to T.

This variational principle is given in Newton's

book, ' but does not appear to have received any

significant use in calculations. It is a variational
principle of the Schwinger rather than the Kohn-

Hulthhn type, ' but it is not the one usually used in

applications of the Schwinger method. We return
to this point in Sec. 3.

We suppose, as in Sec. 1, that our specific aim
is to calculate the particular T matrix element

(p, lT(s)lp, &. From Eq. (8) we immediately ob-
tain a variational principle for this particular T
matrix element,

and the variational expression (9) becomes

[&p, I
T

I pg] =(p, I vl pg+ g c„(p,)& p, I vG, In&
n=l

+ g d„(p,)&nl G, VI p,&

—Q Q d (p,)c„(p,}(mlG, —G, vG, ln&.
n=l nt=l

(16)

To fix the values of the constants c„(p,) and

d„(pm), we naturally make use of the variational
nature of Eq. (16}, and require that the right-hand
side be stationary with respect to variations of

c„(P,) and d„(P,). In this way we easily obtain

[&p, I
T

I p,&1=&p, l vl p,&+(p, I vG, T, I pg

+&p, IT,G, vl p,&

—(p, I T2(GO —Go VGO) T, I p,&,

where, for example,

(9)

c.& p &
= 2 &..&~ I G.VI p,&,

d.(p.}= 2 & p. l «. I ».. (18)

(p I vG T
I p &

t" & p. I v I p& & p I T. I pi& p2dPQ 0 1 Pl
g 2 ~~ pm P P

(10)

Our procedure is to use trial functions of the
form

& pl T, l p, &
= 5 c.(p,)f.(p),

n=l

in the variational principle, where the coefficients
c„(p,} are constants that have yet to be determined.
(Remember that for our present purposes p, is a
fixed parameter. ) Similarly, we expand the ma-
trix elements of T, in the form

where 6 is an N x N matrix defined by

(4 ') = &m I Go —G, VG, I n& . (19}

(p I
VG

I ) ) vl(p2$ &fpn( ppmdp
w J, 2p.s —p' (21)

Finally, we substitute Eqs. (IV) and (18) into
(16}to give us the relatively simple result

[&p. l T I p&l =&p, I vl pg
N N

+ g g &P, I «.In&&..&~ I G.VIP,&
n=l nt=l

(20)

This is the expression that we use for the varia-
tional calculations in Sec. 4. The required matrix
elements can be written explicitly, with the aid of
Eqs. (6}, (10), (13), and (19), as

& p I T. I p&
= p d.(p.)f.(p) .

n=l
(12)

(p I s& =&s I p& =f„(p) . (13)

In terms of these, Eqs. (11) and (12) become

[We have chosen to use the same set of functions
f„(p) in Eqs. (11) and (12), but this is clearly not
essential. ] These equations can be written more
concisely if we introduce vectors

I n& and &nl,
defined by

(~ i) 2,I"f.(P)f.(P}p.dp
7T Jo 2+s —P

- .„ f.(p')V, (p', p)f.(p)
v J, 0 (2p, s-p")(2p.s-p')

(22}

As a by-product of the variational calculation,
we also obtain two nonvariational approximations,
by substituting the values of c„(p, ) and d„(p, ) [Eqs.
(17) and (18)] into Eqs. (11) and (12), so obtaining

N N

T, I p& = 5 c.(p,) I s&, (14)

and

&p2 I T, I p,&
= g p f.(p~)&„(~ I G.vip, & (23)

n=l nt=l

&paIT. = Ed.&p.&&sl,
n=l

(16) N N

&palTalp&=& 2 &p. lvG. ln&&„ f (p,). (24)
n=l nt=l
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Although these two approximations have been ob-
tained rather indirectly, we emphasize that both
of them are perfectly acceptable approximations
in their own right, and indeed arise quite naturally
if we look for solutions of the Lippmann-Schwinger
equation in the form of Eq. (11) or (12), i.e., as
sums of functions with unknown coefficients. For
example, if we substitute the expansion (11) into
the Lippmann-Schwinger equation (4), and deter-
mine the values of c„(p,) by multiplying on the left
by (nI G„with n = 1, . . . , N, then we easily find that
the resulting values of c„(p,) are exactly the same
as we found previously by the variational argument.
It follows that the corresponding T matrix element
is just that given by Eq. (23). A similar argument
also applies to Eq. (24).

For some purposes, the nonvariational approx-
imations (23) and (24) have a possible advantage
over the variational approximation in being of fi-
nite rank. (On the other hand, they are not explic-
itly symmetric; rather, one is the transpose of
the other. ) However, the variational property es-
sentially assures us that if the nonvariational ap-
proximations are good, then the variational ap-
proximation is even better (at least in some aver-
age sense}, since the error in the variational ap-
proximation [the last term in Eq. (7)] is second-
order in the errors in T, and T,.

3. DISCUSSION

The variational approximation (20) can be writ-
ten concisely as an operator equation,

N N

[T]= V+ Q Q VGo I n) 4„(m I G, V,
n=l m=1

(25)

and in a similar way we can also write the two non-
variational approximations (23} and (24),

T = g Q I n)&„(m I G, V,
n=l m=1

(26)

N N

T = Q Q VG In)n. „(m I.
n=l m=1

(2V)

The variational result is very similar in charac-
ter to the exact solution of the Lippmann-Schwinger
equation in terms of the full Green's function G(s)
=s-H, namely

T = V+VGV, (28)

G' = Z Z Go I n&n. „(m I Go ~

n=l m=1

As we have already remarked in Sec. 1, the

(29}

where H is the total Hamiltonian. In fact, Eq. (25)
has exactly this form, but with G(s) replaced by a
finite-rank approximation G'(s}, given by

N N

variational method described above is not equiv-
alent to the usual Schwinger method, even in the
on-shell case. To help understand the connection,
it is convenient to introduce wave operators Q and

I', defined by

Q =1+GOT,

I" =1+TG, .
According to (4) and (5), these also satisfy

T = VQ =I"V.

(30)

(31)

(32)

(The significance of II and I' is that 0 produces a
scattering wave function by operating to the right
on a plane wave of appropriate momentum, and l
by similarly operating to the left. }

The usual bilinear form of the Schwinger prin-
ciple' is obtained simply by taking the on-shell
matrix elements of the variational principle

[T]= VII +r v- r(v- VG, v)II . (33)

(The stationary property follows easily from the
Lippmann-Schwinger equations for II and I'.)
There is a formal correspondence between this
variational principle and Eq. (8), in that they be-
come equivalent if T, is related to Q by

1+GOTl =Q,

and if T, is related to I' by

T2 =I"V.

In practice, however, the methods are quite differ-
ent, as is perhaps most clear from the fact that in
using Eq. (8) the Born term always appears explic-
itly in the result, whereas with Eq. (33) it does not.

The variational principle (8) has an important
practical advantage over the usual Schwinger prin-
ciple (33), in that the functions we have to approx-
imate on the right;-hand side of Eq. (8) are T ma-
trices, which are perfectly smooth functions,
whereas the functions on the right-hand side of
Eq. (33) are wave operators or wave functions,
which are highly singular functions in momentum
space (The s.ingularities correspond to the asymp-
totic parts of the wave function in configuration
space. ) It is therefore reasonable to expect that
expansions of the kind used in Sec. 2 will converge
much faster in Eq. (8) than they would in Eq. (33).

We are not aware of any systematic studies of
the Schwinger principle (33) with a steadily in-
creasing number of basis functions, presumably
because of the technical difficulties of evaluating
the necessary matrix elements. Such calculations
have been carried out, however, with a much
more practical variant suggested by Schwartz. '
This is like the present method in that the trial
functions (for the on-shell case) are half-shell T
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matrices, but is otherwise entirely different. In
the notation of Eq. (33), Schwartz's procedure is
simply to construct trial functions for VQ —= T,' and
I'V= T„rather than for the wave operators Q and

l. In terms of T', and T, the Schwinger principle
(33) becomes

[T]= T~+Tm —T2(V —Go)T~. (34)

v= Ig)&&gl (35)

if
I g& is a linear combination of the basis functions.

Schwartze has shown in a numerical calculation
with a simple potential that the on-shell version
of this works satisfactorily in practice, but the
rate of convergence is perhaps not impressive.
This variational principle becomes equivalent to
Eq. (8) if T', is related to T, by

Tl = V+ VGOT, ,

but in any practical calculation the two are entire-
ly different.

It is perhaps worth remarking that the variation-
al method of Sec. 2, like other methods of the
Schwinger type, is not troubled by the spurious
singularities" that arise with the Kohn variational
method ~ ~.(T'his difference between the Kohn and
Schwinger methods has been noted previously by
Schwartz. ') The essential difference lies in the
matrix which has to be inverted in each case: In
the method of Sec. 2 the matrix b. ' [Eq. (19)] is
essentially a representation in the finite basis of
G, —G, VG, =G,(1 —VG,), whereas in the Kohn meth-
od the corresponding matrix represents E -H. For
positive energies, E -H has a continuous spectrum
that includes zero, so that it can easily happen that
one eigenvalue of the finite matrix is small, espe-
cially if the number of basis functions is large.
If this happens, the matrix becomes nearly singu-
lar, and it is this" that causes the difficulties with
the Kohn method. With methods of the Schwinger
type, on the other hand, the matrix is expected to
be singular only when VGO has an eigenvalue near
1, which is the condition for a twice bound-state
pole or resonance pole in the T matrix. There-
fore there is no reason at all to expect spurious
singularities in this case.

A very encouraging feature of the variational
method described in Sec. 2 is that the result is
exact for potentials of finite rank, provided that
the form factors are in the space spanned by the
trial functions. This result is in fact even true
for the nonvariational approximations (26) and (27),
and it is sufficient to prove the result for this case,
since the error in the variational result [the final
term in Eq. (f)] is then necessarily zero Specif-.
ically, we prove below that Eq. (26) is exact for a
rank-one separable potential

The generalization to potentials of higher rank is
straightforward.

For the separable potential case, Eq. (26) be-
comes

N N

T, = g g In»..&m I Go lg»&gl,
n=l nt=l

and Eq. (19) becomes

(n ') =&m I G. In& —(ml G. lg»&g I GO In&. (37)

By assumption, lg) is a linear combination of the
basis functions, say

lg&
= Z ~.ln&.

On multiplying Eq. (3V) by a„and summing over n,
we get

N

p (n ') ~.=&m
I G. I g& —&m I Gal g»&gl G, I g),

n=l

or

&mlG, lg&1=& (& '),o'.(1 '-&glG. Ig&) '.
With the aid of this, Eq. (36}easily becomes

Ti= lg&(~ '-&glG. lg&} '&gl

which is the exact solution of the Lippmann-
Schwinger equation (4} for the separable poten-
tial (35). This is the result we set out to prove.

4. NUMERICAL CALCULATIONS

To see how the variational method works in prac-
tice, we have carried out numerical calculations
with the Reid" 'S, soft-core potential, which is
highly repulsive at short distances, and which fits
the 'So nucleon-nucleon phase shifts quite accurate-
ly up to 350 MeV. In momentum space this poten-
tial is

where P, =0.7 fm ', P, = 4P» P, = 7P„v, = -10.463
MeV, v, = -1650.6 Me V, and v, = 6484.2 MeV.

The basis functions f„(p) were chosen to be

f„(p)=, G„',I. . . =1,2, . . . , ~, (39)P'+ " 't P'+~' '

where C„', is the Gegenbauer polynomial, "a poly-
nomial of degree n —1, and where P is a param-
eter which can be chosen for practical convenience.
The functions given by Eq. (39) have the correct p
behavior at small p, and at large P have the same
p

' behavior as the potential [Eq. (38)]. This set
of basis functions is formally equivalent to the set
(p~+p ) ", n=l, . . . , N, but Eq. (39) has the ad-
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TABLE I. Phase shifts in degrees with the variational
method, and with the nonvariational formula (23) or (24).

E
(Mev)

Re6

Var�.

Nonvar.
Im6

Var. Nonvar.

40 1
2
3
4
5
6

Exact

13.5
13.1
36.5
42.0
42.2
42.2

-10.5
-8.2
35.9
41.7
42.4
42.2

42.2

-11.6
-9.4
-1.1
0.0
0.0
0.0

0.6
6.1
7.9

—1.2
0.3
0.0

vantage numerically that the basis functions so
defined are orthogonal on 0 ~ p& ~ with a certain
weight function [specifically p'(p'+ p') '], and this
tends to make the matrix 6 ' [Eq. (22)] well con-
ditioned. The functions defined by Eq. (39) are
actually Sturmian functions for the Coulomb poten-
tial, " and the orthogonality property follows from
this fact.

Otherwise, however, there is nothing special
about our choice of trial functions. Indeed, they
have one property that seems quite undesirable,
namely, that f„(p) has poles of order n at p =sip.
The potential itself [Eq. (38)] has branch points
at (pa p') =sip„so that it seems sensible to re-
quire that P be at least as large as 0.7 fm '. In
practice we settled on the value P =5.0 fm ' after
a small amount of experimentation, our experi-
ence being that the convergence was much less
satisfactory for values near 0.7 fm '. We empha-
size, however, that we have made no serious at-
tempt to find an optimum set of basis functions.

The singularities in the integrands of Eqs. (21)
and (22) were avoided by deforming the integration
contour into two straight sections, [0, -0.525i]
and [-0.525i, -0.525i+~]. The latter region was
then mapped onto a finite interval, and the inte-
grals along each part of the contour were evalu-
ated by Gaussian quadrature. This proved to be
an effective and simple procedure.

The first results (Fig. 1 and Table 1) concern

the on-shell T matrix at real positive laboratory
energies up to 300 MeV. As discussed in Sec. 1,
the variational method does not automatically pre-
serve unitarity, though it could easily be adapted
to do so, and therefore the phase shift (modulo w)

given by Eq. (2) is not automatically real. The
imaginary part of the phase shift then serves as
a useful indicator of numerical accuracy. In Fig.
1 we show the real part of the phase shift found
with the variational method for several values of
N, N being the number of basis functions. We also
show the values of the phase shifts found by Reid"
by direct solution of the Schrodinger equation, and
our own exact values obtained from the Lippmann-
Schwinger equation by numerical matrix inversion.
Clearly the convergence of Re5 to the exact values
is excellent, since the variational result with N=6
is indistinguishable from the exact result at all en-
ergies.

The behavior of the variational method at several
energies is studied more closely in Table I. It is
seen that Re5 does indeed converge rapidly and
decisively to the exact result, and that as expect-
ed, Im5 converges with equal rapidity to zero.
(The convergence is not, however, strictly mono-
tonic. A variational bound of the sort discussed
by Kato" is not to be expected, since the potential
changes sign. )

We also give in Table I the phase shifts obtained
with the nonvariational approximation (23) or (24).
(Note that these give identical results for the on-
shell case, and more generally, for the case p,
=P, .) Clearly the values again converge steadily
to the correct values as N increases, but the con-
vergence is always less rapid than that of the vari-
ational method. The advantage of the variational
method is perhaps clearest when the nonvariation-
al result is itself reasonably accurate; this is of
course expected, from the property that the error
in the variational method is of the order of the
square of the error in the trial functions.

140

280

1
2

3
4
5
6

Exact

1
2
3
4
5
6

Exact

2.1
-1.6
12.8
15.4
15.8
15.8

15.8
-14.5
-17.0
-6.8
-5.5
-4.7
-4.7

-4.7

-20.4
-22,0

13.8
12.7
15.2
15.4

-28.8
-35.6
-6.4

-10.8
—5.1
-4.7

-10.0
-10.2
-0.3
—03
0.0
0.0

3 e7

-9.4
0.0

-0.8
0.0
0.0

1.0
11.2
3.9

-3 5
-0.2
0.1

0.5
13.1
0.9

-3.8
0.1

-0.1

Var. Nonvar.

1
2
3
4
5
6
7
8

Exact

-1.1
-1.2
-6.5

-16.5
-16.5
-16.8
-17.1
-17.1

0.3
0.1

-4.8
-15.5
-15.5
-16.2
-16.7
-16.7

'Reid, Ref. 14.

TABLE II. Scattering lengths in fm for the variational
and nonvariational methods.
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FIG. 1. Variational and exact calculations of the phase
shifts for the Reid (Ref.14) S& soft-core potential. The
crosses are values found by Reid (Ref. 17).

-0.4
NONVAR IATIONAL, N = 5

0 I

FIG. 3. Half-shell T matrix elements for E~~b =162.6
MeV obtained by the variational method, and by exact
solution. The dashed curve is the nonvariational approx-
imation Eq. (23), with N=5.

0 0.8

-4
E 0.4—

-12

0
p(fm )

p,O;0)

0
O
E

4)
K

-0.4

-0.8

p (fm')

(p, p', E+ i&)

6 fm-I

40 Mev

2

FIG. 2. Half-shell T matrix elements at zero energy
obtained by the variational method, and by exact numeri-
cal solution.

FIG. 4. Off-shell T matrix elements for E~~b =40 Me
and p' =0.6 fm ~, obtained by the variational method, and
by exact solution.
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p(fm ')

FIG. 5. Off-shell 7' matrix elements for E»~ =-50
MeV and p' =0, obtained by the variational method, and
by exact solution.

Next we consider the case of zero energy. Nu-
merically, this turned out to have the slowest con-
vergence of any that we studied, perhaps because
of the nearby pole on the second sheet of the com-
plex energy plane. Nevertheless, the convergence
in this case was by no means poor. In Table II we
show the scattering lengths obtained with both the
variational and nonvariational methods. [With the
normalization used in Eq. (2), the scattering length
is simply the on-shell T matrix element at zero
energy. ] Once again, the convergence of the vari-
ational method turns out to be much better than
the nonvariational: The nonvariational result with
N=8 is less accurate than the variational result
with N=6.

The variationally calculated half-off-shell T
matrix elements at zero energy are shown in Fig.
2. It is evident that the convergence is slowest
for smaQ values of p, and is much faster for larg-
er values of p. The values at p =0 are of course
the scattering lengths given in Table II. The non-

variational amplitudes have not been shown in

Fig. 2, in order to avoid confusing the diagram,
but their behavior is qualitatively similar to that
of the variational amplitudes in Fig. 2, and a use-
ful indication of their behavior for small p can be
obtained from Table II. It is perhaps worth re-
marking that the nonvariational half-shell ampli-
tudes are the trial functions in the variational cal-
culation of the scattering length, so that the rela-
tively slow convergence in the scattering length
calculation is evidently associated with the fact
that the trial functions have some difficulty in re-
producing the behavior, shown in Fig. 2, of the
exact half-shell amplitude at small p.

In Fig. 3 we show the real part of the variation-
ally calculated half-shell T matrix T,(P, k, k'/
m +i e), at a laboratory energy of 162.6 MeV (i.e.,
k =1.4 fm '). Again the convergence is good, and

by N= 5 the variational approximation is exact to
within the accuracy of the drawing. [In contrast,
the nonvariational approximation (23) at N=5,
which is also shown, differs considerably from
the exact result. ] The imaginary part of the vari-
ational amplitude is not shown, but converges to
the exact result in a similar way. A further check
on the calculations follows from the fact' that the
phase of the half-shell amplitude should be the
same as that of the on-shell amplitude T,(k, k, k'/
m +is). We have verified that this is so for the
converged half-shell values out to 3 fm ', and at
all energies up to 300 MeV.

Finally, we show in Figs. 4 and 5 the real parts
of some fully off-shell T matrix elements, at a
positive energy, 40 MeV, and a negative energy,
-50 MeV. The behavior of the imaginary parts
(not shown) is similar. Clearly the convergence
of the variational method is again good. As far as
we know, this is true for all energies, and for all
off-shell and on-shell momenta.
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A method based on the JWKB approximation is presented for constructing a local potential
from a complete set of complex phase shifts at a single energy. By introducing the Sabatier
transformation the problem is reduced to solving an Abel integral equation, the solution of
which is closely connected with the potential. The resulting optical potential is uniquely de-
termined in the noncritical domain, and its range of validity is in keeping with the JWKB ap-
proximation. A direct connection between the phase shifts and the optical potential is thereby
established. The above procedure is tested for the scattering of medium-energy e particles,
and it is found to be quite reliable over an angular range encompassing the diffraction region.
Possible applications of the above method to the elastic scattering of medium-energy heavy
ions are discussed.

I. INTRODUCTION

The scattering amplitude for elastic scattering
of two spinless particles with charge z, z', and
relative velocity k/p, is given by

f(8) = f (8 ) + . Q(2l+1)e" '&(e'@& —l)P, (cos8),

o, = o, +g arctan 71

J=z
(lc)

oo= argI'(1+ iq), (1d)

(la)

where f,(8) is the point Coulomb scattering ampli-
tude,

f, (8)=, ,
)
exp[ 2iq ln sin( —', -8) +2icr,],2ksin j~8

(lb)

XJ =ZZ 812L (1e)

and I' is the gamma function. When inelastic chan-
nels are open the scattering phase shifts 5, are
complex and

~

e"~' )& 1. In this work we will be in-
terested in the elastic scattering of strongly ab-
sorbed projectiles at medium energies. It has be-
come customary to analyze such experiments in
terms of two models': (i) the parametrized phase-
shift analysis which directly parametrizes the par-
tial-wave amplitudes in (la)'; (ii) the optical-po-
tential analysis which indirectly parametrizes the
scattering amplitude in terms of a complex poten-
tial. In the above region, either of the above mod-
els provides an adequate description of the diffrac-
tion scattering in terms of a small number of pa-
rameters. Although not identical because of the
ambiguity in the significance of the various param-
eters, ' the optical-potential and parametrized
phase-shift analyses are equivalent insofar as they


