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Pion-Nucleon Potentials for Use in Low-Energy Nuclear Physics
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One- and two-term nonlocal separable potentials are determined to fit all partial S-, P-,
and D-wave experimental phase shifts up to the first energy resonance at about E~ =180
MeV {lab). The theoretical and experimental phase shifts, scattering lengths, and volumes
are in good agreement. The practical use of this potential in nuclear physics calculations is
simpli6ed by the choice of simple form factors and of identical ranges in all S, P, and D
relative states.

1. INTRODUCTION. USEFULNESS OF A

PION-NUCLEON POTENTIAL

In recent years, experimental and theoretical
research in pion-nucleon (v-N) elastic and inelas-
tic scattering has aroused considerable interest.
Diverse complicated techniques are required to
explain resonances and inelastic processes. A

systematic utilization of the law of causality (dis-
persion theory), of the crossing symmetry, and
of the S-matrix unitarity has brought about con-
siderable progress in the understanding of m-N

interaction phenomena. However, as soon as the
m-N interaction is needed in a nuclear calculation,
many simplifying hypotheses have to be made'
(i) A simplified form for the scattering amplitude
is usually chosen"; (ii) in a multiple-scattering
calculation as, for example, the pion-nucleus-
potential calculation, the impulse approximation
is used'; i.e., one assumes that the scattering
amplitude of free pions on free nucleons and on
bound nucleons in a nucleus are the same; this
hypothesis is justified by the absence of poles at
low energy and the short range of the m-N inter-
action; (iii) in numerous studies of the hole states
in nuclei, a still more phenomenological approach
to describe the pion-nucleus interaction is used.
It is indeed well known that a pion is preferentially
absorbed by two nucleons in a nucleus rather than
by one because of energy and momentum conserva-
tion. Both experiment and theory show that if two
nucleons practically at rest absorb a 140-MeV
pion, they both leave the nucleus in opposite di-
rections, each having energy of about 70 MeV.
The final state in this reaction leads to a three-
body problem which is hard to solve. Then, in
the calculations, one neglects the interaction be-
tween the two ejected nucleons, or the interaction
between these nucleons and the recoiling nucleus,
or both interactions, using phenomenological pion-
nucleus potentials (quasifree picture of pion ab-

sorption in nuclei). These three types of approxi-
mations are often completed by the introduction
of phenomenological parameters chosen without
reference to the experiment. '

It seems to us that in many low-energy nuclear
physics calculations, the number of approxima-
tions and phenomenology could be reduced if a
realistic and simple analytic form for the m-N po-
tential were available. In this paper we present
a potential for the pion-nucleon interaction which
is real (elastic), nonlocal, and separable.

2. DEFINITION OF THE POTENTIAL:
ON-SHELL BEHAVIOR

A nucleon may be regarded as a cloud of pions,
so that the problem of the scattering of a pion on
a nucleon is a many-body problem; then the true
m-N interaction is very probably of a nonlocal type.
In most cases it is possible with a nonlocal force
to go through the whole analytic calculation with-
out any approximation. Moreover, as the nucleon-
nucleon nonlocal potentials have been so helpful, '
it seems natural to use them for the m-N inter-
action.

In the following, we assume that:
(i) Nonrelativistic quantum mechanics is suitable
to describe the m-N interaction. This is probably
true if the energy of the incident pion does not ex-
ceed the energy of the first resonance (E, = 180
MeV in the laboratory system). When needed, it
is always possible to include relativistic correc-
tions, but pion-nuclei calculations suggest that
they are of little importance. '
(ii) The v Ninteraction may-be described by a
potential in the studied energy range.
(iii) v Nscattering is ch-arge-independent (isospin
conservation).

For a two-body potential satisfying all the usual
invariance and symmetry laws, the most general
form may be written in relative coordinates:
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W(r, r') =(r (W (r'&

x (r(l ~ jm)(l ~j m (r"'&P, .

P, is the projection operator onto the isotopic
state defined by

(r(v, „,&=r' 'e "
r». k. , (2a)

or, alternatively, v, », (k) in the impulse space are
1/2

(k Iv, »,) =i' — v«J, (r)j, (kr)r dr
W p

w 0'+ '
m

(2b)

The o,„.k parameters (in fm ') are the inverse
ranges of the potential, and the B)fjt parameters
[in fm a'"l] measure the depths of the potential
in the l jt state. These parameters will be deter-
mined here to fit the experimental phase shifts. '
This insures the correct behavior of the scattering
amplitudes on the energy shell. Let us consider
a scattering-wave solution of the Schrodinger equa-
tion:

2
——o'k( )+ Jw(r, r')d(r')d' '=Ek(rl.

With the correct asymptotic behavior

e' "
(t)(r) ~ e'"' '+t(k, k')

Then, the scattering amplitude satisfies the X ipp-
mann-Schwinger equation

t(k, k') =W(k, k')+-
kp- g +zE (4)

where k', = 2pE/k', but k and q may be arbitrary
In this case t(q, k) is the scattering amplitude off

s =-,' is the unique value for the spin of the n -N
system (s, =0, s„=-,'). The orbital angular mo-
mentum 1 and the spin s are coupled to give the
total kinetic momentum j =1+s:

(l ~; jm) = Q (tm, ) (~mg(lm) —,'m, ( jm) .
ttts(tftl )

The sum of the separable potentials (i=1, 2) was
chosen to allow for the possibility in certain waves
of simultaneously having a long-range attraction
(B, & 0}and a short-range repulsion (B, )0). p is
the reduced mass of the system p =m, m /k((m, +m„)
The radial functions v, ...(r) are defined in the con-
figuration space by

3. PARTIAL-WAVE ANALYSIS-
SOLUTION OF THE RADIAL

SCHRODINGER EQUATION

A. Mathematical Solution

E = k'k'/2l(, stands for the energy of the relative
particle [E = pE, (lab)/m, ]; then

(r' ~ k')k( ) k,
"f W(r=, )k(r )d'' (8)

The partial-wave expansion of the wave function

0..(r)=g ""'' (rllkjm&X, ',

where gt t is the isospin function, and s = —,', leads
to the equation:

+k' u„(rk)(1(l ,'j m&)tk'—1 d' l(l+ 1)

=Pg B;»,(r (vs(jk&(r (l-,' jm&}t", 'd). () .

Finally, the radial equation for each ljt state is
written (from now on j t subscript:s will be omitted):

+k' u, (r)
d2 l (l+ 1)

dr r

= g B,,rv»(r) v, ,(r')u, (r')r'dr'
dp

B«rv«r A«=I', r .
(8)

Equation (8}defines the integral A.„and the func-
tion F,(r). The spherical Bessel and Neumann
functions~ are linearly independent solutions of
the homogeneous equation [F,(r) = 0] associated
with Eq. (8). We choose the norm by setting the
Wronskian equal to unity:

y, (r) = Wn rj, (n ) ~ ~ stn k - l- ,
e

„„„Wa 2

1
,(r) dkr, (kr), d

—coo(=kr-l —).

the energy shell describing the inelastic scatter-
ing process. It is clear that we cannot deduce
these scattering amplitudes from the experimen-
tal phase shifts, because the energy is always con-
served in a collision of two free particles:

k2 = k+ = 2pE/k2

however, our realistic potential will have the cor-
rect behavior on the energy shell. Let us remem-
ber that the discontinuity on the cut E„~~o is
given by the unitarity relation off the energy shell. ' '
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FIG. 1. Phase shifts versus energy of the pion in the laboratory. Circles are experimental values of the phase shifts
given in Table IV of Ref. 3. The dashed lines are best fits with one-term potentials. For some waves a second term in
the potential has been introduced to obtain a better fit (solid lines). The scattering lengths and volumes are listed in
Table II, and the parameters of the potential in Table I.
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The general solution of Eq. (8), which is regular
at the origin [u, (0) = 0] is

u, (r) = x, (k)rj, (kr)+ G, (r, r')F, (r')dr',
0

(9)

where x, (k) is an integration constant, and the
Green's function G, (r, r') can be written in terms
of the Heaviside function 8(r r') [8(x) =1 if-x&0,
and 8(x) =0 if x&0]:

G, (r, r') = krr'n, (kr)j, (kr') 8(r —r')

+ krr'j, ( r)kn, (kr') 8(r' —r) .

u, (kr) ~ x,(k)rj, (kr)+km, (kr) QB«A, ,p„(k),

where p„(k) is defined in Eq. (2b). Hence, the
phase shift is simply given by

The phase shift can be found from the asymptotic
behavior of the solution given in Eqs. (9) and (10):

50 100 150 0
MeV

50 100 150 tan8, (k) = —kgB„X„p,g(k) . (i2)

FIG. 2. See Fig. 1 caption. This result is independent of x, (k).
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B. Numerical Solution for the

Integral Equation

It is easy to see' that the solution of Eqs. (9) and
(10)' can be written:

a, p and volumes a, , using, respectively,

I I
k cot5p ~ — and k'cot6, ~ —.

k Pap 'k-p a,

4. RESULTS AND DISCUSSION

(i6)

u, (kr) = x,(k)rj, (kr)+ kr+B«A«H«(r, k), (13)

with

K«(r, k) =j,(kr)J«(r, k) +n, (kr)N„(r, k),

J„(r,k) = n, (kr')v„(r')r dr',
r

Iq, ,(r, k) = j,(kr')v;, (r')r" dr'.
p

We remark

H„(, k) =P, , (k) .

Taking Eq. (13) into account, the a„ integral be-
comes

A. , = x, (k)P„(k)+gq„,(k)B»X.. . (14)

where

q...(k) = k H~, (r, k)v, , (r)r dr
p

= qjgi(k) . (i5)

TABLE I. Values of the parameters. The ranges e;&
are in fm ', the intensities B,, in fm & "~ (i =1, 2).

B) B2

S11

S31
1.5 2 +37

3.5
3.5
3.5

-24.54

45.99
127

The linear inhomogeneous system [Eq. (14)] is
easily solved (see Appendix), and one deduces
the phase shift [Eq. (12)] and the scattering lengths

A least-mean-squares calculation gives a per-
fect fit between the theoretical and experimental
phase shifts reported by Roper and Wright' with
only a one-term potential, for the waves SII, P13,
D15, P31, and D35.' The inverse potential ranges
n„ in this first group (except for the D35 wave) lie
between 3. and 4. fm ' for the best fit. We choose
the unique value 3.5 fm ' for the former waves
and 1.5 fm ' for the latter (D35), which also gives
phase shifts in very close agreement with the ex-
perimental data. The SII and P13 waves have
reasonably weak B„depths (-24.54 fm ' and
+307.9 fm ', respectively). On the other hand,
the P31 wave corresponds to a strong repulsive
depth (1088 fm '). The D15 and D35 waves are of
little importance (see Table I).

For the other waves, it was necessary to in-
clude a second term in the potential (i =1, 2) in
order to obtain close agreement with experimen-
tal results (see Figs. 1 and 2). In the case of the
most important waves ($31 and P33) of this second
group and for the D13 and D33 waves, this agree-
ment is perfect. For the physically least import-
ant PII wave the discrepancies between the theoret-
ical and experimental phase shifts are everywhere
lower than the experimental errors. We found that
the g' method gives only one solution o,„B;,(i = 1,
2) for each of the second group of waves. Surpri-
singly, the best fits for these waves are charac-
terized by n, = I.5 fm ' and also e, =3.5 fm '. In
agreement with experiment, the B„depths mainly
correspond to a strong repulsion in S31 states
and a strong attraction in P33 and D13 states (see
Table I). The scattering lengths a, , and scatter-
ing volumes a, , defined in Eq. (16) have been cal-

P11

P13

P31

D13

D15

1.0
1.5

1.5

1.5

0.106
3.19

3.79

0.097

3.5

3.5
3.5
3.5
3.5
3.5

-702

307.9

1088

-1528
-1755

-1329
-1725

-667

TABLE Q. Scattering lengths for S waves, in
X (=5/m~c), and scattering volume for P waves in X .
Wave Exp ~

S11 0.171+0.005 from 0.157 to 0.158

Theory

0.162

S31 -0.088+ 0.004 from —0.095 to -0.097 -0.176

P 11 -0.101~ 0.007 from -0.038 to -0.042 -0.124

P 13 —0.029 + 0.005 from -0.028 to -0.030 -0.017

P 31 -0.038 +0.005 -0.034 -0.047
D33

D35

1.5
1.5

-0.052

0.0303

3.5
3.5

483
844 P 33 0.215+0.005

~ See Hamilton and Woolcock (Ref. 1).
See Table X (solutions A, B, C, D} of ref. 6.

0.057
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culated by using the parameters of the potential
fitting the experimental phase shifts. The agree-
ment between experimental and calculated values
is good, except for the only wave presenting a
resonance at low energy, P33 (see Table II).

In conclusion, the hypothesis that the low-ener-
gy elastic m-N scattering may be described non-
relativistically by a potential enables us to deter-
mine a realistic m-N potential which is valid for
all experimental scattering data up to E, = 180
MeV (lab). This potential may appear very use-

ful in many applications in the nuclear physics
field. The practical uses of this potential are con-
siderably simplified by the two facts that it is non-
local and separable and that the ranges of the po-
tential are the same (n, =1.5 and n2=3.5 fm ') in
all S, P, and D scattering states.

The authors want to express their appreciation
to Professor D. Allab, director of the Institut
d'Etudes Nucld'aires for making the facilities of
the Institute available to them, and to William J.
Call for the reading of the manuscript.

APPENDIX

(1) In the case of a two-term potential (i = I, 2), the expression for the phase-shift [Eq. (12)] is given by

k t5 — ' p' —BBp q„+2BBp pq, +Bp+Bpkcote= 2
DID2(qllq22 'q 12) D q +2q22

where all Ij t subscripts and the dependence on k are implicit.
(2) With the form factor defined in Eq. (2a), the P„and q„, functions for the S, P, and D waves are suc-

cessivelyy:

1
Ph, E=Q 2+k2 &

k' —n n
(n,.+ n, )(a', + k') (n', + k') '

2k 2 3(y2+ (y2 + 3~ ~ +k2 (y3+ 3(y k~

i, l j(a2+ k2)2 \ iJ, l=1 (a2+ k2) (a ~ a )3 (a2+ k2)2 t

8k' -8(3n', + 10a',k'+ 15n,k') 24
(n'+ k')' ' "' =' (a'+ k')'(n'+ k')' (n'+ k')(n + n )'

24n& k'+ 3(n',. + 3n, a, + 3a&)
(n,'+ k')'(a, . + n, )' (n', + k')'(n, + a,.)'

(3) The derivation of scattering lengths and volumes [Eq. (16)] is straightforward from the above expres-
sion of kcot5.
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