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Approximate values for the residual neutron-proton interaction in mirror nuclei are de-
rived from binding energy data. The comparison shows no indications for signiQcant sym-
metry-breaking charge-dependent nuclear effects.

The quantity

I„q(N& Z) =B(N& Z) —B(N, Z —1)

+B(N-1, Z —1) -B(N —1, Z)

[M(N& -Z) M(-N, Z —1)

+M(N —1, Z —1) M(N-—1, Z)] (1)

represents an approximate measure for the resid-
ual neutron-proton interaction in a nucleus char-
acterized by N and Z. Here, B(N, Z) and M(N, Z)
denote the binding energy and mass, respectively.
General properties of I„~ and related quantities
(where the effect of the curvature of the essential-
ly parabolic mass surface is eliminated) have been
studied and discussed by a number of authors,
such as Zeldes, Gronau, and I ev' and Basu and
Banerjee. ' More complete lists of references
are given by these authors. Regularities concern-
ing I„~ have been established, the most obvious
one being the dependence on whether A is even or
odd. In particular, the empirical rule of Way, '
which states that I„~ is approximately equal to

10

zero if A = N+ Z = odd, has been discussed by de-
Sh alit.

In a recent communication Basu and Banerjee'
studied the quantity I„~ for the mirror nuclei.
They compared I„~ for the members of the isospin
doublets and observed energy differences ranging
from a few keV to more than 1 MeV. Shell effects
seemed to be indicated, and the authors concluded
that the departures from zero require the presence
of symmetry-breaking charge-dependent nuclear
effects.

Figure 1 shows a plot of the I„~ values of the
mirror nuclei obtained from the 1971 atomic-
mass evaluation' as a function of mass number A.
The T =0 states (generally the ground states) and
the T =1 states of the odd-odd self-conjugate nu-
clei have been used (excitation energies from
Ref. 7}. The oscillatory behavior of I„~ as a func-
tion of A has been recognized earlier. ' It is easy
to understand if one adopts an independent-particle
picture where the nucleons move in a self-con-
sistent single-particle field. The energetic posi-
tion of the fourfold-degenerate Nilsson-like or
Hartree-Fock single-particle levels, as well as
the residual interactions, are assumed to vary
slowly with A (see also Ref. 8). Figure 2 repre-
sents Eq. (1}based on this simple picture. With-
out specifying or discussing the important ques-
tion of the various J and T couplings (there exist
three types of pairing energies for nucleons with-
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FIG. 1. Plot of I„& for the mirror nuclei as a function
of A. The triangles denote the values obtained by using
the (generally excited) T=1 states in the odd-odd self-
conjugate nuclei. Experimental uncertainties are indi-
cated if &50 keV.

FIG. 2. Schematic representation of Eq. (1) based on
an independent-particle model for nuclei with T, =+2
and A =4k+3 and A =4k+1, respectively (k =integer).
The dotted lines represent any number of completely
Glled orbitals.
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0 FIG. 4. Schematic representation of the (charge-sym-
metric) Garvey-Kelson nuclidic mass relationship (Refs.
10, 11) (GK-S) and its derivation from the approximate
equality of I„& for the mirror nuclei. The plus and mi-
nus signs represent the masses, positive or negative,
of the respective nuclei.
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FIG. 3. Plot of the difference AI» for the nuclei with

T, =+& (filled circles) and T,=+1 (open circles) as a
function of A. Experimental uncertainties are indicated
if )15 keV.

in the same orbital and four types for nucleons
in different orbitals; see for example Ref. 9),
Fig. 2 clearly shows that for nuclei with A= 4k+3
(k = integer) the residual n pint-eraction involves
neutrons and protons within the same orbital,
while for A=4k+1 it does not. We therefore ex-
pect I„~(A=4k+3))I„~(A=4k+1) for neighboring
mirror nuclei.

Figure 3 shows the differences AI„~ for T, =+&
and T, = =,' (filled circles) as a function of A. Only
for A= 7, 13, and 17 does the difference deviate
markedly from zero (The va.lue for A=5 is not
shown because it involves four unbound states. )
These deviations, however, are easy to under-
stand as a binding energy effect. The respective
mass differences involve the nuclei 'He, 'Li, 'Be,
"N, and "F, where either a proton pair or the
odd proton (or neutron} is not or only weakly
bound. The result is a Coulomb perturbation in
the wave function which leads to an energy shift
(Thomas-Ehrman shift). All other energy differ-

ences are small. They range from about -100 to
+50 keV with a slight preference for negative val-
ues, but otherwise no systematic behavior. Also
shown in Fig. 3 are the differences b, I„~ for T, =+1
and T, = -l (open circles}. These differences have
generally larger experimental uncertainties, and
they are affected much more by the above-men-
tioned binding energy effect, which enters ~I„~
with positive and negative sign. The presence of
this effect is nicely confirmed by the fact that the
deviations of 4I„~ from zero are about the same
for A = 13 and A= 14. The weakly bound proton in
"N affects both values in the same way. The re-
sult that ~I„~ is small whenever Coulomb perturba-
tions of the wave function are presumably small
suggests that, contrary to Basu and Banerjee, '
symmetry-breaking charge-dependent nuclear
effects cannot be strong.

The same conclusions have actually been arrived
at earlier. The approximate equality of I„~ for
the mirror nuclei leads to one of the Garvey-Kel-
son nuclidic mass relationships, "' " as can be
seen from Fig. 4. These authors" " already dis-
cussed the residuals and concluded that charge
symmetry of nuclear forces must be satisfied to
a high degree. It is worthwhile adding that a de-
tailed study of the quantity I„~ for all nuclei can
lead to a deeper understanding of the other Garvey-
Kelson nuclidic mass relationships. "'"

Thanks are due H. A. Weidenmuller for useful
comments and the reading of the manuscript.
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