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When neutron reduced widths, I'„, are evaluated for N adjacent "single-population" reso-
nances for an isotope, it is customary to express the fractional uncertainty in the s strength
function, So, as +(2.27/N) or +(2/N) . It is assumed that the I'„ follow a Porter-Thomas
(P.T.) single-channel distribution with a common (I'„) for the interval, with no correlation
between the different I'„. lf the spacing distribution follows the Wigner formula for nearest
neighbor spacings, but with no correlations, the (2.27/N) fractional uncertainty applies
for large N. For spacings following a statistical "orthogonal ensemble" {O.E.) behavior, the
fractional uncertainty in (D) is =N, so the fractional uncertainty in So is =(2/N) for
large N. Experimentalists need easy to use rules for smaller N. We have used Monte Car-
lo methods with a P.T. form for I'„, and O.E. for spacings to establish the upper- and lower-
bound values for $0, divided by SO=7„/D (the ratio of the measured averages of I „and D).
The method of confidence intervals was used. We also suggest a "best choice" ratio for true
Sp to measured So, all for a range of small ¹ The results should also apply for "single pop-
ulations" of p levels. The behaviors for I'„and D were also studied separately.

I. INTRODUCTION

When a single population of s neutron resonances
is studied over a region containing N resonances,
one measures the reduced neutron width I „, for
each resonance and has N- 1 level spacings D,. be-
tween each nearest neighbor. We assume that sin-
gle true mean (I'„) and true mean level spacing
(D) apply for the population, that all s levels in
the interval are detected, and that there is no
contamination by p or spurious "levels. " It is
usually assumed that the individual I'„~ are dis-
tributed according to a single-channel Porter-
Thomas (P.T.) formula

P,(y, u)dy =(2vuy) ' e '~'"dy, (la.)

where y = I"„and u is the true mean (I'„). It is as-
sumed that there are no correlations between the
different y, , although recent results' for "'Er sug-
gest that this may not be true. Equation (la) has

(y) = u and vary = 2u .
If y = I'„ is the average I'„ for a particular set of

N levels, then the distribution for y is
ivl2-I(N/2) N /2e-sv l2u

dyP (y, u)dy= ~ ( / ), (lb)

where u is still (I'„). Equation (lb) has a. y' dis-
tribution form with (y) =u and vary = 2u'/N [Stan-
dard deviation for y =(2/N)'"u]. Most authors as-
sume that the distribution of nearest-neighbor lev-
el spacings about (D) follows a Wigner distribution
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with no correlation between them,

P(x)dx= ,'wx—e '~i'dx, (2)

2.5-

2.0

5
X

CL

N = IOO

where x is the nearest-neighbor level spacing in
units of (D). This has (x) =1 and varx=(4 —v)/v.
For N- 1 spacings, the sample average D has
(3) =(D) and varD= (4 —v)/v(Ã 1). -

When N is very large, and one need not distin-
guish between N and N- 1, T'„cannot differ much
fractionally from (I'„), D cannot differ much frac-
tionally from (D). In this case, a judgement of the
relative likelihood that the true (I'0„) has any given
value in the neighborhood of I'„must have essen-
tially the same "best choice" and "standard devia-
tion" as has I'„about (I'„'), with similar state-
ments for (D) about measured D Th.is leads to
the usual expression

I.O

0.5

0.0

FIG. 1. The probability distribution P~(x) for the ratio
of the sample average to true average for the reduced
neutron width, I'„, according to P. T. single-channel
theory for N adjacent single-population s levels.

after folding the fractional uncertainties of (I'„)
and (D) in quadrature. For relatively small N,
this can lead to a very poor treatment of the situa-
tion. It is our intent to discuss this small N re-
gion in this paper.

In addition, the previous analysis is wrong in
the treatment of D relative to (D) in that there both
long- and short-range order occurs in level spac-
ings, which are described by the statistical-ortho-
gonal-ensemble (O.E.) theory of Wigner, Dyson
and Mehta, and others, and shown"' to hold ex-
perimentally for our recent data for ' 'Er and some
other even-even nuclei. Reference 1 discusses
this subject from the experimental and theoretical
viewpoints, with references to the literature of

TABLE I. Values of xzpl) for the I'„/(I„) distribution, where A is the fractional probability of obtaining I'„/(I„)~z&+).

0.5 0.841 0.159 0.9 0.1 0.95 0.05 0.99 0.01 0.995 0.005

0.4549
0.6931
0.7887
0.8392
0.8703

0.0401
0.1728
0.2780
0.3541
0.4113

1.987
1.841
1.729
1.650
1.591

0.0158
0.1054
0.1948
0.2659
0.3221

2.706
2.303
2.084
1.94S
1.847

0.0039
0.0513
0.1173
0.1777
0.2291

3.841
2.996
2.605
2.372
2.214

0.000 16
0.010 05
0.038 28
0.074 28
0.1109

6.635
4.605
3,782
3.319
3.017

0.000 04
0.00501
0.023 91
0.051 75
0.082 35

7.879
5.298
4.279
3.715
3.350

6
7
8
9

10

15
20
30
40
50

0.8914
0.9065
0.9180
0.9270
0.9342

0.9559
0.9669
0.9779
0.9834
0.9867

0.4558
0.4917
0.5215
0.5466
0.5681

0.6432
0.6892
0.7447
0.7783
0.8014

1.546
1.509
1.479
1.454
1.432

1.357
1.311
1.255
1.222
1.199

0.3674
0.4047
0.4362
0.4631
0.4865

0.5698
0.6221
0.6866
0.7263
0.7538

1.774
1.717
1.670
1.632
1.599

1.487
1.421
1.342
1.295
1.263

0.2726
0.3096
0.3416
0.3695
0.3940

0.4841
0.5425
0.6164
0.6627
0.6953

2.099
2.010
1.938
1.880
1.831

1.666
1.571
1.459
1.394
1.350

0.1453
0.1770
0.2058
0.2320
0.2558

0.3486
0.4130
0.4984
0.5541
0.5941

2.802
2.639
2.511
2.407
2.321

2,039
1.878
1.696
1.592
1.523

0.1126
0.1413
0.1681
0.1928
0.2156

0.3067
0.3717
0.4596
0.5177
0.5598

3.091
2.897
2.744
2.621
2.519

2.187
2.000
1.789
1.669
1.590
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TABLE II. Ratios of x&~2(V) to x&(N) for I„/(I'„) distribution. The last column lists values of Cz ——1/x&~&Q) vs N. As
discussed in the text, we suggest that the best choice of ( I'„) is Cz times the experimental value of I „.

0.841 0,159 0.9 0.1 0.95 0.05 0.99 0.01 CN

6
7
8
9

10

15
20
30
40
50

11.35
4.011
2.837
2.370
2.116

1.955
1.844
1.760
1.696
1.644

1.486
1.403
1.313
1.263
1.231

0.2290
0.3766
0.4563
0.5087
0.5470

0.5766
0.6006
0.6205
0.6375
0.6522

0.7044
0.7375
0.7790
0.8049
0.8232

28.81
6.579
4.049
3.156
2.702

2.426
2.240
2.1p5
2.0P2
1.920

1.678
1.554
1.424
1.354
1.309

0.1682
0.3010
0.3785
0.4315
0.4711

0.5024
0.5281
0.5496
p.5682
0.5843

0.6428
0.6806
0.7287
0.7593
0.7810

115.7
13.51
6.724
4.723
3.799

3.270
2.928
2.688
2.509
2.371

1.975
1.782
1.586
1.484
1.419

0.1184
0.2314
0.3028
0.3538
0.3931

0.4247
0.4511
0,4736
0.4931
0.5103

0.5737
0.6156
0.6702
0.7055
0.7308

2896.0
68.97
20.60
11.30
7.850

6.133
5.122
4.460
3.996
3.652

2.742
2.341
1.962
1.775
1.661

0.0686
0.1505
0.2085
0.2528
0.2884

0.3181
0.3435
0.3656
0.3851
0.4025

0.4689
0.5148
0.5764
0.6176
0.6478

2.198
1.443
1.268
1.192
1.149

1 ~ 122
1.103
1.089
1.079
1.070

1.046
1.034
1.023
1.017
1.013

I 0$ r'
[I (2')l/2] (sb)

for large ¹ This formula is still quite mislead-
ing for small N.

The two papers with which we are acquainted
which treat this subject in detail are those of Mu-
radyan and Adamchuk' and Slavinskas and Ken-
nett. ' Both of these papers use uncorrelated
Wigner (U.W.) level spacings rather than O.E.
theory. In Ref. 4 an improper implicit use is

the field. For N- 1 spacings, Dyson and Mehta'
have shown that the fractional standard deviation
of D about true (D) is ~1/(N- 1) for large N. For
large N the uncertainty of $, is almost entirely
due to that of (I'„), giving

made of Bayes's theorem, which is not applica-
ble, to evaluate certain expressions. The treat-
ment in Ref. 5, aside from not using O.E. theory,
seems to be basically correct, but did not present
results in an easily usable form.

In this paper, we make use of our Monte Carlo
spacing sets' which are in accord with O.E. gen-
erated by use of Dyson's Brownian motion model.
This allows us to treat the distribution of D val-
ues (N levels) about (D) and make statements about
(D) in terms of D The sim.ilar treatment for I'o

about (I'„) was made partly from g' tables and
partly by computer analytically. We also make
statements about how one should select (I'„),
given I'„. Finally, large numbers of computer-
generated Monte Carlo sets were generated for

TABLE III. Values of p+z and p& for I'„/(1„) distribution, which are pl/2) times the + or —fractional uncertainty
of the chosen (I'„)for various confidence intervals.

Po. g

6
7

8
9

1p

15
20
30
40
50

7.317
3.011
2.249
1.937
1.765

1.655
1.578
1.521
1.476
1.441

1.332
1.274
1.212
1.178
1.156

0.5452
0.6234
0.6659
0.6948
0.7163

0.7333
0.7472
0.7590
0.7690
0.7778

0.8095
0.8300
0.8560
0.8724
0.8841

19.66
5.579
3.734
3.049
2.691

2.471
2.320
2.209
2.125
2.057

1.856
1.752
1.643
1.583
1.545

0.5882
0.6990
0.7612
0.8040
0.8362

0.8618
0.8829
0.9007

0.9161
0.9295

0.9783
1.010
1.051
1.076
1.095

81.10
12.51
7.011
5.265
4.425

3.932
3.607
3.375
3.201
3.065

2.670
2.473
2.271
2.164
2.096

0.6234
0.7686
0.8539
0.9139
0.9596

0.9964
1.027
1.053
1.075
1.095

1.168
1.215
1.277
1.317
1.346

2047.
67.97
24.01
14.56
10.83

8.890
7.711
6.921
6.355
5.929

4.771
4.241
3.725
3.465
3.304

0.659
0.849
0.969
1.057
1.125

1.181
1.228
1.269
1.304
1.336

1.454
1.534
1.640
1.710
1.761
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the I'„/D distribution about (I''„)/(D) for a range
of N values, using O.E. theory for the spacings.

II. BEST CHOICE OF &1 „)
AND ITS UNCERTAINTIES

The problem can be stated generally as follows.
We have x= sample average for a measured physi-
cal quantity which has some (unknown) true mean
u, where the form of the probability distribution
for x about u, P(x, u)dx, is known. If a given sam-
ple average x is obtained, what can we say about
true mean u (best choice and uncertainty)? This
is a problem in mathematical statistics rather
than a forward probability calculation. While there
is a tendency to apply maximum-likelihood theory,
we believe that the approach of confidence inter-
vals is more appropriate.

If P(x, u)dx has a Gaussian distribution with
standard deviation (S.D.}e, the probability is
0.1587 of obtaining x &u- cr or x~ u+o. This can
be expressed in terms of the x„values where the
fractional probability of obtaining x ~ xA is A for
a random sample. For the Gaussian case, we have
xp y587 and x«4». There is 0.6826 probability that
x is between u- cr and u+o. The mean of x is also
the median x. For a wider confidence interval,
we might choose the pairs A=0.10, 0.90, or 0.01,
0.99, etc.

For a non-Gaussian-distributed variable, we
can similarly locate xp, 587 and x, ,4» and either
(x) or the median value x„,. It is convenient to
redefine x in units of u, so (x) = u =1 for the dis-
tribution unless the product or quotient of sepa-
rate distributions is involved, as is the case for
the strength function.

Figure 1 shows the distribution of I'„/(I'„) for
various choices of N. For very large N, there

0.8
DISTRI BUTION FOR D/ &D&

l 1.5 I

o..-I
I.O—

0.5-

2.0

2
X

0 I

is a near-Gaussian shape centered about x=1.
For N = 1, 2, 3, etc. , the peak is either at x = 0 or
at x&1, and the median x xy/2 is definitely at
x&1. Table I lists various x„values vs N for this
case. The experimentalists' problem is as fol-
lows. For a finite experimental sample of N lev-
els for which I'„ is obtained, how does one choose
a "best choice" for (I'„), and + and —uncertain-
ties in the "selected" (I'o)? Using the confidence-
interval approach, the upper and lower (I'„) choices
are made by identifying x as measured 1 „divided
by unknown (I'„) and setting x equal to the lower
and upper limits x„values, respectively. For N
=2, we find x, ,4»=0.1728 and xp y587 1.841. The
upper- and lower-bound (I'„') values for this con-
fidence interval are I'„ /0. 1728 = 5.787K „and I'„/
1.841 =0.543I'„. We immediately notice how asym-
metrical these limits are with respect to 7„. This
raises the question of a "best choice" for (I'„) if
the upper and lower bounds for this confidence in-
terval are so asymmetric. The choice of Ref. 5
was to use the maximum-likelihood method which
corresponds here to choosing (I'„)=I'„/(x) = I'„.
However, we note that for N=2 there is 63.2'
probability for x &I and only 36.8% probability for
X~1. For this reason, we favor the approach of

10
1„' ANALVSIS CuRVES

I.O-

N=4
2.0—

I.O—

N=6

0.005

~0.01 4.0
0.4 I.O

X
1.6

0.5 I

10
N

I

20
I

50

Po. i

100

2.0-

40-

2.0-

FIG. 2. Plot of C~=—1/x&y2(N) and p„and p~ vs N for
the I'„distribution. We suggest using (t „)= C~t'„with
unequal + fractional uncertainties pz or p„ times
(2/N), respectively.

0.5 I.O
X

I.5 0.6 I.O
X

I.4

FIG. 3. Monte Carlo histograms for expected sample
D to true(D) for the O.E. distribution for level spacings.
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TABLE IV. Results for Cz and pz and pz from Monte
Carlo studies of the distribution of the sample mean
level spacing D to the true mean (D) for the orthogonal-
ensemble theory. C& ——1/xf/)Pl) and we suggest that the
best choice (D) = C&D, with asymmetrical + fractional
uncertainties p+& and pA times 1//N. The values are from
the smooth curves of Fig. 4 which average out statistical
fluctuations in the computed values.

Cz P P.84f Pp. f 58 p p.g Pp. f

2

3
4
5

6
7
8
9

10

1.07
1.02
1.01
1.00
1.00
1.00
1.00
1.00
1,00

1.99
1.32
1.16
1.11
1.08
1.07
1.06
1.05
1.05

0.770
0.774
0.790
0.809
0.827
0.843
0.856
0.868
0.878

3.04
1.88
1.62
1.52
1.47
1.44
1.41
1.39
1.38

0.909
0.929
0.965
0.997
1.02
1.04
1.06
1.07
1.08

setting the "best choice"

(I'„)= I'„/x„, = C„I'„("best choice"), (4a)

which has better symmetry.
The value of +y/2 is very closely fitted by the em-

pirical formula

for A =0.1587 and 0.8413, the usual one-standard-
deviation values for a Gaussian distribution. Note

the very large asymmetry in the + and —fractional
uncertainties for this small a sample.

Since for large N the A„,4» and AQ g587 should ap-
proach (2/N)'", it is useful to define new param-
eters p„' and p„as (N/2)'~' times the correspond-
ing ~„' and b,„. These quantities are listed in

Table III for various choices of N. The values of
C„and p~ and p„are plotted in Fig. 2.

III. MONTE CARLO RESULTS FOR THE

BEST CHOICES AND UNCERTAINTIES

OF Q)& AND So

The similar distribution functions for D/(D) gen-
erated by Monte Carlo methods for the O.E. case
are shown in Fig. 3 for several values of N for
which there are N- 1 spacings. Note that, ex-
cept for the case N=2 (one spacing), the distri-
butions are fairly symmetrical and are centered
about x=1. Table IV lists some "smoothed out"
values for C„= I/x», and p„'= Na„' for 2 &¹10.
The quantities are plotted in Fig. 4 where smooth
curves are shown to smooth out the statistical
fluctuations due to the finite (10800) number of

2 0.087 0.034
1/2 3N N2 N3 (4b)

DISTR I BUT ION FOR So/So

Values of x»2 are listed in Table I, and values of
C„=1/x„, and x», /x„ for various choices of 4 are
listed in Table II. The various fractional + or-
uncertainties 6„' or A„about C„I'~ were also com-
puted for matching confidence-interval pairs of A
values. For N= 2 we would write

(I') = 1.443I'(1'"'" )

0.8 .

04-

0.8

N=2
0.6-

0.4-

0.2

2
X

p09

p+
Q, 841

D ANALYSIS CURVES

0.4

0.8—

0.4-

05

CN

p G. l

0.159

I I i I I

5 IQ

15

IO-

0.5-

2
X

N=20

3.0

2.0-

I.O-

2
X

N =80

FIG. 4. Monte Carlo results for C~ and p~ and p~ for
the mean level spacing (N levels) according to O.E. the-
ory. We suggest using (D) = C,~D, with unequal + frac-
tional uncertainties p~ and pz times 1/N. The smooth
curves and points are after averaging out statistical
fluctuations in the computed values.

0.4 1.0
X

1.6

FIG. 5. Monte Carlo results for the distribution of
x =ratio of I /D to the true strength function using P.T.
theory for I'„and O.E. theory for the spacings.
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Monte Carlo samples for each N. With about the
same accuracy as our Monte Carlo results, the
values of p'„are given by the following empirical
relations to N- 20:

7 73 397 139
N+ 1.39 (N+ 1 39) (N+ 1.39)

(6b)

0.662 2.73 10.7
P~8413= '

N
—

N2
+ N3 t

1.54 3.44 2.56
Pal587= —

N
' N2

—
N3 ~

2.4 8.37 21.9
pg9~1 2+

N
—

N2 + N3 ~

(5a)

(5b)

(Sc)

1.34 1.71 0.378
Pal '

N 'N2 —
N3

Note that N& 2, so N'» 8. The values of C~
are all near unity. Within the accuracy of our
evaluation, an empirical fit is given by

C„~1+0.52/N' .

(5d}

(5e)

0.858 1.18 1.28
(6a}

Some histograms obtained for the distributions
of 7,/S, using 10800 Monte Carlo samples for
each N ~ 10, and 3600 or 1800 samples for each
N&10 are shown in Fig. 5. The program separate-
ly generated I'„and D values each time, with the
D selected according to O.E. theory. The values
of C„=—1/x», and the various p„' and p„, defined
as (N/2)'~h„', are listed in Table V and plotted
in Fig. 6 after using a "smoothing" process as
for the spacing distribution. These smooth curves
for C» po 8413' and p, ,587 are well fitted by

10.7 249 3020
N+ 16.7 (N+ 16.7)' (N+ 16.7)' '

(6c)
These figures, tables, and empirical formulas

are intended for easy use by experimentalist in
presenting the results of measurements. No at-
tempt has been made to fold in the contributions
due to experimental uncertainties in the measured
quantities. A simple quadrature method might be
suitable. More important is the problem of missed
s levels, or the inclusion of some spurious or p
"levels. " Similarly, if several isotopes and/or
spin states are involved there is the uncertainty
as to whether or not all levels are properly identi-
fied by isotope and spin. For N not too small, the
uncertainty in obtaining So is even smaller if there
are extra very weak missed s levels in regions
where N-stronger s levels are detected. Both
(1'„) and (D) are in error because of the wrong
level count, but g I'0,. is not very much influenced
by missing weak levels and the uncertainty in S,
is reduced by the larger true N of the region using

where hE is the energy difference of the upper
and lower measured levels and the sum is over
the N measured levels even though the true num-

TABLE V. Results for C~, p'„, and p~ from Monte
Carlo studies of the distribution of the sample mean
r„'/D to the true strength function, S0, using P.T. theory
for the I„, and O. E. theory for the spacings. Smoothed
averages are used from the curves of Fig. 6.

IO

+
Ppg ~
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FIG. 6. Monte Carlo results for C~ and pz and p~
for determining a "best choice" and + uncertainties
for the "true" strength function S0 in terms of the ratio
of the observed averages F„/D. We suggest using "true"
S0-—C QI'.„/D) with asymmetric (+) fractional uncertain-
ties p& and pz times (2/N) . The curves smooth out
the indicated statistical fluctuations in the Monte Carlo
points.
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ber of levels is an unknown amount greater than

¹

The present confidence-interval approach to
the analysis is the one which we finally con-
sidered to be most appropriate for this problem.
We initially explored various Bayes theorem ap-
proaches where one has the problem of choosing
the appropriate a priori distribution form and

where the expressions are plagued with infinities
for small N. We also explored the maximum-
likelihood approach and finally rejected it for rea-
sons discussed in the text. As a final comment,
it should be noted that our experimental studies"'
strongly support the O.E. theory only for level
spacings for favorable cases in the 150 &A &190
mass region. It is not assured that the theory
should apply to lighter nuclei or nuclei near closed

shells where (D) is very large and where condi-
tions may not yet be appropriate for such an ex-
treme statistical treatment.
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Isospin-Forbidden and Allowed C(d, n) B Cross Sections*
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We report extensive new data on the isospin-forbidden reaction C(d, a2) B(1.74) for 7.19
MeV «Ez «13.99 MeV. We also report extensive data for the isospin-allowed reactions
(d A p g 3) 8, All channels exhibit resonant behavior indicative of compound-nucleus forma-
tion. We find no evidence for appreciable direct or semidirect contribution to the n2 cross
sections. A partial-wave expansion of the n2 data fixes J" for a number of (isospin-mixed}

N compound-nuclear levels. Our data do not support either Noble's proposed Li mechan-
ism or Weller's modification to Noble's proposal.

I. INTRODUCf ION

Since the deuteron, the + particle, and the
ground state of "C all have zero isospin (T =0),
and the second excited state of "B(1.74 MeV, J'
=0') has T = 1, the reaction "C(d, o.,)"B(1.74) is
isospin-forbidden. Thus, if the isospin quantum
number is strictly conserved in nuclear reactions,
the yield for this reaction is zero. Substantial

cross sections for this and other isospin-forbid-
den reactions occur, ' "and are generally attrib-
uted to isospin mixing by Coulomb forces in the
compound-nuclear states. However, Meyer-
Schutzmeister, von Ehrenstein, and Alias' and
Janecke et al.' " suggest that their "C(d, o.,)"B
data require a direct mechanism. Also Janecke
et at.""believe their "O(d, n, )"N(2.31)data imply
a direct or semidirect mechanism. Since direct


