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The compound spreading widths (due to the Coulomb interaction) of &,
and 2+ analog resonances in Bi 9 are calculated within the general framework of the de To-
ledo Piza —Kerman scheme by relegating the giant isovector monopole contributions to the
continuum space. The work emphasizes the structure of the parent states and the coupling
is via [II„T). The widths are found to be of the order of 20 keV, which is considerably less
than the observed experimental total widths of 200-300 keV. A background of (i) configura-
tion states {6including the antianalog state for each analog resonance) and (ii) complex lev-
els (e.g. , 33261 states for &~+ are considered. The one-body Coulomb interaction represented
by a uniform sphere of charge is used for (i), while the two-body Coulomb force is expanded
in multipoles for (ii). In (i) the dependence on the Coulomb radius and the nuclear spreading
width are also studied. For all doorways the relative importance, number, density,
strength, and compound-width contributions are investigated in great detail and the results
are presented in tables and histograms. In addition to certain states of type (i) the most
significant complex states are those based on the Pb 8 giant dipole doorway resonance.

I. INTRODUCTION

The discovery of isobaric analog resonances as
members of isobaric multiplets has led to much
experimental and theoretical activity. ' If, e.g. ,
an analog resonance is formed by proton bombard-
ment of a target nucleus (Z, N) with isospin quan-
tum numbers (T, T), then the analog resonance is
in the nucleus (Z+ I, N), and the quantum numbers
are (T+ —,', T ——,'). This state is considered to be
the second member of a 2T +2 multiplet, the first

member of which is the parent state (T +-,', T +-,').
This level is a low-lying bound state in the adja-
cent parent nucleus (Z, N+ I). Isospin-violating
forces (primarily the Coulomb repulsion among
protons) remove the energy degeneracy of the mul-

tiplet members and shift the analog state upward
into the continuum. In addition to this gross shift
the isospin of the analog level ceases to be pure.
The long-range Coulomb force results, however,
in only weak coupling to the vast horde of neighbor-
ing states of lower isospin (T ——,', T ——,'). We will
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use the notation T, =7'+ —,
' and T, =T ——,'. The only

isospin-violating force used in the present paper
will be the Coulomb force alluded to above.

A study of analog resonances leads to informa-
tion about the structure of the parent states and
also target excited states. However, in the pres-
ent paper our emphasis will be on an analysis of
those compound states in the analog nucleus that
contribute to the ultimate decay of the analog reso-
nance. The portion of Hilbert space we mill treat
is the compound (or closed-channel) space pie).
The states in this space are orthogonal to those
in the continuum (or open-channel} space Pi@),
and to the analog space A i%). In other words, if
Q, P, and A are projection operators, ' then the
total wave function i@) is given as'

I+) =@I~)+PI+)+AI+)

A very important simple mode of excitation (the
giant isovector monopole vibration} is not consid-
ered in the present calculation as part of the com-
pound, space. Mekjian' and Auerbach et a/. ' have
indicated that states of that type are significant,
and a calculation. of monopole effects in the com-
pound space is planned for the future.

Our aim is to calculate not only the effects of the
Ai@)-@i@)couplings on the width of the analog
state, but also to determine which background com-
pound states are most relevant. We will investi-
gate in much detail the structure of the seemingly
complex array of compound space states embedded
in the continuum. This work wiQ verify that only
certain of these states are important, viz: (i) those
levels most strongly reached from the analog res-
onance by the Coulomb force, and (ii} those levels
that are strongly weighted because of their prox-
imity to the analog resonance. The states of type
(i) are doorway states of the sort generally asso-
ciated with the phenomenon of intermediate struc-
ture. Specifically, these will turn out to be the
configuration states and levels related to the giant-
dipole state. The configuration states are those
T, levels generically related to the analog state
itself, but located energetically considerably be-
low the analog state because of the nuclear sym-
metry energy.

In performing this work the scheme of de Toledo
Piza and Kerman' is used. This provides a natu-
ral separation of the structure and reaction theo-
ry problems, and allows us to use a simple nucle-
ar model for the parent bound states and the lev-
els in the analog nucleus compound space Qii).
These compound states lead to what we mill eall
following Kerman, ' «mPound nzixing. This is
somewhat related to the internal mixing of Rob-
son. ' As part of the demonstration of doorway

effects we will give for comparison the coupling
matrix element results for many other complex
levels whose presence, we shall see, contributes
very little to the spreading width. The implication
of this is that only certain carefully selected door-
way states need be considered in future work.

The particular analog nucleus considered here
is Bi"', whose parent nucleus is Pb"'. This
mass number is in a region that should possess
strong shell effects and support the use of a shell-
model description of the basic pertinent states.
Section II will deal with the theory, Sec. III will
give the results, and Sec. IV will discuss the re-
sults and summarize the main conclusion, s.

II. THEORY

A. Introduction

We first outline the essential steps leading to
an expression for the compound spreading (or mix-
ing) width I'" ~. Let i II,) denote the ith state in
the parent nucleus. Each such state is an actual
eigenstate of the total Hamiltonian, i.e.,

Although it is not necessary, for simplicity in
this paper we will assume that i II;) is a state of
good isospin T,. The mixing of higher isospin
into i II,-) is quite small and does not add anything
to the present analysis. We also assume that each
i II,) is a single-neutron state. Configuration mix-
ing in Pb' ' should be sufficiently small to justify
this. (Auerbach et a/. ' have found that such mix-
ing makes extremely small corrections to Cou-
lomb displacement energies in Sr" )It th.en fol-
lows that the ith analog state iA, ) is

where T, and T are the usual raising and lower-
ing operator components of the total isospin opera-
tor. Because of i.sospin-violating terms the states
iA,.) are not eigenstates of H.

The total width I' of the analog state iA) with a
particular spin and parity (for ease we drop the
subscript i} is given by

Z' —Z comp + I'con
y

where I'" P is the width for decay to the eorn-
pound space Qi@) and F""' is the width for decay
to the continuum space Pi@). We will only be con-
cerned with the compound spreading width I"" P

in this paper. Specifically I'" P is defined via
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where
f q) represents the qth state of energy Z, in

the compound space Q f4&, and the quantity 6" P

is the shift of the analog state. (This shift will
not be calculated here. ) The energy Z satisfies

H fe& =z fe&,

and the qua. ntity Z +I/2 indicates an average over
all compound-nuclear resonances with a Lorentz-
ian weight factor of width I. In general, the aver-
aging width or internal I must be at least as large
as I'" &. If we assume that only certain (namely
the simpler) compound states are significant for
coupling to fA) and call these the doorway states,
then we may approximate Eq. (5) by

. r" & ~&A fa fd&(d fa fA&

2 ~ z-z, +ir/2
where the sum is over the doorway states and I'„
is the width of the dth doorway

f d) due to nuclear
interactions. We emphasize that neither the states
q in Eq. (5) nor the doorways need be of good iso-
spin. In the present calculation, however, the
doorways are either pure or nearly pure T, states.
Equation (7) assumes that the doorways are not
strongly coupled to each other through the more
complex configurations in the Q f0& space.

The specific choice of doorways will be indicat-
ed later. These must all be orthogonal to each
other and to fA). Only discrete states compose
the set

f q), and hence fd). Giant isovector mono-
pole excitations are assumed to be in the space
P f4& (as indicated in Sec. I) and, hence, contrib-
ute to I'""' only. This is allowable, since I', the
sum of the compound and continuum mixing (Eq. 4),
is the only experimentally observable quantity.

Since fd) and fA) are orthogonal and fII) (for
ease we drop the subscript i) is an eigenstate of
H, it follows that

and T is of use and is given by

Hc'=fac, T ~

2

-,
f

f(1 ~.')~'+(1-~,')r'),
(11)

where g =z„—ir, E.quation (11) represents a
two-body force that changes a neutron-proton pair
into a proton-proton pair. Equation (8) may be
rewritten as

&d fafA&=&, ,&dfa' fil&, (12)

where we have assumed for this paper that the
nuclear forces are charge-independent. We may
therefore rewrite Eq. (7) as

I comp

~ comp

2

&11 fa',"fd&&dfa' fll&
2T+1~ Z Z„+iI'—/2

d

(13)

Here the definition of H c" follows from that of H'(
in Eq. (11). For ease the equal sign is written in
Eq. (13); however, we realize that this equation
is only as valid as our approximations allow.

We wish to evaluate I" P at the analog-state
energy Z„;thus, Z =Z„in Eq. (13). The doorway
widths I'„are, in general, functions of energy,
and can sometimes be observed experimentally.
However, we shall simplify the calculation by us-
ing a specific value of I'~ for each particular door-
way. The values employed depend on the nature
of the doorways and are based on reasonable ex-
perimental and theoretical estimates of an upper
limit for r~ at the doorway energies. " (These
are given in Sec. III A1.) The r~ values will of
course be most valid when fZ„—Z, f

is small.
Therefore

(d fafA&=, &d fIH, T ]f11&. (8) (11 fa',"fd)(d fa' fll)
2T+1~ '

( „z)z'+(r,/ -)'2

This matrix element will vanish unless there is an
isospin-violating term in H; in the present paper
this term is Hc, the two-body Coulomb force act-
ing between protons, so that

H H nlic +Hc p

where H„„,is the nuclear Hamiltonian. The Cou-
lomb interaction is given by

(14)

A simple way of interpreting this equation is to
assume that each doorway is spread with a Lo-
rentz shape about its shell-model energy with a
width parameter I„.This width represents in our
model the spreading of the doorway state due to
nuclear forces, and we shall refer to it as the
doorway spreading width. The width I " P is cal-
culated at the analog resonance from the tails of
the different Lorentzians.

Hc =4+ ~

f

(1 —T,')(1 —T',),
~ r,- r&

i&j
(10)

B. Matrix Elements

with v., =2t, . We note that the Coulomb force is
long-range, spin-independent, and much weaker
than the nuclear force. The commutator of Hz

It suffices to develop an expression for (d fH'c'
f II)

in Eq. (14), since the matrix element of H c' fol-
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lows directly from this. . The parent state is so that, in particular, H c' in Eq. (11) becomes

(15)

where n denotes a neutron and ~4,) is the target
wave function

IIc'=(&c, T ~

Q (o.P ~hc ~ by), atatsayb~.
nsy&

(20)

(16)

We assume a spin-zero target of doubly closed
shells. In second quantization, if the neutron is
in a shell-model state nlj, then

where 5 is the neutron creation operator and e
denotes the set of quantum numbers nlj. Similar-
ly we let a~ be the proton creation operator, and

5, and a, be the corresponding neutron and proton
annihilation operators.

In second quantization the Coulomb interaction
Eq. (10) becomes

Ifc = 4 2 &o'Pl&el ~y&aatatsazaq,
ngy5

(18)

with hc representing the two-body Coulomb inter-
action for a system of two protons (this will be
treated in detail in Sec. IIC) and the subscript 8
indicates that antisymmetrization has been includ-
ed. The isospin raising and lowering operators
T, and T become, respectively, in second quan-
tization

Thus (d
~
H c '

~
II) may be evaluated using Eqs. (17)

and (20) for selected doorway states ~d) in the
analog nucleus.

We may see which types of doorways are possi-
ble by investigating the operator

1

jI c'III& ~atatsay4bt I@o& (21)

requiring that the total angular momentum and
parity must be that associated zoith the single-
neuA on state e. It follows easily that the allowed
doorways are of three types, viz: single-proton,
2p-lh, and 3p-2h. The single-proton and the neu-
tron, proton, proton-hole class of 2p-lh states
combine to form the pure T, configuration states
mentioned in Sec. I. Thus the three classes of
doorway states considered in this paper are:
(i) 2p-1h states of the type two protons and a pro-
ton hole; (ii) 3p-2h states of the type two protons,
a proton-hole, a neutron, and a neutron-hole; and
(iii) configuration states. All of these states are
orthogonal to the analog state and each other. We
consider the matrix elements Eq. (8) of each in
turn. To limit the scope of this paper we neglect

T, =Qbta„, T =gath„, (19)
—Xj

I

xj
Jo

—Xj2

2+1

N+1

FIG. 1. Schematic shell-model picture of the parent
state ~fl) of spin and pa. rity j in the nucleus with Z pro-
tons and N+ 1 neutrons. The nucleus (Z, N) is assumed
to have doubly closed shells and j is shorthand for the
quantum numbers nl j. The symbol&& is for a particle.

FIG, 2. Schematic shell-model picture of the doorway
state ~2p-lh) =

~ j&j&(80), j@, , J I) in the analog nucleus
with Z+1 protons and N neutrons, The nucleus (Z, N)
is assumed to have doubly closed shells and j is short-
hand for the quantum numbers nl j. See Sec. II B 1 for
additional details. The symbol x is for a particle and
~ is for a hole.
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the mixing of different doorways with each othep

via either the Coulomb or the residual nuclear
forces. This will mean, in particular, that there
will be at certain energies many degenerate door-
ways of a particular type.

Z+1

FIG. 3. Schematic shell-model picture of the single-
proton part of the analog state wave function. The Cou-
lomb coupling between this state and the doorway, Eq.
(22), represents an alternate way of viewing the origin
of the matrix element, Eq. (23). The symbol j is short-
hand for the quantum numbers nlj, The symbol && is for
a particle.

Xj'—

l2p-1h) =
l j,j,(J,),j„„J'M). (22)

From Eq. (20), and Eqs. (17) and (22) (as illus-
trated in Figs. 1 and 2, respectively, and written
in second quantization) the resultant matrix ele-
ment Eq. (12) is

(d = 2p- lh
l H lA) == (d = 2p- lh l

Hc( '
l

7T )
1

T

l. 2P -1h. States

Each 2p-1h doorway state contains (as indicated
in the la, st paragraph) three proton qua. siparticles.
Schematically the single-neutron parent state of
angular momentum j and a typical

l
2p-1h) door-

way level are indicated in Figs. 1 and 2, respec-
tively. In Fig. 2, the two protons of angular mo-
menta j, and j, and a proton-hole of angular mo-
mentum j„couple to total angular momentum J.
There are in general no restrictions as to whether
none, one, or both of the protons are above the
neutron excess as long as J=j and the parities
are the same. The coupling scheme selected for
each l2p-1h) state is

-Xj
1

-Xj 2

FIG. 4. Schematic shell-model picture of the
doorway state l3p-2h) =(1+0„„0«5,, )

ttP

&& l(jt jp(&p), jpp ' 8) (j'jp(Ip)]4M) in the analog 'nucle-
us with Z +1 protons and N neutrons. The nucleus (Z, N)
is assumed to have doubly closed shells and j is short-
hand for the quantum numbers nlj. See Sec. IIB2 for
additiona1 details. The symbol x is for a particle and ~
is for a hole.

(23)
where ns and M are the z projections of j and J,
respectively, 6 is the Kronecker 6, and the nota-
tion j= 0'2j+ 1 is used. In the matrix elements of
hc the state j is that of a piton. When viewed
entirely in the analog nucleus we recognize 1/T
times this state as the single-proton part of the
analog resonance wave function, cf. Fig. 3. Thus
we may view Eq. (23) as the Coulomb mixing of
the doorway and the above-mentioned part of the
analog state.

2. 3p-2k States

Each 3p-2h doorway state contains 3 proton
quasiparticles and 2 neutron quasiparticles. In
Fig. 4 a schematic picture of a typical such state
is shown. Here the proton quasiparticles are rep-
resented by j„j„andj» and the neutrons by j'
and j„.Just as for the l2p-1h) doorways there are
in general no restrictions on the proton states as
long as J = j', where j" is the parent state in Fig.
1. The coupling scheme selected for each l3p-2h)
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state is
ISp-2h&=(1+5„„5,, 5, , ) '"

&& ( [j,j,(J',),j»,' J][j'j„(I,)];J"M&.
(24)

From Eq. (20), and Eqs. (17) and (24) (as illus-
trated in Figs. 1 and 4, respectively, and written
in second quantization) the resultant matrix ele-
ment is [Eq. (12)]

A. A

(d= Sp-2h(II(A& ==(d = Sp-2h (IIc ( p& =~ „(-1)~+~k+ 0(2jk+ 1) (1+5 5i & 5, , )

&«i i5;~ 5,'~ 5 kl[&(j»jk)J0(@cl(jij.)J0& —(-1)'"'"'0((jk,jk)J0(@cl(j2ji)J0&].

In the matrix elements of hc the state j„is that of
a Proton. When viewed entirely in the analog nu-
cleus, these matrix elements are due to the Cou-
lomb mixing of the doorway with that 2p-1h (2
quasineutrons and 1 quasiproton) part of the analog-
state wave function having both the proton particle
and neutron hole in the state n„l„j„andcoupled to
O'. For this reason we have written j„/Tas a
separate factor in Eq. (25), it being just the ampli-
tude of that part of the analog-state wave function
of interest (cf. Fig. 5). The notation 4„(12)in Fig.
5 is defined below.

Configuration States

We consider these doorways as monopole exci-
tations of the core zoithozt any change in the radial
quantum number, and denote the ith configuration
doorway (for a particular analog resonance) as
(A, &. The basis of states used to make the analog
resonance wave function may be employed to gen-
erate the configuration states as a set of pure T,
orthonormal levels. For a nucleus with a large
neutron excess, there are neutrons in many dif-
ferent filled shells that can be transposed into
protons in previously vacant proton shells. Thus
the analog state in a heavy nucleus will have sever-
al 2p-1h terms and may be written as

IA& == [IP~.&.gj„l.c„(I)&],
1

(26)T h

where T is as always the isospin of the doubly
closed target whose wave function is I C, &, p rep-
re sents a proton of the same spin as the parent
Eq. (15) and analog states, j„is the spin of the
tranposed neutron (cf. Fig. 5), and C„(h)is the
analog of (C,& obtained by converting the hth neu-
tron into a corresponding proton. The symbol j„
is shorthand for the quantum numbers n„l„j„and
the sum in Eq. (26) is over all the different excess
neutron shells. In the case of only one excess neu-
tron shell, jk in Eq. (26) reduces to the familiar
V2T.

While there are many different ways of construct-
ing the configuration states, "we make them in

the usual way by placing all of the single-proton
strength in one state, viz. , the antianalog state.
This choice should not have much effect on our re-
sults. For example, in Sr", Auerbach et al. '
found that coherent mixing of the antianalog state
with other possible configuration states to form
new configuration levels caused only a 2-4~/()

change in the escape width. We shall spell out the
specific configuration states of Bi'" and some ma-
trix elements in Sec. IIIA 2. To keep with the usu-
al notation in the literature we shall call the anti-
analog state (A & and use the subscript i in (A, &

only for the remaining configuration states.

C. Coulomb Interaction

l. Fox the Matrix Elements Involving Zp-lh
[Eq. (23)] and 3p ZI2 [Eq. (35)-] States

In general we are interested in a two-body ma-
trix element of the type

(fj,(1)j,(2)]J, (lz ( [j (1)j,(2)]J &,

k

k~l Pk (cos012) 0
~r —1

where r, =min(r„r,), r, = max(r„r,), P, is the
Legendre polynomial of order k, and 0» is the
solid angle between r, and r, . Using spherical
tensor algebra the resulting matrix element is

(28)

&(j.(1)jk(2) j Jo II c([j.(lbd(2)] Jo&

2 k 1 fa+Jb+ Jp 0 jb jaJ
abed k j jk=P c

x &i.j.Ilc" fit, j.&(t,j,llc'lit, j,&,

(29)

where j, indicates the proton state n, l,j„etc.
The interaction hc is Just

l2c =, I,
' (27)

I ri —r2

with +e the proton charge and r, and r, represent-
ing the vector positions of protons 1 and 2, respec-
tively. Expanding in multipoles of order k we have
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C'= [4ii/(2k+ I)]'"r„, (3o)

and A'„,d is the Slater integral, which, when ex-
pressed in terms of the radial wave functions u„
etc. , becomes

where ()denotes a 6-j symbol, the last two factors
are reduced matrix elements, C~ is the spherical
tensor related to the spherical harmonic F~ via

Ze' r'
Vc(y) =2 3 —,, i'(Ac;

C C (32)

and the particular configuration state wave func-
tion. The calculation of the matrix elements will
be described in Sec. IIIA2 for the case of Bi"'.
For ease we use for V~(r) the Coulomb potential
of a uniform sphere of charge with radius Ac

rc&'/3, ~.e

R'.„,= di, u, (r,)u, (r, )
0

v jr) =ze'/r, r&Bc.
Oo 1

x r, ' dr, Q+iu, (r,)u, (r, )
rl =r2 1

The parameter rc will be specified later.

D. Compound Spreading Width I"

rl=r2
+ „, dr, r, 'u, (r, )u, (r, )

r2 0

The expression I'" P in Eq. (14) for a particular
analog resonance J" may be rewritten in the form

2. Ior the Matrix Elements Involving
Configuration States

(31)

Because of the complexity in calculating matrix
elements involving all of the core protons, we
neglect exchange terms and use a one-body Cou-
lomb potential Vc(r) Typica. lly, then, we will
have to calculate matrix elements of the type

I'" =Q p~S~,
d

where from Eqs. (12), (14), and (9),

s, = /(dials)/'= /(dna, la)/',
and from Eq. (14)

1
2ii (E„-z)'+(r /2)'

(33)

(34)

(nl j lv (r)lnl j),
where nplppp is a certain proton state. The ex-
plicit expression for each matrix element (d =A,.
or XlHcI Ilii) depends on the nucleus of interest

Xj

Xjh

coupled to Q+

The term Sd is the'square of the Coulomb coupling
matrix element and will be referred to as the
strength of the doorway state ld). The coefficient
pd is 2p times the Lorentz distribution function of
spreading width r, described just after Eq. (14).
We shall refer to p, as the density factor. If there
are several degenerate doorways at the energy Ed,
then each will have the same density factor, but
the strength of each will in general be different
because of the difference between the doorway
wave functions.

As discussed in Sec. IIB, there are three dif-
ferent types of doorways, and we may accordingly
write

=( jh/7) nc~( h)3
p comp Z comp + I comp + I comp

2 p-1 h 3 p-2 h config &

where

r,-, ,„=gr;;,„(d)=gp„,„(d)S„,„(d),
d d

(36)

(37a)

FIG. 5. The left-hand side of the equation represents
w schematic shell-model picture of a particular 2p-1h
(2 quasineutrons and 1 quasiproton) part of the analog-
state wave function. The Coulomb coupling between this
state and the 3p-2h doorway Eq. (24) represents an alter-
nate way of viewing the origin of the matrix element Eq.
(25). The symbol j is shorthand for the quantum num-
bers nl j, The right-hand side of the equation is dis-
cussed in Sec. IIB3. The symbol && is for a particle
and is for a hole,

rg"p ', t„=gr;;'.g(d) =Z pap 2$(d)S, p 2$(d),
d d

(37b)

r,".„,'„=Qr,",„P,(d) =gp„„,(d)S„„,(d) . (37c)

The sums in Eqs. (37a)—(37c) are restricted, re-
spectively, to doorways of the types 2p-1h, 3p-2h,
and configuration states. Because the doorway
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spreading widths are certainly not known for each
individual doorway state, we use a different typi-
cal value of I', for each of the three cases, viz.
I', », I', », or I'„„„.(These will be specified
in Sec. III.) Thus, for the dth doorway of each
type the density factors are

I2p, h
P2P-1h( ) (E E )2+ (I' /2)2 s

2 p-1h
(38a)

and

I'3p-2h
P~ P-» ) (E E )2 + (I „/2)»

I'eon( lg

Pconfig( ) (E E )2 + (Zr /2)2
'

(38b)

(38c)

III. RESULTS

A. Preliminaries

1. General

Here we will present the experimental and theo-
retical information necessary for the calculations.
The target nucleus is Pb'" with 82 protons (as-
sumed closed through the 3s», shell) and 126 neu-
trons (assumed closed through the 3p„,shell).
There are thus 44 excess neutrons, indicating an

3/2

1/2

——5/2

29——9/2-

29 7/2

'~ 15/2

11/2

The strength S„in Eq. (34) has been written as
S, »(d), S, »(d), and S„„„,(d) in Eqs. (37a)-(37c),
respectively. The values of S, »(d) and S, »(d)
are given, respectively, by the squares of Eqs.
(23) and (25). The strength S„„~„(d)will be ob-
tained for the case of Bi' ' in Sec. III.

Ep E„+(C ———5) —E,y (39)

where C is the Coulomb energy of the interaction
of the proton with the core, 5 is the n-p mass dif-
ference of 0.78 MeV, and E,

„

is the nuclear sym-
metry energy, i.e. , the energy difference between
the analog resonance and its associated configura-
tion states. From the experiment of Wharton et
al." the value of C is 18.79 MeV. The value ofE„is taken as 11 MeV. MacFarlane and Schif-

TABLE I. Energy eigenvalues from Blomqvist and

Wahlborn (Ref. 10). See Sec. IIIA1 for details.

isospin of T =22 for Pb' '. In Fig. 6 the shell-
model states used in the calculations are shown
schematically in the order listed by Blomqvist
and Wahlborn"; these states extend from 1gg/,
to 3d„,and include as excess neutron states the

Ihg/„2f,/2 Ii]3/2, 3p3/„2f„„and3~u2 The an-
alog resonances considered in Bi'" are the &,
&', -,', &, -', , —,", and ~' states whose respec-
tive single-neutron parents in Pb'" are the 2g,/„
1il1/2 3d,/„1j»/2, 4s„„2g,/„and 3d, /, states.
The order of the 1j„„and3d„,neutron states is
reversed in the summaries of Bromley and Wenes-
er" and Stein" from that of Ref. 10. However
the actual energies listed in Refs. 11 and 12 are
not that much different from those of Ref. 10. Be-
cause many calculations have used the single-par-
ticle energies and Woods-Saxon well parameters
given by Blomqvist and Wahlborn, and small en-
ergy errors will not effect our density factors or
neutron wave functions significantly, we start with
the energies of Ref. 10. The energy eigenvalues
given in Ref. 10 are reproduced in Table I. In
order to determine the missing energies needed
to reproduce all the states of Fig. 6 we use the
relationship between the proton energy E~ and the
neutron energy E„obtained by Pinkston" and
Fallieros, "viz. ,

5/2

13/2

1/2

3/2 Neutron states
State Energy in Me V

Proton states
State Energy in MeV

9/2

3/2

5/22d

lg

7/2

3$
1/2

11/2

1g 7/2

3 d3/2

2g, /

4si/
1~ i5/2
3d5/2

ii/2
2 g9/2

-0.604
-0.669
-1,224
1.722

—1,820
-2.955
—3.683

2f&/2
3P 3/2

i i3/2

1k'/p

Not bound
Not bound
Not bound

2 y277
—2.691
-3.541

FIG. 6. Shell-model levels for neutrons and protons
in Pb (Ref. 10).

3P i/2

2f5/)
3P 3/2
1~ 13/2

2f&/2

@9/2

7.232
—7.98 6
-8.130
—8.429

—10 .279
-10.797

3S1/2
2 d3/2
1h
2 d5/2

—7.032
-7.515
-8.663
-9.346

-11.064



W. P. BERKS AND D. A. VOGES

State (MeV)
Ep

(MeV)

3d3/2
2 gv/2

4si
~ i5/2

3 Cf 5/2

1 Z ii/2
2 g~/2

—0.60
—0.67
-1.22
—1.72
—1.82
-2.96
—3.68

6.41
6.34
5.79
5.29
5.19
4.06
3 o33

3P 1/2

2f 5/2

3P 3/2

1 i i3(2
2f7/2

1ke/2

7 023
-7.99
—8.13
-8.43

-10.28
-10.80

-0.22
-0.98
—1.12
-1.42
-3.27
-3.79

3S1/2
2 d3/2
1k
2 d5/2

1gv/2

gW2

—14.03
—14.52
—15.66
-16.35
-18.06
-21.98

—7.02
—7.51
—8.65
-9.34

-11.05
-14.97

fer" suggest a value of 10-11 MeV, while
Mekjian" suggests 12 MeV. As a check, we cal-
culate E„usignEq. (39) and the E~ and E„vlacus

given in Table I for 1h„„2f„„ndali»„. The
average of the three resulting values of E y is
about 11 MeV. Arbitrarily the 1h», through 3p„,
neutron energies were taken from Table I and the
proton energies of these corresponding states
were calculated using Eq. (39). Finally, the 1g»,
energies are obtained with the help of Hamamoto. "
The resulting neutron and proton energies used in
the present paper are summarized in Table II.
Also recorded are the values of g, C, and E„

The energies of the doorway states I3(p)), Eq.
(22), and I5(3P, 2n)), Eq. (24), relative to thresh-
old are obtained by adding the energies of the ap-

TABLE II. Single-particle energies used in the cal-
culation. See Sec. IIIA 1 Eq. (39) and the text following
for details. C=18.79 MeV, E,&~ -—11 MeV, 6=0.78 MeV.

TABLE III. Analog state energies in Bi ~ from
Wharton et al. (Ref. 15).

Parent state Analog state
in Pb in Bi'"

Analog state energy
in MeV for c.m. system

relative to
Threshold Ground state

2 g~(2

i ii/2

~15/2

3 cli5/2

4Si/2

2 gv/2

3 QB/2

g+
2

ii+

1+
2

14.847

15.641

16,258

16.417

16.884

17.347

17.392

18.57

19.36

19.98

20.14

20.60

21.07

21.11

propriate protons and neutrons in Table II. The

energy difference between the -', ground state and

threshold in Bi'" is taken as the experimental val-
ue of 3.72 MeV." This must be added to the door-
way energies if they are to be expressed relative
to the ground state. The unmixed configuration
states are all degenerate at an energy E„below
the appropriate analog resonance energy. The
center-of-mass energies of the analog resonances
of interest are taken from Ref. 15 and are listed
in Table III relative to threshold (i.e., Pb'" in its
ground state with a proton at infinity) and also rel-
ative to the Bi'~ ground state.

Wave functions for all of the necessary single-
particle states needed to evaluate matrix elements
[Eqs. (23), (25), and also those involving configura-
tion states j are obtained from a Woods-Saxon po-
tential with spin-orbit coupling of the Thomas
form. The single-neutron states in Table II are
employed and the code ABACUS ' is used to gen-
erate the wave functions. The expression for the
potential is

'1 d
V(x) = V,f(x) —V„———f(t)1 .(z, '

CEPS ~
7' Cl'v

(40a)

TABLE IV. Wave functions of the analog A, antianalog A, and other configuration states A;. See Sec. IIIA2 of the
text.

State Ip@0& I«'~&~hag&&

Wave-function components
I"@'x(2fv2» In e~(li 13/2&& I+4'22psn» I«'~&2f v»& l«~&3pu2&&

A Eq. (41)
A Eq. (42)
Ai
A2

A3
A4
A5

0.149
0.988
0
0
0
0
0

0.471
-0.0711
—0.190

0
-0.541
—0.667

0

0.422
—0.0635
—0.170

0
-0.484

0.746
0

0.557
—0.0841
—0.224

0
0.576
0

—0.548

0.298
—0.0449

0.759
-0.577

0
0
0

0.365
—0.0550
—0.147

0
0.378
0
0.837

0.210
-0.0318
0.537
0.817
0
0
0
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TABLE V. Number of allowed doorway states in Bi

X+
2

1)+

2

2+
2

M1

2

29.
2

N2p 1h=a

949

938

768

287

884

9380 7024 8770 2148 4428 562

9380 7024 10 524 2148 4428 562

9380 7024 12 278 2148 4428 562

5628 5268 5262 2148 4428 562

1876 1756

7504 7024

3752 3512

1754 1074 1476 562

7016 2148 4428 562

3508 2148 2952 562

Nsp 2b (Izp, where Iz is
1hs/2 2f~/2 1i)3/2 3p 3/2 2f5/2 3p «,

N3p-2h =&

Ecj. (48)

32 312

34 066

35 820

23 296

8498

28 682

16434

N,o„fig=c
N =a+& +c

Eq. (47)

33 267

35 010

36 594

24 051

8791

29572

16 983

with

and

f(y) (] +e(r-R)/a)-1 (40b)

1)tg/2 2f7/2 its/2 3ps/2~ f5/2~ and 3pi/2
that using T =22 we have

I Ip@p&+~loin@~(I@9/2)&+a 81ne„(2f/, )&

(40c)

The parameters a=0.67 fm, R, =1.27 fm, and V„
= 7.75 MeV are taken from Blomqvist and Wahl-
born. " The suggested well depth V, is 44.0 MeV
for all neutron states in Ref. 10. However, we
have scanned over this parameter to obtain the
best possible wave functions. The resulting well
depths only differed by a maximum of about 2'%%up

from 44.0 MeV.
The doorway spreading widths I', » in Eq. (38a)

and I', , „

in Eq. (38b) are taken, respectively, as
1 and 0.5 MeV as in the calculations of Refs. 7 and
8. We will mention the chosen values of F„„„., Eq.
(38c) in Sec. III B4 and discuss them in Sec. IV.

Z. Bi Confit, uxation State Wave Functions
and Matrix Elements

First we write down the normalized wave func-
tion for the analog resonance using Eq. (26). The
sum over A includes the six excess neutron shells,

+ v 14 In@„(ii„/2)& +W4 In@„(2p3/, )&

+v 6 In@„(2f,/, )&+&2Inc „(3p,/, )&].

(41)
Because IA& has seven components there are six
orthonormal configuration states that may be con-
structed. (These are unmixed and remain degen-
erate in our model at an energy E„=11MeV be-
low the analog resonance of interest. ) We have
purely arbitrarily used the coupling scheme which
couples the excess neutrons together as follows:
The isospins of the 1h„,and 2f,/, excess neutrons
are, respectively, 5 and 4. These are coupled to
an isospin of 9. The isospins of the 1iJ3/2 and

2f«, excess neutrons are, respectively, t and 3.
These are coupled to an isospin of 10. The total
isospin of the Ihg/„2f,/„li,3/„and 2f,/, excess
neutron shells is thus 19. The isospins of the
3P 3/2 and 3P,/, exce ss neutron she l1s are, re spe c-
tively, 2 and 1. These are coupled to an isospin
of 3. Finally, the total isospin of all the excess

TABLE UI. Compound mixing widths for analog resonances in Bi ~ due to 2p-lh and 3p-2h states.

i~comP =a (keV)
Eq. (37a)

1'z"mg(b) (keV) Eq. (49), where his
lhe/2 2f7/2 1z g3/2 3p 3/2 f5/2 3p g/2

I'" g =b (keV)
Eqs. (50) or (37b)

a+5
(keV)

0.11

0.14

0.08

0.24

2.25

2.36

1.23

1.53

2.57

2.79

1.63

1.90

4.42

4.74

3.10

3.36

5.20

5.56

1.94

3.26

2.92

2.95

2.72

3.23

1.17

1.31

0.66

0.77

18.5

19.7
11.3
14.1

18.6

19.8
11.4
14.3

L+
2

2

0.12

0.20

0.12 1.24 1.64

1.35 1.74

1.26 1.66

3.17

3.12

3.11

2.42

2.05

1.99

3.18

2.86

2.78

0.69

0.67

0.67

12.6

11.6
11.4

12.7

11.8
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TABLE VII. Coulomb mixing strengths for analog resonances in Bi ~ due to 2p-1h and 3p-2h states.

S2p 1h =a
(104 keV')

EQ. (54) 1A 9/2

S3p 2I, (PL) (10 keV) Eq (52), where his
2f,/, la 13/2 3~3/2 2f5/2 3~ 1/2

Ssp-2h = b

(1p' keV')
Eq. (53)

a+A
(104 ke V2)

13
2

7+
2

0.18

0.22

0.19

0.14

0.11

0.18

0.12

2.83 2.10 3.43
for each for each for each
analog analog analog
resonance resonance resonance

1.02 1.56 0.48
for each for each for each
analog analog analog
resonance resonance resonance

11.4
for each
analog resonance

11.6
11.6

11.5
11.6
11.5

neutrons is 19+3=22. Because of its special sta-
tus (containing all the remaining single-proton
strength) we spell out explicitly here the antiana-
log state (see also Ref. 21) as

044 I pe, ) — [&5 lme~(lh, /, )&

The necessary matrix elements, Eq. (12),
become

&d=&IIfl&&==&d=&III' 'ill&=glv (~)l&&
1

T"

for the antianalog state, and

(43)

+ ~4lne„(2f„,)&+&7lne„(li„„)&

+ v 2 Ine„(2p»,)& + &3lne„(2f5&,)&

+ l~e&(sp, ~.)&1 (42}

&d =&& III I&& ==(d =&;III'�' In) = &X,. Ivc(~) I&&,

(44)
for the other configuration states, where Vc(r) is
the one-body Coulomb potential given by Eq. (32).
Using the orthogonality of the different basis com-
ponents in Eqs. (41) and (42), Eq. (43) becomes

In Table IV we summarize the analog and result-
ing configuration state wave functions. The first
column lists the symbol for the state, i.e., A de-
notes analog, A means antianalog, and A.„.. . , A,
represent the remaining configuration states. The
other columns list the wave-function components
of the basis states lpe, &, Ine~(lh, ~,)&, . . . , and

i.e.(sp„.)&.

TABLE VIII. Strengths of the configuration state
doorways [not including the antianalog state Eq. (42) J.

=&d =&l&c'Ill& =45 ~44 &p Ivy(~)IP&

[~so &1I„,Iv, (~)llI„,&22

+&32 (2f i, lvg(&)I2f7(2&

+ sos &1i„„lv,(r)Ili„„&
+Ms (sp„,lv, (r}lsp„,&

+~16 (2f», lvc(&) I2f,i,&

~2 &sp„.lv. ( )lsp„.&],

c (fm)
Eq. (32)

1.15
1,20 .

1.25
1.30
1.341 ~

1.40

Sconfig (d) (10 keV ),
where d is (Table IV)

A1 A2 A3 A4 A5

2,82 0.02 13.5 0 .25 19.8
1.62 0.01 10.8 0.08 15.1
0.94 0.01 8.50 0.02 11.7
0.55 0.01 6.73 0.00 9.16
0.36 0.01 5.57 0.00 7.57
0.21 0.01 4.26 0.00 5.84

5

Zsconridd = 4)
=1

(104 keV )

36.4
27.6
21.2
16.5
13.5
10.3

(45)

where p is th0 proton state defined in Eq. (26),
and 1Ag/2 3p y/2 are the proton states corre-
sponding to the respective neutron holes. The
matrix elements Eq. (44) may be easily evaluated
via Table IV. For example, one of the simpler
results is

(d =A., IIIc''lll& =0.»2 [-&sp». lv&(~) lsp». &

The awkward value of rc = 1.341 frn is tried, since it
was obtained in an 016 study by W. Beres and W. M.
MacDonald, Nucl. Phys. 91, 529 (1967).

.(sp„.lv, (~) isp„.&].
(46)
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The square of the matrix element Eq. (43) gives
the antianalog strength S„„„,(d =7k), and the square
of each matrix element Eq. (44) yields the strength
of each of the other configuration states, i.e.,
S„„s,(d =A&). In Eq. (37c) these strengths may be
used to calculate the compound spreading width
due to the configuration states, i.e., I',",„f,, The
Coulomb radius parameter r c in Vc(r) of Eq. (32)
is taken as the reasonable value of 1.2 fm'"; how- Ntot =N2

p ~p +Nsp 2g+Nf:Dllfjg p (47)

ever, the results of altering r c will aIso be indi-
cated (Sec. III B4).

B. Calculations

Number of Doo~uay States

The total number of possible doorway states
,N„,may be written as

TABLE IX. Strengths of the configuration doorways (including the antianalog state) for each analog resonance.

Econ (MeV)
(relative to
ground state)

xc (fm)
Eq. (32)

SCDWIg(d =&) =&

(104 keV2)

Sco~ig(d =Aq) =b
t=i

(1P keV )
(Table VIII)

~config =& + b

Eq. (55)

7+
2

7.57

8.36

8.98

9.14

9.60

10.07

10.11

1.15
1.20
1.25
1.30
1.341
1.40

1.15
1.20
1.25
1.30
1.341
1.40

1.15
1.20
1.25
1.30
1.341
1.40

1.15
1.20
1.25
1.30
1.341
1.40

1.15
1.20
1.25
1.30
1.341
1.40

1.15
1.2p
1.25
1.30
1.341
1.40

1.15
1.20
1.25
1.30
1.341
1.40

1.1
1.00
0.95
0.86
0.78
0.7
0.35
0.25
0.18
0.14
0.11
0.09

5.46
4.38
3.52
2.84
2.39
1.87

5.84
5.77
5.54
5.19
4.84
4.29

19.2
18.5
17.5
16.3
15.2
13.6

2.51
2.37
2.18
1.96
1.78
1.53

15.6
14.9
14.0
12.9
12.0
11.2

36.4
27.6
21.2
16.5
13.5
10.3

36.4
27.6
21.2
16.5
13.5
10.3

36.4
27.6
21.2
16.5
13.5
10.3

36.4
27.6
21.2
16.5
13.5
10.3

36.4
27.6
21.2
16.5
13.5
10.3

36.4
27.6
21.2
16.5
13.5
10.3

36.4
27.6
21.2
16.5
13.5
1p.3

37.5
28.6
22.1
17.3
14.3
11.0
36.8

, 27.8
21.4
16.6
13.6
10.4

41.9
32.0
24.7
19.3
15.9
12.2

42.3
33.4
26.7
21.6
18.4
14.6

55.6
46.1
38.7
32.8
28.7
23.9

39.0
30.0
23.4
18.4
15.3
11.8
52.0
42.5
35.2
29.4
25.5
21.5
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3p-2h Z 3p-2h(
h

(50)

where as in Eq. (48), the sum is over all the neu-
tron excess shells. In obtaining Eq. (50) we have
ised the fact from Eqs. (37b) and (49) that

Zr,-,",„(d)=pZr „»
d h d(h)

(51)

In Table VI we summarize for each analog reso-
nance listed in column 1 the value of I',",'h [Eq.
(37a)] in column 2, I'," ",h(h) [Eq. (49)] in columns

Wltll N2p &h p %3p 2h p
and Neo+fig denoting, respec-

tively, the number of alloued doorways of the 2p-
1h [Eq. (22)], 3p-2h [Eq. (24)], and configuration
(Table IV) types. (An allowed state is one that has
the same spin and parity as the analog level of in-
terest. ) It is convenient to write N, » in terms
of each contribution N, ,„(h)which represents the
number of Sp-2h doorways having in common the
same neutron hole nhlhjh, i.e.,

(48)
h

where the sum is over all the excess neutron
shells. Table V summarizes for each analog res-
onance listed in column 1 the value of N, , „

in
column 2, N, ,„(h)in columns 3 —8, N, ,„[Eq.
(48)] in column 9, N„„„,in column 10, and N„,
[Eq. (47)] in column 11.

2. ComPound SPxeading Widths Due to
2P-lh and 3P-2A Doomsday States

It is convenient to rewrite r,","h [Eq. (37b)] in
terms of each contribution I', ,„(h)which repre-
sents the width due to those 3p-2h doorways hav-
ing in common the same neutron hole nhlhjh, i.e.,

(49)
d(h)

with d(h) indicating that the sum is over the afore-
mentioned doorway. Thus,

3-8, I'," 2Ph [Eqs. (50) or (37b)] in column 9, and

pp]I + F3p2h in column 10. All width values are
given in keV.

3. Strengths of 2P Zh an-d 3P-2h

Doomsday States

By analogy to Eq. (49) we also define

S„,„(h)= PS„,„(d),
d (h)

where S, »(d) is the strength defined in Eq. (37b)
and discussed in Sec. IID, and S, »(h) is the to-
tal strength due to all those allowed 3p-2h door-
ways associated with a particular neutron hole
n„t,„j„.In addition we may write by analogy to Eqs.
(50) and (51),

(52)

(53)

4. ComPound SPxeading 8'ides and Stx'engths
Due to the Configuration States

The total strength for all the configuration states
8 f g

is given by

Sconfig P config (d) I
d

(55)

Here S3» is the total strength for all the allowed
3p-2h doorways. For 2p-1h doorways we may de-
fine

(54)
d

as the total strength for all the allowed 2p-1h door-
ways. The term S, ,h(d) is defined in Eq. (37a)
and discussed in Sec. II D. Table VII presents for
each analog resonance listed in column 1 the value
of S, ,h [Eq. (54)] in column 2, S, ,„(h)[Eq. (52)]
in columns 3-8, S, » [Eq. (53)] in column 9, and

p ] h 3 p h column 10 'The reason why each
value of S, »(h) and also S, » are the same for
each analog resonance will be examined in Sec.
III B4.

TABLE X. Compound spreading widths of analog resonances in pi ~ due to all but the antianalog state.

yc (f )
Zq. (32)

Ag

Ref. Ref.
a b

Ref. Ref.
a b

I', „fg(d) (keV) Eq. (56),
where d' is (Table IV)

Ag - Ag

Ref. Ref. Ref. Ref.
a b a b

Ref. Ref.
a b

5

Q I'™p(d =A;) (keU)
config

Ref. Ref.
a b

1.15
1.20
1.25
1.30
1.341
1.40

0.23 1.09 0.00 0.00 1.12 5.32 0;02
0.13 0.62 0.00 0.00 0.89 4.24 0.01
0.08 0.38 0.00 0.00 0.70 3.34 0.00
0 05 0 24 0 00 0 00 0 56 2 66 0 00
0 03 0 14 0 00 0 00 0 46 2 19 0 00
0.02 0.10 0.00 0.00 0,35 1.67 0.00

0.10 1.63 7.75
0.05 1.25 5.95
0.00 0.96 4.57
0.00 0.76 3.62
0.00 0.62 2.95
0.00 0.48 2.28

3.00 14.2 6

2.28 10.86
1.74 8.29
137 6 52
1.11 5.28
0.85 4.05

I ~+=1 MeV in Eq. (57), giving p, f =8.24x10 MeV
b r-~g=5 Mev in Eq. (57) giving p,.fg =3.92X10-2 Mev-
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TABLE XI. Compound spreading widths due to all configuration states I",",„zfor analog resonances in Bi ~. Also
listed are the compound spreading widths due to only the antianalog state F,",„z~ (d =A.).

E„„(MeV)
relative to

ground state
rc (fm)

Eq. (32) Ref. a ref. b

I'„„zz(d =A) (keV)
A. is given by Eq. (42)

and Table IV Eq (58)

H,ef. a R,ef. b

7.57 1.15
1.20
1.25
1.30
1.341
1.40

0.09
0.08
0.08
0.07
0.06
0.06

0.43
0.38
0.38
0.33
0.29
0.29

3.09
2.36
1.82
1.44
1.17
0.91

14.7
11.2
8.67
6.85
5.57
4.34

jf+
2

8.36 1.15
1.20
1.25
1.30
1.341
1.40

0.03
0.02
0.02
0.01
0.01
0.01

0.14
0.10
0.10
0.05
0.05
0.05

3.03
2.30
1.76
1.38
1.12
0.86

14.4
11.0
8.39
6.57
5.33
4.10

12
2

8.98 1.15
1.20
1.25
1.30
1.341
1.40

0.45
0.36
0.29
0.23
0.20
0.15

2.24
1.71
1.38
1.09
0.95
0.71

3.45
2.64
2.03
1.60
1.31
1.00

16.4
12.6
9.65
7.61
6.24
4.76

9.14 1.15
1.20
1.25
1.30
1.341
1.40

0.48
0.48
0.46
0.43
0.40
0.35

2.28
2,28
2.18
2.04
1.90
1,66

3.48
2.76
2.20
1.80
1.51
1.20

16.6
13.1
10.5
8.56
7.18
5.71

9.60 1.15
1.20
1.25
1.30
1.341
1.40

1.59
1.53
1.45
1.35
1.26
1.12

7.56
7.29
6.90
6.42
6.00
5.33

4.59
3.81
3.19
2.72
2.37
1.97

21.8
18.2
15.2
12.9
11e3

9.38

10.07 1.15
1.20
1.25
1.30
1.341
1.40

0.21
0.20
0.18
0.16
0.15
0.13

1.00
0.95
0.86
0.76
0.71
0.62

3.21
2.48
1.92
1.53
1.26
0.98

15.3
11.8
9.15
7.28
5.99
4.67

10.11 1.15
1.20
1.25
1.30
1.341
1.40

1.28
1.23
1.15
1.07
0.99
0.92

6.10
5.85
5.47
5.10
4.71
4.38

4.28
3.51
2.89
2.44
2.10
1.77

20.4
16.7
13.8
11.6
9.99
8.43

' I' =1 MeV in Eq. (57), giving p =8.24x10 3

b unrig confjg

&
=5 MeU in Eq. (57), giving p =3.92x10

MeV ~.

MeV ~.
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where S„„„,(d) is defined in Eq. (37c). The sum
over d is restricted to configuration doorways and
in the case of Bi'~ these are the six configuration
states listed in Table IV. The strengths for five
of these states [all but the antianalog state Eq.
(42)] are independent of the total angular momen-
tum, parity, and energy of the analog resonance
and are given by the square of the matrix element
Eq. (44). These strengths are listed in columns
2-6 of Table VIII for a range of values in column
1 of the Coulomb radius parameter r c [Eq. (32}].
The sum of the five strengths for each xc value is
given in the last column. In Table IX for each an-
alog resonance listed in column 1, and for the
same range of values of rc (column 3), the
strength of each antianalog state S„„„,(d =A} [the
square of the matrix element Eq. (43)] is written
in column 4. The values of S„„f;,(A) are added to
the remaining configuration strengths (column 5)
to yield the resultant values of S„„fgin column 6.
In addition, for each analog state the energy E„„
of the degenerate configuration states is given in
column 2 relative to the ground state of Bi'~.

The width r,",„~~(d} in Eq. (37c}may be written
as

rconfig( }=
pcontigSconfig( (56)

where p„„„., is the same for all configuration door-
ways and is given by Eq. (38c) as

I confjg

(Z„-Z,.„)'+(r,.„„,/2)' ' (57)

TABLE XII. Total strengths of all doorway states for
each analog resonance in Bi ~ (re=1.2 fm).

where E„„is the energy of the degenerate config-
uration states. We calculate p„„f;,[and hence
r,",„,~,(d)] for the cases of I'„„„,=1 and 5 MeV. The
former is the value typical of the spreading of a
2p-1h doorway and the latter is a reasonable es-
timate of the spreading of a single-particle state."

5. Total Compound Spreading Widths

and Strengths for all Doorsoays

The resulting total strengths and compound mix-
ing widths for a Coulomb radius xc of 1.2 fm are
presented in Tables XII and XIII, respectively.

TABLE XIII. Total compound spreading widths due to
all doorway states for each analog resonance in Bi
(~c =1.2 fm).

E~ (MeV) I'3p 2h+I'2p fh
relative to (keV)

J~ ground state (Table VI)

I comp
config

(keV)
(Table XI),
c =12f

Ref. Ref.
a b

I comp

(keV)
Eq. (36)

Ref. Ref.
a b

In Table X the values of r,",„fg,(d) [Eq. (56)] are
tabulated (using Table VIII) for all but the antian-
alog state in columns 2-11 for F„„hg=1 and 5 MeV.
These tabulated compound spreading widths are
independent of the spin, parity, and energy of the
analog state. In column 1 the range of values of
xc are given and the last two columns give the to-
tal compound spreading widths due to these five
configuration states.

The total compound spreading width due to all
configuration states (including the antianalog)
r„',„~p [Eq. (37c)] may be written using Eq. (55) and

the energy degeneracy of the configuration door-
ways as

I comp
~ config Pconfig config ~

In Table XI for each analog resonance listed in
column 1 and for a range of values of rc (column
3) the values of the compound spreading width due

to the antianalog state r,",„~~(d =A) are given in
columns 4 and 5 for the cases of F„„f;,=1 and 5

MeV, respectively, in Eq. (57). In the last two
columns the corresponding total compound spread-
ing widths due to all the configuration doorways
r,",„fg [Eq. (58)] are given. In addition, for each
analog state the energy E„„is listed in column 2.

2+
2

2+
2

z+
2

3+
2

18.57

19.36

19.98

20.14

20.60

21.07

21.11

11.6
11.6
11.6
11.6
11.5
11.6
11.5

(MeV) ~3p-2g +S2p-f]I
relative to (104 keV2)

J~ ground state (Table VII)

28.6

27.8

32.0

33.4

46.1

30.0

42.5

40.2

39.4

43.6

45.0

57.6

41.6
54.0

S
~ conrg

(10'keV') (104
(Table IX), keV2)
wc=1.2 fm Eq. (59)

2

u+
2

2

2+
2

18.57

19.36

19.98

20.14

20.60

21.07

21.11

18.6

19.8
11.4
14.3

12.7

11.8
11.5

I; ~ =1 MeV in Eq. (57),
MeV

F„~=5 MeV in Eq. (57),
MeV

2.36 11.2 21.0 29.8

2.30 11.0 22.1 30.8

2.64 12.6 14.0 24.0

2.76 13.1 17.1 27.4

3.81 18.2 16.5 30.9

2.48 11.8 14.3 23.6

3.51 16.7 15.0 28.2

giving p =8.24x10 3

giving p, ~ =3.92x 10
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The total strength S is

(59)S = S~p 2h+ Spp ~11+Sconfig t

where S3p 2h, S2p &h, and S0 „~gare obtained from
Eqs. (53}, (54), and (55), respectively. In Table
XII the first column gives the spin and parity of
each analog resonance whose energy (Table III} is
given in column 2. Column 3 presents the sum of
S»» and S, ,z (from Table VII), column 4 con-
tains S„„„,(Table IX), and S [Eq. (59)] is present-
ed in the last column. Table XIII shows for each
analog resonance indicated in the first two col-
umns the sum I'," 2»+I'," ', „(TableVI) in column
3 and I",',„(,(Table XI) for I"„„„,=1 MeV (5 MeV)
in column 4 (5). Finally, the total compound
spreading width I'" " [Eq. (36)] is presented in
column 6 (7) for I'„„„., =1 MeV (5 MeV).

6. Hi stogie'ass

In order to study the actual distribution of door-
ways in terms of their number, matrix-element
size, strength, compound mixing width, energy,
and density factor we present a number of histo-
grams in Figs. 7-19. The detailed descriptions
of the histograms are given in the figure captions.
We have selected the -',

' analog state as typical of
the positive-parity analog resonances. In addi-

tion, the '-,' doorway distributions are considered
in detail. Figures 7-10 refer to number of states
and matrix elements, Figs. 11 and 12 pertain to
number of states, strengths, and widths, while
Figs. 13-19 relate to energy distributions of the
various quantities. Figure 17 is for the case of
the —,

' ' analog resonance.

IV. DISCUSSION AND CONCLUSIONS

There are several important conclusions that
become apparent from the results presented in the
preceding section. Among these are:
(1) The calculated spreading widths (of the order
of 20 keV, Table XIII) are considerably less than
the experimental total widths of the Bi'" analog
resonances. The latter are of the order of 200-
300 keV." The fact that F" is such a small
part of the total width is consistent with the Y"
results of de Toledo eliza et al. ' and the conclu-
sion of Robson' that internal mixing is negligible.
The calculated values are also much less than the
value of about 80 keV (Mekjian' and Lenz and Tem-
mer"), which is the estimated spreading width
for analogs of lead. The difference is presumably
due to the monopole contributions' which we have
relegated to I'""' [Eq. (4)] for the purposes of this
paper.

12000-

14000~

10000-
12000-

LU 8000-

0
6000-

D
Z

4000

10000-

I

I

8000-

0
6000"

Dz 4000-

2000
2000

0 I I I

-12-10-8 -6 -4 -2 0 2 4 6 8 10 12

MATRIX ELEMENTS (keV)

FIG. 7. Histogram of the number of &~+ doorway states
in Bi ~ vs the valve of the matrix element Eq. (23) for
2p-lh states or Eq. (25) for 3p-2h states (steps of 1 keV).
The configuration states are not included.

T I i i I ~0 V I

-12-10-8 -6 -4 -2 0 2 4 6 8 10 12
MATRIX ELEMENTS (keV)

FIG. 8. Histogram of the number of &5 doorway states
in Bi ~ vs the value of the matrix element Eq, (23) for
2p-Ih states or Eq. (25) for 3p-2h states (steps of 1 keV).
The configuration states are not included.
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(2) From the histograms (Figs. 15 and 16) in Sec.
III it is clear that only certain doorway states
have large strengths. These are the configuration
states and another set of states in roughly the 20-
25-MeV energy range. We shall indicate later
that this is the expected energy range of 3p-2h
states in Bi'" formed from the well-known giant-
dipole state in Pb"'. In addition to the aforemen-
tioned states, important contributors to the com-
pound spreading widths (Figs. 18 and 19) are cer-
tain levels of reasonable strength that are very
near the analog resonance and consequently pos-
sess large density factors (Figs. 13 and 14).
(3) The compound width contributions of the con-
figuration states are about —,

' to 1 times that of all
other doorways, depending on the value of the con-
figuration spreading width used, i.e., the largerI'„„„,the greater the value of I",",„~~(cf. Table XIII).
(4) The relative impor'tance of the antianalog vs
other configuration states is strongly dependent on
the shell-model position of the single-proton com-
ponent of the antianalog state (cf. Tables IX-XI,
and also Ref. 21).
(5) The strengths (Table VII) of the 2p-lh door-
ways (Fig. 2) and their compound spreading width
contributions (Table VI) are insignificant. Each
strength is small primarily because of the very
small single-proton amplitude of the analog-state
wave function [the I/T factor in Eq. (23)]. Also

20 000-

the 2p-1h doorways are in general considerably
below the analog resonance, causing the density
factors to become almost negligible.
(6) Most 3p-2h doorways have rather small Cou-
lomb matrix elements (Figs. 7-12).
(7) The predicted strengths (Table XII) and com-
pound spreading widths (Table XIII) are roughly
the same for all analog states. This reflects the
dominance of Pb'" intrinsic core contributions
over those of the added single nucleon.

We will elaborate on some of these conclusions
and discuss additional points of interest in the fol-
lowing paragraphs.

In Table III we note that the '-,' analog resonance
observed in Ref. 15 is slightly lower in energy
than the & analog state, while in Table II the 1j»„
single-neutron state is a bit above the 3d„,level.
The strengths calculated using the resultant neu-
tron wave functions and the density factors (and
hence compound widths) obtained using the ener-
gies from Table II would be insignificantly al-
tered if different wave functions and energies (with
the 3d», somewhat above the Ij»») were used. A

possible source of error, however, for the '-,'
calculation is that the spectroscopic factor of the

1j»» state is only = 0.5 to 0.6. The spectroscop-
ic factors for the other states are =14 supporting
our single-neutron parent assumption (Fig. 1).

For the quantities calculated in this paper it is
essential to know the actual energies and wave
functions of the 2p-1h, 3p-2h, and configuration
doorways for each analog state. However, if one
wishes to know only the total number of 3p-2h
states containing a specific neutron hole (Table
V), and not the actual ingredients of the 3p-2h
states, then the states need be selected [Eq. (24)

O I0000-

IO

Z

20000-

16000-
I

I

0 12 000-

8000.
X

0
0

E

I I I 5 w

2.0 4.0 6.0 8.0 IO.O

IM.E.I

(IM.E.I&

4000-

0
0 2.0 4.0 6,0 8.0 10.0 12.0 14.0 16.0 18.0

IM.E, I

&IM.E.I &

FIG. 9. Histogram of the number of T~+ doorway states
in Bi 9 vs the ratio of the magnitude of the matrix ele-
ment to the average value of the magnitude of the matrix
element. (Steps of 0.5.) The 2p-1h and 3p-2h matrix
elements are given by Eqs. (23) and (25), respectively.
The configuration states are not included in computing
the average or in the figure.

FIG. 10. Histogram of the number of ~T5 doorway
states in Bi 9 vs the ratio of the magnitude of the ma-
trix element to the average value of the magnitude of
the matrix element. (Steps of 0.5.) The 2p-1h and 3p-
2h matrix elements are given by Eqs. (23) and (25), re-
spectively. The configuration states are not included in
computing the average or in the figure.



COMPOUND SPREADINQ WIDTHS FOR Bi ANALOQ. . .

and Fig. 4] by satisfying the angular momentum
coupling rules for only one analog resonance.
This is because the number of allowed states for a
particular analog resonance depends on the num-
ber of allowed values of the intermediate angular
momentum I, in Fig. 4, and the number of I, val-
ues will be 2j„+1or 2j'+1, depending on which
is smaller. The spin j' is that of the analog reso-
nance of interest. One can therefore determine
the ratio of the number of Sp-2h doorways (con-
taining a certain neutron hole) for one analog state
to those of another analog state. For example,
the number of possible Sp-2h doorway states hav-
ing 2f», ' is found to be 7024 for the —,

"analog res-
onance (Table V). The ratio of the number of —",

Sp-2h doorways containing 2f„,' to the number of

30000

—,
"3p-2h doorways containing 2f„,' is [(2&& —,')+1]/
[(2x —,') +1)]=4. Thus, the number of possible -',

Sp-2h doorways having 2f„,' is r' && 7024 =1756
(Table V). Since the 3p-2h states (Fig. 4) have
more ingredients than the 2p-1h doorways (Fig. 2),
there are many more of the former than the latter
(Table V).

It is interesting to look at the contribution of a
typical 3p-2h state, e.g. , one of the 32 312 allowed
3p-2h states for —,". Using the notation of Eq. (24)
and Fig. 4, a particular doorway is e.g. ,

lSp-2h&

= l[lkggalt'ii~z(8 ) 47i. "r' ][2~9/alk9/z '(2 )] a

(60)

which is at 22.15 MeV above the ground state (and
hence 3.58 MeV above the —', analog resonance) in
Bi'~. The allowed multipoles k of the Coulomb
interaction Eq. (29) are k =1, . . . , 8, and the re-

32000-
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28000-
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0
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I

I
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0

12000-
D
Z

8000

4000

2.0
Sd

&Sd)

4.0 4.0
p comp (d)

(I comp (d))

I

6.0 0 2.0 0, ~ ~ Ig) ~ ~ I

&Sd&

0 20 4.0 6.0 0 2.0 40 6.0
d

&comp�

(d)

ggcomp(d))

FIG. 11. Histograms of the number of T~+ doorway
states in Bi 9 vs the ratio of the strength S„[Eq.(34)]
to the average strength (Sz) (left-hand side of figure) and
vs the ratio of the compound spreading width r- ~(d) to
the average compound spreading width (F" ~(d)) (right-
hand side of figure). The steps are 0.5. The 2p-1h and
3p-2h strengths are given by the squares of Eqs. (23)
and (25), respectively, while the 2p-lh and 3p-2h widths
are given by I'" "(d) =F, &h(d) and I' (d) =I'3p, h(d)
in Eqs. (37a) and (37b), respectively. The configuration
states are not included in computing the average or in
the figure.

FIG. 12. Histograms of the number of T5 doorway
states in Bi ~ vs the ratio of the strength S„[Eq.(34)] to
the average strength (S&) (left-hand side of figure) and vs
the ratio of the compound spreading width I' ' '(d) to the
average compound spreading width (r" "(d)) (right-hand
side of figure). The steps are 0.5. The 2p-1h and 3p-2h
strengths are given by the squares of Eqs. (23) and (25),
respectively, while the 2p-1h and 3p-2h widths are given
by F" ~(d) =I&' &h(d) and I"" P(d) =F&' P&h(d) in Eqs.
(37a) and (37b), respectively. The configuration states
are not included in computing the average or in the
figure.
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suiting value of the matrix element Eq. (25) is 1.4
keV. (Actually, this is somewhat larger than most
Sp-2h matrix elements. ) A typical 2p-lh state,
e.g. , one of the 749 allowed 2p-1h doorways for
—,
"using the notation of Eq. (22) and Fig. 2 is

~2p 1h): (1h9&21jz &s(4+) 2dz&s 25 ) (61)

which is at 12.72 MeV above the ground state (and
hence 7.42 MeV below the & analog resonance) in
Bi'~. The allowed multipoles k of the Coulomb in-
teraction Eq. (29) are k=5 and 7 and the resulting
value of the matrix element Eq. (23) is -0.15 keV.

As mentioned in Sec. III B in our work we deter-
mine the number of available 3p-2h and 2p-1h
states by recording those that can be obtained
with the correct total spin and parity from the set
of single-particle states of Fig. 6. (For a given
set of particles, each different value of Jp in Fig.
2, or set of values of J, and I, in Fig. 4, would
constitute a different state. ) However, there are

DOORWAY ENERGY RELATIVE TO GROUND STATE (MeVj

FIG. 13. Histograms of the number of 29+ doorway
states in Bi 9 and the density factor of the doorways
vs the doorway energy relative to the ground state (steps
of 1 MeV). The density factor of a doorway is given by
Eq. (35) or Eqs. (38a)-(38c). The density factor contri-
bution of the configuration doorways is negligible.
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a very small number of doorway states for which
the two-body Coulomb matrix element is identi-
cally zero, there being no multipole order k to
satisfy Eq. (29). A typical such state is

We include such states on our counting. In addi-
tion, there are a few states for which 0 =0 is pos-
sible in the two-body Coulomb expansion. (These
are not to be confused with the giant-monopole
state discussed by Mekjian. ') One such state is
l[2fsg. 3d,(,(8 ), 2d,(. ', p ] [2a.).2f5(, '(2 )1 2') .

Figures 7 and 8 show via histograms (for 'all but
the configuration doorways) that positive- and neg-
ative-value Coulomb matrix elements are equally

5

FIG. 15. Histograms of the number of ~+ doorway
states in Bi2 ~ and the strength of the doorways vs the
doorway energy relative to the ground state (steps of 1
MeV), The strength of a 2p-1h or a 3p-2h doorway is
given by the square of Eq. (23) or Eq. (25), respectively.
The strength of the antianalog state is given by the square
of Eq. (43), while the strength of each other configuration
state is given by the square of Eq. (44).
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FIG. 14. Histograms of the number of
2

doorway
states in Bi and the density factor of the doorways vs
the doorway energy relative to the ground state (steps of
1 MeV). The density factor of a doorway is given by Eq.
(35) or Eqs. (38a)-(38c). The density factor contribution
of the configuration doorways is negligible.

FIG. 16. Histograms of the number of ~~ doorway
states in Bi ~ and the strength of the doorways vs the
doorway energy relative to the ground state (steps of 1
MeV). The strength of a 2p-1h or a 3p-2h doorway is
given by the square of Eq. (23) or Eq. (25), respectively.
The strength of the antianalog state is given by the
square of Eq. (43), while the strength of each other
configuration state is given by the square of Eq. (44).
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FIG. 17. Histogram of the strength of 2 doorway
states in Bi between 22 and 25 MeV vs the doorway
energy relative to the ground state (steps of 1 MeV).
The strength of a 2p-1h or a 3p-2h doorway is given by
the square of Eq. (23) or Eq. (25), respectively. For
the 3p-2h doorways the contribution from those states
containing a particular neutron hole is indicated.

likely. This is just a verification of the usual ran-
dom-phase approximation made quite often in phys-
ics. We are really interested in the square of ma-
trix elements rather than their signs; however,
Figs. 7 and 8 serve, because of their symmetry
about 0 keV, as good checks on the accuracy of
our computer program. While it is not shown, the
analogous —,

' histogram is slightly less symmetric
than the —,

"histogram (Fig. 7) because there are
about —,

' as many —,
' as there are —,

"doorway states
to be sampled (Table V).

While the histograms (Figs. 7-19) are for f' and
(except for Fig. 17) the results are similar for

the other analog resonances. Most matrix ele-
ments (Figs. 7 and 8) are less than 1 keV in mag-
nitude. This is to be compared with the gross Cou-
lomb energy shift C [Eq. (39) and Table II] of about
19 Me V. Configuration state matrix elements can
be of the order of several hundred he V. (This can
be inferred from the square roots of the strengths
in Tables VIII, IX, and XII; see also Ref. 21.)
Nevertheless, the 3p-2h doorways contribute a
total strength for each analog resonance of about
—', that due to the six configuration states (Table
XII). This is due to the fact that there are many
thousands of the small 3p-2h matrix elements con-
tributing. While the configuration state strengths
in Table XII are larger than those of the other
doorways, the situation is reversed for the com-
pound spreading widths evaluated at F„„„,=1 MeV
(Table XIII). This is because of the large value
of E„=11 MeV which results in a rather small
density factor.

In Figs. 9 through 12 we note that the distribu-
tions of the number of states are peaked at very
small values of the abscissa (less than 0.5). In

particular Figs. 9 and 10 relate to
~
M. E.

~
j(M.E.),

+o 7'
&& 11.2 keV

X 6
t0

5-
82

4-

ce!

&' 2.36 k

0
Ct.

O
0

5 f 10
Conf&g. States

NumberIWidth due to 2p-lh
. s and 3p-2h states
I t,

Width due to Config. States,
4, $

FconRQ. = 5 MeV

Fconfig. =1 MeV

- 3000

I
- 2000

I

- 1000
D
Z

4 20 25
Analog State

30 35 40

DOORWAY ENERGY RELATIVE TO GROUND STATE (hheV}

Number

g Width due to 2p-lh
and 3p-2h states

Width due to Config. States i

P /caning. = 5 fiitev

$ Iconfig. =1 MeV

- 3000

t
2000 Q

t

W-1000 tO

Z

30

'~ 12.6 kev

3
ta

2 64 keV

8
Z 2
Cl

O
Z
0

0
0 ~ ~~,0

5 $10 15 lft 20 25 35 40
Config. States Analog State

DOORWAY ENERGY RELATIVE TO GROUND STATE (MeV)

FIG. 18. Histograms of the number of 2+ doorway
states in Bi 9 and the compound spreading width of the
doorways vs the doorway energy relative to the ground
state {steps of 1 MeV). The widths +2p $h(d) I'3p 2h(d),
and V fg(d)are indicated inEqs. (37a)—(37c), respec
tively.

FIG. 19. Histograms of the number of — doorway
states in Bi and the compound spreading width of the
doorways vs the doorway energy relative to the ground
state (steps of 1 MeV). The widths I'2p ph(d) I'3p 2h(d),
and I",,„z(d) are indicated in Eqs, (37a)-(37c), respec-
tively.
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and Figs. 11 and 12 to both S,/(S~) and I'" (d)/
(I'"""(d)). The shapes of these histograms are
reminiscent of the Porter- Thomas distributions
often observed in low-energy neutron scattering
experiments.

As mentioned in Sec. III 83 it is clear from Ta-
ble VII that S,~ »(h) is independent of the spin and
parity of the analog resonance. This is reason-
able since the neutron hole is in the Pb' ' core and
is independent of the added nucleon; however, in
squaring Eq. (25) a factor of I/(2J+1) appears
which indicates a dependence on the spin and par-
ity of the analog resonance and hence on the added
nucleon. This eontradietion is removed by realiz=
ing that S, ,~(h) is the sum of the squares of
many matrix elements [Eq. (52)]. For a, given set
of five quasiparticles the strength is proportional
to Qz (2IO+1) [cf. Eq. (25)], and since j„+Z=I,
we have

Q(2I, +1)=(2j„+l)(2Z+I), (62)

so that the factor of (2J +1) cancels the aforemen-
tioned factor of I/(24+1).

Because their wave functions have no single-
proton components the configuration states (Ta-
ble IV) other than the antianalog have strengths
(Table VIII) independent of the spin and parity of
the analog resonance. In Table VIII the contribu-
tions due to A, and A~ are quite small because of
our choice of coupling in generating the configura-
tion state wave functions. We see in Table VIII a
strong dependence on the Coulomb radius x~. It is
therefore necessary to choose a reliable value of
r~ and Ref. 22 indicates that this is 1.2 fm. The
strength at various radii is shown in Table IX for
the antianalog state. Here, there is as expected,
a noticeable dependence not only on x„,but also
(because of the single-proton component, Table IV)
on the spin and parity of the analog state. This lat-
ter dependence may be understood from the matrix
element Eq. (45). If the wave function of the single
proton

~ p) is quite different from those of the pro-
tons in the quantum states of the excess neutrons,
then the magnitude of (p~ Vc(r) ~p) will be quite dif-
ferent from the sizes of the matrix elements in-
volving the other protons in Eq. (45). In particu-
lar, each of the latter should be larger than

(P ~ V„(r)~P) because those protons are on the
average closer to the nucleus and hence feel more
Coulomb repulsion. The result of this is that the
amount of cancellation in Eq. (45) will be de-
creased. In Table IX the —,

' analog resonance
illustrates this, the 4s„,state having a much dif-
ferent wave function (because of n =4) than all the
other protons.

The widths I",",„„~(A, ) in Table X are independent

of the analog-state spin and parity because the
number of configuration states is the same for all
analog resonances, and the density factors for all
analog states are the same Eq. (57). It is clear
from Eqs. (57) and (58) that the result of havingI'„„„,in the numerator of Eq. (57) is to strongly
affect I'",,„,';,. This is manifested by the numbers
tabulated in the last two columns of Tables X and
XI. The components of the configuration state
wave functions are all 2p-1h except for the anti-
analog state (Table IV), and but for the —', and —',

(and perhaps —, ) analog states the contributions
from the antianalog states are not very important
(Table XI). Therefore I'„„„„=1MeV is more rea-
sonable than I'„„f;,=5 MeV, which is characteris-
tic of single-particle states. In any event we
would expect the parameter I'„„„., to be nearer
1 MeV than 5 MeV, and the numbers in the col-
umns labeled Ref. a in Table XIII to be good rough
estimates of upper limits for the compound mix-
ing widths in Bi' '.

In Figs. 13 and 14 we note that the distributions
of states for —,

' and '~' are similar and that most
available states are energetically above the analog
state. Near the configuration states, while there
are relatively few doorways, there are neverthe-
less enough to provide for nuclear damping. This
damping is manifested in the spreading width pa-
rameter I'„„„-. It is clear from these figures that
the region of large density factors covers about 1
to 2 MeV on either side of the analog state.

The histograms in Figs. 15 and 16 graphically
show the distributions of strengths that lead to the
summaries given in Table XII. We see that from
all the many thousands of states the strength
comes primarily (as mentioned earlier) from two
main sources, viz. , the configuration states and
a set of states near about 22 MeV. The latter
group consists essentially of those states for
which 0 = 1 (the dipole term) in the Coulomb ex-
pansion [Eqs. (28) and (29)] is allowed. Since the
Coulomb interaction is long range, we expect the
lowest multipoles to contribute most strongly.
The dipole term is a manifestation of this. What
we are most probably calculating are the effects
of these 3p-2h doorways whose common origin is
the mell-known giant-dipole state at about 14 MeV
in Pb"'. While it is difficult to actually predict the
correct energy of the Pb"' dipole resonance, ""
the wave function is most likely primarily of the
particle-hole type. The subsequent addition of
various sets of two particles and a hole to this
state yields doorways in the 20-25-MeV range
(cf. the energies in Table II) that are by virtue of
their construction generically related to the giant
dipole resonance. Such a doorway is for example,
the 3p-2h state given in Eq. (60). The large (and
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hence very important) matrix elements (extending
to about 10—12 keV) in Figs. 7 and 8 are also of
the general type described above.

In Fig. 17 we show the basic makeup of the door-
way states in the dipole energy range for the —,

'
analog resonance. The overwhelming strength con-
tributions come from Sp-2h states, and the histo-
gram indicates how the strengths for the various
neutron holes (cf. Table VII) are distributed.

Finally, Figs. 18 and 1S show the distributions
of widths that lead to the compound spreading
widths presented in Table XIII. The major con-
tributions from the nonconfiguration doorways are
shifted to the left slightly from the dominant
strengths in Figs. 15 and 16. This is the influ-
ence of the large density factors shown in Figs.
13 and 14, and this effect is summarized in con-

elusion 2 of this section.
It would be of interest in a future calculation to

use a particle-vibration model for the doorways,
especially those of dipole origin. While such a
model would eliminate much of the microscopic
information and detail presented here, it would
more clearly convey the general collective door-
way behavior.
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