Dyson, *ibid*. 4, 701, 713 (1963).

⁸H. Liou, H. S. Camarda, and F. Rahn, Phys. Rev. C 5, 1002 (1972).

⁶J. E. Monahan and N. Rosenzweig, Phys. Rev. C <u>1</u>, 1714 (1970).

¹⁰O. Bohigas and J. Flores, in *Proceedings of the Inter*national Conference on Statistical Properties of Nuclei, Albany, New York, August 23-27, 1971 (Plenum, New York, 1972), p. 195. ¹¹F. Rahn, H. Camarda, G. Hacken, W. W. Havens, Jr., H. I. Liou, J. Rainwater, M. Slagowitz, and S. Wynchank, to be published.

¹²C. M. Newstead, J. Delaroche, and B. Cauvin, in Proceedings of the International Conference on Statistical Properties of Nuclei, Albany, New York, August 23-27, 1971 (see Ref. 10), p. 367.
¹³K. Seth, Nucl. Data A2, 299 (1966).

PHYSICAL REVIEW C

VOLUME 6, NUMBER 1

JULY 1972

Nuclear Levels in ²³³Th Excited by Neutron Capture and (d, p) Reactions*

T. von Egidy, O. W. B. Schult, and D. Rabenstein Physik-Department, Technische Universität München, München, Germany

and

J. R. Erskine Argonne National Laboratory, Argonne, Illinois 60439

and

O. A. Wasson and R. E. Chrien Brookhaven National Laboratory, Upton, New York 11973

and

D. Breitig, R. P. Sharma, † H. A. Baader, and H. R. Kocht

Physik-Department, Technische Universität München, München, Germany, and Research Establishment Risö, Risö, Denmark

(Received 29 February 1972)

Low-energy γ rays of the reaction 232 Th $(n, \gamma)^{233}$ Th have been measured with the Risö bentcrystal spectrometer and with a Ge(Li) spectrometer at Munich. High-energy neutron-capture γ rays from four low-energy neutron resonances have been investigated at the fastchopper facility at Brookhaven. Data on the reaction 232 Th $(d, p)^{233}$ Th were taken with an Enge split-pole magnetic spectrograph at the tandem Van de Graaff accelerator at Argonne. The combination of these data resulted in a level scheme of 233 Th. Seven Nilsson configurations have been assigned to rotational bands, two of them tentatively. Spectroscopic factors have been calculated with ϵ_4 deformation and Coriolis mixing, and compared with the experiment. The neutron binding energy in 233 Th has been determined to be 4786.5±2.0 keV.

1. INTRODUCTION

The deformed nucleus ²³³Th is supposed to have a structure similar to its isotone ²³⁵U. The best ways of investigating ²³³Th are by means of the (d, p) and (n, γ) reactions. Because of the rather small neutron capture cross section of ²³²Th (7.4 b), previous (n, γ) experiments¹⁻⁶ did not result in a level scheme of ²³³Th. The (d, p) reaction has recently been measured at Risö.⁷

To obtain more information on ²³³Th, experiments have been carried out at Risö, Denmark, through the study of low-energy neutron-capture γ rays with a crystal spectrometer, at Munich with a Ge(Li) spectrometer for low-energy capture γ rays, at Brookhaven National Laboratory (BNL), where high-energy γ rays from resonant neutron capture have been investigated, and at Argonne with the (d, p) reaction. Preliminary results have been reported already.^{8,9}

An attempt was made to measure conversion electrons following neutron capture with the β spectrometer at the Munich FRM reactor¹⁰ and with the superconducting β spectrometer SULEIKA at the Munich FRM reactor.¹¹ Because of the low capture cross section, only conversion-electron lines with an intensity of more than about 5 per 100 captures should have been observed. No ²³³Th lines were found in the conversion-electron spectra. The knowledge of the level scheme of ²⁸³Th is interesting, since this knowledge is another important ingredient for systematic comparisons of the nuclear structure of the actinides. Insight into nuclear models, in particular the Nilsson model, is gained by these comparisons.

2. EXPERIMENTS

A. Measurement with the Crystal Spectrometer at Risö

The γ spectrum between 87 and 900 keV from slow-neutron capture in ²³²Th has been measured with the Risö curved-crystal spectrometer.¹² The lines emitted from a 132-mg thorium oxide source were recorded automatically in different orders of reflections with a resolution of

$$\Delta E_{\gamma}/E_{\gamma} \approx \frac{0.013 E(\text{MeV})}{n}$$

6

where ΔE_{γ} is the full width at half maximum (FWHM) of a γ line obtained in the *n*th order of reflection. The value of *n* is 1 for $E_{\gamma} < 174$ keV, 1 and 2 for $E_{\gamma} < 261$ keV, 1, 2, and 3 for $E_{\gamma} < 435$ keV, and 5 for intense transitions with $E_{\gamma} > 435$ keV. Two sections of the γ spectrum are shown in the upper part of Fig. 1. Most of the observed reflections correspond to γ transitions in ²³³Th. These are listed in Table I. Their energies are based on the value 511.006 ± 0.002 keV of the annihilation line¹³ and the $K\alpha_1$ and $K\alpha_2$ line energies.¹⁴ The intensities in Table I are calibrated to γ rays per 100 captures by using the 311-keV decay line of ²³³Pa for which Albridge *et al.*¹⁵ give an absolute intensity of 34% per decay. The calibration error of 15% is not included in the intensity error in the table.

267

 γ transitions within ²³³U have been measured simultaneously with the (n, γ) transitions in ²³³Th. The energies of these γ rays have been given elsewhere.¹⁶ Some γ lines from the β decay of ²³³Th to ²³³Pa have been observed (in keV): 194.90 ± 0.05 ; 440.96 ± 0.07 ; 447.77 ± 0.3 ; 459.26 ± 0.06 ; 499.20 ± 0.3 ; 669.64 ± 0.2 .

B. Low-Energy Ge(Li) Detector Measurements at Munich

The γ spectrum resulting from neutron capture in ²³²Th has been measured between 50 keV and 2.25 MeV with a 30-cm³ coaxial Ge(Li) detector. At 1.33 MeV, this detector yields a linewidth (FWHM) of 2.5 keV and a peak-to-Compton ratio of 19. The target consisted of 9.8 g natural thorium, in the form of a disk with an average thick-

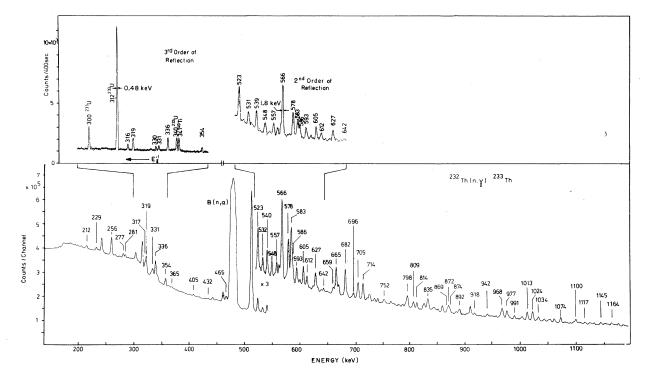


FIG. 1. Lower part: γ spectrum from slow-neutron capture measured with the Ge(Li) detector at Munich. Upper part: two sections of the (n, γ) spectrum measured with the Risö crystal spectrometer. There is contamination from other reactions in both spectra.

	Cr	ystal spectr	ometer		Ge(Li) spectrometer					
No.	$E(\text{keV})^{a}$	ΔE	I/100n	ΔI	$E(\text{keV})^{a}$	ΔE	I/100n	ΔI		
1	159.22	0.05	0.35	0.1						
$\frac{1}{2}$	182.40?	0.10	0.08	0.06	181.89?	0.22	0.07	0.0		
$\frac{1}{3}$	201.62	0.05	0.11	0.03	201.64	0.20	0.11	0.0		
			0.26	0.05		0.16		0.0		
4	211.86	0.05			211.71		0.30			
5	229.04	0.03	0.20	0.05	229.02	0.15	0.37	0.0		
6	233.28	0.03	0.11	0.03	232.90	0.18	0.21	0.0		
7	256.16	0.04	1.40	0.16	256.09	0.14	1.59	0.1		
8	260.22?	0.08	0.05	0.02						
9	263.02	80.0	0.10	0.02	262.60	0.18	0.12	0.0		
10	267.71?	0.20	0.04	0.02						
11	269.69?	0.09	0.03	0.02						
12	277.53	0.03	0.23	0.05	277.3	0.3	0.33	0.0		
13	278.19	0.04	0.15	0.02			••••	•••		
10 14	281.32	0.02	0.20	0.03	281.16	0.15	0.26	0.0		
15	286.4?	0.04	0.01	0.01	286.18?	0.31	0.05	0.0		
15	200.4 /		0.01	0.01	200.10 :	0.01	0.05	0.0		
16	297.00?	0.10	0.07	0.02	297.2	0.7	0.03	0.0		
17	298.81?	0.15	0.06	0.02						
18	316.68	0.04	0.58	0.06	316.64	0.15	0.51	0.0		
19	319.09	0.04	1.21	0.13	318.97	0.15	1.15	0.1		
20	327.50	0.10	0.15	0.03)	328.19+	0.22	0.43	0.0		
21	329.93	0.03	0.34	0.04 \$		• • • • • • • • • • • • • • • • • • • •				
22	331.35	0.03	0.47	0.05	331.00	0.17	0.81	0.1		
23	335.93	0.02	1.46	0.16	335.72	0.15	1.74	0.1		
24	346.01?	0.25	0.03	0.02						
25	351.73?	0.10	0.06	0.02						
26	354.32	0.03	0.57	0.06	354.09	0.15	0.63	0.0		
27	361.9?	0.3	0.06	0.02	361.74	0.21	0.10	0.0		
28	364.98	0.15	0.10	0.03	365.02	0.23	0.13	0.0		
29	366.7	0.3	0.07	0.02	366.89	0.25	0.12	0.0		
30	370.46	0.07	0.10	0.03	370.18	0.18	0.10	0.0		
	205 222	0.15	0.08	0.03	384.30	0.25	0.06	0.0		
31	385.22?	0.15	0.08	0.03	389.13?					
32	(00 -0	0.00	0.00	0.01	393.191	0.53	0.02	0.0		
33	402.53	0.20	0.06	0.01	105 10	0.10				
34	405.53	0.05	0.12	0.02	405.40	0.16	0.15	0.0		
35	427.9	0.3	0.08	0.03	426.89	0.23	0.06	0.0		
36	432.22	0.12	0.13	0.04	431.92	0.18	0.11	0.0		
37	465.12	0.06	0.37	0.06	464.56?	0.16	0.41	0.0		
38	472.30	0.03	2.79	0.32						
39	488.00	0.12	0.17	0.05						
40	522.63	0.09	1.59	0.16	522.44	0.15	1.74	0.1		
41	531.47	0.06	0.59	0.08	531.31	0.15	0.65	0.04		
$41 \\ 42$	534.9	0.3	0.11	0.04	001.01	0.10	· • • • •	0.0		
43	539.54	0.10	0.95	0.10	539.35	0.15	1.03	0.0		
43 44	539.54 543.4	0.10	0.95	0.04	542.46	0.15	0.10	0.0		
$44 \\ 45$	548.29	0.08	0.10	0.04	547.96	0.32	0.10	0.0		
	559 0	0.0	0.10	0.05		0.17	0.99	0.01		
46	553.0	0.3	0.16	0.05	553.05	0.17	0.22	0.0		
47	556.97	0.08	0.54	0.10	556.64	0.16	0.76	0.04		
48	561.11	0.09	0.51	0.13	560.93+	0.16	0.65	0.04		
49	564.57	0.09	$\begin{array}{c} 0.53 \\ 2.95 \end{array}$	0.08	564.12	0.17	0.65	0.05 0.22		
50	566.68	0.06		0.44	566.36	0.15	3.70			

TABLE I. Low-energy capture γ transitions in $^{233}\text{Th}.$

ectrometer	
I/100n	ΔI

_

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			• •	ectrometer			le(Li) spect		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	E (keV) ^a	ΔE	I/100n	ΔI	$E(\text{keV})^{a}$	ΔE	I/100n	ΔI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	569.1	0.4	0.13	0.06				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	574.2	0.4	0.10	0.10	573.94	0.18	0.26	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53	577.70				577.71			0.20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						593.00			0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					0.04	599.00	0.18	0.26	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	59	605.52	0.15	0.79	0.13	605.13	0.16	0.99	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60	612.13	0.12	0.43	0.06	611.60	0.16	0.56	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61	617 99	0.5	0.07	0.05	617 19	1 /	0.09	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.0
66 637.77 0.24 0.09 0 67 642.4 0.3 0.17 0.06 641.83 0.18 0.19 0 69 649.18 0.33 0.07 0 649.18 0.33 0.07 0 70 659.7 0.3 0.26 0.05 659.13 0.18 0.26 0 71 661.8 0.4 0.14 0.05 661.86 0.21 0.26 0 72 665.09 0.13 1.27 0.19 664.90 0.16 1.54 0 74 681.87 0.08 1.11 0.22 681.54 0.16 1.56 0 75 685.2 0.4 0.19 0.06 684.94 0.20 0.20 0.20 0 76 0.7 695.6 0.6 0.25 0.10 696.30 0.18 0.38 0 0 79 705.07 0.15 0.83 0.19 714.79 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td>									0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	65	632.4	0.5	0.13	0.06	631.84	0.24	0.20	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66					637.77	0.24	0.09	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		642.4	0.3	0.17	0.06				0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		659.7	0.3	0.26	0.05				0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							ann a fhagann ann a' - agus annann		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		665.09	0.13	1.27	0.19				0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						667.32	0.30		0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		681.87	0.08	1.11	0.22	681.54	0.16	1.56	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	685.2	0.4	0.19	0.06	684.94	0.20	0.20	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76					609.99	0.44	0.00	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		605 C	0.6	0.95	0.10				0.0 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		095.0	0.0	0.25	0.10				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.15	0.00	0.10				0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		105.07	0.15	0.83	0.19				0.0 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	714.24	0.10	0.79	0.22	713.99	0.17	1.21	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82					721.59	0.21	0.21	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	724.3?	0.6	0.25	0.10				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	734.6?	0.4	0.13	0.06	734.80	0.19	0.25	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	740.9	0.6	0.19	0.06	740.83	0.19	0.27	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86					F10 E0	0.4	0.04	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		759 7	0.9	0.10	0.02				0.0
89 778.24 0.5 0.07 0 90 780.47 0.8 0.04 0 91 786.54? 0.23 0.21 0 92 788.82 0.32 0.12 0 93 797.2 0.4 0.41 0.16 797.50 0.17 0.83 0 94 806.66 0.31 0.16 0 0 0 0 95 809.9 0.5 0.29 0.10 808.62 0.21 0.38 0		104.1	0.0	0.19	0.00				0.0
90 780.47 0.8 0.04 0 91 786.54? 0.23 0.21 0 92 788.82 0.32 0.12 0 93 797.2 0.4 0.41 0.16 797.50 0.17 0.83 0 94 806.66 0.31 0.16 0 0 0 0 95 809.9 0.5 0.29 0.10 808.62 0.21 0.38 0									0.0
91 786.54? 0.23 0.21 0 92 788.82 0.32 0.12 0 93 797.2 0.4 0.41 0.16 797.50 0.17 0.83 0 94 806.66 0.31 0.16 0 0 0 0 95 809.9 0.5 0.29 0.10 808.62 0.21 0.38 0									0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9U				······	780.47	0.8	0.04	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91					786.54?	0.23	0.21	0.0
93 797.2 0.4 0.41 0.16 797.50 0.17 0.83 0 94 806.66 0.31 0.16 0 95 809.9 0.5 0.29 0.10 808.62 0.21 0.38 0									0.0
94 806.66 0.31 0.16 0 95 809.9 0.5 0.29 0.10 808.62 0.21 0.38 0		797.2	0.4	0.41	0.16				0.04
95 809.9 0.5 0.29 0.10 808.62 0.21 0.38 0		· - · · -	- • -						0.0
		809.9	0.5	0.29	0.10				0.0
	96	814.4	0.6	0.25	0.10	814.39	0.18	0.41	0.0

TABLE I (Continued)

	Ge(Li) spectron	neter			Ge(I	i) spectro	ometer	
No.	$E(\text{keV})^{a}$	ΔE	I/100n	ΔI	No.	E (keV) ^a	ΔE	I/100n	ΔI
97	826.09	0.21	0.34	0.03	130	1024.1	0.3	0.47	0.07
98	828.54	0.21	0.36	0.03	131	1031.1	0.4	0.08	0.02
99	833.23	0.20	0.55	0.05	132	1034.0	0.2	0.33	0.02
100	835.31 +	0.19	0,65	0.05	133	1044.3	0.2	0.22	0.02
101	839.47	0.32	0.10	0.02	134	1051.8	0.3	0.16	0.02
102	843.09	0.26	0.19	0.03	135	1054.9	0.2	0.23	0.02
103	845.98	0.24	0.24	0.03	136	1062.0	0.3	0.30	0.03
104	849.18	0.31	0.13	0.03	137	1064.3	0.8	0.05	0.02
105	852.82	0.24	0.18	0.03	138	1073.8	0.2	0.49	0.03
106	869.38	0.21	0.23	0.02	139	1081.4	0.4	0.08	0.02
107	871.89	0.20	0.49	0.03	140	1084.6	0.5	0.06	0.02
108	874.35	0.21	0.24	0.03	141	1091.1	0.7	0.03	0.01
109	885.58	0.20	0.17	0.02	142	1097.2	0.3	0.16	0.02
110	891.50	0.20	0.36	0.03	143	1100.9	0.2	0.41	0.03
111	903.35	0.39	0.05	0.01	144	1105.5	0.3	0.12	0.02
112	907.07	0.22	0.14	0.02	145	1109.4	0.3	0.12	0.02
113	913.59	0.28	0.12	0.02	146	1117.1	0.3	0.20	0.02
114	918.45	0.20	0.19	0.02	147	1125.7	0.3	0.17	0.02
115	928.45	0.42	0.04	0.01	148	1128.9	0.3	0.10	0.02
116	941.83	0.21	0.21	0.02	149	1133.4	0.3	0.16	0.02
117	947.24	0.37	0.07	0.01	150	1145.5	0.3	0.27	0.02
118	951.44	0.33	0.08	0.02	151	1151.7	0.4	0.13	0.03
119	957.27	0.28	0.10	0.02	152	1154.3	0.4	0.13	0.02
120	968.01	0.21	0.67	0.04	153	1158.0	0.3	0.13	0.02
121	976.85	0.19	0.60	0.03	154	1164.2	0.3	0.26	0.03
122	979.78	0.24	0.19	0.02	155	1166.8	0.4	0.11	0.02
123	990.66	0.20	0.28	0.02	156	1171.3	0.3	0.15	0.02
124	996.47	0.27	0.09	0.02	157	1176.5	0.3	0.23	0.02
125	1001.9	0.3	0.10	0.02	158	1185,1	0.3	0.14	0.02
126	1004.6	0.2	0.25	0.02	159	1188.7	0.6	0.06	0.02
127	1013.4	0.2	0.58	0.06	160	1196.5	0.3	0.23	0.02
128	1015.0	0.4	0.20	0.06	161	1207.9	0.5	0.07	0.02
129	1022.6	0.3	0.41	0.07	162	1212.2	0.4	0.09	0.02

TABLE I (Continued)

^a ?, line questionable; +, energy maybe shifted by overlapping background line.

ness of 2 mm. The neutron flux impinging on the target was $10^6 n/cm^2$ sec. The capture facility, at the end of a neutron guide tube installed at the FRM, has been described in detail.^{17,18}

Figure 1 shows that part of the (n, γ) spectrum in which most of the lines could still be separated in a satisfactory way. For this spectrum two days of counting time were needed. It contains background lines, which resulted not only from the decay of ²³³Th and its decay products, but also, to an appreciable extent, from the decay of ²³²Th. To separate the (n, γ) lines from the background lines, special runs had to be taken without the neutron beam, both before and immediately after neutron irradiation.

The energies given in Table I have been calibrated with well-known calibration standards: the $121.97 \pm 0.03 \text{-} \text{keV}$ line from ^{57}Co and the 2223.29 ± 0.07 -keV line from *n* capture in H.¹⁹ The results have been corrected for nonlinearity of the whole system by use of a high-precision Hg pulser. To calibrate the relative efficiency of the Ge(Li) detector, a set of calibrated γ sources from the International Atomic Energy Agency (Vienna) has been used, and the intensities given in Table I have been corrected for self-absorption in the target. Relative intensity errors are given in the table. For the absolute intensity calibration the 311-keV line from the decay of ²³³Pa (27 day) has been used which is present in the (n, γ) spectrum. This intensity was taken from Ref. 15. The error of the absolute intensity calibration is about 25% and has not been included in the ΔI values.

C. High-Energy γ Rays from Resonance Neutron Capture in ²³²Th Measured at Brookhaven

The experiment was performed at the 22-m flight path of the fast-chopper facility at Brookhaven.²⁰ The sample consisted of a $\frac{1}{4}$ -in.-thick plate of natural thorium placed in the standard geometry, and the γ rays were detected in a 10cm³ Ge(Li) diode. Two weeks of beam time were devoted to the experiment. The resulting neutron time-of-flight spectrum is shown in Fig. 2.

The γ -ray spectra from the four resolved resonances along with that for neutron energies less than 0.2 eV are shown in Fig. 3. Here the γ -ray energy scale refers to the double-escape peaks. The peak numbers indicate the double-escape peaks, while the full-energy peaks are indicated by the letter F. The numbered peaks are those which appear reasonably strong in at least one of the five spectra.

The γ -ray energies and absolute intensities are listed in Table II. The energy calibration is based on the background γ ray at 2614.47 keV 21 and the separation of one- and two-photon escape peaks. The γ -ray intensities were determined in a separate experiment by use of composite thin samples of gold and thorium. The intensities of the strong 4214- and 4105-keV γ rays in the 23.4-eV thorium resonance were measured relative to the sum of the intensities of γ rays with energies exceeding 6.2 MeV in the 4.9-eV resonance of gold. The absolute intensities for gold have been measured as a function of neutron energy from thermal to the 4.9-eV resonance by W. R. Kane, using a diffraction neutron monochromator at the BNL High Flux Beam Reactor. Employing his value²² of 0.133 photons per capture for the sum of all transitions exceeding 6.2 MeV in the 4.9-eV resonance, we can calculate the absolute intensities

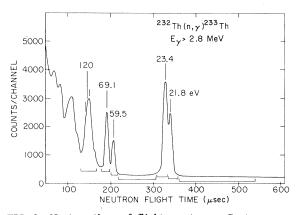


FIG. 2. Neutron time-of-flight spectrum. Capture γ -ray spectra are measured for the indicated neutron energies.

of Table II. These values are about 30% higher than would be inferred from the older gold measurements of Groshev *et al.*²³ The relative number of neutrons captured in each resonance was calculated from the measured relative neutron flux and the known resonance parameters by use of the thorium values of Bhat and Chrien²⁴ and the gold parameters of Wood.²⁵ Corrections for γ -ray detection efficiency were applied.

Fluctuations of the γ rays were found to be consistent with the Porter-Thomas distribution²⁶ of radiative widths. This strongly suggests that the statistical model of neutron capture may be used to evaluate the thorium γ -ray spectra for shield-ing calculations.

The combination of the high-energy γ lines with the level energies in 233 Th results in a Q value of the (n, γ) reaction of 4786.5 ± 2.0 keV. The newest Atomic Mass Table²⁷ gives the value 4787 ± 5 keV. It is surprising that no M1 transitions from the $\frac{1}{2}^+$ capture state to the $\frac{1}{2}^+$ ground state and to the $\frac{3}{2}^+$ state at 16 keV were observed although corresponding transitions have been seen in ${}^{235}U^{28}$ and ²³⁹U.^{29,30} Kernbach, Fiebiger, and Stelzer⁴ detected these transitions in thermal-neutron capture in ²³³Th. The upper intensity limits in this experiment from the transitions to the ground state and 16-keV state are given in Table II. Porter-Thomas fluctuations seem to cause the failure to observe these transitions in the four resonances.

The summed intensity of a γ transition $(\sum I_i)$ over resonances gives some indication of the multipolarity of the transition, and thus an indication of the spin and parity of the populated level.³¹ According to Bollinger and Thomas,²⁷ M1 transitions are on the average a factor of 6 weaker than E1 transitions and for E2 transitions a factor of 45. For one multipolarity, a 70% intensity variation is expected for the average over four resonances due to Porter-Thomas fluctuations.³¹ Assuming that transitions with $\sum I_i > 32$ are E1 transitions, one gets an average $\sum I_i(E1) = 60 \pm 42$. With this value one calculates $\sum I_i(M1) = 11 \pm 8$ and $\sum I_i(E2) = 1 \pm 1$. These intensity estimates were used to give tentative spin and parity assignments to levels above 500 keV.

D. (d, p) Reaction Measured at Argonne

The data on the reaction 232 Th $(d, p)^{233}$ Th were taken with the Enge split-pole magnetic spectrograph³² at the tandem Van de Graaff accelerator. A bombarding energy of 12 MeV was used. The energy scale of the spectrograph was calibrated with α particles from a ²¹⁰Po source, whose energy was taken to be 5.3045 ± 0.0005 MeV. The target was prepared by evaporating natural thorium metal from a tantalum boat. The data were recorded on nuclear emulsions, and the tracks were counted with the Argonne automatic nuclear-emulsion scanner.³³ A few peaks were hand counted to check the automatic scanner. The resulting spectra were analyzed with the automatic spectrumdecomposition program AUTOFIT.³⁴

The data on the (d, p) reaction (Table III and Fig. 4) were recorded at three angles (90, 135, and 150°), since it was known from previous studies^{35,36} of (d, p) reactions on actinide nuclei that

information about the *l* value of the captured neutron could be obtained from the ratio $d\sigma(90^\circ)/d\sigma(150^\circ)$.

Absolute differential cross sections were measured by comparing the yield in the (d, p) reaction with the yield of deuterons elastically scattered from the target. The deuterons were recorded by a silicon solid-state detector mounted at 90° to the beam direction. The ratio of the elastic scattering cross section to that for pure Coulomb scattering was taken to be 0.7 on the grounds that the measurement³⁷ of the 90° yields in the scattering

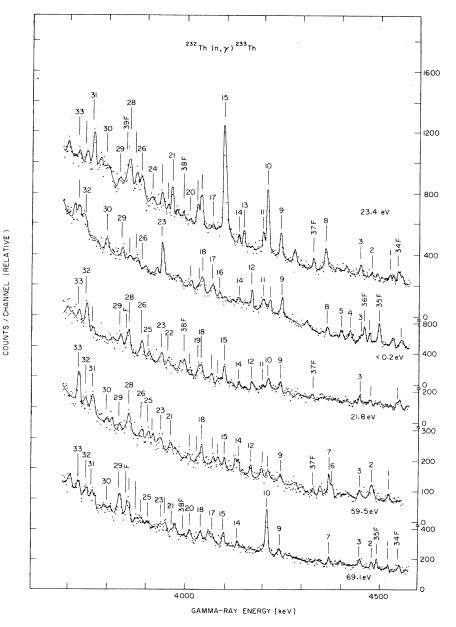


FIG. 3. γ spectra from capture of neutrons with different energies.

of 12-MeV deuterons by ²³⁸U had given 0.70 ± 0.03 for this ratio. The ²³²Th(d, p)²³³Th Q value was determined to be 2.567 ± 0.007 MeV, corresponding to a neutron binding energy of 4792 ± 7 keV, which is in good agreement with the value in the previous section.

3. LEVEL SCHEME

A level scheme of 233 Th (Fig. 5) was constructed using all experimental information, some theoretical predictions, and the similarity to the 235 U level scheme. 28,35,38 The left side of the scheme

TABLE II. γ -ray energies and intensities from resonant neutron capture in ²³²Th.

Peak No.	E_{γ} (keV)	$E_{\rm ex}^{\ a}$ (keV)	<0.2 eV	I _j , photons 21.8 eV	per 1000 cap 23.4 eV	otures 59.5 eV	69.1 eV	$\sum I_j$
	(450 6 5)							
	(4786.5)	0						<7.
1	(4769.7) 4525.9 ± 2.0	$\begin{array}{c} 16.8 \\ 260.6 \end{array}$	0.7.1.1	() 0	90111	-9.4	9.0 1 7	<10.
$\frac{1}{2}$	4525.9 ± 2.0 4477.0	260.6 309.5	3.7 ± 1.1	$^{<2.8}_{2.4 \pm 1.1}$	2.8 ± 1.1	<3.4	3.0 ± 1.7	10.
2	4477.0	309.5 335.5	$\begin{array}{c} \textbf{2.8} \pm \textbf{1.1} \\ \textbf{2.4} \pm \textbf{1.1} \end{array}$		$\begin{array}{c} \textbf{2.1} \pm \textbf{1.1} \\ \textbf{4.5} \pm \textbf{1.1} \end{array}$	14.3 ± 2.4	5.5 ± 1.7	27.
3 4	4451.0 4419.5 ^c	367.0	4.5 ± 1.1	3.8 ± 1.3 <2.8	4.3 ± 1.1 <2.1	8.5 ± 2.8	9.2 ± 2.1	28.
4 5	4398.2 ^c	388.3	4.5 ± 1.1 4.7 ± 1.1	<2.8 <2.8	<2.1 <2.1	<3.4 <3.1	<3.4 <3.4	4.
5	4398.2	405.8	4.7 ± 1.1 <2.8	<2.8	<2.1	< 3.1 6.8 ± 2.1		4.
7	4372.7	405.8 413.8	<2.8	<2.8	<2.1	0.8 ± 2.1 12.6 ± 2.1	<3.4 6.2 ± 2.1	6.8
8	4362.2 ^c	413.0		<2.8	<2.1 7.9 ± 1.1			18.8
8 9	4246.7	424.3 539.8	4.1 ± 1.1 7.5 ± 1.3			4.1 ± 2.4	<3.4	16.
9 10	4240.7 4214.4 ^c	539.8 572.1	7.5 ± 1.3 6.2 ± 1.3	6.8 ± 1.3	8.2 ± 1.1	5.8 ± 2.4	7.9 ± 2.1	36.2
10	4202.4	584.1		5.1 ± 1.7	21.8 ± 1.1	4.7 ± 2.4	40.4 ± 4.7	78.2
11 12	4202.4 4172.4 ^c	614.1	8.2 ± 1.3	4.1 ± 1.7	7.2 ± 1.1	8.5 ± 2.4	<3.4	28.0
13			6.2 ± 1.3	3.4 ± 1.1	<2.1	8.2 ± 2.1	<3.4	17.8
13 14	4153.7	632.8	<2.8	<2.8	5.1 ± 1.1	<3.4	<3.4	5.
14 15	4141.0	645.5	<2.8	3.8 ± 1.1	3.4 ± 1.1	8.9 ± 2.1	4.5 ± 2.1	20.
15 16	$4104.9 \\ 4090.9$	681.6 695.6	<2.8	17.1 ± 2.1	41.0 ± 2.1	8.2 ± 2.1	12.4 ± 2.8	78.
16	4090.9		3.0 ± 1.3	<2.1	<2.1	6.8 ± 2.8	<3.4	9.9
18	4045.8	713.5	7.5 ± 1.3	5.5 ± 1.1	<2.1	6.2 ± 2.8	14.7 ± 3.4	33.
18		740.7	7.2 ± 1.3	3.4 ± 1.3	10.9 ± 1.1	12.6 ± 2.1	14.7 ± 2.8	48.
	4036.6	749.9	3.4 ± 1.3	1.7 ± 1.1	6.4 ± 1.1	2.4 ± 1.7	<2.8	13.
20	4019.0	767.5	1.3 ± 1.3		1.3 ± 1.3	1.7 ± 1.7	9.2 ± 2.1	14.6
21	3967.9	818.6	<2.8	<2.8	10.7 ± 2.1	6.4 ± 1.7	2.8 ± 2.1	19.9
22	3956.0	830.5	<2.8	3.0 ± 1.7	2.1 ± 1.3	<3.4	7.5 ± 2.1	12.6
23	3946.0	840.5	17.1 ± 2.1	11.3 ± 2.1	5.8 ± 1.3	9.6 ± 2.4	<3.4	43.8
24	3925.5	861.0	<2.8	<2.8	3.0 ± 1.3	6.8 ± 1.7	<3.4	9.8
25	3912.2	874.3	<2.8	4.1 ± 1.3	<2.8	8.9 ± 1.7	2.8 ± 2.1	15.8
26	3894.7	891.8	<2.8	9.2 ± 1.3	11.3 ± 1.3	6.8 ± 1.7	5.1 ± 2.1	32.4
27	3882.9	903.6	2.8 ± 2.1	<2.8	12.0 ± 1.3	<3.4	4.7 ± 2.1	19.5
28	3862.4	924.1	<2.8	18.4 ± 2.1	18.1 ± 2.8	18.8 ± 3.4	13.7 ± 3.0	69.0
29	3839.8	946.7	4.1 ± 2.1	9.6 ± 2.1	6.4 ± 2.8	6.4 ± 2.1	23.9 ± 3.0	50.4
30	3804.9	981.6	6.4 ± 1.7	<2.8	6.8 ± 2.8	<3.4	<3.4	13.2
31	3774.0	1012.5	<2.8	<2.8	14.3 ± 1.1	21.2 ± 4.1	16.0 ± 3.0	51.5
32	3755.5	1031.0	6.2 ± 1.3	21.6 ± 1.3	5.1 ± 1.1	8.2 ± 2.1	17.8 ± 2.8	58.9
33 94 Th	3736.3	1050.2	11.6 ± 1.7	11.6 ± 1.3	3.8 ± 1.1	21.8 ± 2.4	17.1 ± 2.4	65.9
34 F ^b	3524.0	1262.5	12.4 ± 3.0	8.2 ± 3.0	7.2 ± 3.0	<4.7	<6.2	27.8
35F	3472.2	1314.3	28.7 ± 3.4	<3.4	<3.4	<4.7	21.6 ± 5.1	50.3
36F	3434.5	1352.0	18.4 ± 3.0	<3.0	<3.0	<4.7	<6.2	18.4
37 F	3308.2	1478.3	<6.8	1.7 ± 1.3	9.2 ± 2.8	5.1 ± 2.8	<6.2	16.0
38F	2983.0	1803.5	<6.8	21.2 ± 2.8	<3.0	6.8 ± 4.1	<6.2	28.0
39F	2841.5	1945.0	8.5 ± 5.1	34.2 ± 6.8	$\underline{51.3\pm10.3}$	<10.3	54.7 ± 13.7	148.7
Sum of oll	A. 7010		179.7	212.3	289.7	247.1	315.4	
Sum of all γ rays	<236.9	<254.4	<316.6	<295.3	<380.4			

^a Calculated with $Q_n = 4786.5 \text{ keV} \pm 2 \text{ keV}$.

^b F indicates full-energy peak.

^c Note added in proof: Peaks 4, 5, 8, 10, and 12 are contaminated by an undetermined full-energy peak contribution from lines located 1022 keV below the listed energies; hence their intensities must be regarded as upper limits. We are indebted to Dr. Jean Kern, U. Fribourg, for this information.

TABLE III. Excitation energies of levels in 233 Th, differential cross sections in (d, p) reaction, and orbital assignments.

Excitation energy (keV)	$d\sigma/d\Omega \ ^{ m a}$ at 150° ($\mu { m b/sr}$)	$R = \frac{d\sigma(90^\circ)}{d\sigma(150^\circ)}$	As I	ssignment Orbital	Excitation energy (keV)	dσ/dΩ ^a at 150° (µb/sr)	$R = \frac{d\sigma(90^{\circ})}{d\sigma(150^{\circ})}$	Assignment I Orbital
0	47	2.8	$\frac{1}{2}$	$\frac{1}{2}$ [631]	900 ± 3	11	~0.5	
16.1 ± 0.5	98	2.2	$\frac{3}{2}$	$\frac{1}{2}$ [631]	924 ± 4	12	2.4	
53.5 ± 0.5	4	~ 2	$\frac{5}{2}$	$\frac{1}{2}$ [631]	945 ± 4	6	~1	
92.5 ± 1.5	13	~ 2	$\frac{7}{2}$	$\frac{1}{2}$ [631]	954 ± 4	6	~1	
106.9 ± 1	128	1.2	$\frac{9}{2}$	$\frac{5^{+}}{2}$ [622†]	973 ± 4	16	1.2	
159.0 ± 1	59	1.1	$\frac{9}{2}$	$\frac{1}{2}$ [631]	991 ± 3	20	~1	
178 ± 2	6	~0.4	$\frac{11}{2}$	$\frac{5}{2}$ [622†]	1026 ± 3	65	1.1	
220 ± 2	11	~0.3	$\frac{11}{2}$	$\frac{1}{2}$ +[631+]	1038 ± 4	16	~1.2	
252.3 ± 0.5	30	0.38	$(\frac{15}{2})$	<u>7</u> −[743†])	1046 ± 4	8	~1.5	
278 ± 2	11	~ 0.5	$\frac{7}{2}$	$\frac{7}{2}$ [624]	1073 ± 5	9	~1	
326.0±1	87	1.2	$\frac{9}{2}$	$\frac{7}{2}$ [624]	1101 ± 3	163	1.5	
$(336) \pm 5$	5	 b	$\frac{2}{\frac{3}{2}}$	$\frac{3}{2}^{+}[631^{\dagger}]$	1116 ± 5	16	b	
370.6 ± 1	23	1.6	2 5 2	$\frac{3}{2}$ [631 f]	1130 ± 3	62	~0.8	
388.5 ± 1	10	~0,6		$\frac{7}{2}$ [624]	1152 ± 4	89	1.6	
		·	$\begin{cases} \frac{11}{2} \\ \frac{9}{2} \end{cases}$	$\frac{5}{2}$ [633]	1164 ± 4	49	~1.5	
410 ± 1.5	19	1.1	(2	2	$(1170) \pm 5$	13	b	
(443) ±5	6	~0.5			1170 14	05		
464 ± 3	6	~0.5	$\frac{11}{2}$	$\frac{5}{2}$ [633]	1178 ± 4	65	~0.8	
480.9 ± 1	19	0.66	<u>9</u> 2	$\frac{3}{2}$ [631]	1190 ± 5	24	~1.3	
538 ± 2	28	1.7	$(\frac{1}{2})$	$\frac{1}{2}$ [501+])	1219 ± 5	18	~1	
582 ± 1.5	49	2.0	$(\frac{3}{2})$	$\frac{1}{2}$ [501+])	$\begin{array}{c} 1236 \pm 4 \\ 1258 \pm 4 \end{array}$	10	~1	
610 ± 1.5	6	~1	-	-	1258 ± 4 1265 ± 4	4952	1.8	
610 ± 1.5 627.8 ± 2	55	1.7			1203 ± 4 1280 ± 4	32 48	1.8	
627.6 ± 2 680.6 ± 1	33 22	2.6			1280 ± 4 1290 ± 5		2.1	
691.2 ± 1.5	16	~1			1230 ± 3 1302 ± 4	$\frac{27}{32}$	1.5 1.8	
710.6 ± 1.5	8	~0.8			1302 ± 4 1316 ± 5	32 20	1.8 b	
725.8 ± 1	32	1.6			101010	20	5	
753.4 ± 1.5	7	~1			1331 ± 4	26	1.3	
766.8 ± 2	16	~2			1344 ± 5	15	b	
796 ± 3	8	b			1367 ± 5	12	1.3	
812 ± 3	16	~1			1387 ± 4	26	1.5	
					1394 ± 4	24	1.5	
846 ± 3	~46	b			1402 ± 5	18	b	
$(855) \pm 5$	~14	b			1430 ± 4	27	1.3	
873 ± 4	4	b						
887 ± 3	18	~ 0.7						

 a The uncertainty in the cross sections of the strongly excited states is about 10%. b The yield is too low to obtain a meaningful ratio.

shows the rotational structure of the levels below 500 keV together with the excitation energies from the (d, p) reaction and from high-energy capture γ rays. The right side of the scheme shows the low-energy capture γ rays arranged mainly by the Ritz energy-combination principle and by considering the level structure found with the (d, p)reaction. There is a small probability that a transition is fitted into the scheme incorrectly. Although many more levels could be placed in the scheme by energy combination, only those were accepted which had a high degree of certainty. The level energies and errors on the right side of the scheme were calculated with a leastsquares program which fits the level energies to all transition energies. The spin and parity assignments for the levels below 500 keV were made according to the Nilsson configurations of these levels with some help from the $d\sigma(90^\circ)/$ $d\sigma(150^{\circ})$ ratios in the (d, p) yields. The tentative spin and parity assignments of the levels above 500 keV were estimated from the decay properties and the population by high-energy γ rays.

6

A. Rotational Bands

[631] Ground-State Band

The Nilsson model and the comparison with ²³⁵U suggest that the ground state of ²³³Th has the configuration $\frac{1}{2}$ [6314] or $\frac{7}{2}$ [7434]; $\frac{5}{2}$ [6224] might be possible, too. The spin and parity $\frac{1}{2}$ ⁺ of the ground state of ²³³Th was determined by the log*ft* values of the different β -decay branches to levels in ²³³Pa.^{5,39-41} The proton line with the highest energy in the (d, p) spectrum leads to a level with a Q value of 2.567 \pm 0.007 MeV. This level has been identified as the $\frac{1}{2}$ (6314] state by spectroscopic factor, measured *l* value, and comparison with the reaction ²³⁴U(d, p)²³⁵U. The ground-state Q value

from the 1971 Mass Tables²⁷ is 2.562 ± 0.005 MeV. Therefore, we assign the ground state of ²³³Th to the configuration $\frac{1}{2}$ [631].

The $I = \frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$, $\frac{7}{2}$, $\frac{9}{2}$, and $\frac{11}{2}$ members of this band are seen in the (d, p) reaction. The $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$, and $\frac{7}{2}$ levels are populated appreciably by low-energy γ rays. The decoupling parameter of this band calculated with the lowest levels is a = -0.147. The Coriolis fitting program (see Sec. 4 A) gives the value a = -0.142. Theoretical values for the decoupling parameters are: -0.88 (Nilsson model without ϵ_4),⁴² -0.131 (Nilsson model with ϵ_4),^{43,44} and -0.8 (Malov and Soloviev).⁴⁵

[622†] Band

One of the most intense peaks in the (d, p) spectrum corresponds to a level at 106.9 keV. The 90 to 150° cross-section ratio suggests a spin $\frac{7}{2}$ or $\frac{9}{2}$. Comparison with ²³⁵U indicates that this is the $\frac{9}{6224}$ level. The $\frac{5}{2}$ band head at 5.98 keV is populated by low-energy γ rays. The corresponding (d, p) peak is covered by the $\frac{1}{2}$ and $\frac{3}{2}$ members of the ground-state band. The $\frac{11}{2}$ member was observed in the (d, p) reaction at 178 keV. Spectroscopic factors are in good agreement with this assignment. The excitation energy of the [6221] band head decreases from 280 keV in ²³⁷Pu^{46,47} to 129 keV in ²³⁵U.³⁵ This tendency suggests that this configuration is expected close to the ground state in ²³³Th. The $\frac{7}{2}$ [622+] state could be identified tentatively at 50.28 keV by one γ transition, in good agreement with the level energy predicted by the Coriolis-mixing calculation (see Table IV).

[631**†**] Band

The low-energy and high-energy γ transitions yield levels at 335.92 and 371.22 keV. A tentative level is placed at 421.24 keV. The rotational for-

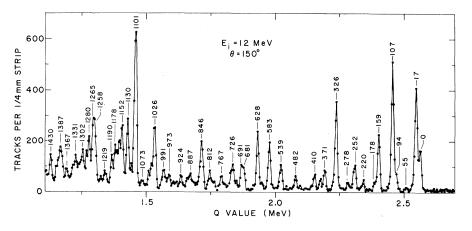


FIG. 4. Spectrum of protons from the reaction 232 Th $(d, p)^{233}$ Th observed at 150°. (Peaks labeled in keV.)

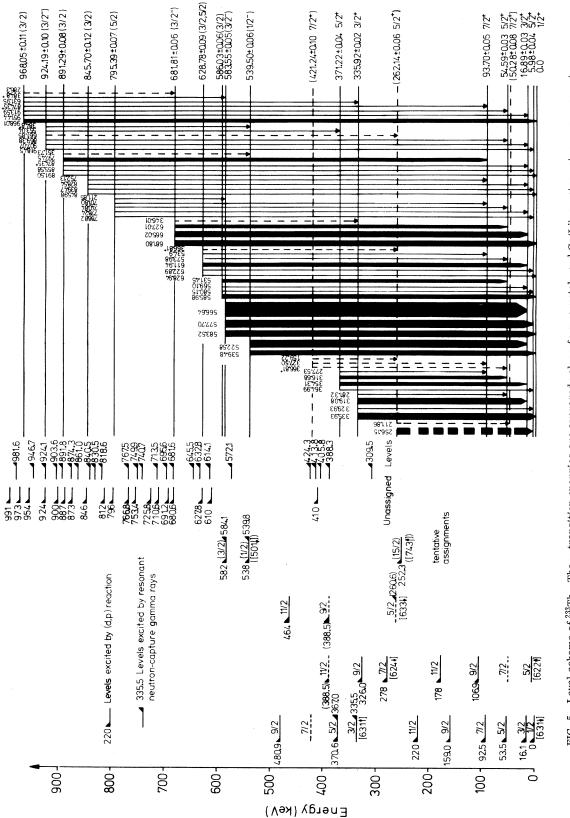


FIG. 5. Level scheme of 233 Th. The γ -transition energies are averaged values from crystal- and Ge(Li)-spectrometer measurements.

<u>6</u>

T. VON EGIDY et al.

276

<u>6</u>	N U C	LE.	AR	L	ΕV	ΕL	S I	N ²	³³ T	h	ÈX	CI	ΤEI	DВ	Y	ΝE	UT	RO	N	CA	РТ	UR	Е			27'
	riolis ng With €₄	0.095	0.070	0.026	0.0080	0.0388	0.0337		0.0008	0.0079	0.0273	0.130		0.0015	0.0003	0.0260	0.0000		0.0037	0.167	0.0123		0.0002	0.0011	0.0027	0.0025
	S_{j1} , theory S_{j1} , theory s_{j1} With Coriolis mixing ϵ_4 Without ϵ_4 With	0.106	0.113	0.0144	0.0256	0.0266	0.0232		0.0133	0.0006	0.108	0.0655		0.0010	0000.0	0.0034	0.0136		0.0130	0.0367	0.110		0000.0	0.0050	0.0010	0.0042
	Joriolli ng With	0.095	0.070	0.026	0.0080	0.039	0.032	0.0023	0.0006	0.006	0.034	0.105	0.0002	0.0017	0.0022	0.027	0.0055	0.0023	0.0017	0.153	0.015	0.0037	0.0002	0.0011	0.0047	0.0082
	S Without Coriolis mixing Without ϵ_4 With ϵ	0.106	0.112	0.014	0.026	0.027	0.022	0.0017	0.012	0.0001	0.112	0.039	0.0049	0.0013	0,0049	0.0081	0.021	0.0013	0.0079	0.023	0.122	0.0032	0.000.0	0.0061	0.0016	0.016
ds.	S ₁₁ , exp	0.052	0.081	0.0022	0.014	0.050	0.047		<0.01	<0.05	0.112	0.026			<0.02	(0.0078)	0.024		0.011	0.070	(0.040)		0.0035	0.0106	<0.005	0.014
Spectroscopic factors S_{jl} of the rotational bands.	$R_{\rm theor} = \frac{d\sigma(90^{\circ})}{d\sigma(150^{\circ})}$	2.3	1.6	1.6	1.1	1.0	0.5	0.5	1.6	1.1	1.1	0.5	0.5	1.6	1.0	1.0	0.5	0.5	1.0	1.0	0.5	0.5	1.6	1,6	1.0	1.0
rs S _{jl} of th	σ _{DWBÅ} at 150°	301	202	206	76	78	13	14	201	74	76	13	14	230	83	86	14	14	82	83	14	14	240	242	86	88
scopic facto	$R_{\exp} = \frac{d\sigma(90^{\circ})}{d\sigma(150^{\circ})}$	2.8	2.2	57 ∽28	~2	1.1	~0.3				1.2	~ 0.4	×			(9.0~)	~ 0.5		~0.5	1, 2	(9°0~)			1.6		0.66
IV. Spectro	<i>dσ/dΩ</i> (<i>d</i> , <i>p</i>) at 150° (µb/sr)	47	98	4	13	59	11		<20	-4	128	9			<20	(10)	9		11	87	(10)		Ð	23	<5	19
TABLE I	Energies calculated with fitting program (keV)	0.0	16.67	53.63	92.53	159.05	220.18		5,20	50.13	107.80	178.13		262.17	324.05	391.92	470.92		278.59	325.03	385.66		335.73	370.15	418.46	480.75
	Energy (<i>d</i> , <i>p</i>) (keV)	0*0	16.1 ± 0.5	53.5 ± 0.5	92.5 ± 1.5	159.0 ± 1	220 ± 2				106.9 ± 1	178 ± 2				(388.5 ± 1)	464 ± 3		278 ± 2	326.0 ± 1	388.5 ± 1		(336)	370.6 ± 1		480.9 ± 1
	Energy (<i>n</i> , <i>γ</i>) (keV)	0.0	16.89 ± 0.04	54.59 ± 0.03	93.70 ± 0.05				5.98 ± 0.04	(50.28 ± 0.08)				(262.14 ± 0.06)									335.92 ± 0.02	371.22 ± 0.04	(421.24 ± 0.1)	
	Rot. band	<u>1</u> [6314]	enter	12	<u>14</u> 02	<u>क</u>	2	<u>13</u> 2	$\frac{5}{2}[6224]$	7	6 <mark>1</mark> 62	<u>11</u> 2	<u>13</u> 2	<u>5</u> [633∔]	2	3	<u>11</u> 2	13 2	$rac{1}{2}$ [624 4]	6 4 2	<u>11</u> 2	<u>13</u> 2	$\frac{3}{2}[6314]$	2	2	<u>क</u> रा

eory With Coriolis	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0.0061 0.0046				
	ϵ_4 Witho		03	0	60	27
S _{j1} , th Without Coriolis	mixing ut ϵ_4 With	0.022	0.0003	060.0	0.043	0.0027
		0.014	0.0014	0.089	0.040	0.0043
-	S _{j1} , exp	<0.03		(0.181)	(0.032)	(0.027)
	$\sigma_{\text{DWBA}} R_{\text{theor}} = \frac{d\sigma(90^\circ)}{d\sigma(150^\circ)} S_{j1}, \text{ exp}$	0.5	0.5	0.3	1.8	1.3
		15	15	6.9	295	300
	$R_{\rm exp} = \frac{d\sigma(90^{\circ})}{d\sigma(150^{\circ})}$			(0.38)	(1.7)	(2.0)
$d\sigma/d\Omega$ (d, p)	at 150° (μb/sr)	-7		(30)	(28)	(49)
Energies calculated with fitting	program (keV)	557.13				
	Energy (d, p) (keV)			(252.3 ± 0.5)	(538 ±2)	(582 ± 1.5)
	Energy Energy Energy Rot. band (n, γ) (keV) (d, p) (keV)				(539.50 ± 0.06) (538 ± 2)	(583.55 ± 0.05) (582 ± 1.5)
	Rot. band		<u>13</u> 2	<u>15</u> [7434]	$\frac{1}{2}$ [5014]	ন্দ্রথ

mula and γ branching ratios (see Sec. 4 B) indicate that these levels form a $K = \frac{3}{2}$ rotational band. The (d, p) population of the $\frac{5}{2}$ level at 370.6 keV and the $\frac{9}{2}$ level at 480.9 keV suggest the [631 \bigstar] assignment for this band, which is expected as a hole state at about this excitation energy.

[633+] and [624+] Bands

The [633] and [624] bands originate from the $g_{9/2}$ state and are connected by a large Coriolis matrix element. In ²³³Th the first state is a hole state, the other one a particle state. We assign the 278- and 326.0-keV (d, p) levels to the $\frac{7}{2}$ and $\frac{9}{2}$ [624+] configurations and the 464-keV (d, p) level to the $\frac{11}{2}$ [633 \ddagger] configuration. The 388.5-keV (d, p) level is probably a doublet consisting of the $\frac{11}{2}[624]$ and $\frac{9}{633}[633]$ configurations. The spectroscopic factors, the measured l values, and the Coriolis calculation (see Sec. 4 A) support this identification. The Coriolis calculation shows that both bands have nearly the same E_0 (about 200 keV) in the rotational formula $E = E_0 + AI(I+1)$. This means that the energy spacing of these bands is strongly perturbed. The wave functions of these bands seem to be mixed nearly 50%.

There is a problem with this assignment at 260.6 keV of the $\frac{5}{2}[633 \downarrow]$ level, the only level of these two bands which should have strong γ transitions to lower levels. This $\frac{5}{2}$ level should not be observed in the (d, p) reaction, but might be weakly populated by a direct E2 transition in neutron capture. The Nilsson model predicts that it decays mainly to the $\frac{5}{2}[622*]$ level. The 256.16-keV transition is the main candidate for the decay of this level. If the 256.16-keV transition is added to the 5.98-keV level, the predicted level energy would be 262.14 keV, in good agreement with an observed 260.6-keV level from (n_{res}, γ) . But there are no other good energy combinations observed for this level. Possibly, the 211.86-keV transition leads to the very tentative 50.28-keV level $(\frac{7}{6224})$. The transition rates of the 256.16- and 211.86-keV transitions agree with theoretical predictions (Table VII).

Tentative [743+] and [501+] Bands

The 252.3-keV (d, p) level has a high *l* value (l=6 or 7). This level is tentatively assigned $\frac{15}{2}$ -[7434]. The energy and the (d, p) population of this level are very similar to the corresponding values in ²³⁵U. Therefore, the $\frac{7}{2}$ [7434] band head (the ground state in ²³⁵U) is expected close to the ground state in ²³³Th. If this $\frac{7}{2}$ - level had a larger excitation energy than the $\frac{5}{2}$ +[6224] level, the unsuccessful search for the $\frac{7}{2}$ - isomer in ²³³Th could

be understood.^{5,39} The only other member of the $[743\dagger]$ band which has the possibility of being observed in the (d, p) reaction, the $\frac{11}{2}$ level, seems to be covered by the 106.9-keV level. γ transitions to the $\frac{7}{2}[743\dagger]$ level could not be identified by γ -energy combination, because most of the transitions from higher levels are K forbidden.

6

The [501+] configuration has been observed in many actinides.^{35,36,48} The level spacing is about 40 keV between the $\frac{1}{2}^-$ and $\frac{3}{2}^-$ level and a few keV between the $\frac{3}{2}^-$ and $\frac{5}{2}^-$ level. The $\frac{1}{2}^-$ and $\frac{3}{2}^-$ levels are supposed to be strongly populated by direct E1 transitions. The [501+] state should appear with low intensity in the (d, p) reaction. The 539.50- and 583.55-keV levels seen in the highenergy γ -ray spectrum and weakly in the (d, p)reaction are tentatively identified as the $\frac{1}{2}^-$ and $\frac{3}{2}^-[501+]$ states. The $\frac{1}{2}^-$ (d, p) intensity has approximately the correct value, but the $\frac{3}{2}^-$ intensity is too large by more than a factor 5 compared with theoretical values (see Table IV).

This could be caused by an accidental doublet. On the other hand, the (d, p) population of the $\frac{3}{2}^$ and $\frac{5}{2}^-$ levels in ²³⁵U, both near 703 keV, is as large as the population of the $\frac{1}{2}^-$ level at 659 keV,³⁵ in contradiction to the theory. Strong admixing with phonon states of the even-even core and Coriolis coupling to the other bands probably explain this serious alternation of the predicted intensity pattern.

B. Levels Above 500 keV

Many levels above 500 keV have been detected by the (d, p) reaction, by high-energy neutroncapture γ rays, and by low-energy γ -ray combination. Some levels are observed with all three experimental techniques. The identification of these levels is very difficult because of the measured and theoretically expected high level density in this region. The following Nilsson states may be situated above 500 keV: $\frac{1}{2}$ +[620+], $\frac{1}{2}$ -[761+], $\frac{3}{2}$ +[622+], $\frac{3}{2}$ -[761+], $\frac{3}{2}$ -[501+], $\frac{5}{2}$ -[752+], and $\frac{5}{2}$ -[503+]. In addition to these single-particle configurations one expects β and γ vibrations coupled to all single-particle states. The theory predicts more than 20 rotational bands between 500 and 1500 keV with the K quantum number less than or equal to $\frac{5}{2}$. The present data are certainly not sufficient to assign configurations to levels in this region unambiguously.

It is interesting to note that the particle states $\frac{1}{2}$ [620†], $\frac{3}{2}$ [622†], $\frac{7}{2}$ [613†], and $\frac{1}{2}$ [761†] appear quite indistinct and fragmented in the ²³²Th(*d*, *p*)-²³³Th spectrum. In (*d*, *p*) reactions on the even-even uranium, plutonium, and curium isotopes, ^{29,35,36,49} these same four particle states are strongly excited and easy to recognize. A likely explanation is that for some reason, in ²³³Th, phonon excitations of the even-even core strongly admix with these four particle states.

4. DISCUSSION A. Spectroscopic Factors and Coriolis Mixing

The formulas for the calculation of differential cross sections of the (d, p) reaction and for the extraction of spectroscopic factors S_{jl} including Coriolis mixing have been discussed in several publications^{35,50}:

$$\frac{d\sigma}{d\Omega} = N(2j+1)S_{jl}\sigma_{\text{DWBA}},$$
$$S_{jl} = \frac{2}{2j+1} (\sum_{i} a_i C_{jl,i} U_i)^2.$$

The following computational methods and parameters have been used for the calculation of

TABLE	Ε Υ.	Rotational	bands.

				Singl	e-particle ene	ergy	Fitted	
	Band head (keV)	Fitted band head (keV)	Intrinsic energies (keV)	Experimental (MeV)	Theoretical without ϵ_4 (MeV)	Theoretical with ϵ_4 (MeV)	rotational parameter (keV)	U ² assumed
$\frac{1}{2}[631]$	0	0	-3.23	+0.346	+0.346	+0.346	6.47	0.76
$\frac{5}{2}[6221]$	5.98	8.21	-9.57	+0.333	-0.025	+0.628	7.11	0.83
<u>5</u> [633∔]	(262.14)	262.69	247.01	-0.728	-0.809	-0.514	6.27	0.2
$\frac{7}{2}[624]$	278	296.79	274.14	+0.762	+0.363	+0.973	6.47	0.9
$\frac{3}{2}[631 +]$	335.92	335.73	326.46	-0.828	-1.120	-0.831	6.18	0.2
<u>7</u> [743†]	(~10)		(-13)	+0.326	-0.445	+0.329		0.76
1 [501+]	(539.50)		(536)	-1.076	-0.368	-1.618		(0.06)

	Experimental value	Reduction factor	Theoretical value without ϵ_4	Theoretical value with ϵ_4
[631+]-[631†]	0.0097	0.7	-0.077	-1.01
[622†]-[631†]	4.66	0.65	4.73	5.20
[633+]-[631†]	1.35	0.65	1.41	0.118
[622†]-[624‡]	1.03	0.40	1.17	-0.232
[6334]-[6244]	4.78	0.40	4.74	4.13

TABLE VI. Coriolis matrix elements in ²³³Th. The experimental values are the fitted matrix elements under the assumption of the reduction factor listed.

 $d\sigma/d\Omega$ and S_n :

N=1.5: Normalization constant (Ref. 50).

 σ_{DWBA} : Calculated with the program $DWUCK^{51}$ by use of optical-model parameters of Ref. 50. σ_{DWBA} was computed at excitation energies of 0 and 500 keV and linearly interpolated in between.

 C_{ji} : Two sets of C_{ji} were used: without ϵ_4 deformation and with ϵ_4 deformation. For the set of C_{ji} 's without ϵ_4 , the values given by Chi⁴² ($\kappa = 0.05$, $\mu = 0.448$ for N = 6) with the deformation $\delta = 0.2$ were taken. This deformation was chosen from the table of Löbner, Vetter, and Hönig.⁵² The C_{jl} 's with ϵ_4 deformation were calculated with a program by Nilsson^{43,44} by use of the parameters $\kappa = 0.0635$, $\mu = 0.336$, $\epsilon_2 = 0.2$, and $\epsilon_4 = -0.055$ given in Ref. 43. These ϵ_2 and ϵ_4 are similar to the values measured by Moss *et al.*⁵³ for ²³²Th ($\beta_2 = 0.23$, $\beta_4 = 0.050$).

TABLE VII. γ branching ratios.

Initial state $I_i[Nn_z\lambda\sum]_i$	Final states $I_f[Nn_z\lambda \sum]_f$	Experimental	γ intensity ratios Calculated with mixing	Calculated without mixing
$\frac{7}{2}[6311]$	$\frac{\frac{7}{2}[631]}{\frac{5}{2}[631]}$	$2^{+1.5}_{-1.0}$	0.90	0.95
$\frac{5}{2}[6311]$	$\frac{\frac{7}{2}[631]}{\frac{5}{2}[631]}$	0.4 ± 0.1	0.2	0.2
$\frac{5}{2}$ [631†]	$\frac{\frac{5}{2}[631i]}{\frac{3}{2}[631i]}$	1.0 ± 0.25	0.81	0.81
$\frac{5}{2}[6311]$	$\frac{\frac{3}{2}[631i]}{\frac{5}{2}[622i]}$	6^{+3}_{-2}	7.0	6.8
$\frac{3}{2}[6311]$	$\frac{\frac{5}{2}[631]}{\frac{3}{2}[631]}$	0.17 ± 0.04	0.17	0.17
$\frac{3}{2}[6311]$	$\frac{\frac{3}{2}[631\mathbf{i}]}{\frac{1}{2}[631\mathbf{i}]}$	0.83 ± 0.20	0.68	0.69
$\frac{3}{2}[6311]$	$\frac{\frac{1}{2}[631 +]}{\frac{5}{2}[622 +]}$	4.2 ± 1.0	3.1	2.8
<u>5</u> [633∔]	$\frac{\frac{1}{2}[631 +]}{\frac{5}{2}[622 +]}$	$<2.5 \times 10^{-2}$	<10 ⁻⁴	<10 ⁻⁴
<u>5</u> [633 +]	$\frac{\frac{7}{2}[622\dagger]}{\frac{5}{2}[622\dagger]}$	0.19 ± 0.06	0.27	0.22

U²: The pairing emptiness factor is taken from Erskine⁵⁴ for the [631 \bullet], [622 \bullet], and [743 \bullet] bands and estimated with a simple pairing calculation⁵⁰ for the other bands (see Table V).

Table IV gives experimental and theoretical information on the rotational bands. Columns 1-5show the excitation energies from the low-energy γ rays, the energies from the (d, p) reaction, the calculated energies from the fit to the data including Coriolis mixing (see below), and the (d, p)differential cross section at a laboratory angle of 150°. The experimental cross-section ratio R_{exp} between 90 and 150° is tabulated in column 6. In the next columns the differential cross sections $\sigma_{\rm DWBA}(\mu \rm b/sr)$ and the ratio $R_{\rm theor} = d\sigma(90^\circ)/d\sigma(150^\circ)$ calculated with the distorted-wave Born-approximation (DWBA) code are shown. The experimental spectroscopic factors $S_{il,exp}$ are derived from the measured differential cross section at 150° with the formula

$$S_{jl,\exp} = \frac{(d\sigma/d\Omega)_{150^{\circ}}}{N(2j+1)\sigma_{\text{DWBA}}}$$

6

 $\mathbf{S}_{\mathbf{jl}}$ xperiment Theory without E4, with Coriolis Theory with \mathcal{E}_{4} and Coriolis mixing Theory with \mathcal{E}_{4} ŧ Theory without EL 1/2 [6311] 0.1 0.01 0.00 5/2[622 1] 0.1 0.01 0,001 5/2 [633]] 0,1 0.01 0.001 7/2[6241] 0,1 0.01 0.00 3/2[6311] 0.1 0.01 0.001

FIG. 6. Experimental and theoretical spectroscopic factors.

The theoretical spectroscopic factors S_{ii} have been calculated without Coriolis mixing for both sets of C_{jl} with $S_{jl} = [2/(2j+1)]C_{jl}^{2}U^{2}$. A fit to the experimental energies has been performed with the computer program BANDFIT⁵⁵ for the five positive-parity bands at low energy. Coriolis band mixing is included by the program. Five moments of inertia, four band-head energies, one decoupling parameter, and five Coriolis matrix elements $\langle K | j - | K + 1 \rangle$ have been searched to fit 19 level energies [0, 6.0, 16.9, 50.3, 54.6, 93.7, 106.9, 159.0, 178, 220, 262.1, 278, 326.0, 335.9, 371.2, 388.5 (2 times), 464, 480.9, all in keV]. $\Delta E_{\rm rms}$, the average deviation, is 1.6 keV. This good agreement is strong supporting evidence for the assignment of the five rotational bands. The fitted band-head energies (of the unperturbed bands) and the fitted rotational parameters A $=\hbar^2/2g$ are listed in Table V.

281

The fitted Coriolis matrix elements are compared with theoretical values (for formulas see Ref. 50) in Table VI. During the fitting calculation, a further reduction of the matrix elements was applied through the use of the empirical reduction factors found by Casten *et al.*⁵⁶ Fits could not be achieved without these reduction factors. The agreement of the experimental matrix elements and the theoretical ones without ϵ_4 is excellent. The fitted level energies are given in Table IV.

The spectroscopic factors S_{jl} including Coriolis mixing are also listed in Table IV. Figure 6 illustrates for all five bands the relations between

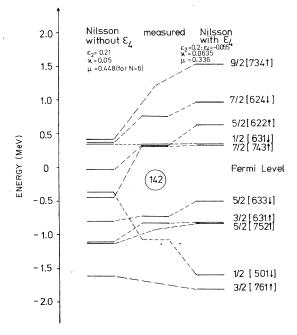


FIG. 7. Single-particle energies in ²³³Th.

the experimental and different theoretical spectroscopic factors. There is reasonable agreement between the experimental S_{ii} and the S_{ii} calculated without ϵ_4 and with Coriolis mixing in most cases. For the $[622\dagger]$ and $[631\dagger]$ bands the S_{ii} without ϵ_4 and without Coriolis mixing tend to give better agreement. Large discrepancies between S_{il} with Coriolis mixing and with ϵ_4 and $S_{il,exp}$ show up in the following states: $\frac{9}{2}[622\dagger]$, a factor 4 too small; $\frac{11}{2}[622\dagger]$, a factor 5 too large; $\frac{9}{6}[633\dagger]$, a factor >3 too large; $\frac{11}{2}$ [633 \ddagger], a factor >20 too small; $\frac{7}{2}[624]$, a factor 3 too small; $\frac{5}{2}[631]$, a factor 10 too small; $\frac{9}{2}[631+]$, a factor 5 too small. Examination of Fig. 6 shows that the wave functions including ϵ_4 calculated with the program of Ref. 44 do not fit the experimental (d, p) intensities quite as well as the wave functions without ϵ_4 .

B. γ Branching Ratios

With the mixing amplitudes from the five-band Coriolis-coupling calculation we determined the E2 and M1 transition probabilities and branching ratios between these bands. The E2 transitions were calculated under the simplifying assumption of a common quadrupole momentum for all bands $Q_0 = 9 e$ b. In addition, the E2 transition probability between Nilsson states was neglected compared with the much greater collective E2 strength. For the M1 transitions the undisturbed M1 matrix elements were obtained from the C_{ii} 's of the ϵ_4 Nilsson calculation. However, it was necessary to reduce the matrix element between the [631 +] and the $[622\uparrow]$ states by a factor 3 to explain the transitions between these two bands. These transitions are very little influenced by Coriolis coupling. The formulas used for the calculation of the transition probabilities are given by Brockmeier et al.57

Table VII, in which the calculated branching ratios are compared with the experimental results, shows good agreement in all cases. At the same time one sees the negligible influence of the coupling on these transitions. This fact is expected, since the states [6314], [6314], and [6224] do not mix very much.

C. Single-Particle Energies

The computer programs which were used for the calculation of the C_{ji} 's⁴²⁻⁴⁴ also yield the single-particle energies listed in Table V (with and without ϵ_4 deformation). All these calculations were performed with the parameters given in Sec. 4 A. The single-particle energies have been adjusted to the ground-state $(K = \frac{1}{2})$ value of $(\epsilon_{1/2} - \lambda)$ = 0.346 MeV. This figure was obtained from even-odd atomic mass differences²⁷ { $M(^{233}\text{Th})$ $-\frac{1}{2}[M(^{232}\text{Th}) + M(^{234}\text{Th})] = 0.696 \text{ MeV}$ } with the use of $\Delta = 0.6 \text{ MeV}^{54}$ and the simple equation for the intrinsic energies, ⁵⁰ $E_{intr.}^{K} = [(\epsilon_K - \lambda)^2 + \Delta^2]^{1/2} - 0.696$ MeV.

The intrinsic energies $(E_{intr.}^{K})$ listed in Table V were derived from the fitted band-head energies by subtraction of AK by use of the formula E_{I}^{K} $=E_{intr.}^{K} + A[I(I+1) - K^{2}]$. For the calculation of experimental single-particle energies $(\epsilon_{K} - \lambda)$, the simple pairing formalism⁵⁰ has been applied, although it should be emphasized that the uncertainty of the procedure is larger in the present case than usual, because in ²³³Th the single-particle energies are not equally distributed and there is a gap close to the ground state.

The experimental and theoretical single-particle energies are compared in Table V and Fig. 7. The theoretical values including ϵ_4 reproduce better the experimental values than the ones without ϵ_4 . The experimental energies lie in between the two theoretical energies. For comparison it is interesting to see how level energies are shifted if two protons or two neutrons are added to a nucleus. This shift of experimental band-head energies in the thorium isotopes and in the 143-neutron isotones is demonstrated in Fig. 8. The level scheme of ²³⁷Pu is taken from private communications,^{46,47} the ²³⁵U scheme from Braid *et al.*,³⁵

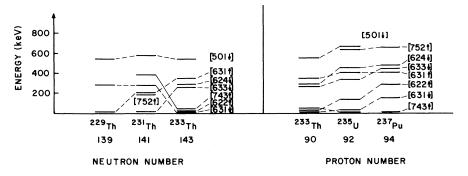


FIG. 8. Band-head energies in the Th isotopes and 143-neutron isotones.

the ²³¹Th scheme from Elze, von Egidy, and Huizenga, ^{58,59} and the ²²⁹Th scheme from Braid $et \ al.^{60}$ The figure of the isotones shows that all levels seem to be lowered if two protons are removed from the nucleus. This compression might be caused by the stronger influence of quadrupole and octupole vibrations.

6

*Work supported in part by the U.S. Atomic Energy Commission.

† Present address: Tata Institute of Fundamental Research, Bombay, India.

‡ Present address: Institut Max v. Laue-Paul Langevin, Grenoble, France.

¹N. A. Burgow and J. V. Danilian, Izv. Akad. Nauk.

- SSSR, Ser. Fiz. <u>20</u>, 941 (1956) [transl.: Bull. Acad. Sci. USSR, Phys. Ser. <u>20</u>, 852 (1956)].
- ²L. V. Groshev, A. M. Demidov, V. N. Lutsenko, and V. I. Pelekhov, *Atlas of Gamma-Ray Spectra from Radiative Capture of Thermal Neutrons* (Pergamon, London, 1959).
- ³R. C. Greenwood and J. H. Reed, IIT Research Institute, Chicago, Ill., Report No. IITRI-1193-53, 1965 (unpublished), Vol. 1.
- ⁴K. Kernbach, N. F. Fiebiger, and K. Stelzer, KFA Jülich, Germany, Report No. Jül-Conf-1, 1967 (unpublished), p. 50.
- ⁵W. Hoekstra, Ph.D. thesis, Technische Hogeschool, Delft, The Netherlands, 1969 (unpublished).
- ⁶J. Kern, Fribourg, Switzerland, private communication.
- ⁷T. Grotdal, J. Limstrand, K. Nybö, K. Skår, and
- T. F. Thorsteinsen, University of Bergen, Norway (un-published).
- ⁸O. A. Wasson, J. B. Garg, R. E. Chrien, and M. R. Bhat, *Neutron Cross Sections and Technology* (National Bureau of Standards, Washington, D. C., 1968), Vol. II, p. 675.
- ⁹T. von Egidy, O. W. B. Schult, D. Rabenstein, R. E. Chrien, J. R. Erskine, H. A. Baader, and D. Breitig, Verhandl. Deut. Physik. Ges. 6, 248 (1971).

¹⁰T. von Egidy, in Neutron Capture Gamma-Ray Spectroscopy (International Atomic Energy Agency, Vienna, Austria, 1969), p. 127.

¹¹M. Waldschmidt and P. Osterman, Z. Physik <u>247</u>, 153 (1971).

- ¹²H. R. Koch, H. A. Baader, D. Breitig, K. Mühlbauer, U. Gruber, B. P. K. Maier, and O. W. B. Schult, in
- Neutron Capture Gamma-Ray Spectroscopy (see Ref. 10), p. 65.

¹³E. R. Cohen and J. W. M. DuMond, Rev. Mod. Phys. 37, 537 (1965).

¹⁴S. Hagström, C. Nordling, and K. Siegbahn, in *Alpha-*, *Beta-*, and Gamma-Ray Spectroscopy, edited by

K. Siegbahn (North-Holland, Amsterdam, 1965), p. 845. ¹⁵R. G. Albridge, J. M. Hollander, C. J. Gallagher, and J. H. Hamilton, Nucl. Phys. 27, 529 (1961).

¹⁶T. von Egidy, O. W. B. Schult, W. Kallinger, D. Breitig, R. P. Sharma, H. R. Koch, and H. A. Baader, Z. Naturforsch. 26a, 1092 (1971).

ACKNOWLEDGMENTS

We wish to thank I. Hamamoto, H. J. Mang, L. A. Malov, and K. Nybö for valuable discussions, M. Waldschmidt for measuring the reaction ²³²Th- $(n, e)^{233}$ Th, and W. Kallinger for evaluating some (n, γ) data.

- ¹⁷D. Rabenstein, Ph.D. thesis, Technical University Munich, 1970 (unpublished).
- ¹⁸T. von Egidy, K. Böning, H. Heidemann, L. Koester, and D. Rabenstein, in *Research Reactor Utilization*
- (International Atomic Energy Agency, Vienna, Austria, 1970), Vol. I, p. 225.
- ¹⁹R. C. Greenwood and W. W. Black, Phys. Letters <u>21</u>, 702 (1966).
- $^{20}\mathrm{R.}$ E. Chrien and M. Reich, Nucl. Instr. Methods 53, 93 (1967).

²¹G. Murray, R. L. Graham, and J. S. Geiger, Nucl. Phys. 63, 353 (1965).

- $^{22}\mathrm{W.}$ R. Kane, Brookhaven National Laboratory, private communication.
- ²³L. V. Groshev, A. M. Demidov, V. A. Ivanov, N. N.
- Lutsenko, and V. I. Pelekhov, Izv. Akad. Nauk. SSSR,
- Ser. Fiz. 27, 1377 (1963) [transl.: Bull. Acad. Sci.
- USSR, Phys. Ser. 27, 1353 (1963)].
- ²⁴M. R. Bhat and R. E. Chrien, Phys. Rev. <u>155</u>, 1362 (1967).
- ²⁵R. E. Wood, Phys. Rev. 98, 639 (1955).
- ²⁶C. E. Porter and R. G. Thomas, Phys. Rev. <u>104</u>, 483 (1956).
- ²⁷H. A. Wapstra and N. B. Gove, Nucl. Data <u>A9</u>, 265 (1971).
- ²⁸E. T. Jurney, in *Neutron Capture Gamma-Ray Spectro-scopy* (see Ref. 10), p. 431.
- $^{29}\mathrm{R}.$ K. Sheline, W. N. Shelton, T. Udagawa, E. T. Jurney, and H. T. Motz, Phys. Rev. 151, 1011 (1966).
- ³⁰D. L. Price, R. E. Chrien, O. A. Wasson, M. R. Bhat, M. Boer, M. A. Lone, and R. Graves, Nucl. Phys. <u>A121</u>, 630 (1968).
- ³¹L. M. Bollinger and G. E. Thomas, Phys. Rev. C <u>2</u>, 1951 (1970).
- ³²J. E. Spencer and H. A. Enge, Nucl. Instr. Methods
 49, 181 (1967).
 ³³J. R. Erskine and R. H. Vonderohe, Nucl. Instr.

³³J. R. Erskine and R. H. Vonderohe, Nucl. Instr. Methods 81, 221 (1970).

- ³⁴P. Spink and J. R. Erskine, Argonne National Laboratory, Physics Division Informal Report No. PHY-1965 B (unpublished); and J. R. Comfort, Argonne National Laboratory, Physics Division Informal Report No. PHY-
- ³⁵T. H. Braid, R. R. Chasman, J. R. Erskine, and
- A. M. Friedman, Phys. Rev. C 1, 275 (1970).

³⁶T. H. Braid, R. R. Chasman, J. R. Erskine, and A. M. Friedman, Phys. Rev. C 4, 247 (1971).

³⁷N. Williams, private communication.

- ³⁸J. E. Cline, Nucl. Phys. <u>A106</u>, 481 (1968).
- 39 W. Hoekstra and A. H. Wapstra, Phys. Rev. Letters 22, 859 (1969).
- ⁴⁰C. Sebille, G. Bastin, C. F. Leang, and R. Piepen-

bring, C. R. Acad. Sci. Paris 270, 354 (1970).

⁴¹We wish to acknowledge the helpful discussions on the decay of ²³³Th with Dr. Claire Sebille.

- ⁴²B. E. Chi, Nucl. Phys. <u>83</u>, 97 (1966); and State University of New York at Albany Report, 1967 (unpublished).
- ⁴³S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Gustavson, I.-L. Lamm, P. Möl-
- ler, and B. Nilsson, Nucl. Phys. A131, 1 (1969).

 $^{44}\mathrm{B.}$ Nilsson, ϵ_4 Program, Program Library, Nordita, Copenhagen, (unpublished).

⁴⁵L. A. Malov and V. G. Soloviev, Yadern. Fiz. 5, 566

(1967) [transl.: Soviet J. Nucl. Phys. 5, 403 (1967)].

⁴⁶I. Ahmad, Argonne National Laboratory, private communication.

⁴⁷K. Nybö, University of Bergen, Norway, private communication.

⁴⁸T. von Egidy, Th. W. Elze, and J. R. Huizenga, Nucl. Phys. A145, 306 (1970).

⁴⁹T. H. Braid, R. R. Chasman, J. R. Erskine, and

A. M. Friedman, Phys. Letters <u>18</u>, 149 (1965).

⁵⁰B. Elbeck and P. O. Tjöm, in Advances in Nuclear

PHYSICAL REVIEW C

VOLUME 6, NUMBER 1

JULY 1972

Compound Spreading Widths for Bi²⁰⁹ Analog Resonances*

William P. Beres and David A. Voges

Department of Physics, Wayne State University, Detroit, Michigan 48202 (Received 7 January 1972)

The compound spreading widths (due to the Coulomb interaction) of $\frac{3}{2}^{+}$, $\frac{11}{2}^{+}$, $\frac{11}{2}^{+}$, $\frac{7}{2}^{+}$, and $\frac{3}{2}^{+}$ analog resonances in Bi²⁰⁹ are calculated within the general framework of the de Toledo Piza-Kerman scheme by relegating the giant isovector monopole contributions to the continuum space. The work emphasizes the structure of the parent states and the coupling is via $[H_c, T_-]$. The widths are found to be of the order of 20 keV, which is considerably less than the observed experimental total widths of 200-300 keV. A background of (i) configuration states (6 including the antianalog state for each analog resonance) and (ii) complex levels (e.g., 33261 states for $\frac{9}{2}^{+}$ are considered. The one-body Coulomb interaction represented by a uniform sphere of charge is used for (i), while the two-body Coulomb force is expanded in multipoles for (ii). In (i) the dependence on the Coulomb radius and the nuclear spreading width are also studied. For all doorways the relative importance, number, density, strength, and compound-width contributions are investigated in great detail and the results are presented in tables and histograms. In addition to certain states of type (i) the most significant complex states are those based on the Pb²⁰⁸ giant dipole doorway resonance.

I. INTRODUCTION

The discovery of isobaric analog resonances as members of isobaric multiplets has led to much experimental and theoretical activity.¹ If, e.g., an analog resonance is formed by proton bombardment of a target nucleus (Z, N) with isospin quantum numbers (T, T), then the analog resonance is in the nucleus (Z + 1, N), and the quantum numbers are $(T + \frac{1}{2}, T - \frac{1}{2})$. This state is considered to be the second member of a 2T + 2 multiplet, the first member of which is the parent state $(T + \frac{1}{2}, T + \frac{1}{2})$. This level is a low-lying bound state in the adjacent parent nucleus (Z, N+1). Isospin-violating forces (primarily the Coulomb repulsion among protons) remove the energy degeneracy of the multiplet members and shift the analog state upward into the continuum. In addition to this gross shift the isospin of the analog level ceases to be pure. The long-range Coulomb force results, however, in only weak coupling to the vast horde of neighboring states of lower isospin $(T - \frac{1}{2}, T - \frac{1}{2})$. We will

- *Physics*, edited by M. Baranger and E. Vogt (Plenum, New York, 1969), Vol. 3, p. 259.
- $^{51}\mathrm{We}$ are indebted to R. Santo and G. Gaul for providing the DWBA calculations.

⁵²K. E. G. Löbner, M. Vetter, and V. Hönig, Nucl.

Data A7, 495 (1970).

⁵³J. M. Moss, Y. D. Terrien, R. M. Lombard, C. Brassard, J. M. Loiseaux, and F. Resmini, Phys. Rev. Let-

ters 26, 1488 (1971).

⁵⁴J. R. Erskine, Phys. Rev. C 5, 959 (1972).

⁵⁵This code was developed by E. Sutter and J. R. Erskine. ⁵⁶R. F. Casten, P. Kleinheinz, P. J. Daly, and B. Elbek,

Phys. Rev. C <u>3</u>, 1271 (1971). ⁵⁷R. T. Brockmeier, S. Wahlborn, E. J. Seppi, and

F. Boehm, Nucl. Phys. 63, 102 (1965).

- ⁵⁸Th. W. Elze, T. von Egidy, and J. R. Huizenga, Nucl. Phys. A128, 564 (1969).
- ⁵⁹J. S. Boyno, Th. W. Elze, and J. R. Huizenga, Nucl. Phys. A154, 263 (1970).
- ⁶⁰T. H. Braid, R. R. Chasman, J. R. Erskine, and A. M. Friedman, unpublished.