Finally, including a cubic term in IMME,

$$M = a + bT_{z} + cT_{z}^{2} + dT_{z}^{3}, \qquad (2)$$

the combined results of Refs. 1, 2, 6, 7, and the present measurement yield a value for the coeffi-

*Work performed under the auspices of the U. S. Atomic Energy Commission.

¹B. L. Berman, R. J. Baglan, and C. D. Bowman, Phys. Rev. Letters <u>24</u>, 319 (1970).

²W. Benenson, J. Driesbach, I. D. Proctor, G. F.

Trentelman, and B. M. Preedom, Phys. Rev. C $\underline{5}$, 1426 (1972).

³R. J. Baglan, C. D. Bowman, and B. L. Berman, Phys. Rev. C 3, 672 (1971).

 3a Also, the preliminary result of an earlier measurement of the excitation energy of the lowest $T = \frac{3}{2}$ state in 25 Mg (7782±4 keV) by Benenson, Proctor, and Kashy,

PHYSICAL REVIEW C

cient of the cubic term, d, of -0.2 ± 4 keV. Thus, for this precisely measured quartet of $T = \frac{3}{2}$ states, the coefficient of the cubic term is consistent with zero, well within the error limits of the measurements.

presented orally at the 1972 Washington meeting of the American Physical Society [see Bull. Am. Phys. Soc. <u>17</u>, 532 (1972)], did not agree with the result of Ref. 1 within the experimental limits.

- ⁴C. D. Bowman, G. S. Sidhu, and B. L. Berman, Phys. Rev. 163, 951 (1967).
- ⁵A. H. Wapstra and N. B. Gove, Nucl. Data <u>A9</u>, 265 (1971).
- ⁶G. C. Morrison, D. H. Youngblood, R. C. Bearse, and R. E. Segel, Phys. Rev. 174, 1366 (1968).
- ⁷B. Teitelman and G. M. Temmer, Phys. Rev. <u>177</u>, 1656 (1969).

VOLUME 6, NUMBER 6

DECEMBER 1972

Half-Life of ¹⁰Be: A Correction*

Edwin M. McMillan

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 29 August 1972)

A mistake in computing the result of an earlier determination of the half-life of ^{10}Be is pointed out. The corrected value is $(1.7 \pm 0.4) \times 10^6$ yr.

Yiou and Raisbeck¹ have published a redetermination of the half-life of 10 Be, which differs from the previous measurements of Hughes, Eggler, and Huddleston² and McMillan.³ This discrepancy motivated me to check my orginal work sheets, and I discovered no mistakes except in the last step of the calculations, the conversion of the decay constant to the half-life, where I neglected to include the factor ln2. Since both the decay constant and the half-life are given in the published paper, any reader can see where the mistake was made. I would therefore like to revise my 1947

The result of Yiou and Raisbeck for the half-life is $(1.5\pm0.3)\times10^6$ yr, in agreement with my revised value. The Hughes, Eggler, and Huddleston result of 2.9×10^6 yr (no error given) has been revised to 1.6×10^6 yr by Emery, Reynolds, and Wyatt,⁴ using the ratios of new and old values for the relevant cross sections. These authors also give a new experimental determination, (1.6 ± 0.2) $\times10^6$ yr. Thus there now seems to be general agreement that the half-life of ¹⁰Be is close to 1.6×10^6 yr.

Rev. 71, 269 (1947).

result from $(2.5\pm0.5)\times10^6$ yr to $(1.7\pm0.4)\times10^6$ yr.

^{*}Work performed under the auspices of the U.S. Atomic Energy Commission.

¹F. Yiou and G. M. Raisbeck, Phys. Rev. Letters <u>29</u>, 372 (1972).

²D. J. Hughes, C. Eggler, and C. M. Huddleston, Phys.

³E. M. McMillan, Phys. Rev. <u>72</u>, 591 (1947).

⁴J. F. Emery, S. A. Reynolds, and E. I. Wyatt, Nucl. Sci. Eng. <u>48</u>, 319 (1972).