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A formalism using a different approach has been developed for the inclusion of two-step
processes in one-particle transfer reactions on deformed nuclei. Calculations for the
2 Mg(d, p) ~Mg and W(d, p) 83W reactions show that the two-step processes are very impor-
tant for the weakly excited and forbidden transitions; however, for the transitions that are
strongly allowed in the one-step process, the effect is small. Calculations for the ~4Mg(d, p)-

Mg ()~', 1.61 MeV) and for the W(d, p)~ ~W (2,g.s.) reaction show that the two-step pro-
cess via inelastic scattering in the entrance channel is about equal to the two-step process
via inelastic scattering in the exit channel. Good fits with the experimental data are obtained.

I. INTRODUCTION

The single-step distorted-wave Born approxima-
tion (DWBA),"where it is assumed that the tran-
sition takes place directly from the incident-deu-
teron channel to the exit-proton channel, has been
found successful in explaining many deuteron strip-
ping reactions. However, as has been discussed
by Ascuitto and Glendenning, ' the assumptions on
which the DWBA is based might sometimes fail.
One case where this may arise is when the strip-
ping reaction takes place between states such that
one of which is not the parent of the other. Anoth-
er situation arises when there are strongly en-
hanced inelastic transitions, as for the cases of
deformed nuclei. It has been suggested by several
authors' " that if core excitation of the target or
residual nucleus is accounted for some of these
difficulties may be eliminated. These processes,
known as two-step (or multi-step) processes have
also been found important for two-particle trans-
fer reactions. " The effects of the two-step pro-
cesses are that the usual selection rules found in
one-step process (the usual DWBA) can be violat-
ed and also that the two-step-transition amplitudes
can interfere with the one-step-transition ampli-
tude.

The two-step processes for one-particle trans-
fer reactions have been studied by several au-
thors. ' " One method of investigation, the cou-
pled-channel method' ' involves a huge computa-
tional effort. In order to minimize this effort,
several authors have employed a number of ap-
proximations to calculate the effects of the two-
step processes. Iano and Austern" have used a
perturbation technique to simplify these calcula-
tions. In this work, we also make use of a per-
turbation method to expand the transition ampli-
tude in terms of the deformation parameter P.
But on the whole our technique is different from
that of Iano and Austern. We do not make the adia-
batic approximation in which the ground and excit-
ed states in each channel are considered to be de-
generate. However, to simplify the calculations,
we make an on-the-shell approximation for the
Green s function which appears in the intermedi-
ate state.

In Sec. II, we present the general formalism of
the theory. Some of the approximations used in
the present work are also presented in this sec-
tion. In Sec. III, we work out the specific details in
order to obtain the expressions for the transition
amplitudes. Selection rules obtained in the pres-
ent study are discussed at the end of this section.
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II. FORMULATION OF THE PROBLEM

In this section, we present a general formula-
tion for one-particle transfer reactions where the

effects due to inelastic scattering in the entrance
and exit channels are included. For the purpose
of notation, the theory will be presented for the
deuteron stripping reaction, A(d, p)B; however,
the results can be extended to other stripping and

to pickup reactions. Since the deuteron consists
of one proton and one neutron, the entire system
consists of (A+2) nucleons. The Hamiltonian for
this system can be written, neglecting any three-
body interactions, as

A+2 A+2
H= QT(+ Q v;,.

=Hz+T„+T~+ V~+ V„+ V„p, (2.1)

where H~ represents the Hamiltonian for the tar-
get nucleus, T„and T~ a,re the kinetic energy op-
erators for the neutron and the proton, respective-
ly. V„and V~ denote the interactions of the neu-
tron and the proton with the target nucleus and

finally V„~ denotes the interaction of the neutron
with the proton. We can rewrite the kinetic ener-
gy operators T„+T, as T~+T~„, where T„repre-
sents the kinetic energy operator for the motion
of the center of mass of the deuteron and T~„ is
the kinetic energy operator for the motion of the
neutron and proton about the center of mass of the
deuteron. Also we replace V„+ V, by V~~ which
represents the interaction of the deuteron with the
target nucleus. Using these definitions, we get

H =H~+T~+H„+ Vq~, (2 2)

where H„=T~„+V„~ is the Hamiltonian for the in-
ternal structure of the deuteron. Equation (2.2)
is the Hamiltonian for the entrance channel which
consists of an incident deuteron and the target nu-
cleus. A similar expression for the exit channel
consisting of an outgoing proton and the residual
nucleus is given by

H =HR+Tq+ Vq+ V„~, (2.3)

In Sec. IV, we present a comparison of calcula-
tions using our formalism with those of the cou-
pled-channel Born approximation (CCBA). Here

it is shown that the proposed formalism does suc-
cessfully reproduce the results of the more lengthy

CCBA. In Sec. V, we present the results of our
calculations for the "Mg(d, p)"Mg reaction with 15-

MeV incident energy deuterons' ' and for the" W-

(d, p)"'W reaction with 12 MeV incident-energy
deuterons. " Finally in Sec. VI, the conclusions
drawn from the present study are presented.

where HR is the Hamiltonian for the residual nu-

cleus and T~ is the kinetic energy operator for the

relative motion of the proton with respect to the

residual nucleus.
Ignoring a small exchange ("knock-out") term, "

the stripping amplitude is given by"

z', ; =ex+1&q, '~ v„~~+';"), (2 4)

where N is the number of neutrons in the target
nucleus and

e',"-[I+(z"' ff)-'v, 1

x e' &'&g,(r„,)s„(v„,v, )+„(&)

and

q',-'=[I+(z'-'-7,'- v, -e, )-'v, ]

xe'"&'&S„,(o,)e,((, n),

where +„(t') and +s((, n) are the wave functions of
the ta.rget nucleus and the residual nucleus, re-
spectively. The functions S„(cr„,a~) and S„(o~) are
the spin functions for the deuteron and the proton,
and 4~(r~„) is the wave function for the deuteron.
The symbol n in the wave function for the residual
nucleus represents the spin and the radial coordi-
nates of the captured neutron. The function +';" is
an eigenfunction of H, the Hamiltonian of the en-
tire system.

In the usual DWBA, the functions +'," and q&
'

are approximated by

(2 5)

4","= +,(])y,(r„,)S„,(v„,o,)g',"(r,),
and

q,
' ' = e, (t', n)S„,(o,)y'; '(r, ), (2 6)

where y',"(r,) describes the elastic scattering of
the deuterons on the target nucleus and X& '(r~)
describes the elastic scattering of the protons on
the residual nucleus by means of an optical poten-
tial. This approximation, where the many-body
potentials are replaced by optical-model poten-
tials, is based on the assumption that the most
important process in a nuclear reaction is elastic
scattering. But for certain nuclei, namely for de-
formed nuclei, it is observed experimentally that
many nuclei induce strong inelastic transitions,
often with a cross section at large angles, com-
parable to that of the elastic scattering. It has
been suggested that one should include the inelas-
tic scattering along with the elastic scattering in
studying the stripping reactions (or more general-
ly any one-particle transfer reaction) on deformed
nuclei. It has been found from the study of inelas-
tic scattering on deformed nuclei that the optical-
model potentials assume deformed shapes that cor-
respond to the deformation of the target nucleus. "
These nonspherical potentials could have either a
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static (rotational) or a dynamic (vibrational) de-
formation. Using the phenomenological theory of
Bohr" the deformation of the nuclear surface is
described by an angle-dependent nuclear radius,
R(8) =R,[1++„a~„Y«(8',P')], which modifies the
usual spherical optical-model potential. The set
of angles (O', P') is referred to as the body-fixed
system. For an axially symmetric nucleus and

for a quadrupole deformation, the optical potential
can be written as

V(r) = V,(r) + PY„(8', P')R, „—V, (r)

= U(r) + n. U(r), (2 7)

where we have taken Vo(r) =U(r), the optical poten-
tial that describes the elastic scattering for a
spherical nucleus of radius R, and the term AU

is the nonspherical part.
If the interactions V„~ and VP are replaced by

the corresponding expansion (2.7} in the expres-
sions (2.5) for the wave functions, the expression

for the transition amplitude becomes

Tz; =&y& '+s(g, n)S„(o~}[1+nU~(E" Hz) -']
[ V„~ ( [1+(E"' H, ) 'nU-~]C „($)g~(r„~)S„(o„,o~)y',"), (2.8)

where H,. =H, the Hamiltonian for the entire system and Hf =H —V„~. The functions y';" and yf
' are the dis-

torted waves calculated by using the optical-model potentials U~ and U~, respectively.
The Green's function (E"' -H;) ' in Eq. (2.8) can be expanded in powers of aU, by using the iterative

expansion

(E"' H, ) '=-(E' H, +nU~-) '+(E"' H(+O. U~-) 'n, U~(E"' H;)-
=(E"-H, +aU) '[1+nU, (d"-H, +aU, ) '+ . .]. (2.9)

Since we expect a small contribution from the higher-order terms, we approximate the Green's function

(E H&)
' b-y the first-order term in Eq. (2.9). This greatly simplifies the calculation. A similar approx-

imation is made for the Green's function (E' '
H&)

' -With th. ese approximations, the transition amplitude

becomes

T . =7 +T'"+T'"+T'"fi i f
where

T'=(Xg '+s(t' n)S„(o~) I V. ~ 14'~(t)4(r. p)S~, (&. on)X'~')

T';" =&yI '@ (],n)S„,(o~) ~ V„~~ (E"'-H, +b U~) 'b U,vj„(()g,(r„)S„(o„,o )y, ", ),
T,'" =&&,'-'e, (t', n)S„(o,)~U,(E"-H, —n U,)-'I V„, I e„(()y,b „,)S„,(o. o }X

' )

(2.10)

T"' =&y& '4s(), n)S„(o~)nU~(E" -H& —nU~) '~ V„~ (
(E"' H, +n, U~) 'n. U-~4„(()$~(r„~)S„(cr„,g~)y',."). (2.11)

The first expression in Eq. (2.11) is the zeroth-order term which is the usual DWBA transition ampli-
tude. The next two expressions are the first-order terms in the deformation parameter P and the fourth
expression is the second-order term in P. Notice that if we neglect the effects of the inelastic scattering,
i.e. , setting b, U =0, all the transition amplitudes excepting the zeroth-order amplitude become zero. This
is exactly what is expected.

The Green's functions in Eq. (2.11) can be expanded by using the completeness relation" for the eigen-
state of H,. —AU~,

1=+4 4 f dz'Q%"'(z' g"' (z' ) (2.12)

yielding

(2.13}
n n a Ea

where the Green's function G',"(E)=(E"-H; +AU~) ' and the states q„and 4„refer to any discrete states.
a refers to all the quantum numbers other than energy. The dual set of +"' and 4"' is the biorthogonal
set of wave functions which is introduced because H, and Hf are non-Hermitian. These two wave functions
are related by the relation"

(2.14)
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where K is the usual time-reversal operator. The operation of K is such that when K operates on the wave

function its& (r), it gives '

K4's) =(-) '"if'sg

The normalization of the functions 4',"and 4';" is given by

(4" (E, o) i
qi"'(E', o.')) = 6(E -E')6 „,

i.e., these functions are normalized on the energy scale. If we use the relation

(2.15)

(2.16)

in Eq. (2.13), we obtain

44~ (2.17)
E —E E E a

where P stands for the Cauchy principal-value integral. Now we make some physical approximations. In
direct reactions, we do not expect any contribution from the bound states and we expect the scattering am-
plitudes to be slowly changing in energy. The principal-value term contributes to the background, mainly
from resonances which are distant. " In our case we expect the most important contributions to be those
due to the single-particle resonances, which are quenched by the use of an absorption potential, "so it is
felt that these contributions will be small, but smoothly varying in energy. This can essentially be mocked
up by the use of an optical-model potential in the intermediate channels. What we are saying is that all the
processes are taking place on the energy shell. Calculations done by Bledsoe and Tamura" for the charge-
exchange reactions show that the contribution of the principal-value term is small as compared to the -im
term in most of the cases examined. In a study of neutron-resonance reactions Dover and Dietrich'
showed that such a principal-value term was small if it were not in the vicinity of a single-particle res-
onance. However, a calculation of the Green's function which contains a non-Hermitian operator using
only real-energy eigenfunctions may be incorrect. The complete spectrum may contain complex eigen-
values which may lie close to the real-energy axis. Thus in order to completely determine the Green's
function one must know the complete spectrum of the optical Hamiltonian. However, if the absorption is
strong these complex poles should in general lie further away from the real axis and thus not complicate
the problem. Use of the on-shell approximation, of course, does not admit such solutions, as you allow
only the one real-energy ones. Calculations done up to now using only the real-energy spectrum must be
suspect because of this reason.

With these approximations, the first-order terms in Eq. (2.11}become

fvZ(X~-'@s(( s)S„,(o,) I «, I
@"'(E„r))(@"'(E„r)

I &., I +~(00~(v. ,)S„,(o., o,)X' ) .

In this equation, the energy E, is given by

(2.18)

(H( —S.U~)4'(Ei& o!) =Ei@(E„n).

Since 0, is the complete Hamiltonian, we have

E~ =E —4E~, (2.19)

where E is the total energy of the system which includes the kinetic energy E;„,of the incident beam of deu-
terons, sE, is the energy needed to excite the target nucleus from the ground state to some excited state,
so that we are left with (E;„,—a E,) energy for the deuterons (in the center-of-mass system} before strip-
ping takes place. This is the energy we use in calculating the function 0"'(E„a)for the intermediate chan-
nel. In the work by Iano and Austern" the excitation energy AE, was neglected. In a similar way, the pro-
ton energy E~ to be used in calculating the wave function il"'(E„y) in Eq. (2.18) is given by

Eg =Eaux' ~ &E2 (2.20)

where E,„, is the energy of the outgoing protons and AE, is the energy difference of the two levels in the
residual nucleus. In Fig. 1, we show A and 8 as the ground states of the target and the residual nucleus,
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respectively. Ay By and B, are the excited states of these nuclei. Suppose we are studying the angular
distribution of protons corresponding to nuclear stripping to the level By in the residual nucleus. The tran-
sition amplitude T in Eqs. (2.10) and (2.11}gives rise to the transition shown by path 1. This is the one-
step process. Paths 2 and 3 are included in the transition amplitudes T&" and T'&", respectively. These
processes need two steps in going from A to By and are the two-step processes. In transitions via path
2, if stripping takes place to a lower-lying state as compared to B, (the ground state in the case of Fig. 1)
before the outgoing protonexcitesthe residual nucleus to the level B„we use a plus sign in Eq. (2.20).
Otherwise, as in the transition A- B, B-„we use a minus sign in Eq. (2.20).

For the second-order effects, some of the paths available are labeled as 5 and 6. These paths need
three steps and are given by the transition amplitude T+' of Eq. (2.11). The contribution from these pro-
cesses is expected to be small and so they are neglected in the present study.

III. CALCULATION OF TRANSITION AMPLITUDES

An expression for the zero-order transition amplitude will not be given here as it is the quite familiar
expression for the DWBA transition matrix. The calculation of this amplitude is made with the use of the
DWBA computer program DWUCK. The calculation is made in zero range and the appropriate zero-range
factor Dp is taken to have the value 1.65 x 10' MeV fm"'."

The first-order amplitudes given by Eq, (2.18) can be easily derived if one determines the product of the
two transition amplitudes appearing in this equation by use of standard DWBA techniques. For the inter-
mediate states the dual set of eigenfunctions 4~~ and 4~" are taken to be

1/2 &+) I ) (3.1)

and

-(,) - 2p, k '"
y", ,

' (kr)'4„', , (k r} ~ gP '(r)e~ „(])
where the quantum numbers J„' and M„' are represented by the symbol A' on the left-hand side. These func-
tions have the normalization property

and
ms

4„",', , (%, r) =Qq", ,J., „, (k, r)S, , e, „(&),
ms

which define the functions q" and g"'.
If we use the relation

8'~i&~ I +~ i ~ m & -~(& -E )5ir 5iy ~mm 5m~ z„'5u„u„"

In order to explicitly show the spin dependence in Eq. (3.2) we can write

(3.2)

(3.3a)

(3.3b)

Eq. (3.3b) becomes

ms

The expression given by Eq. (2.8) for T'," can then be rewritten as

(3.4)

T',"= -ivy exp(-2i5, ;,; )Tf'x T',"",

where the sum is over l,', j~, J„', m~, m„m„m„m„and M'„, and

(3.5)

J4M„'S~m, +U~ J~M~S~m2 X (3.6)

and

7] =J d r d r„')(' '* %, rq J~M~S~m3 V„q J~™„'Sum4vli~g„' ~ ~ 4
~ (3.7)



2286 P. K. BINDAL AND R. D. KOSHEL

Here the symbol J denotes the Jacobian for the transformation to relative coordinates.
If we insert Eqs. (3.6) and (3.7) into (3.5) and if we perform all the necessary angular momentum algebra

we arrive at the final expression for T',"

T'(" = iD-, (k,'/E,' k,kd)Qi" ' ~ ' " exp(-2i5, , )1dsd(ld')'(j,')'sd J„'LJ/ j~lj(ldsaoma Ij ama}

lg Sg j5t lp Sp )p
x(ldLOO~ lao)(lasaoma~jama)(laloo~ ldo} L S J l s j B~s&As„(lsj)

lg sd jd lg sd jg
lsf ~ I I ~ 'ia fp

&&If fd, a) (B/A)l j f / gdd
F(ja,J„,ja, J»I»Js, ma, ma, M„,Ms)d~ d „s+„„(e),

where j= (2j+ I)"', (j,jam, m, ( jm) is the Clebsch-Gordan coefficient coupling j, and j, and

(3 8)

21 22 23

24 25 26

27 28 29

is the usual nine-j coefficient. The sum is over l~, j„, l,', j,', L, S, J, J„', /, s, j, l~, and j~. The quantity

F is given by

s'=g(2j'+I) (-)-'(&dj'MdMs Mdl Js-Ms)(j,j'ma Ms+M-dMs M~I-lama)
I

"W(~A~~BIl ~A I')W(I'ajj'd ~ljdj'} ~

where W(j,jaj,j„j,j,} is 'a Racah coefficient.
If we use the rotational model to describe the target, intermediate, and residual nuclei, we have

Bc sa = ~~A/~A) liL(~A LKAO I ~~KA) 5so 5LZ

for an even-even target nucleus. This is due to the fact that S, the spin transfer, is zero for inelastic
scattering. K„ is the projection of the angular momentum in the body-fixed axes of the target nucleus and

we assume that the inelastic scattering occurs within the ground-state band. We also have

Asd (lsj) =g(cId/&, ) &P& I P&}C&j(&&j + KdKs + Kg I ~s Ks)

where g=v2 if either K„or Ks =0 and unity otherwise. ' The overlap integral (P&~ P,) between the wave

function (t), describing the zero-point oscillation of the intermediate nucleus and ft)&, describing the zero-
point oscillation of the residual nucleus, will be assumed to be unity in the present calculation.

The radial integrals are given by rotation matrices

I,„f, f
= dr Q', „'f„k~r FJ.s~ ~ 4 r f

(3.9)

where the form factor F~ ~~ is given by

dUF =-R-
L SJ' Od

for L, =J=2 and S =0 transitions. Ro is the radius
of the Woods-Saxon potential. We also have

I f f f f x Q$ f
—k r U, r Q'," ~ k~r

(3.10)

where U»(r) is the radial wave function of the
bound transferred nucleon. The quantity A/B is
the ratio of the target mass to the residual nucle-
us mass.

The quantities d„', (8) are defined in terms of the

d.',.(e) =D'. ..(0, e, 0) .

In a similar way it is possible to obtain an ex-
pression for T&". This will not be presented here.
There are further simplifications of Eq. (3.8} if
the target is an even-even axially symmetric de-
formed nucleus. In this case we have J„=M„=O
so that the quantity F as well as the entire expres-
sion is simplified owing to the relations

W(0 JJ j;J„'j ') = (I/J„J )5a 5

and

(0j' MO(JssMs) =5, d

Selection rules for the transition amplitude are
easily obtained upon examination of Eq. (3.8). Sim-
ilar selection rules also apply to T&" with the ap-
propriate changes. From the various vector-cou-
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FIG. 1. Various multi-step processes to reach a state
B& of the residual nucleus from the ground state A of the
target nucleus are shown.

pling coefficients we have

FIG. 2. The dashed curve is taken from the CCBA
calculations done by Mackintosh (Ref. 10) and the solid
curve is from the present study using the DWBA ap-
proach. The deformations assumed are Pz =0.4 in the
entrance channel and P& =0.3 in the exit channel.

and

L=J'„-J„,
) =i, -Z'„,

where l~ and l, are the partial waves for the in-
coming and the outgoing particles and l~ is for the
intermediate state.

For the special case, when J~=O, i.e., for an
even-even target nucleus, we have

i' =L+i (3.11)

l~ =1~- L,
lp =l~- l,

and

J =3& —
3p ~

where j„and j~ are given by

jg =ly+ sg

and

(3.12)

&~ =l~+ s~ ~ (3.13)

where J„and J~ are the ground-state spin of the
target nucleus and the final-state spin of the resid-
ual nucleus, respectively, and J„' is the spin of the
target nucleus in an excited state. L is the angu-
lar momentum transfer in the inelastic scattering
which excites the target nucleus from its ground
state to an excited state and j is the total angular
momentum transfer in the stripping reaction. j'
is the over-all angular momentum transfer needed
for the entire process.

Similar selection rules can be obtained for the
various partial-wave angular momenta, namely

and

j' =Ja,
L =Jp,

j=i'-L
For L =2, we find that the allowed angular momen-
tum transfer for the stripping reactions is given by

Z, +2o- jo-~Z, —2[.

IV. COMPARISON WITH THE COUPLED-

CHANNEL BORN APPROXIMATION

Since the method proposed here for calculating
two-step processes in transfer reactions provides
a very quick way to calculate cross sections it was
decided that in order to test the reliability of our
results that a comparison would be made with our
results and those obtained from the slower and
presumably more accurate CCBA.

We compare our results with those obtained by
Mackintosh for deuteron stripping to the —,

' mem-
ber of the ground-state —,

' rotational band of "Mg
for incident-energy deuterons of 12.3 MeV. We
chose this case because Mackintosh provides a
set of optical. parameters which can be used in
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DWBA calculations and which are in some sense
equivalent to the potentials used in the correspond-
ing coupled-channel analysis. While these sets of
parameters are not completely equivalent we can
make a somewhat more reliame comparison of the
results obtained by the two methods.

Before the results of the two calculations are
presented and compared we must say something
about the mechanics of the calculation. A standard
optical potential including a spin-orbit term is
used to calculate the radial integrals given in Eqs.
(3.9) and (3.10). These are calculated by the com-
puter program DWUCK. ~ The bound-state form
factors used in the radial integrals are also calcu-
lated by DWUCK and are calculated by using a
spherical Woods-Saxon well. In a more exact cal-
culation, a deformed well should be used for these
form factors. The values of the C» coefficients
are taken from Chi." The signs of these coeffi-
cients depend on the choice of phases employed
for the calculation of the radial function for the
bound particles. The phases of the radial wave
functions used by DWUCK differ from those by a
factor

(4.1)

where N is the principal quantum number and l is
the angular momentum of the bound particle. Since
we add the transition amplitudes in a coherent fash-
ion, proper use of this phase convention is ex-
tremely important.

Mackintosh does his calculation using a deformed
form factor, i.e. , he determines the single-parti-
cle orbital by using a superposition of harmonic-
oscillator states in order to solve the equation con-
taining the deformed Woods-Saxon well. As was
mentioned above we use a spherical well. Iano,
Penny, and Drisko" have performed a calculation
for the "Mg(d, p)"Mg reaction leading to the —',
ground state in "Mg with 10-MeV incident ener-
gy deuterons. They show that the results for the
differential cross section, obtained when a form
factor calculated with a deformed well, were
smaller than those obtained when a spherical well
was used. The angular distributions, however,
had the same shape. Thus, we should expect our
cross sections to be somewhat larger than those
obtained by Mackintosh.

The results of the two calculations and the ex-
perimental data are shown in Fig. 2. Mackintosh
uses a normalization factor of 25.19 to obtain
agreement with the experimental data. A normal-
ization factor of 19 is needed for our calculations.

While there are some differences in the shapes
of the two curves and in the normalization the
agreement is really quite good considering the dif-
ferences in the bound-state wave functions andthe

always present ambiguity that exists for potentials
found in coupled-channel and in optical-model cal-
culations. As discussed above, our use of a spher-
ical well probably increases the magnitude of our
calculations. This would imply the use of a small-
er normalization factor. Thus, the formulation
presented here seems to be able to reproduce the
results of the more complicated CCBA.

V. RESULTS AND DISCUSSION

In this section, we shall present and discuss the
results of our calculations for the stripping reac-
tions "Mg(d, P)"Mg leading to the —,

"ground state
and to the —,

"state at 1.61 MeV with 15-MeV inci-
dent deuterons" " and the '"W(d, p)"'W reaction
leading to the —,

' ground state and the first 2 and
states with 12-MeV incident energy deuterons.

We chose these two reactions because we could
study the effects of two-step processes for a case
where a direct transition is forbidden, namely the

state in 'Mg, and a case where the transition
is allowed, but the transition is weak, namely the

ground state transition in "'W. In the latter
case the transition cannot be explained by the al-
lowed one-step transition. "

A. Calculations for the Reaction

Mg(d, p) Mg

In order to analyze this experiment, the optical-
potential parameters for the elastic scattering of
protons were taken from Blair et al." These pa-
rameters are listed in Table I as parameter set
PA. This set of proton parameters fit the 20-MeV
proton elastic scattering and the polarization data. "
We found that this set of parameters also fits the
17.5-MeV proton elastic scattering data. ""The
situation for the case of deuterons is not as clear,
since there exists no published experimental work
for the elastic scattering of 15-MeV deuterons on
'4Mg. Fortunately, there are two experiments avail-
able for inelastic scattering at this energy. Two
sets of optical-model parameters, used by Iano and
Austern" and listed in Table I, were used to see
which one fits the available experimental data for
the inelastic scattering. As shown in Fig. 3, there
is unfortunately a discrepancy in the data obtained
by Haffner" and by Blair and Hamburger. " As
seen from this figure, apart from the forward an-
gles, both sets seem to fit the differential cross
section very well. The shallow potential DA
gives a larger contribution at the forward angles,
which fits the data obtained by Haffner, whereas
the deep potential" DB gives a smaller contribu-
tion at the forward angles giving better agreement
with Blair and Hamburger's data. However, be-
cause it is now assumed that the real deuteron
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TABLE I. Optical-model parameter sets used in the ~4Mg(d, p)~~Mg analysis. The potential is defined as

d 1 d
p (r) = V~ Vof (xp) g Wf (x)) +44 WD d (x~) + 2 V~o (r) QD) 1 ' 0'

where

x =(r —r A 3)/a& and f(x&) =(e "&+1)

Channel
Parameter

set
V r 0 ao W r; a; Wz rD az -V, r, a

(Me V) (fm) (fm) (Me V) (fm) (fm) (Me V) (fm) (fm) (Me V) (fm) (fm) (fm)

Deuteron

Proton
Bound

neutron

DA

DB
PA

50.0 1.50 0.59 16.0
101.3 1.00 0.90 0.0
46.7 1.24 0.65 0.0

Adjusted 1.25 0.65
to give
right
binding
energy

1.5 0.59 0.0
28.9
8.3

1.443 0.50
1.28 0.50

8.0 1.5 0.59 1.5
0.0 1.30
5.5 0.92 0.50 1.25
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FIG. 3. The dashed line is the result of the calcula-
tions using the shallow-well potential set DA of Table I
and the solid line is obtained by using the deep-well po-
tential set DB of Table I. The triangles and circles rep-
resent the experimental data obtained by Haffner (Ref. 38)
and by Blair and Hamburger (Ref. 39), respectively.

optical potential should have a strength approxi-
mately twice that of the nucleons strength, the
deep we11 DB was used.

If the inelastic scattering takes place after strip-
ping to the —,

"ground state of "Mg, then the angu-
lar momentum transfers allowed by the selection
rules are l =2 and j =-,' for the stripping and L, =2
for the inelastic scattering to excite the —,

"ground
state to the —,

' state. If the inelastic scattering
takes place before the stripping, we need L, =2 to
excite the target nucleus from the 0' ground state
to the 2' first excited state so the values of j trans-
fer needed to reach the —,

' state in "Mg are -,'—2
&j ~ -', +2. But j =-,'transfer is not allowed since
K =

—,
' for this band.

In Fig. 4 we present the results of the calcula-
tion for stripping to the —,

' state of "Mg. These
results are for P=0.47. The same value of P is
used by Schultz et aL' and by Braunschweig, Ta-
mura, and Udagawa. ' In the calculations the con-
tribution from the l=4, j= ~ transfer with inelas-
tic scattering in the entrance channel was extreme-
ly small and is not shown in the figure. For this
reason, we feel that the contributions from the
higher l and j transfers allowed by the selection
rules for the 0'-2'- —,

"path can be neglected.
The contribution from the entrance and exit chan-
nels are for the most part equal. The fit to the
experimental data is good.

Figure 5 shows a comparison of the results ob-
tained by Iano and Austern" and those obtained
here. The comparison should not be taken too se-
riously as Iano and Austern use a shallow potential
well for the deuteron optical parameter; however,
since the authors also quote a set of deep-well pa-
rameters, presumably the shallow-well parame-
ters gave better agreement with experimental data.
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It can be seen on investigating Fig. 5 that our re-
sults are for the most part greater than those of
Iano and Austern and agree much better with the
data.

Figure 6 illustrates the effects of two-step pro-
cesses on the differential cross section in the al-
lowed direct transition to the —,

"state of "Mg. In
our formalism, the only two-step process that will
contribute will be the l = 2 and j = —,

' transfer with
inelastic scattering in the entrance channel, as we
do not include interband transitions. Except for
the extreme backward angles the effects are small,
thus indicating that higher-order terms in the per-
turbation expansion of the Green's operator which

appears in the transition amplitude are indeed
small when compared with the two leading terms.

l
lh

Xl

100—

b

24 25
Mg (d, p) Mg(1.61, 7/2 )

Ed 15 MeV

B. Calculations for the Reaction
'"W(d, )'83@

IO
0

I

30
I I

60 90 120
ecm (deg)

I

150 180

Calculations were carried out for this reaction
for 12-MeV incident energy deuterons. Of particu-
lar interest is the stripping to the 2 ground state
of "'W. This state is the band head for the (510) —,

'
band. Conventional DWBA calculations have not
been able to reproduce the data; however, the

24 25
Mg (d, p) Mg (1.61, 7/2 )-

Ed = 15 MeV

FIG. 5. Comparison of the present calculations (solid
curve) with those of Iano and Austern (Ref. 16) (broken
curve). Parameter sets used in the present calculations
are not the same as used by Iano and Austern.

small value of the coefficient Cy y„ for this state
would imply that two-step processes could be im-
portant for this reaction.

The optical parameters used in the calculations
are given in Table II. The set DC for deuterons
and the set PB for deuterons were the original set
of parameters used by Erskine and Siemssen in
their DWBA analysis of this reaction. ~ This set

~ ~
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FIG. 4. These results are obtained for the parameter
sets DB and PA of Table I and are plotted for P = 0.47.
The dash-dotted and dashed curves are for the l =2 and

j =T~ transfers with the inelastic scattering in the en-
trance and the exit channels, respectively. The solid
curve is obtained by adding these contributions coher-
ently. The circles and triangles represent the experi-
mental data obtained by Hamburger and Blair (Ref. 18)
and by Cujec (Ref. 19), respectively.
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FIG. 6. These calculations are for the parameter sets
DB and PA of Table I. The dashed curve is the contri-
bution from the one-step process and the solid curve is
obtained by adding the contributions of the two-step pro-
cess (0+ 2+- &+) with an I. =2, j =&5 transfer (the dotted
curve) to the one-step process coherently.
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TABLE II. Optical-model parameter sets used in the W(d, p) 3W analysis.

Channel
Parameter

set
V

(Mev)
p

(fm)
ap

(fm) (MeV)
+D

(fm)
aD

(fm)
~so

(MeV)

's +c
(fm) (fm) (fm)

Deuteron

Proton
Bound
neutron

DC
DD
PB

104.0
77.0
53.0

Adjusted
to give
right
binding
energy

1.15
1.30
1.25
1.25

0.81
0.79
0.65
0.65

13.5
20.4
18.0

1.34 0.68
1.37 0.67
1.25 0.47 8.0 1.25 0.65

1.15
1.30
1.25

of parameters was also used by Penny in his in-
vestigation of two-step processes in this reac-
tion. ' The set of deuteron optical parameters
DD obtained by Siemssen and Erskine in a new
study of elastic and inelastic scattering of deuter-
ons from '"W give better fits to these data and as
such should provide a better set of the parameters
for the present study. Coulomb excitation was in-
cluded in the calculation.

In the 0'- 2'- —,
' two-step process, the only val-

ues of j transfer that are allowed are —,
' and —,',

which correspond to l =1 and l =3, respectively.
If we allow the inelastic scattering in the exit chan-
nel, the stripping could take place between the 0'
ground state of the target nucleus "W and the &,
&, and & excited states of the residual nucleus
'8'W, which are members of the (510) 2 band.
The contribution from the two-step process via
the scheme 0'- —,

' - & is expected to be very
small as the C„coefficient for the —,

' state is very
small and also because it requires L =4 for the in-
elastic scattering. This process was not included
in the calculation. The values of the C» coeffi-
cients are listed in Table III and are taken from
the work of Chi."

The value of P was taken to be 0.23. This value
of P is taken from the study of inelastic scattering
of deuterons on '"W and from nuclear structure
studies. ~ The results of the calculation using the
set of parameters DC and PB are shown in Fig. 7.
As seen from this figure the entrance and exit
channels contribute almost equally. Also shown
in this figure is the cross section for the direct

TABLE III. Values of the C,&
coefficients used in the

W(d, P) W analysis. The C» values are taken from
Q@f. 33 and P is given by Eq. (4.1).

C).

+0.07

-0.65

+0.554

I

I82 I85
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FIG. 7. The calculations are done for the parameter
sets PB and DC of Table II. The broken and dash-dotted
curves are for the (0' 2+

T~ ) with the /=1, j= 3 ande

l = 3, j =
2

transfers, respectively. The dotted curve is
for the (0+ Y3 T ) with an L =1, j =T transfer and the
dashed curve for the (O' —T —

2 ) with an l =3, j=
2

transfer. The double dash-dotted curve is the usual
DWBA and the solid curve is obtained by adding all these
contributions coherently.

transition. In this case some of the indirect tran-
sitions are comparable in magnitude to the direct
transition. The final answer is obtained by taking
a coherent superposition of all of the two-step and
direct amplitudes. This curve has a much differ-
ent shape than the direct transition and is also
larger in magnitude.

Figure 8 shows the results obtained when the set
of optical parameters DD and PB were used. There
have been changes in shapes and magnitudes of the
two-step processes. The shape of the direct tran-
sition has also been changed. The curve represent-
ing the total effect of all of the transitions has
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again been obtained by taking a coherent super-
position of the direct and two-step processes.

A comparison of the two theoretical calculations
using the two different deuteron optical-parameter
sets and the experimental data are shown in Fig. 9.
Both curves give agreement with the experimental
data over some portion of the angular range and

are definite improvements over the one-step
DWBA. Included in this figure are the results of
Penny. His results do not explain the experi-
ment. This is probably due to the fact that he did

not include the inelastic scattering effects in the
exit channel.

Figure 9 also shows the effect of different sets
of optical parameters on the cross section. There
is no doubt that a better fit to the experimental
data could be obtained by taking some compromise
between the two sets of deuteron optical parame-
ters DC and DD. This may be a reasonable thing
to do in light of the ambiguity of the deuteron pa-
rameters for "'W, however, this will not be done
here but will be the subject of a future communi-
cation.

Figures 10 and 11 show the effects of two-step
processes on the -', and —,

' members of the ground-

I82 I 83
W(d, p) W(g.s., I/2 ):

Ed l2 MeV

state band in '"W. Here the effects are relatively
small when compared to the transition to the —,

'
state. This is due to the relatively large values
of the C» coefficients of these states as shown in
Table III.

VI. CONCLUSIONS

A formalism, which is essentially a perturbation
approach, has been developed to include inelastic
scattering in the entrance and exit channels in the
study of nuclear stripping reactions. Although the
formalism is for any spin of a target nucleus, ap-
plications presented here have been made only for
spin-zero targets. The results of our calculations
show that much better results are obtained with the
inclusion of two-step processes.

A comparison has been given between our calcu-
lations and those obtained in the CCBA. The agree-
ment between the two calculations is quite good.

For the ' Mg(d, P) 'Mg (-,", 1.61 MeV) reaction
the fit to the experimental data for 15-MeV inci-
dent energy deuterons was quite good. Contribu-
tions from inelastic scattering in the entrance
channel are comparable to those of the exit chan-
nel.

The calculations for the "'W(d, p)' W (2, g.s.)
reaction show that the effect of the two-step pro-
cess is to change the shape of the angular distribu-
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I82 I83
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e ~ ~

/
b

I.O—

O. l
I

30

~ ~ ~ ~ eQ
~
'

rj
' ~ ~ /

~ ~
~ j~o ~ ~ 0$

I I I I

60 90 I20 l50 180
~c m

(deg)

L

Xl

IO.O

b

I.O

I

I
I
I

., I

)'
/ y

j'

-,~ v'

r /'
/

I I I

30 60 90 l20
elm (deg)

I

IS0 I80

FIG. 8. These calculations are done for the parameter
sets PB and DD of Table II. The dotted curve and the
dashed curves are for the (0'—2'-

& ) with the l =1,
j =

2
and l =3, j =

2
transfers, respectively. The broken

curve is for the (0'-- --' ) with anl=l, j=7 transfer
and the dash-dotted curve is for the (0"

& T ) with
an l =3, j =T5 transfer. The double dash-dotted curve
is for the usual DWBA and the solid curve is obtained by
adding all these contributions coherently.

FIG. 9. The dashed line is obtained by using the pa-
rameter sets DC and PB, while the solid line is obtained
by using the parameter sets DD and PB of Table II. See
Figs. (7) and (8) for various contributions included in
these calculations. For the sake of comparison, we have
plotted the calculations obtained by Penny (Ref. 42) as a
broken line. The experimental data are taken from
Siemssen and Erskine (Ref. 20).
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tion and to increase the cross section at some an-
gles by a factor of 4 to 15. We have reproduced
the experimental distribution and also the magni-
tude of the cross section agrees with the experi-
mental data. In the present study, we found that
the contributions from the effects of inelastic scat-
tering in the entrance channel and the exit channel
are almost equal in importance. This is probably
the reason for Penny's failure in fitting this reac-
tion as he only included the effects of the inelastic
scattering in the entrance channeL. ~

Our calculations for those reactions that are
strongly allowed in the one-step process for both
"Mg and '"W show that the effect of the two-step
processes is to change the cross section by 10-15%
for "Mg and somewhat more at some angles for
182W

Inshort, we have shown that the inclusion of the
two-step processes is very important for the cal-
culations of the weakly excited and forbidden tran-
sitions as we can fairly well reproduce the angular
distribution for the ' Mg(d, p)"Mg (2', 1.61 MeV)
reaction and the "2W(d, p)"'W (-,', g.s.) reaction.
This means that our formalism is successful for
at least the cases we have studied. Our model is

FIG. 11. See figure caption of Fig. 10. The two-step
processes included in the solid curve are the (0+ 2+

) with l =1, j =
2

and l =3, j =T5 transfer and the
(0' ———

2 ) with an I, =1, j =- transfer.

a simple one in the sense that we do not use cou-
pled-channel methods to calculate the radial-wave
functions. To calculate the radial integrals, we
can use distorted-wave computer programs like
DWUCK, which are readily available. Also, as we
do not use coupled-channel methods, it is much
faster to analyze experimental data by using the
computer programs based on our model. However,
the general validity of making an on-shell approx-
imation cannot be proved analytically, but the re-
sults obtained here indicate that it does not seem
to be a bad approximation. Even if this approx-
imation is not completely accurate, it does pro-
vide an extremely fast and simple way of investi-
gating the effects of two-step processes.
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