†Work supported by the U. S. Atomic Energy Commission.

¹E. L. Feinberg, J. Phys. (USSR) <u>4</u>, 423 (1941).

²A. Migdal, J. Phys. (USSR) <u>4</u>, 449 (1941).

³T. A. Carlson, C. W. Nestor, Jr., T. C. Tucker, and F. B. Malik, Phys. Rev. <u>169</u>, 27 (1968).

 4 P. Stephas and B. Crasemann, Phys. Rev. C $\underline{3}$, 2495 (1971).

⁵J. Law and J. L. Campbell, Nucl. Phys. <u>A185</u>, 529 (1972).

⁶A. J. Mord, in Proceedings of the International Conference on Inner-Shell Ionization Phenomena, Atlanta, 1972 (to be published).

⁷H. J. Fischbeck, F. Wagner, F. T. Porter, and M. S. Freedman, Phys. Rev. C 3, 265 (1971).

⁸Y. Isozumi and S. Shimizu, Phys. Rev. C <u>4</u>, 522 (1971). ⁹E. L. Feinberg, Yadern. Fiz. <u>1</u>, 612 (1965) [transl.:

Soviet J. Nucl. Phys. 1, 438 (1965).

¹⁰J. L. Campbell, L. A. McNelles, and J. Law, Can. J. Phys. 49, 3142 (1971).

¹¹S. Shimizu, in Proceedings of the International Conference on Inner-Shell Ionization Phenomena, Atlanta, 1972 (to be published).

¹²P. Stephas and B. Crasemann, Phys. Rev. <u>164</u>, 1509 (1967).

¹³J. Law and J. L. Campbell, in Proceedings of the International Conference on Inner-Shell Ionization Phenomena, Atlanta, 1972 (to be published).

¹⁴J. S. Hansen, J. C. McGeorge, D. W. Wix, W.-D. Schmidt-Ott, I. Q. Unus, and R. W. Fink, Nucl. Instr.

Methods (to be published).

¹⁵New England Nuclear, 575 Albany Street, Boston, Massachusetts.

¹⁶J. S. Hansen, H. U. Freund, and R. W. Fink, Nucl. Phys. A142, 604 (1970).

¹⁷R. L. Watson, C. W. Lewis, and J. B. Natowitz, Nucl. Phys. A154, 561 (1970).

¹⁸W. Bambynek, B. Crasemann, R. W. Fink, H. U.

Freund, H. Mark, C. D. Swift, R. E. Price, and

P. Venugopala Rao, Rev. Mod. Phys. (to be published). $^{19}\rm{S}.$ Fried, A. H. Jaffey, N. F. Hall, and L. E. Glendenin, Phys. Rev. <u>81</u>, 741 (1951).

²⁰G. E. Boyd, Q. V. Larson, and E. E. Motta, J. Am. Chem. Soc. 82, 809 (1960).

PHYSICAL REVIEW C

VOLUME 6, NUMBER 6

DECEMBER 1972

Decay of ¹²⁵Cs, ¹²⁷Cs, and ¹²⁹Cs

S. Jha

University of Cincinnati, Cincinnati, Ohio 45221, and Crocker Nuclear Laboratory, Davis, California 95616

and

Neal F. Peek, William J. Knox, and Edwin C. May Crocker Nuclear Laboratory, Davis, California 95616 (Received 6 March 1972)

Neutron-deficient isotopes of cesium (¹²⁹Cs, ¹²⁷Cs, and ¹²⁵Cs) were produced by the α -particle bombardment of natural iodine. γ -ray energies and intensities were measured with Ge(Li) detectors. In the decay of 32-h ¹²⁹Cs, among others, 372- and 582-keV γ rays were detected. In the decay of 6.2-h ¹²⁷Cs, new γ rays have been detected, and new levels at 1430, 1805, and 1829 keV have been proposed. In the decay of 45-min ¹²⁵Cs, the following levels in ¹²⁵Xe (percentage feeding in parentheses) have been proposed: ground state (54%), 112 keV (2%), 526 keV (30%), 540 keV (4%), 712 keV (6%), 1311 keV (0.33%), 1326 keV (0.43%), 1579 keV (0.5%), 1698 keV (0.7%), 2154 keV (0.2%), 2523 keV (0.2%), and 2545 keV (0.1%). These decay schemes show that the β decay of these cesium isotopes takes place preferentially to the excited states in the daughter xenon isotopes.

INTRODUCTION

Although one expects 32-h ¹²⁹Cs $(\frac{1}{2}^+)$ to decay, on the basis of normal β -decay selection rules, predominantly to the ground state $(\frac{1}{2}^+)$ and 39.6 keV $(\frac{3}{2}^+)$ of ¹²⁹Xe, some 60% of the decay takes place to the states at 411.3 keV and 588.8 keV.¹⁻⁴ The recent study of the decay of ¹²⁷Cs⁵ shows that the transitions to the ground state $(\frac{1}{2}^+)$ and first excited state (124.7 keV $\frac{3}{2}^+$) of ¹²⁷Xe have large log*ft* values, as in the decay of ¹²⁹Cs, and that 80% of the decay of 127 Cs lands on levels in 127 Xe at 410.7 and 587.7 keV.

In this paper, we report on our studies of the decay of ¹²⁹Cs, ¹²⁷Cs, and ¹²⁵Cs. In the decay of ¹²⁹Cs, we report the observation of some low-intensity transitions. We have observed some new γ rays and measured the γ -ray energies in the decay of ¹²⁷Cs more accurately than reported by Spalek *et al.*⁵ We have measured the energies and intensities of the γ rays emitted in the decay of ¹²⁵Cs and drawn up a partial decay scheme.

The decay of ¹²⁵Cs $(\frac{1}{2}^+)$ to the ground state $(\frac{1}{2}^+)$ of ¹²⁵Xe) is about 10 times slower than expected and the decay to the 526-keV level is about normal.

SOURCE PREPARATION AND γ -RAY STUDIES

The sources of ¹²⁹Cs, ¹²⁷Cs, and ¹²⁵Cs were prepared by the bombardment, in the variableenergy cyclotron of the Crocker Laboratory, of a calcium iodide target by α particles of about 30, 55, and 80 MeV, respectively. The reactions utilized were $(\alpha, 2n)$, $(\alpha, 4n)$, and $(\alpha, 6n)$, respectively. The target was dissolved in nitric acid, and all iodine was driven off by heating, and all calcium was removed in the form of carbonate. From this solution, the cesium activity was precipitated with the help of silicotungstic acid.

The radiations were studied with two $35-cm^3$ Ge(Li) detectors in coincidence with the resolving time of 100 μ sec. The data were collected in 1024-channel groups in a nuclear data analyzer. Low-energy γ rays were studied with a Ge(Li) detector having a resolution of 250 eV at 50 keV.

¹²⁹Cs

The early studies of the decay of 129 Cs have been adequately complemented by the work of Graeffe and Walters.³ For completeness, we studied the γ rays from ¹²⁹Cs with a good Ge(Li) detector. In the spectrum of the γ rays, given in Fig. 1, the existence of the γ rays, reported by Graeffe and Walters, are all confirmed. Some new γ rays, shown in the figure and in Table I, lend further support to the levels in ¹²⁹Xe, proposed by Graeffe and Walters, given in Fig. 2. The level at 411 keV does not decay to the 322-keV state (which probably is $\frac{5}{2}$ ⁺ state). Langhoff⁴ prefers $\frac{3}{2}$ ⁺ assignment for the 411-keV state. The 589-keV state decays to the ground state $(\frac{1}{2}^+)$, 39.4-keV state $(\frac{3}{2}^+)$, and the 322-keV state has a spin and parity $\frac{3}{2}^+$.

¹²⁷Cs

The radiations from 6.2-h ¹²⁷Cs have been studied by Spalek *et al.*⁵ They made measurements on the γ rays with a 6.5-cm³ Ge(Li) detector, having a resolution of 5 to 6 keV. The positron spectrum and internal-conversion electrons were measured with a β -ray spectrometer. Based on these measurements, they made up a decay scheme of ¹²⁷Cs with levels in ¹²⁷Xe at the following energies (in keV): 124.7, 300, 321.2, 411.2, 586.5, 929,

FIG. 1. γ -ray spectrum of ¹²⁹Cs.

FIG. 2. Decay scheme of ¹²⁹Cs.

1195±, 1305, 1582, 1775, and 1975. They estimated that the $\log ft$ for the transition to the ground state and the 124.7-keV states are 6.5 and 6.6, respectively, the feeding being about 12% and 7%. This indicated that, contrary to the speculation of Geiger, Graham, and Gelletly,⁶ the spin and the parity of the ground state and the first excited state (124.7 keV) in ¹²⁷Xe are $\frac{1}{2}^+$ and $\frac{3}{2}^+$, respectively. They found that the feeding of the 411.2- and 586.5-keV states are 68% and 10%, respectively.

The spectrum of γ rays emitted in the decay of ¹²⁷Cs, taken with a Ge(Li) detector having an energy resolution of 3 keV at 1.3 MeV, is given in Figs. 3 and 4. The energies and the intensities of the γ rays are given in Table II. Almost all the γ rays reported by Spalek *et al.*⁵ are confirmed and some new ones have been detected. γ rays in coincidence with the 124.7-keV γ ray were measured. The decay scheme given by Spalek *et al.*⁵ was found to be very satisfactory. Three new levels at 1430, 1805, and 1829 keV were introduced. Many more γ rays could be accomodated by these levels, as shown in the revised level scheme of Fig. 5. 12 γ rays in Table II could not be fitted into the new decay scheme. From

E_{γ} (keV)	E_{γ} (keV)		
This work	Intensity	(Ref. 3)	
	9.2	39.4	
93.5	2.4	93.5	
177.5	0.94	177.2	
266.5	0.90 266.6		
271	0.56	270.5	
278	4.4	979	
210	4.4	210	
200	0.81	282.6	
318	7.8	317.9	
322	0.15	322	
357			
372	100	371.9	
411	69	411.3	
493	0.04	492.8	
511			
535	0.1	534.8	
549	10.3	549.3	
582	Weak		
589	1.75	588.8	
624	0.09	624.5	
865	0.10	866.5	
	• • - •	000.0	
907	0.72	907	
946	0.21	946.3	

TABLE I. γ rays observed in the decay of ¹²⁹Cs.

FIG. 3. γ -ray spectrum of ¹²⁷Cs up to 2200 keV.

detailed studies of the positron spectrum and internal-conversion-coefficient measurements, Spalek *et al.*⁵ showed that the log *ft* values for β decay to the ground state, 124.5-keV state, and 321.5-keV states are 6.5, 6.6, and 7.5, respectively, while the log *ft* for the decay to 411.5- and 586.5-keV levels are 5.5 and 6.2, respectively.

¹²⁵Cs

The only information one has about the decay of ¹²⁵Cs is that it decays by positron emission with a decay energy of 3 MeV and a half-life of 45 min. From the study of ¹²⁵/₂₅, ⁷ the first excited state $(\frac{3}{2}^{+})$ has been established at 112 keV.

FIG. 4. γ -ray spectrum of ¹²⁷Cs up to 2800 keV.

<i>E_γ</i> (keV) This work	Intensity	E_{γ} (keV) (Ref. 5)	E_{γ} (keV) This work	Intensity	E _γ (keV) (Ref. 5)
	235		1212	0.95	1213
124.5	255	125	1236	0.4	1232
196	7		1260	2.5	1260
286.5	73	287	1276	0.1	
321.5	16	321	1289	0.4	1290
411.5	1200	411	1305	5.5	1305
461.5	100	462	1340	0.2	1240
511.5	123	511	1362	0.5	1364
556	3.1		1367	0.5	
586.5	90	587	1394	0.4	1392
807	8.3	804	1401	1.3	1402
823	2.8	823	1408	3.0	1409
874	0.9	874	1418	1.4	1418
8 9 3	0.35	892	1430	0.1	
930.5	10.2	929	1452	0.8	1453
945	1.5		1484	0.8	1484
964	0.25		1533	2.4	1535
984	1.8	984	1557	0.2	1554, 1561
990	0.8	991	1582	1.3	1583
995	0.8		1648	0.4	1649
1024	0.4		1680	0.7	1681
1071	1.1	1070	1715	0.8	1702, 1718
1080	0.5		1730	0.2	
1110	0.3		1773	0.6	1776
1158	1.0	1158	1805	0.1	
1170	1.3	1169, 1181	1829	0.1	
1196	5.5	1196	1971	0.5	1975

TABLE II. γ rays observed in the decay of ¹²⁷Cs.

FIG. 5. Decay scheme of 127 Cs.

FIG. 6. γ -ray spectrum of ¹²⁵Cs (low-energy portion). Some of these γ rays have been observed by W. R. Kane, Bull. Am. Phys. Soc. <u>16</u>, 551 (1971).

FIG. 7. γ -ray spectrum of ¹²⁵Cs (from 100 to 3000 keV).

E_{γ}		E_{\sim}	
(ke V)	I_{γ}	(keV)	I_{γ}
112	278	1311	7
335	66	1326	3
412	170	1468	8.5
428	51	1579	9
511	2550	1698	9
526	792	1783	7
540	100	1825	4
600	100	1855	6
654	14	2044	2
712	114	2116	26
780	7	2154	6
808	2.5	2201	4
865	9.8	2269	4
922	27	2371	Weak
995	17	2414	1.5
1060	5.9	2431	2
1158	14	2523	4
1200	6	2545	0.8
1212	11	2623	1.5
1228	5	2726	1.5

TABLE III. γ rays observed in the decay of 125 Cs.

FIG. 8. Decay scheme of ¹²⁵Cs.

The source of ¹²⁵Cs, prepared by us, had some ¹²⁷Cs as an impurity and ¹²⁵Xe (19 h) as the decay product. We followed the decay of the intensity of the γ -ray peaks (Fig. 6 and Fig. 7). The energies and the intensities of the γ rays decaying with a half-life of 45 min are given in Table III. The intensity of the 125-keV γ rays was used to estimate the contribution of ¹²⁷Cs to the intensity of the 412-keV γ ray and the annihilation radia-

tion (the intensities given in Table III are the corrected intensities). Some of these γ rays could be fitted into a decay

scheme (Fig. 8) from the consideration that the difference of the energy of the two γ rays was equal to 112 keV, which is the energy of the first excited state of ¹²⁵Xe. These γ -ray transitions include about 90% of the decay. From the intensity of the γ rays emanating from a level, the β -decay feeding of this level has been calculated. The electron-capture decay energy available for the feeding of a level has been used to calculate the ratio of the electron capture and positron emission. In this way, all but 27% of the positrons could be accounted for. This 27% of the total number of positrons was attributed to the ground-to-ground transition.

Thus it has been inferred that the following levels (with the intensity of feeding and $\log ft$ in the parentheses) are excited in the decay of ¹²⁵Cs: ground state (54%, 6), 112 keV (2%, 7), 526 keV (30%, 5.8), 540 keV (4%, 6.5), 712 keV (6%, 6.1), 1311 keV (0.33%, 7), 1326 keV (0.43%, 6.8), 1579 keV (0.5%, 6.5), 1698 keV (0.7%, 6), 2154 keV (0.2%, 6), 2523 keV (0.2%, 5), and 2545 keV (0.1%, 5). From this, it can be seen that in the decay of ¹²⁵Cs also, as in the decay of ¹²⁹Cs and ¹²⁷Cs, the decay to an excited state is favored over the ground-to-ground transition. The anomaly in the intensity of decays in ¹²⁵Cs is not as large as in the case of ¹²⁷Cs and ¹²⁹Cs.

DISCUSSION

In support of the supposition that the ground state of ¹²⁹Cs, ¹²⁷Cs, and ¹²⁵Cs is deformed, the following comments should be made. The eveneven nuclei ^{124, 126, 128}Ba and ^{124, 126, 128, 130}Xe have low-lying levels which are characteristic⁸ of deformed nuclei. One could then infer that the odd-A nuclei in the same region would be deformed, also. Kisslinger and Sorensen⁹ attributed spin $\frac{1}{2}^+$ of ^{125, 127, 129}Cs to the coupling of a phonon (2^+) to the $(\frac{5}{2}^+)$ quasiparticle and they estimated the ground-state magnetic moment to be $0.45 \mu_N$. This may be compared with the measured value of the spin and the magnetic moment of ¹²⁵Cs, $\frac{1}{2}$, and $(+1.40 \pm 0.02)\mu_N$, respectively.¹⁰ The magnetic moments of ¹²⁷Cs and ¹²⁹Cs are known to be $(1.46 \pm 0.02)\mu_N$ and $1.479\mu_N$, respectively.¹¹ These values of magnetic moment can be shown to be in accord with the deformed nature of these ground states.¹⁰ Conlon¹² has studied the excited state of $^{127}\mathrm{Cs}$ associated with the 55- $\mu\mathrm{sec}$ 451.3-keV isomeric state. He attributes an oblate deformation to these excited states and a prolate deformation to the ground state of ¹²⁷Cs. A similar evidence for ¹²⁵Cs and ¹²⁹Cs does not exist. The levels of ¹²⁹Cs in the decay of ¹²⁹Ba have been studied by Ishii, Nageyama, and Aoke¹³ but the nature of these levels is not known.

It may be pointed out that the order of the lowlying levels in ¹²⁹Xe is $\frac{1}{2}$, $\frac{3}{2}$, and $\frac{11}{2}^{-}$ as one would expect from the predictions of the spherical shell model. The order of the low-lying levels in ^{125, 127}Xe ^{5, 6} is $\frac{1}{2}$, $\frac{3}{2}$, $\frac{9}{2}^{-}$. As Rezanka *et al.*¹⁴ have pointed out, the deformation and heavily perturbed rotational pattern of the excited states can describe the nuclei ^{125, 127}Xe. Qualitatively speaking, our results on the β -decay transition probabilities are consistent with this picture.

¹J. L. Power, S. Jha, and B. K. Patnaik, Bull. Am. Phys. Soc. 10, 441 (1965).

²S. Jha, M. Friedman, B. K. Patnaik, and J. L. Power, in *International Conversion Processes*, edited by J. H.

Hamilton (Academic, New York, 1965), p. 329. 3 G. Graeffe and W. B. Walters, Phys. Rev. <u>153</u>, 1321 (1967).

- ⁴H. Langhoff, Nucl. Phys. <u>A158</u>, 657 (1970).
- ⁵A. Spalek, I. Rezanka, J. Frana, and A. Mastalka, Z. Physik 204, 129 (1967).
- ⁶J. S. Geiger, R. L. Graham, and W. Gelletly, Arkiv Fysik 36, 197 (1967).
- ⁷W.-D. Schmidt-Ott, W. Weirauch, F. Smend, H. Langhoff, and D. Gfoller, Z. Physik 217, 282 (1968).

- ⁸M. A. J. Mariscotti, G. Scharff-Goldhaber, and B. Buck, Phys. Rev. 178, 1864 (1969).
- ⁹L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. <u>35</u>, 853 (1963).
- ¹⁰O. B. Dabbousi, M. H. Prior, and H. A. Shugart, Phys. Rev. C <u>3</u>, 1326 (1971).
- ¹¹G. H. Fuller and V. W. Cohen, Nucl. Data <u>A5</u>, 529 (1969).
- ¹²T. W. Conlon, Nucl. Phys. <u>A161</u>, 289 (1971).
- ¹³K. Ishii, S. Nageyama, and T. Aoke, J. Phys. Soc. Japan <u>28</u>, 1581 (1970).
- ¹⁴I. Rezanka, A. Kerek, A. Luukko, and C. J. Herrlander, Nucl. Phys. <u>A141</u>, 130 (1970).