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=1 and e2=e= 1/137. The Dirac matrices are defined as
y = -z p n and y4 =p; y&

—-y&yg g 4 and Q = f15 y4.
~3Glauber and Martin, Ref, 11, especially Sec. 6.
~4See, for example, (29a) of I.

Intemann, Ref. 10, Sec. III.
Although it is not obvious from a direct comparison

that (23) of this paper (in the limit: f,f0 0; f~ 1~)
and (41) of I are equivalent, numerical evaluation of the
two expressions demonstrates that indeed they are. The
difference in form of the two results arises from the use

of different representations for the ejected electron wave
function.

~~Of course the nuclear polarization 6'& must also be
determined by measuring the temperature or some other
suitable property of the system.

~8The result of this paper for the spectrum, while an
improvement on the result of I, is not as accurate as
the result obtained in II. In fact the result of II is found

to deviate from the result of I by a little less than does
the present result.
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Properties of double-closed-shell nuclei are calculated using the Hartree-Fock method.
The effective nucleon-nucleon interaction is taken to be the density-dependent "modified D

interaction, " which is closely related to the Skyrme interaction, but with only three free
parameters. These parameters were chosen so as to reproduce, as well as possible, the
binding energy and rms charge radii of 0 and Pb. This interaction leads to a binding

energy 16.5 MeV/A and Fermi momentum 1.33 fm ~ of nuclear matter. Good agreement is
found with the empirical rms charge radii of the other double-closed-shell nuclei, Ca, 4 Ca,
and 9 Zr. The same holds for the single-particle removal energies, especially those from
1s levels. The Hartree-Fock calculations with the present spin-independent and s-state in-
teractiori leads to as good agreement with experiment as those made by others, in particular,
those made by Vautherin and Brink, who used a Skyrme interaction with five parameters.

The differences between the Skyrme and modified 6 interaction are discussed. It is pointed
out that the effective mass of a nucleon depends strongly on the odd-state part of the interac-
tion, while the asymmetry potential is also sensitive to its spin dependence.

1. INTRODUCTION

Recently some nuclear-structure calculations
have been made by several authors using simpli-
fied forces such as the interaction developed by
Skyrme. ' One such interaction, the modified 5

interaction (MDI) developed by one of us, ' contains
just three parameters. The purpose here is to
extend to finite nuclei the studies of the MDI which
have already been done with the hypothetical semi-
infinite nuclear- matter model.

The MDI' is a simple effective interaction of the
form

V(r„r,) = V(r, s) =-o.6(s)+ —,'PIk'5(s)+ 5{s}k']
(3~2)2 j3 2/3(~r) g(s)

where
s=r —r1 2 1

k = momentum operator,

r =-,'(r, +r,),
p(r) =total matter density at r .

The factor (2m')' ' is introduced so that the last
term has a coefficient ykz'(r}, where kz(r) is the
local Fermi momentum. For equal neutron and

proton densities the total nuclear energy can be
written explicitly in terms of the total mass den-
sity (p) and kinetic energy density (r) (ignoring
Coulomb energies and c.m. corrections). Fur-
ther details are given in Ref. 2. Recently, Vau-
therin and Brink (VB)' made calculations similar
to some of those reported in this paper using the
full Skyrme interaction, which contains two more
parameters than ours -namely a spin dependence
and an odd.-state interaction. However, as will be
seen, our interaction fits bound-state experimen-
tal quantities practically as well as theirs.

2. SINGLE-PARTICLE POTENTIAL

With the MDI, the Hartree-Fock (HF} problem
is greatly simplified. The HF single-particle self-
consistent potential can simply be expressed in
terms of the total density p and the kinetic energy
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density 7 (Appendix I). For identical neutron and
proton densities

U~F(r) = c-/P ——~v P ——~(v 'P+PV )
3 pF + ~3(3p)2/3P5/3 (2)

The expression V' p is understood to mean that
V' acts on all terms to its right. Thus, the contri-
bution of V' p to U„Fg is V'(pp). However, in the
present calculations allowance was made for non-
identical neutron and proton densities. The HF po-
tential for neutrons can thus be written as follows:

UHF, n A(2pn+ p/) )5P(2V P3+ V pp)

k2
(V' ~ W„+W„V') + ,p( ,r-„+ r-3)

4m

where

W. =4 „.~(2p. +p,)
1 2M

P =Pn+Ppy

7 7~+ Tpe

To obtain the proton potential (apart from Coulomb
effects) we merely interchange n and P everywhere.

A further difference between the potentials is
the Coulomb force in the potential of the protons.
The direct Coulomb potential is calculated from
the proton density, while the exchange part of the
Coulomb interaction in the potential is ignored
because of its complexity and its insignificance.
However, the energy due to the Coulomb-exchange
interaction is calculated by using the constant-
density approximation as derived by Bethe and
Bacher, ' and is then added into the final total en-
ergy.

The MDI is purely an s-wave interaction, and
thus has no two-body spin-orbit coupling force.
Therefore, in order to fill up the particles in the
proper energy levels, one was artificially includ-
ed in the single-particle spin-orbit coupling poten-
tial as the derivative of the total density':

instead of

In dealing with a density-dependent interaction,
when a particle is added to the nucleus, thus alter-
ing the total density, the single-particle potential
is changed. This change is called the rearrange-
ment potential, and it is added to the HF single-
particle potential. The energy due to the rear-
rangement potential is eventually subtracted off
to give the total HF energy. ' ' In order to keep
the total energy minimized within the framework
of the HF theory, the significant part of the re-
arrangement potential is'

(~l~. b)=-, QQ /~ /;/, —, /~)
1 ~~ ~

Since the density-dependent part of the MDI is pro-
portional to p'/'(r), the rearrangement potential
is (Appendix II)

U&(r) = .' (-.')/')'"-r(p, '+ 4P& P. + P.')P "'
and for N= Z this expression reduces to

( ) (
3 ~2)2/3 5/3 (S)

which has to be added to the HF potential (2) to ob-
tain the total single-particle potential.

3. TREATMENT OF NONLOCAL POTENTIAL

The single-particle potential (including re-
arrangement, Coulomb corrections, and spin-
orbit coupling) is nonlocal (unless P =0). It can
be expressed in the form

that the approximation of the spin-orbit single-par-
ticle potential is due entirely to two-body density-
independent forces, for example, spin-orbit and
tensor forces. Having the potential due to two-
body forces enables the total energy to be treated
the same as the HF potential:

E = —,'Q [(a'/2M)(T, )+z, ]

1 d
(4)

U(r) = I/'(r) — [v' W(r)+ W(r)v'] . (IO)

Vautherin and Veneroni' had used this same ex-
pression in their calculations with a strength con-
stant of U„p =176 MeVfm' as determined from the
energy splitting of the p shell in "0 (actually from
the experimental excitation energies of "N).

The single-particle Hamiltonian is the same re-
gardless of whether the single-particle potential
is due to one-body or two-body forces (and con-
sequently the eigenvalues are unaffected); however,
the total energy is affected. It is therefore assumed

I/'+ WE 1 dW/dr
1+W 4 1+W (12)

It was shown by Green' that this potential can be
transformed into a local one. The original single-
particle wave function is g/. Now define a new
wave function

Q& =(1+W)'/ g&.

Then P, is the solution of a new Schrodinger equa-
tion with a local potential'
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An alternative approach was followed in the pres-
ent work. The nonlocal Schrodinger equation was
transformed without a modification of the wave
function. This gives a Schrodinger-like equation
of the form

dW/dy d(l) t E t
—V+ (It '/4 M) V' W

1+W dr 1+W

Once the wave functions are obtained, the particle
density and kinetic energy density for neutrons are
given by the following expressions

as a single integral of the form

[7) (p ~ g2)]-t)'2 (r -r,)'
po), (r) = r,dr, exp -&,

(r+ r, )'
exP g2 li2 PHF(+

(18)

The total energy is

z = Q[(k'/2M)(T, )+z, ] ——.'z„+z„-z, , (19)

p„= ggQ ~ u', (i4a)
where

n l j

+++ 2 j+1
( 2) 2 2l(i+1)u

n l j

(14b)

where u denotes radial wave functions: u =u„»(x)
Similar expressions are obtained for protons.

4. CENTER-OF-MASS AND PROTON-SIZE

CORRECTIONS

E~= p r U„r d'r,

243 1/3 e2 g4/3

25671'

5l ett ( 3 ( )prot. matt, )

3 Z N
&c.m.

=
4 g @(dp+g @n

k(t) p
= ft'/M bp',

ff(u„= Ii'/Mb„.

&oh ( P- .. ' P,. -2 (i5)

where bp is an oscillator length related to the pro-
ton-matter radius by

b Q (N, + —')(2 j, + 1)

/prot. matt. g (2 + 1)
(i6)

The experimental rms radius of the proton,
(r') „.t"', is 0.8 fm.

In a paper by Negele" it is shown that the c.m.
correction and finite size of the proton can be in-
corporated into an integral for the calculation of
the charge distribution from the proton-mass
density:

pe(r) fd'r, ((r ' —e')r)=

In addition to the c.m. correction, the size of
each proton must be considered to calculate the
rms radius of the charge distribution ((r')', ),

') from
the rms radius of the proton-matter density'.

5. MDI PARAMETERS

In Ref. 2, the MDI parameters were taken so as
to reproduce the value 4~ = 1.36 fm ' for the Fermi
momentum of nuclear matter [and also 15.75 MeV
per particle for the volume binding energy of nu-
clear matter and 7.98 MeV for the binding energy
per particle of "0 in the harmonic-oscillator (HO)

approximation]. This value for k~ is determined
from electron scattering cross sections from '"Pb
under the assumption that the neutrons and protons
occupy the same volume. This assumption was
made by Elton, "who tabulated the resultant max-
imum densities obtained from electron scattering
cross sections assuming a Fermi distribution.
The central charge density is 0.067 per fm'. The
proton density is the same, and under the above
assumption, the total nucleon density is 0.170
nucleons/fm' and k~= 1.36 fm '.

Our new parameters are obtained by fitting the
binding energy (7.87 MeV per nucleon) and rms
radius (5.51 fm) of 'o'Pb and the binding energy
(7.98 MeV per nucleon) of "0 using the HF meth-
od. The new MDI parameters are:

where

(r —r, )'
(17) cy = 1244.4 MeV fm, P = 646.4 MeV fm',

y = 144.7 MeV fm'. (20)

/Q, ~ = —'(pa)

When the HF proton density is spherically sym-
metric, the charge distribution can be expressed

This interaction gives a nuclear-matter binding
energy of 16.46 MeV per nucleon and a Fermi mo-
mentum 1.33 fm ', i.e., a Fermi kinetic energy
of 36.7 MeV. The difference in the two Fermi mo-
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menta can be understood as follows: The assump-
tion that the neutron and proton distributions have
the same radius is unjustified. The results of our
calculations, shown in Table II, indicate that in
'"Pb the neutron rms radius exceeds the rms radi-
us of the protons by 0.19 fm. Similar results were
obtained by others. ' '

The rms radius of the matter distribution, both
protons and neutrons, exceeds the rms proton
radius by 0.12 fm, that is, by 2.2'%%ua. Because of
this difference, the total nucleon density is smaller
than under our previous assumptions by 6. 5%%up', thus
po=0. 159/fm ' and k+= 1.33 fm '.

It should be mentioned here that the "old" MDI
gave a surface energy of semi-infinite nuclear
matter of 19.3 MeV, and a 90 to 10%%u&& surface thick-
ness of 2.2 fm. For the "new" MDI used here
these two quantities are increased to 21.2 MeV
and 2.6 fm, respectively.

ment with other estimates of this quantity, both
from known nuclear binding energies" and from
calculations using more realistic interactions. "
Qn the other hand, the asymmetry (i.e., isovec-
tor) potential of nuclear matter l the coefficient of
(N Z)-/A] is given by"

U, =2c, ——,(m/rn*)T~, (25)

which is only 16 MeV with our parameters, com-
pared with an empirical value of about 24 MeV
from optical- model analyses. "

The calculated isovector potential, like the depth
of the isoscalar potential. Up ls expected to de-
crease with energy, in particular 3 as fast as Up.

This increases the discrepancy slightly, i.e., for
a nucleon of zero energy, we find U, =14 MeV.
However, the anomalous proton-potential term
(which is due to the momentum dependence of the
optical potential) is

6. NUCLEAR MATTER FOR MDI
6 Ze2 m * 0.7Z

A 5 g m ~1/3 (26)

m 3 2.M
16 k' (21)

With our parameters we obtain an effective mass
of 0.51m, considerably lower than the value 0.6m,
as an average effective mass over the Fermi sea,
and 0.7 to 1.1m for the most loosely bound nu-
cleons. "

Also the real part of the isoscalar potential
(average of proton and neutron potentials, exclud-
ing the Coulomb term) in nuclear matter is too
weak,

U, =46- 0.5Z,

compared with the empirical form",'

U = 55 —0.32E .
The asymmetry energy of nuclear matter is

c, = x~Tz+ Sp(~ —ykz') = 31.9 MeV

(22)

(23)

(24)

with our values of the parameters, in good agree-

Before discussing the results of our HF calcu-
lation, let us remark on some properties of nu-
clear matter obtained with the MDI; namely the
effective mass, the asymmetry energy, and the
asymmetry (isovector) potential.

For an MDI and, more generally, for the Skyrme
interaction, the single-particle potential is a qua-
dratic function of momentum, a linear function of
the energy. This is, of course, a defect of the
MDI and Skyrme interactions. Both experiment"
and calculations using realistic nucleon-nucleon
interactions" lead to decreased energy dependence
of the potential with increasing energy. In any
case, we obtain

for our set of parameters and A=1.2 A' '. The
empirical value of this coefficient is well known
to be about 0.4." It is interesting to note that for
the proton single-particle potential, the discrep-
ancy between isovector and anomalous Coulomb
terms largely cancels. " For nuclei on the P-
stability line we have, according to the conven-
tional semiempirical binding-energy formula

Z/A'" = 65(N —Z)/A .
Thus, our calculated sum is

U, + U„=60(N- Z)/A

(27)

(28)

compared with an empirical value 50 MeV for the
coefficient.

Of course, for neutron scattering and quasielas-
tic (n, p) charge exchange, the anomalous Coulomb
term does not appear and the discrepancy is much
larger. This discrepancy, can however, be re-
moved by making the interaction, in particular
the n term, spin-dependent. We have

V„=-(1+xoP,)n5(s), (29)

where P, is the spin-exchange operator. Some
such spin dependence with x, &0 is expected to
occur from simple Boson-exchange models and is
well known to be required to account for the spec-
tra of odd-odd nuclei. This spin dependence has
no effect on nuclear matter and for N= Z nuclei.
However, for neutron-rich nuclei, the binding
energy is lowered. More specifically, the asym-
metry energy is increased by an amount

(30)
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TABLE I. Binding energy per nucleon (MeV) of dou-
ble-closed-shell nuclei for the MDI using the new MDI
parameters, compared with experimental, Nemeth-
Vautherin (NV, Ref. 21), Vautherin-Brink (VB, Ref. 3,
interaction II), Negele [N, Ref. 10, revised values (see
H. A. Bethe, Ref. 36)] and Kohler (K, Ref. 22, Model
D1), and Miller-Green (MG, Ref. 23).

Nucleus 16p '0ca '8 Ca ~ Zr Pb

MDI
NV

VB
N

K
MG
Expt

7.98
7.73
7.89
7.59
7.93
7.35
7.98

8.67
8.32
8.41
7.99
8.53
8.25
8.55

8.45
7.87
8.39
7.96
8.67
8.55
8.67

8.63
8.07
8.43
8.33
8.75
8.87
8.71

7.88
7.31
7.54
7.83
8.01
8.05
7.8 7

For

x, =0.1, zc, =5 MeV

and, for example, the binding energy per particle
of ' 'Pb is reduced by 0.13 MeV, a very small
amount. On the other hand, the isovector poten-
tial in nuclear matter is increased by 2c, =10 to
26 MeV, in good agreement with the experimental
value in finite nuclei.

7. HF CALCULATIONS-RESULTS

In the HF calculation, good agreement with ex-
perimental binding energies and charge radii was
obtained with the MDI. Our value of k~=1.33 fm '
is quite close to the value that VB' get from their
Skyrme-interaction calculations (0„=1.30 or 1.32
fm '), and the value 1.31 fm ' obtained by Negele. "
The results for the MDI are given in the tables.
These are compared with the results obtained by
VB' (force II); Negele"; Nemeth and Vautherin, "
who used a modification of Negele's, interaction;
Kohler" (interaction D), who used a density-de-
pendent effective interaction somewhat more com-
plicated than ours and Skyrme's; and Miller and
Green, "who used a relativistic one-boson-ex-
change interaction; and, finally, the experimen-
tal results. Experimental binding energies were
taken from the Atomic Mass Table of Mattauch,

TABLE III. rms radii of the charge distributions (in
fm). See further information in the caption of Table I.

Nucleus ~60 4'Ca 48Ca "Zr 208pb

MDI
NV

VB
N

K
MG

Expt

2.71
2.76
2.75
2.83
2.81
2.70
2.73

3.44
3.45
3.49
3.50
3.60
3.49
3.50

3.51
3.52
3.54
3.54
3.68
3.49
3.49

4.27
4.23
4.31
4.26
4.47
4.30
4.30

5.51
5.44
5.55
5.50
5.76
5.54
5.52

Thiele, and Wapstra"; and charge rms radii were
taken from Collard, Elton, and Hofstadter" and
from Ref. 3.

The binding energies per particle are given in
Table I. The results are for the most part in good
agreement with the experimental energies. This
is much better than expected considering the sim-
plicity of this interaction. The Skyrme interaction
used by VB' is the next simplest interaction with
an extra spin-dependent parameter and also an
extra p-wave-interaction parameter which the MDI
does not have. Their spin-orbit potential is also
more involved for nonidentical neutron and proton
densities than that used here.

We also calculated the binding energy in MeV
per nucleon for several other nuclei. The empiri-
cal and calculated values are given here: 'He
(7.09, 6.66); "C (7.68, 6.06); "Ni (8.78, 8.15); "'Sn
(8.51, 8.50); "'Ce (8.38, 8.39);",,~X ('?, 7.13). After
taking into account the c.m. motion, the calculated
rms radii of the total nucleon-matter densities
and the densities of the protons, neutrons, and
charge are given in Table II. In Table III, the
rms of the charge distributions are compared with
the experimental values and those calculated by
various authors.

The neutron and proton separation energies are
given in Tables IV and V, respectively. These
energies are in as comparable agreement with
experiment as the others.

The single-particle energy levels are given in
Table VI for ' O, 'Ca 'Ca, "Zr, and ' 'Pb us-
ing the MDI (new parameters). Empirical values

TABLE II. rms radii of neutron (neut), proton (prot),
charge (ch), and matter densities (matt) (in fm) for the
MDI.

TABLE IV. Neutron separation energies (MeV) for dou-
ble-closed-shell nuclei. See caption for Table I,

Nucleus 16O Ca Ca Zr Pb
Nucleus 16O 40ca 48Ca "Zr 208 Pb

x, , (neut)
x, , (prot)

rms (matt)

2.56
2.58
2.71
2.57

3.29
3.35
3.44
3.32

3.61 4.28
3.42 4.19
3.51 4.27
3.53 4.24

5.64
5.45
5.51
5.57

MDI
NV

VB

Expt

16.5 17.7
14.8 15.5
16.8 17.5
14 15
15,7 15.6

10.4
8.0
9,1

10
9.9

12.8

11.5
12
12.0

9.3
7.6
7.0
9.0
7.4
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Nucleus 16O 40Ca "Ca 90Zr 208 pb

MDI
NV

VB

Expt

12.7
11.3
13.0
10
12.1

10.1
8.6

10.1
8
8.3

16.4
15.5
16.5
15
15.3

8.0

7.9
8
7.9

8.7
8.8
9.0
9
8.0

are listed in Ref. 3. Table VII lists the 1s„,pro-
ton single-particle energies calculated for the new

MDI, compared with those obtained by various
authors. Both our and VB's energies agree very
well with experimental values.

TABLE V. Proton separation energies (MeV) for double-
closed-shell nuclei. See caption for Table I.

The matter densities (without c.m. corrections)
and charge distributions (in units of e, the charge
per proton) are plotted for "0, 4'Ca, "Ca, "Zr,
and "'Pb in Figs. 1(a) to 1(e). Electron scattering
has given much information on the charge distri-
bution of various nuclei by adjusting parameters
of assumed analytic shapes. " These densities are
also plotted for 4oCa 48Ca, and ~o8Pb These ana-
lytic densities, while quite accurate, do not re-
produce the expected shell-structure oscillations.
The elastic electron scattering cross sections for
several double-closed-shell nuclei were calculated
by several authors. " Excellent agreement with
experimental cross sections was obtained by these
groups. Their calculated HF charge densities are
only slightly different from each other.

TABLE VI. Single-particle energies in double-closed-shell nuclei calculated with MDI compared with experimental
values. (See Ref. 3.) Occupied and empty levels are separated by horizontal lines.

Level
Neutron

MDI Expt
Proton

MDI Expt Level
Neutron

MDI Expt
Proton

MDI Expt

16p 90Zr (Continued).

S 1/2

1p 3/2

1p 1/2

1d 5/2

2S«2
1d3/2

45.6
22.7 21.8
16.5 15.7
4.2 4.1
1.6 3.3

41.3
18.7
12.7
0.8

40+8
18.4
12.1
0.6

P 3/2

P 1/2

1g 9/2

1g 7/2

19.9
17,8
12.8
5.0

13.1
12.6
12.0
7.2

2+Pb

10.0
8.0
4.2

1S1/2
1p 3/2

P 1/2
1d5/2

1/2
1d3/2
1f7/2

s 1/2

1p 3/2

1p 1/2

1d5/2
2s1/2
1d3/2
1f7/2

P 3/2

1s
P 3/2

1p 1/2
1d5/2
1d3/2
2s
f7/2

1f

62.2
42.8
39.0
24.5
18.0 18.1
17.7 15.6
8.0 8.4

62.1
43.9
41.2
26.4
20.5 12.6
20.7 12.5
10.4 9.9
5.1 5.1

70.2
56.2
54.6
41.4
38.0
36.0
26.8
21.0 13.5

401 a

48Ca

"Zr

53.6
34.7
30.8
16.8
10.4
10.1
0.9

50+ 11

10.9
8.3
1.4

15.3
15.7
9.6

58.9 54+8

44.4 43+8

28.5
27+8

25.7
17.9
12.1

57.4 55 + 9

35 737.5
23.2
17.5
16.4
7.2

1s1/2
1p 3/2

P 1/2

1d5/2
1d3/2

2s1/2
1f
1f5/2

2p 3/2

P 1/2

1g &/2

1g 7/2

2 d5/2
2 d3/2

3s 1/2
1A g/2

2f7/2
2f5/2
1$13/2

3p 3/2

3p 1./2

11/2

72.1
63.7
63.1
54.2
53.0
50.4
43.g
41.6
38.1
36.9
33.0
29.3
25.8
23.7
21.9
22.8
16.5
14.0
11.1
11.0
10.4
9.3
3.9
3.1

10.8
9.7
8.0
9.0
8.3
7.4
3.2
3.9

58.2
50.2
4g.6
41.0
39.6
38.5
30.9
28.3
24,2
23,0
20.2
16.2
12.0
9.9
9,2
8,7
3.5
0.3

15.4
11.4
9.7
9.4
8.4
8.0
3.8
2.9
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TABLE VII. Removal energies of 1s protons (MeV)
for double-closed-shell nuclei. See caption for Table I.

Nucleus coCa c8Ca 90Zr &08 pb

MDI
NV

VB
N

K
MG
Empt

41.3
30.5
38.0

29
38
40+ 8

53.6
37.7
47.1
46.9
36
48
50 +11

57.4
41.1
53.2

58.9

52.7

40
55
55+ 9 54+ 8

58.2
40.9
53.4

40
53

8. ASYMMETRY EFFECTS

We have also calculated the isoscalar and iso-
vector potentials for two neutron-rich double-
closed-shell nuclei, "'Pb and "Ca. Figure 2(a)
shows the matter density, the neutron excess,
and the isoscalar and isovector potentials, for
nucleons on top of the Fermi sea, in "'Pb. As
is well known, the isoscalar potential extends

significantly (0.5 fm) beyond the matter distribu-
tion (as determined, say, by the half-fall-off
radii). As can be seen from the figure, the iso-
vector potential extends about 0.7 fm beyond the
isoscalar part. In that sense, the isovector po-
tential is partially a surface effect, "even though
there is no real surface peaking (in "'Pb). Note,
however, that the strength of the isovector po-
tential is only about 14 MeV, much smaller than
the experimental value and even slightly smaller
than the calculated strength in nuclear matter
(for MDI). As can be seen from the figure, the
neutron excess in the nuclear interior is on the
average about 20/q less than the nuclear matter
value, i.e., the ratio of neutron to proton densi-
ties is slightly less than N/Z. (This is, of course,
compensated for by a larger neutron excess at the
nuclear surface. )

We have already mentioned that the strength of
the isovector potential is very sensitive to a. spin
dependence in the interaction. Thus, by using a
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FIG. 1. Matter density (pmgtt) and charge distribution (p,„)for (a) ~~O, (b) Ca, (c) Ca, (d) ~ Zr, (e) Pb for the
modified 5 interaction. For Ca, Ca, and Pb, the empirical charge distribution is also shown by a short-dashed
line.
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spin d-ependent 5 interaction of the form (29) with

x, = O. i, the asymmetry potential is raised to
about 22 MeV in the interior, close to the empiri-
cal value. There is an interesting effect here. In
going from x, =0 to x, = 0.1 (but keeping all other
parameters of the MDI fixed), the rms radius of
the neutron distribution increases from 5.64 to
5.67 fm. On the other hand, the proton rms radi-
us remains at 5.46 fm.

Turning now to "Ca, as can be seen from Fig.
2(b), the isovector term not only extends outside
the isoscalar potential, but it is strongly peaked
at the nuclear surface. This occurs because the
neutron excess (neutrons in the f„, shell) is sur-
face peaked. "

9. COMPARISON WITH RESULTS
USING HO POTENTIAL

HF wave functions are expected to be more
realistic than HO wave functions, thus resulting
in correspondingly more binding energy per parti-

TABLE VIII. Comparison of binding energy per nu-
cleon (MeV) and rms radius, a80 and 4 Ca, of the charge
density using the HO approximation and the HF, for MDI
interaction.

Nucleus a60 40ca

Z/A (HO)
E/A (HF)
x, , {HO)

7.86
7.98
2.69
2.71

8.42
8.67
3.43
3.44

cle in going from the HO calculations, to the HF
results. Table VIII shows this comparison for
"0 and "Ca (using the MDI parameters). The rms
radii of the particle density are also given for
"0 and "Ca using the HO approximation and the
HF method. These results show the consistency
and validity of these methods, and also act as a
check on the individual calculations. Figure 3
shows the particle densities for each of these two
methods. Again these figures show the consisten-
cy of the methods in calculating the densities.
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10. VARIATION OF DENSITY DEPENDENCE

OF MDI

The density dependence of the MDI used in this
paper is contained in the p"' term. However, it
might be of interest to see if our results are
greatly changed if one uses a slightly different
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FIG. 2. Calculated matter density distribution p and
fractional neutron excess (p„—pp)/e, compared with
single-particle average potential U and asymmetry po-
tential (Up U„)/e, e = (N -Z)/A, for valence nucleons.
The radii at which each of these quantities have fallen
to half of their maximum values are indicated by short
vertical lines: (a) for Pb, (b) for 8Ca.

FIG. 3, Comparison of the matter densities in 4 Ca,

calculated using the harmonic-oscillator model (p HQ)

and the Hartree-Fock method (pHF) (using the MDI with
parameters of Ref. 2).



BAR TREE - FOCK CAL CULA TIONS FOR DO UBLE- CLOSE D- SHE L L. . . 225

density-dependent 5 interaction. For example,
the Skyrme interaction' has a slightly different
ixnplied density dependence, p'. Such a density
dependence may simplify some calculations of
shell-model matrix elements.

To test this point we repeated some of the HF
calculations using an MDI with a p' dependence

~3m'
p(r)6(s)

Matching the "'Pb binding energy and rms charge
radius, and the binding energy "0gave new pa-
rameters:

a = 1169.2 MeV fm', P = 626.0 MeV fm',

y'=81. 7 MeV fme. (31)
The results for this interaction differ only very
slightly from those obtained for the present MDI
interaction. The binding energy and Fermi mo-
mentum of nuclear matter are 16.43 MeV/A and
1.32 fm '. For "Ca we obtain practically the
same results as before. Similar conclusions are
obtained for the single-particle energy levels and
the charge distribution.

11. COMPARISON OF MDI AND

SKYRME INTERACTION

The MDI interaction is essentially a simplified
version of the interaction proposed by Skyrme.
Let us briefly comment on the significant differ-
ences between these two interactions.

p-State Interaction

The MDI is assumed to act only in s states of
relative motion, while the Skyrme interaction
also contains a P-wave interaction of the form
-t,V 6(s) V. However, in the recent VB calcu-
lation, the coefficient of the t, term is very small:
-27 MeV fm' for "force II" (attractive) compared
to about 600 MeV fm' for the s-wave term -2t,
&&[6(s)V'+V' 5(s)]. (t, =our p. )

Nevertheless, even a weak p-state interaction
has a significant effect on the effective mass of a
nucleon in nuclear matter. The effective mass
depends only on P and q, the ratio (apart from
sign) of the p-state to s-state interaction strength
-t,jt„ through the combination P(1 —1.667q), but
is independent of y.

On the other hand, the p' terms in the binding
energy of nuclear matter and "O depend also on y.
They are proportional to

0.3P(1 —1.667@) +y and 0.380P(1 —0.762')+y,

interaction, it may well have to be repulsive (q
& 0), such as the well-known Hosenfeld interaction.
Such an odd-state repulsion seems to be required
in order to account for the low energy of the first
0' excited state in "0 at 6.06 MeV, "and for the
e clustering in light nuclei. " With a pure s state
or a "realistic" interaction, the 0' state in "0
is predicted to occur at 15 to 30 MeV, depending
on the detailed assumptions made, "and the a
structure in even-even N= Z light nuclei col-
lapses. " Of course, with such an interaction in-
cluding an odd-state repulsion, it becomes diffi-
cult to fit binding energies and rms charge radii,
and probably also single-particle energy levels. "
This point has still to be explored further.

Density Dependence and Spin Dependence
of the 6(s) Interaction Term

This point was already discussed above.

Three-Body 5 vs Density-Dependent

Two-Body 6 Interaction

The connection between these two interactions
was already discussed by VB' and by Krieger and
Moszkowski. " For N=Z nuclei, the effect of the
three-body 6 interaction, t, 6(s»)i5(s»), proposed
by Skyrme to simulate the density dependence of
the effective interaction (i.e., essentially the G

matrix), can be reproduced by a two-body 6 inter-
action y'p(r)6(s) where y' = —,'f, as far as total en-
ergy and single-particle energies are concerned.
For separation energies there is a slight differ-
ence, however, due to a spurious self-interaction
term in the two-body interaction. ' "

For nuclei with N4 Z, the above equivalence
breaks down. ' ' This can be understood phys-
ically if we consider pure neutron matter. The
three-body 5 interaction leads to vanishing inter-
action energy (at least two of the neutrons must
have the same spin direction, and thus they can-
not be at the same point). On the other hand, a
two-body 5 interaction, even a density-dependent
one, gives a finite interaction energy. This dif-
ference appears also in the calculation of the
asymmetry energy. The contribution of the three-
body interaction to the asymmetry energy turns
out to be 3 times as large as the contribution of
the "equivalent" density-dependent two-body term.
(Both contributions are negative; thus, if other
things are equal, i.e. for N=Z nuclei, the Skyrme-
type interaction leads to more binding for Nt Z
nuclei than the equivalent MDI interaction. )

12. CONCLUSION

respectively. Furthermore, in case a p-wave
term should indeed be necessary in the effective

This paper deals with HF calculations for double-
closed-shell nuclei and the comparison of the re-
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suits using the MDI with experiment and calcula-
tions of others. Looking at the binding energies,
nuclear-charge radii, and single-particle ener-
gies revealed that the MDI gives quite satisfactory
agreement with experiment for spherical double-
closed- shell nuclei.

The MDI with only three arbitrary parameters
(apart from spin-orbit coupling which was re-
garded as a fixed parameter) gives, in general as
good results as those using more complicated nu-
clear interactions, such as the Skyrme interaction
as used by VB' or the realistic effective inter-
action introduced by Negele. " Due to the sim-
plicity of the MDI, further calculations, such as
for deformed nuclei, neutron-star matter (now in
progress), and two-particle-two-hole excitations,
can be done to study the extent to which this inter-
action can be used.
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spherically symmetric), we obtain:
1

UD = -o.p ——,13%'p. (AI3)

The calculation of the exchange contribution to the
potential is more complicated. We have

Uzg;(r) = g gP(r+s)v(s)P~(r)g;(r+ s)d's .

(AI4)

Using the equations

Q (),*Vs(, + Vs(&* g;) = s VsP —2T,

where

w =Q(s g) Vf) —s),*V P) —sV P)* ~ g))

(AI6)

and

sg; (pV +V ~ p)P; = sg&*V pg, +Pi~Vp ~ .Vg,. +$;*pV'tl'

(AI8)

Again we expand the integrand in powers of s and
average over angles. This gives

Uxg; = -npg, . —sl [pV P;+2+(V(j~ g, ) VP~;

+.Z(V'0&* 4&)0;+sZ(4&*V'4&)g;j.

(A16)

APPENDIX I

HF Single-Particle Potential for the MDI

We finally obtain the exchange potential

Ux = -op ——,'P(pV' +V' ~ p)+ —,'PV'p+ sPy. (AI9)

We restrict ourselves to the HF potential due to
a short-range density-independent interaction v(s)
acting only in even states. In the notation of Ref. 2,
used here, we consider only the terms in

(x= —
~

'vd 8& l3= ' vs d s ~
2 3

3 j (AI1)

It was recently shown by Negele and Vautherin"
that this truncation can also be applied, with slight
modification, to realistic nuclear forces, a part
of which (e.g. the one-pion exchange interaction)
is comparatively long ranged.

The contribution of a density-dependent 5 inter-
action, of strength proportional to p"', to the HF
potential is obtained by replacing n by -y(sos)"s
x p"'(r). (There is also an additional rearrange-
ment term discussed in Appendix II.)

The HF potential, U, is defined by the relation
(P.E.); =P,*Up;, where (P.E.); is the potential-ener-
gy density associated with a particle in state i.
For the direct term of the potential we have

For the MDI, which acts only in even states (in
particular, the s state), the HF potential is given
by

3 3
UHF = 8 UD+ 8 UX ' (AI10)

This gives Eq. (2) in the text.
The exchange potential can also be written in a

more symmetrical form:

Ux = -~p —s P(pV'+2V p V+ V' p) + —'pg (AI11)

which does not contain the "finite range" term
V'p. If the interaction contains a P-state term,
PqV5(s) V, then the total HF potential is

3+5q 3 —5r]
UHF UD+ Ux ' (AI12)

APPENDIX II

Rearrangement Potential

If an interaction is density-dependent, then there
appears a rearrangement potential'

Uob;(r) = p(r + s)v(s)dss g;(r) . (A12)
(AII1)(~ l~. l~)=2 gp i» 0"S; , i»), —dV

Expanding the integral in powers of s, and aver-
aging over angle (both p and v are assumed to be For a density-dependent interaction of the form
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y'p"(r)5(s) we find:

(AII2)

The rearrangement potential can be easily ob-
tained:

This is the result quoted in Eq. (8) with n= f. We
can define a rearrangement energy

E,=+&xi Zr„(f) .

Ripka' has shown that this E~ has to be subtracted
from the HF energy to obtain the total energy:

~&= r'Z p" '(-.p, '+2p, p. +2 p.') (AIIS) E = 2 Z H@ /2 M )(7;) + E;] —2 E~ .
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