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In the case of angular-momentum-mismatch conventional distorted-wave Born-approxima-
tion (DWBA) calculations tend to give results which are strongly dependent on the optical-
model parameters chosen and, to a lesser degree, on finite-range and nonlocality effects.
We discuss reasons for this sensitivity and present systematic calculations for (d, @) reac-
tions on nondeformed targets ranging from “Ti to 28Pb. Satisfactory DWBA results could
be obtained for the entire range of targets, provided that all potentials for the generation of
scattered and bound wave functions were restrained to have nearly identical physically mean-
ingful real well geometries and real depths of V'~ nV;, where V, is the proton scattering po-
tential and » is the number of nucleons in the projectile. The use of well geometries with
79=1.2 fm, a=0.75 fm, and retention of the basic DWBA requirement that the optical poten-
tials should also correctly fit elastic scattering removes the familiar ambiguities for deuter-
on and « potentials. It is shown that with these parameter restrictions finite range effects
are expected to be small so that a first-order correction procedure is adequate. Explicit
calculations are compared with over 30 (d, &) angular distributions of known angular momen-
tum transfer for experimental bombarding energies ranging from 12 to 17 MeV. Consistent

agreement with experiment was obtained.

1. INTRODUCTION

Previous experience by many investigators has
shown that distorted-wave Born-approximation
(DWBA) calculations tend to predict transfer reac-
tions well if, in a semiclassical view, conserva-
tion of angular momentum permits a (short range)
interaction to take place at the nuclear surface.
This situation is often referred to as “angular mo-
mentum matching” and leads to strongly structured
angular distributions with a distinct dependence on
L, the angular momentum of the transferred par-
ticle or cluster of particles. In such cases, the
neglect of finite-range and nonlocality effects, or
the use of a rather wide range of “reasonable” op-
tical-model parameters for the generation of the
scattered waves may have only a minor effect on

the DWBA predictions. However, for any particu-
lar experiment, good angular momentum matching
is rarely possible over a broad range of L trans-
fers or excitation energies.

The problem of angular momentum mismatch
can be especially severe for (d, o) reactions. The
attempt to obtain “good” DWBA calculations for
such data can become a time consuming one of
trial and error, sometimes involving special as-
sumptions for the nucleus studied. DWBA then
tends to lose much of its predictive value and safe
L-transfer assignments require additional knowl-
edge of the final states studied, e.g., prior knowl-
edge of their parity. It is well known that for an-
gular momentum mismatch the reaction cross sec-
tions are significantly affected by contributions
from the nuclear interior.»2 Thus details of the
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form factor and of the distorted waves in the nu-
clear interior become very important. However,
it is precisely here that our knowledge of the wave
functions is inadequate. Elastic scattering for
strongly absorbed particles does not determine the
low partial waves well,® which are the ones most
likely to penetrate into the nuclear interior. Fur-
thermore, the conventional assumption of two-nu-
cleon transfer theories*~® that the form factor is
adequately represented by the sum of a few pro-
ducts of two unperturbed single-particle orbitals
is not well established.

In this article, we examine two possible ways to
improve two-nucleon transfer calculations. At
first we discuss the implicit DWBA assumptions
and then test the validity of a first-order finite-
range correction® (evaluated in the WKB approxi-
mation). Other authors have made similar stud-
ies,!°7!2 put we present a different evaluation of
the higher-order corrections to the WKB result.
Our results indicate that second-order corrections
tend to be smaller than the first-order term and
do not constitute a marked improvement over the
WKB approximation. We then investigate the in-
fluence of the optical-model parameters on the re-
action amplitudes, especially with regard to con-
tinuous parameter ambiguities, and find that these
can be of decisive importance in DWBA predic-
tions. The method of well matching as a tool for
improving DWBA results is explored. As empha-
sized by Stock et al. for (He3, o) reactions'? the
use of suitable optical and bound-state potential
parameters which minimize the higher-order cor-
rections to DWBA will at the same time minimize
the finite-range correction. We develop a pre-
scription and apply it to the analysis of two-nucleon
transfer reactions, and in particular to the analy-
sis of various (d, @) experiments, ranging from
“8Ti(d, a)*Sc to ®2Pb(d, a)®°TI.

II. DISTORTED-WAVE TWO-NUCLEON
TRANSFER THEORY, GENERAL
CONSIDERATIONS

A. Implications of the DWBA

Distorted-wave transfer theories consider reac-
tions of the type a+ A~ b+ B, where a stands for
the incident projectile and A for the target nucleus,
while b denotes the outgoing (detected) particle and
B the residual nucleus, which generally is left in

some excited state. If the transferred nucleon or
J

amplitude

TDW=N<X1(’_)¢1:¢'B EY_H

<1 + M{M) (VaB + Vax - Ua)

cluster of nucleons is called x we have
b=a+x,
B=A-x.

Customarily the nonexchange DWBA transition am-
plitude is written as’

TDWBAsz d-faA fd?baxg_)*(—f’w)
X<¢b¢8| Vaxl¢a ¢A>X£+)(FaA)! (1)

where the wave functions y are the distorted pro-
jectile waves and the functions ¢ are internal nu-
clear wave functions. V,, is the interaction be-
tween the particle systems a and x. The form fac-
tor F={¢, ¢g| Vax|®,44) contains integrals over all
internal variables specified to describe the wave
functions and the interaction. N is a numerical
constant determined by the particular reaction
under discussion. Equation (1) will be the start-
ing point for our discussion of finite-range effects
as it has been in previous work .18

It seems necessary to emphasize at the outset
that the simplification achieved in Eq. (1) by taking
explicit account only of the interaction V,, does put
certain restrictions on the potentials U,, U,, and
V, which are used to generate the scattered waves
Xa» Xp and, ultimately, a form factor F,(R). Some
commonly accepted conditions are that U, and U,
should reproduce the elastic scattering cross sec-
tions of the projectiles a and b and that V, give the
correct separation energy for the cluster x. While
these boundary conditions for » -« agree with our
physical intuition and experience and serve well
to limit the multitude of options for U,, U,, and
V., they do not specify these potentials uniquely,
nor is it clear that a minor violation of these con-
ditions will significantly alter 7P¥BA, On the other
hand it has been found* ** 2 empirically that gen-
uine optical-model ambiguities in U, and U, can
have profound effects on TP¥BAfor two-nucleon
transfers. Hence, stricter conditions seem to be
needed for the use of Eq. (1).

The theoretical discussion by Stock, Bock, David,
Duhm, and Tamura'? on (*He, @) DWBA matrix ele-
ments is easily extended to other transfer reac-
tions and gives a theoretical justification for re-
strictions on U,, U,, and V,. Following Ref. 12
we find Eq. (1) as a simplification (the Born ap-
proximation) of the more general distorted-wave

¢a ¢sz+)> ’ (2)
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where the V,; are interaction potentials for the sys-
tems defined above. It is clear that Eq. (2) re-
duces to Eq. (1) for

| Vag + Vs - Uyl =0 (3a)
and
[ Vag = Uall =0 (3b)

The potentials in Eq. (3a) introduce effects of in-
termediate states in the (a+ B) and (x + B) systems
into the Born matrix element. | V,5; - U,| would
account for core excitations in the (a + B) system.
These effects are neglected and are not always
small, but diagonal terms may be approximated
by a proper choice of scattering potentials.
Inspection of Egs. (2) and (1) suggests that TPWBA
as obtained from Eq. (1) is dependent on the choice
of optical-model potentials U, and U, and that at
least for the discrete optical-model ambiguities
different choices could lead to predictions of Eq.
(1) which differ drastically. The empirically pre-
ferred parameter families,* '* 2 characterized by

Vn ~ nVnucleon ’ (4)

where n is the number of nucleons in the projec-
tile, are in fact those which come closest to obey-
ing Eqgs. (3a) and (3b). Hence we have empirical
and theoretical reasons to use for DWBA calcula-
tions only those optical-model potentials for which
at least the volume integrals for Egs. (3) would ap-
proximately vanish. For projectiles of up to four
nucleons there is always one optical-model param-
eter family of this type.!®~?? Even if it could be
argued that a different family of (e.g., =) param-
eters produces somewhat superior fits to elastic
scattering it would not seem advantageous to use
them in calculations based on Eq. (1). If Eq. (3b)
could be satisfied, we would get the approximate
well-matching condition

U0+VBx_Ub%0) (30)

where for single-nucleon or simple cluster trans-
fer Vg, =V,, the potential well for the bound state.

B. Finite-Range Calculations

Dickens, Drisko, Perey, and Satchler have
shown for single-nucleon transfers that a finite-
range correction in the WKB approximation repro-
duces the relative angular distributions predicted
by a more exact finite-range calculation.'®* How-
ever, the value of a corresponding approach for
two-nucleon transfer reactions is still subject to
debate and a detailed discussion of this point is in
order. In particular, we must answer two ques-
tions: (i) Assuming that the approximations inher-
ent in Eq. (1) are reasonable is it possible and

raeaningful to derive a finite-range correction fac-
cor for two-nucleon transfers similar in form to
that used for single-nucleon transfers; and (ii) are
the remaining higher -order corrections small com-
pared to this first-order WKB term? In studying
question (i) we generally employ approximations
and ideas previously used by other authors.’™'!
The answer to question (ii) is not easily deduced
from earlier work and results from a new approach.
For practical calculations ¢, in Eq. (1) is ex-
pressed as a core ¢,_, coupled to the wave func-
tions ¢ of the two transferred nucleons. In gen-
eral there are a number of two-nucleon configura-
tions in ¢, that can couple to JM. We label these
configurations by y =(,l,j,, n,l,j,); all have differ-
ent spectroscopic amplitudes. After recoupling
¢, in this manner one can integrate over all co-
ordinates of ¢, and obtain

19N [ d%, [ dT0x " (Fop)
XD Ky Bauxl Vaxl 00 07X (Fan) - (5)
Y

This transition amplitude contains a sum over
(much simpler) matrix elements which only in-
volve the incident and transferred nucleons. The
constants «, account for the two-nucleon angular
momentum coupling coefficients and the overlaps
of the residual nucleus ¢ with the core wave func-
tions ¢} _,. The summation over y can be per-
formed after the integrations so that the terms of
Eq. (5) are formally identical to those for single-
nucleon transfer.

If the transferred cluster Pry is a two-particle
system, its wave function is taken to be a coupled
pair of single-nucleon Woods-Saxon wave func-
tions.*® This two-particle wave function can be
expressed, via harmonic-oscillator expansion
techniques, in terms of center-of-mass and rela-
tive coordinates.*”

For simplicity the wave function ¢, and the po-
tential V,, are assumed to have Gaussian shapes
in their respective variables. The particle a is
assumed to have no internal structure. These sim-
plifying assumptions are frequently made in two-
nucleon transfer calculations® 1 !! and have the
great advantage of permitting us to retain a more
convenient form for the reaction amplitude than
accurate wave functions and potentials would. A
Gaussian wave function may not be a bad approxi-
mation for o particles although it is probably less
desirable for tritons and *He. Neglect of the in-
ternal structure of projectile a is clearly justified
if ¢, is a proton or neutron, but the neglect of the
internal structure of the deuteron for the (d, a) re-
action is an oversimplification, probably at least
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as serious as the Gaussian approximations above.
It is conceivable that these approximations may be
improved by using size parameters for the “com-
posite” projectiles and by interaction potentials
that differ somewhat from those obtained from a
best fit to free triton or o wave functions or to a
realistic nucleon-nucleon interaction potential.

The six-dimensional integral in Eq. (5) can be
reformulated by the introduction of a suitably cho-
sen space vector p which can be integrated out af-
ter a Taylor expansion of the functions X, p). The
necessary mathematical manipulations and approx-
imations have been discussed by Bencze and Zi-
manyi,® and others.!®!! The two-nucleon form fac-
tor F is rewritten in center-of-mass and relative
coordinates. After integration over the relative
form-factor coordinates, Eq. (5) finally is reduced
to

2 2 2
TZN'J. d‘fxg—)*(-f)exp(cava +Cy YV, +cxvx>
4e
- (1) Mp =
X F,(F) x )<?n‘i‘ r> , (6)

where T =T,5; the C’s are constants depending on
the masses,'® € is a constant depending on the
range of the potential V,, and the size parameter
of particle . The subscripts i on the V,? opera-
tors indicate the wave function on which they oper-
ate and N’ is a new numerical constant, F, is a
function of the center-of-mass coordinate of the
two particles transferred which is similar to, but
not identical with the zero-range microscopic
form factor F;. In fact the finite-range correction
in F, can be reproduced by a change in the size
parameter 7 for the heavier projectile (except for
normalization).

Comparing Eqgs. (5) and (6) we see that the six-
dimensional integral has been reduced to a three-
dimensional one. However, this three-dimension-
al integral contains an infinite number of deriva-
tives so that its exact evaluation may be no easier
than evaluating Eq. (1) directly. The virtue of
representation (6) is that it lends itself easily to
approximations. The most natural of these is the
WKB approximation where the V;? operators are
replaced, by means of the Schrddinger equation,

V¢2=%}?‘(Vi-54)~ (7)

This results in a finite-range correction factor of
the form

2 2 2
W:exp (Ctlva +C4b€V2b +vax )

2 mom, 1
zexp(F ;b“rez(Vu+V,-Vb+S,)>,

(8a)

where the C coefficients have been evaluated ex-
plicitly, m,, m,, m, denote the masses of the re-
spective particles, and S,=E, - E, - E,. It should
be noted here that had one chosen a Hulthén form
for the potential V,,(7,,), the equation correspond-
ing to Eq. (8a) would be'

2 mym,

-1
W’%(l—h_—sz'Rz(Va‘f'Vx—Vb‘f'sx)) )

(8b)

where R~2 corresponds to 4€? in Eq. (8a). These
two functions are very similar as can be seen by
a series expansion of W and W’, provided the ser-
ies converges rapidly. However, Eq. (8b), a fre-
quently used correction,’ has the property of be-
coming singular for certain values of the poten-
tials in conjunction with a large enough value of R.

The evaluation of Eq. (8a) or (8b) is trivial for
single-nucleon transfers, but while V,? is well de-
fined it is not immediately obvious how V, is to be
chosen in the two-nucleon transfer case. Ideally,
V, should be the potential in a Schrédinger equa-
tion which has F, as an eigenfunction, i.e.,

—n?

<2m v,2+ V,,) F,=E,F,. 9)
X

It has been reported in a number of previous publi-

cations>* !* that F,, the center-of-mass motion of

the microscopic dinucleon, usually has a very good

Finite-Range Correction (Exponential) to
Higher Order

I!"+ 2"—" order

terms (Reol) ~y

FR Correction Factor
N
T

1¥ order
(WKB) (Real)

t
1% order (WKB) and

12 4 20 5rder terms (Imag)

Obr—t—e = T T Ty L 1 1
2 4 6 8

R (fm)

FIG. 1. Radial finite-range correction functions for
2Cr(d, )’V (Ref. 16) with parameters of Table I. Solid
line: first-order (WKB) correction. Dashed line: first-
plus second-order corrections. Dash-dotted line: imag-
inary part of both the first-order and first- plus second-
order finite-range correction. The term S, which gives
rise to a multiplicative constant has not been included.
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overlap (90% to 99.9%) with the wave function F of
a mass-two particle of the same quantum numbers,
generated by a real potential V_(R) which is almost
identical with the real part of the deuteron optical-
model potential. I.e., usually the function F (R)
can be represented with good accuracy as the solu-
tion of Eq. (9). F,(R)= aF.(R) with a<1. Converse-
ly, V, can be deduced from F,. This point is im-
portant for the existence of a close similarity of
the finite-range correction for one- and two-nu-
cleon transfers. The equivalence in skape of clus-
ter and microscopic form factor no longer exists
if the latter shows severe cancellations from co-
herent contributions or comparable contributions
from different harmonic-oscillator shells. V, has
been deduced from F,, for instance by the micro-
scopic form-factor search code MIFF.!* ¢ If such
a code is not available it is possible to approxi-
mate V, by using the sum of the two single-nucleon
bound -state potentials used in calculating ¢,.

The solid line in Fig. 1 shows the real part of
Eq. (8a) for a previous (d, a) analysis.'® The pro-

nounced effect of this correction on the predicted
angular distributions can be seen from Fig. 2
where zero-range and “finite-range” calculations
are compared. While the WKB correction here is
large enough to raise doubts regarding its useful -
ness, calculations for other targets with the same
finite range (FR) parameter [R=0.4 in Eq. (8b)]
had given successful, but much smaller correc-
tions (0.7 <W’ <1.5) and were viewed as a useful
empirical way to take approximate account of fi-
nite-range effects.!* With correction factors large
compared to unity it is necessary to recheck the
validity of the WKB approximation, e.g., by es-
timating higher terms for Eq. (8a). We chose this
particularly unfavorable case (V*°) for a numeri-
cal estimate of second-order terms.

In order to obtain some insight into the nature
of the higher-order corrections one can use the
Baker-Housdorff theorem, for operators A, B:

e*e® =exp(A+B+35[A, Bl+--+). (10)

Setting A=CV? and B=C(2m/i*H, where H=-(%2/2m)V%+V, yields

2
€V’ exp <Ch_—"2lH> =exp gc <V2+2ﬂH> +3C? [Vz, %’%H

EZ

]+£ (11)

Making use of Eq. (7) and evaluating the commutator, we get

R nt

€ exp (Czﬂﬂ> =exp %czﬂ [V+%c(v2V+2?7V-€)+- . ]%

Hence

cVv2 _

e -exp%c%’%[V+%C(V2V+2€V-$)+---]_c

Now since y is an eigenfunction of H with energy E,

2
exp (—C ﬁ—";H) X =exp (—C %E) X

E@-HE. (12)

(13)
so that
2 . .
ecvzx=expgc%[V—E+%C(V2V+2VV-V)+---]%x. (14)
When this is done for all appropriate terms in Eq. (6), we get
C,V.2+CyV,2+C, V. 2 2 2 2 2
exp< a a 5461; X x)=exp3ﬂ_:[sx+(va+vx—vb)+%7 vV¢+VVb+v Vx)
mg my m,
vV,-V, VV,-V, VV,-V, ]
+7< - + — + o +eoeel 0, (15)
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where

ey 1

m, 4e?
and m, etc. are the reduced masses. The advan-
tages of this second-order approximation are that
it treats scattering and bound-state potentials
equally and that the higher-order corrections
which partially cancel are retained in the expo-
nent. Approximations which are made in the ex-
panded form of the exponential,’® for example,

eVl x=(1+V2+5Vi4-0 )y (16)

risk the danger of not including enough or not even
the largest terms. Moreover, itis seen in Eq.
(15) that, since the expansion parameter 7 is typ-
ically less than one, the convergence of the series
in the exponent seems assured. For the case of
(d, @), 7=0.4 fm? amu.'™ * !¢ The terms involving
V2V in Eq. (15) can be evaluated analytically. An
estimate of the VV -V terms in first order shows
that —as for the WKB term - the corrections peak
at the surface, but they show cancellations and con-
figuration dependence and are hard to evaluate in

52C, (d,a) 3°V 17 Mev

Comparison of Zero and
100 “Finite- Range" Calculations
— FR
-—ZR

\\
\
|
\
I
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P \
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N Ly
"

S sof \\+‘ — i\ﬁ’:’\ . e
~ .
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0] 20° 40° 60° 80°

FIG. 2. Comparison of Cr(d, a) data (Ref. 16) with
calculations using parameters of Table I. The dashed
line is a zero-range (cluster) calculation. The solid
line employs the first-order FR correction of Fig. 1.

general. The VYV -V corrections are of the same
order of magnitude as the V2 terms, but are not
included in Fig. 1. With all V, taken as Woods-
Saxon or derivative Woods-Saxon potentials the
dashed line in Fig. 1 shows a plot of the real part
of Eq. (15) including all V2 terms in the exponent.
We see that the change from the first-order re-
sult is not very large and could perhaps be simu-
lated by readjustment of the parameter €2

We have neglected, in the above evaluation the
finite-range effects which modify the function F,
of Eq. (6). It has been reported by Park et al.'”
that this correction is highly configuration-depen-
dent. Its principal effect seems to be a further
reduction of the interior contributions while not
significantly altering the reaction cross sections.
It thus appears that the essential part of the finite-
range correction is found in the first-order WKB
approximation term, and is given by Eq. (8a) or
(8b). Although the additional corrections of Eq.
(15) or Ref. 17 may be helpful, one probably is
already close to the point where the errors intro-
duced by the various initial approximations, need-
ed to reduce the transition amplitude to manage-
able form, are as significant as the corrections
made.

Inspection of Eq. (8a) immediately suggests a
relation between the optical-model potentials V,,
V, and the “bound-state” potential V, which would
minimize finite-range corrections, namely,

V,#)+V (r)-V,(n)=0. (17)

This equation happens to be identical with condi-
tion (3¢) which assured the usefulness of Eq. (1).

In practice this equation does not hold simulta-
neously for.its real and imaginary parts; how-
ever, Fig. 1 as well as numerical results for

(d, ) transitions show that the imaginary terms

of Eq. (8a) have a rather minor effect on the trans-
ition amplitude, even if |W| is large. We there-
fore introduce a less stringent condition which is
easier to satisfy and which we call the “well match-
ing condition”:

Re[ V,(r) + V(") = V, ()] ~O0.. (18)

If Eq. (18) is obeyed for all values of 7 the » de-
pendence in Fig. 1 essentially disappears and W,
in first order, reduces to a multiplicative con-
stant.

Just as Eq. (3b), Eq. (18) selects the 7V ycicon
parameter family among the discrete optical-mod-
el ambiguities for complex projectiles. The new
emphasis in this study concerns the radial depen-
dence of the potentials V. It can be seen from
Table I that for the initial *3Cr(d, a)*°V analysis!®
Eq. (4) was approximately obeyed, nevertheless,
the corrections shown in Fig. 1 became very large
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TABLE I. Optical-model parameters found in the literature. All energies are given in MeV, all lengths in fm.

Deuteron parameters

Target Energy 14 7o a 4wy, 7, a; x2 Reference
8 21.5 106.0 0.997 0.916 73.3 1.40 0.643 9.3 21
S2Cr 17.0 91.76 1.147 0.705 48.11 1.33 0.771 1.02 31
8Ni 15.0 98.6 1.105 0.709 65.96 1.170 0.831 1.1 21

Zn 11.8 103.3 1.083 0.835 76.7 1.354 0.715 0.46 21

Zr 15.0 98.1 1.127 0.848 59.48 1.394 0.655 0.71 21

Pb 15.0 113.4 0.930 1.175 51.2 1.50 0.623 1.8 21

«a parameters

Target Energy v 7y a Wool v a; x2 Reference
Tib 19.47 183.7 1.4 0.564 26.6 1.4 0.564 c 23

Cu 24.7 157.8 1.443 0.544 21.9 1.443 0.544 1.09 22

8y 20.0 177.2 1.443 0.514 19.84 1.459 0.445 0.66 17
20Bj 24.7 177.3 1.342 0.569 15.6 1.342 0.569 0.144 22

2 Fit included a spin-orbit term.

b Average fits for #Ti, 50Ti, and Ni.

¢ Not given.

at the surface, because the o well used had a sig-
nificantly larger radius than the deuteron and
cluster wells. Not until the elastic a data were
reanalyzed with a six-parameter well for which
the real parameters 7, and a, were held to the
deuteron well geometry (Table II) was it possible
to make finite-range corrections small. At this
point zero-range (d, @) calculations also became
useful and gave good agreement with experiment.
Recently, Bayman reported exact finite-range
calculations for % *8Ca(¢, p)*?*: °°Ca, which gave
a good representation of the experimental data.!®: 2
He also found that zero-range curves for the same
data not only agreed with the shapes of the finite-

range angular distributions for various L values,
but also with their relative cross sections. This
unexpected success led to speculation that finite-
range effects in (¢, p) may be small for angular-
distribution shapes in other cases as well.?

In connection with our discussion above it is
perhaps interesting to point out two aspects of
Ref. 18: The successful finite-range and zero-
range fits happened to employ identical geometries
(r,=1.25, a=0.65) for all potentials in the calcula-
tion, a situation where according to our Egs. (8)
and (18) zero-range curves should be good. How-
ever, also shown in Ref. 18 is a prior set of finite-
range calculations which differed from the success-

TABLE II. Optical-model parameters obtained by refitting data of Table I for angles below 120° with a fixed well
geometry. x2=1 is equivalent to an average 10% deviation per point.

Nuclide

Deuteron parameters

Energy v 7y a 4Wp, 7 a; x?

8B7i 21.5 78.6 1.20 0.75 65.0 1.347 0.734 3.5

S2Cr 17.0 82.3 1.20 0.75 71.4 1.37 0.664 3.7
8N 15.0 84.0 1.20 0.75 84.1 1.260 0.679 0.57

Zn 11.8 89.6 1.20 0.75 88.8 1.300 0.700 1.0
Zr 15.0 90.0 1.20 0.75 66.3 1.300 0.700 0.29
Pb 15.0 89.9 1.20 0.75 51.7 1.405 0.912 0.42

a parameters

Nuclide Energy 14 7y a Woo1 7; a; x2

48 19.47 180.7 1.20 0.75 13.0 1.760 0.564 1.9

50T 19.47 179.8 1.20 0.75 13.5 1.747 0.572 1.7
BNi 19.47 188.1 1.20 0.75 14.5 1.735 0.604 0.63

Cu 24.7 209.4 1.20 0.75 14.2 1.727 0.532 2.8
89y 20.0 181.3 1.20 0.75 15.0 1.700 0.600 0.71

209j 24,7 194.4 1.20 0.75 21.9 1.400 0.600 1.0
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ful one only in the choice of the proton potential
geometry (r,=1.17, a=0.75). This other finite-
range calculation not only differs from a corre-
sponding zero-range curve (as we would have ex-
pected), but it also disagrees significantly with
experiment (Ref. 18, p. 11). This disagreement
may signify that seemingly minor details of opti-
cal parameters, i.e., their continuous ambiguities,
can have unexpectedly large effects for transfer
calculations which cannot be compensated for
even by an exact finite-range treatment.

Apparently, the importance of well matching far
exceeds the scope of finite-range effects. The
arguments in Sec. ITA and in Ref. 12 let us under-
stand this conclusion in principle. The numerical
'studies discussed in Sec. II B have shown rather
persuasively that a refined evaluation of Eq. (1)
for two-nucleon transfers!® !- 1% js meaningful
only to the degree that the conditions (3) are met,
be it by a fortunate choice of optical-model param-
eters or by a conscious restriction of their dis-
crete and continuous ambiguities [Eq. (18)].

Comparison of Literature and Refit
I Optical— Model Parameters
LOE—\.
E L —— - Literature
B 4 —— Refit
- ’\ !
L \
- )
\*i 58
\ o
0.k % NP
« - A a elastic
g {
b =
1.0k
:\(b\
O"F_ 48,
L d elastic
o 30° 60° 90°  120°
Bc.m.

FIG. 3. Comparison of elastic deuteron and o -scatter-
ing data with the original best fit (dashed line) and the
fits provided by the restricted parameters of Table II.

K=}

III. (d,«) TRANSFER CALCULATIONS

A. Continuous Optical Parameter Ambiguities

The complex scattering potentials used for the
generation of distorted waves are characterized
by four to nine parameters which are generally
chosen to reproduce elastic scattering cross sec-
tions for the projectiles and energies in question.
Among many possible variations of such potentials
one tends to prefer those whose parameters are
simply related to observable “macroscopic” prop-
erties of the scattering nucleus. The Woods-
Saxon shape generally chosen for the real wells
is given by

V) ==V, flr, vy a)
==V, [1 +exp(1’—“-%‘3-‘4—”—3)]-1 19)

and bears a close resemblance to the shape of the
measured charge and (presumably) mass distribu-
tion of nuclei. For proton and neutron scattering
the parameter values 7,~1.2 fm and ¢~ 0.7 fm
can be kept constant for a wide range of target
nuclei and bombarding energies,? while the real
potential depth V is relatively stable (50+5 MeV
for nucleons). Its value can be understood from
nuclear matter considerations, and its variation
with bombarding energy and target isospin is well
predicted by empirical rules.?® Imaginary terms
used in the optical potential are of the form

W) =i (—W’f(r, Ve @) +4 W”a’dir S, 7y, a’)) (20)

and account for the partial absorption of incident
waves into reaction channels. The somewhat
larger empirical values for »; and @’ can be un-
derstood qualitatively from the Pauli principle.
Finally, known Coulomb terms are added, and
spin-orbit terms for nucleon-nucleus scattering
are also predictable with little ambiguity. A ver-
satile nucleon scattering potential is given by

- -~ .1d
V==Voflr, 70 @)+ Vi Xe*1- G 10, 7,0, 0,0)]

+ Veou @) +i(—W’f(r, v, @) +4WDa’dirf(r, 75, a’)) .

@1)

Potential (21) was used by Becchetti and Greenlees
in their global fits to proton scattering?® and was
very successful for A>40 and 10 <E <5C MeV.

It must be noted, however, that even the restric-
tion to 8 parameters and a fit of a large amount

of data did not eliminate all parameter ambiguities.
It was found® that similarly successful potential
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sets can be constructed as #, is varied from 7,
=1.12 to r,=1.22,

Complex projectiles (deuterons, tritons, « par-
ticles, etc.) have been studied less exhaustively
and although many excellent optical-model fits
exist?" 22 19 no unique prescription for the best
well geometries or the values V,, V,, W', and
W, has emerged. Since these projectiles are
more strongly absorbed, optical parameter ambi-
guities are much larger. Published best-fit radi-
us parameters have been as small as 7,=0.9 fm
for deuteron scattering and as large as »,=1.45

48Ti(d,a) *®sc
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FIG. 4. Zero-range DWBA predictions as described in
the text for 17-MeV *8Ti(d, o) data of Ref. 24.

fm for a scattering. There is little prospect that
elastic scattering analyses alone will eliminate
the frequently encountered continuous parameter
ambiguities, which are roughly characterized by
the relation

V,7"~ const . 22)
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FIG. 5. Zero-range DWBA predictions as described
in the text for the 17-MeV %2Cr@, a) data of Ref. 16.
The dotted line is the microscopic calculation used for
Table III.
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On the other hand, reaction calculations in the
DWBA formalism are often extremely sensitive
to the scattering potentials chosen for the complex
projectiles. Also, the well-matching condition
[Eq. (18)] discussed in Sec. II drastically limits
permissible ambiguities in DWBA calculations.
Parameters in the literature seem to exclude
good well matching in (°He, @) and (d, @) calcula-
tions unless parameter values are chosen which
give inferior elastic fits.!> We found, however,

58Ni (d,a ) %8Co
10
17 MeV
100
3+ 1718
L=0
100
*
~
0
3
100}
(j 4
N 100 \#
b F =
° ) WQ\ L=-2
C \ .
- %
I &, \ + 0.576
. ) L=4
1 6
A
A A 1.008
.o. # L = 4
100 [*
|
0 30°

s FIG. 6. Zero-range DWBA predictions for the 17-MeV
Ni(d,a) data of Ref. 25. The dotted line is the micro-
scopic calculation used for Table III.

that the large radii for published a scattering po-
tentials are largely a result of the tendency to ana-
lyze « scattering with a four-parameter model in
order to get unique fits. Our reanalysis of pub-
lished data shows that 7, is poorly determined by
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FIG. 7. Zero-range DWBA predictions for the 12-MeV
87Zn(d,a) data of Ref. 14. The dashed lines are calcula-
tions including the WKB finite-range correction [Eq. (8a)].
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elastic @ scattering. It is possible to set r,=1.2,
a=0.75 for the real a well and get fits comparable
to those in the literature if a six-parameter well
is used. The imaginary parameters 7, remain
very large, but this does not violate our intuition
that »eal potential wells should be closely related
to the nuclear charge and mass distribution. Since
absorbed « particles carry more angular momen-
tum than lighter projectiles of like energy it would
seem reasonable to find them strongly absorbed
at larger radii.

Our choice of »,=1.2 and a=0.75 as a uniform
well geometry is not arbitrary. It represents
essentially an adoption of the largest acceptable
proton scattering well?® as a standard. This geom-
etry allows very good fits for proton, triton, and
He scattering. 7,=1.2 is the lower limit for good

- 90zr(d,a) o8y
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FIG. 8. Zero-range DWBA predictions for the 17-MeV
9Zr(d,a) data of Ref. 26. The dotted line is the micro-
scopic calculation used for Table ITI. The L assignments

for the levels at 1.765 and 1.829 were unknown previously.

a scattering fits and the upper limit for good deu-
teron scattering fits for lighter targets in the en-
ergy region 10<E <50 MeV. A variation to 7,
=1.15 or »=1.25 would lead to some difficulties
with o and deuteron scattering, respectively.
This geometry is also quite close to the values
7,=1.25, a=0.65 commonly used for the bound-
state well used in stripping calculations and could
be substituted for it.
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FIG. 9. Zero-range DWBA predictions for the 17-MeV
2%®Pb(d, ) data of Ref. 2. The dotted curve is the micro-
scopic calculation used for Table III.
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B. Analysis of (d, «) Experiments

The (d, @) data analysed here have been chosen
in order to cover a broad range of near-spherical
nuclei. Most of the experiments have been pub-
lished and the pertinent references (Refs. 2, 14,
16, 24, 25, and 26) are given in the figure caption.
The choice of angular distributions to be studied
was made primarily on the basis of a previously
well-established L transfer. Hence, the intent of
these new calculations is not to determine L val-
ues, but to check the reliability of a method for
doing this by comparison with known results. Al-
though, the original fits to the data appearing in
these references were typically quite good, they
were usually obtained by selecting by trial and er-
ror the “best” combination of various published op-
tical parameters. Only in the case of the 5®Ni(d, a)-
%Co experiment®® was the present well-matching
method used.

Optical parameters for elastic deuteron and «
scattering of the type used for (d, @) calculations
are shown in Table I. The isotope on which the
elastic scattering experiment was done and the
bombarding energy are also indicated in Table I.
The original optical-model fits were very good at
forward angles, but deteriorated somewhat beyond
120°. We therefore felt justified in using these
published parameters in place of the raw data
points to regenerate the “experimental” elastic
angular distributions up to 120° for the appropri-
ate nucleus at the indicated energy. ‘“Data points”
were read in 4° intervals, beginning at 4° and end-
ing at 120°, and were assigned an error of 10%.
This information was then taken as input for the
optical parameter search routine HUNTER.? In
the subsequent searches with six-parameter wells,
7, and g, were fixed at the values

7,=1.2 fm,
a,=0.75fm. (23)

Care was taken to insure that the final depths v,
fell within the appropriate discrete family. The
success achieved in refitting the data can be
judged by Fig. 3.

For angles below 120° optical-model fits for d
and « scattering found in the literature tended to
agree with the data to within about 10%. Table II
shows results of our reanalysis with the real wells
held constant. The x? values give a measure of
the quality of the new fits (x?=1 means a deviation
of 10% from the old curve). We note that the new
values for V| tend to stay within +6% of the ex-
pected value 7 X Viyeon- Although the values 7/,
and a’ were not restricted, they too, fluctuate lit-
tle (by less than 10% over the range 48 <A <209).
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This uniformity is most desirable, particularly
for the a parameters which will have to be used
for neighboring (unstable) residual nuclei for which
a direct measurement is impossible. In Table II
the small x? values for the parameters shown indi-
cate that the restrictions (23) are not incompatible
with obtaining good fits to both deuteron and «
elastic scattering. It should be noted that when
the angular distributions are relatively structure-
less the new parameters are not quite unique but
are somewhat biased by the starting parameters
given to the search code.

Since it is generally not possible to obtain opti-
cal parameters for the nucleus of interest at the
energy of interest, one usually has to make do
with elastic data on some neighboring nucleus at
a neighboring energy. This can be a hidden source
of trouble for reaction analyses especially when
elastic parameters show no systematic trends
with atomic number or energy so that extrapola-
tion to the nucleus and energy of interest becomes
questionable. With this qualification in mind, the
optical parameters of Table II together with the
bound deuteron well geometry of Eq. (23) were
used to predict angular distributions correspond-
ing to various L transfers for six different (d, a)
experiments. The zero-range DWBA results gen-
erated by the code DWUCK?® together with the data
are shown in Figs. 4-9. In almost every case the
fit to the data is as good as the original best-fit
sets and in several cases it is better. The first-
order finite-range correction was small so that
the curves generated with finite range were not
much different from the zero-range curves.

The curves generated with the microscopic
form-factor calculations of DWUCK II% 29 are fair-
ly close to the curves of Figs. 4-9 except for nor-
malization so that these shapes are reasonably
stable with respect to small alterations of the
form factor. All of the curves of Figs. 4-9 con-
tain the standard nonlocality corrections for the
ingoing and outgoing particles with the parameters3®

B,=0.54,
Bo=0.2. 4)

However, the shapes of the curves are insensitive
to this correction. The single-nucleon binding en-
ergies were taken as } (the deuteron separation
energy +2.225 MeV).

There are situations where two different experi-
mental shapes appear in the data, corresponding
to the same L transfer, which cannot be resolved
by admixtures of other L values, e.g., the two
L =2 angular distributions in the 5®Ni(d, a)%¢Co
data. This is possibly due to a J-dependent effect
or to a special configuration effect. In either case,
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experience has shown that in the present DWBA
formulation we cannot reproduce this variation.
Hence, the best we can hope for, using the tech-
nique described in this article, is to predict an
intermediate shape.

The problem of normalizing the calculations is,
of course, highly dependent on how the form fac-
tor is treated and also on the optical parameters
employed. Generally, it is desirable to have good
theoretical wave functions for a variety of states
and to extract some average normalization con-
stant which best fits the cross-section magnitudes.?
However, this is not always feasible so we have
selected states which are expected to have rela-
tively pure configurations, for example the 7*
state in f-p shell nuclei. The states and their ex-
pected configuration are given in Table III. The
normalization constant N(d, @) is found from the
equation®

do _ 25 +1 opwuck
<dQ >expt_N(d’ a) < 2 2J+1 >’ (25)

where the spectroscopic amplitude for pickup
from a state of pure configurations was taken
as7. 25

€ 0)—( a1, (2J +1) )"2 Ly 2 g
Pt ON\eg 0@, ) |

26)

7 and v refer to protons and neutrons, and #n,,
and n, to the number of each in their respective
orbitals which are characterized by (I, , j,) or
(1,,7,). The square bracket is the LS-JJ trans-
formation coefficient which is contained in the
DWUCK II computer code. Since we are dealing
with a subset of states with pure configurations,
the square of this amplitude factors out of the
DWUCK cross section and can be treated as a
spectroscopic factor, as in single-nucleon trans-

fers. The normalization constants N(d, ) ex-
tracted are given in Table III. The values of

N(d, a) are comparable to those in Ref. 25, but
much larger than those of Ref. 2, which used
larger well parameters, and a significant FR cor-
rection. A more elaborate treatment of the form
factors may remedy the fluctuations observed;
however, there seems to be a tendency for lighter
targets to require larger normalization factors.
We attach little significance to the absolute values
of N(d, o).

IV. SUMMARY AND CONCLUSIONS

Two weak points of conventional DWBA calcula-
tions for two-nucleon transfers, their sensitivity
to optical-model parameter ambiguities, and to
the commonly used zero-range approximation
have been investigated. It has been shown that in
some cases finite-range corrections (in the WKB
approximation) are very large and their effect on
differential cross sections is pronounced. A new
method to estimate higher-order corrections is
presented. Its application to 52Cr(d, @)*°V led to
the conclusion that second-order terms are signif-
icantly smaller than the WKB term and roughly
of the same functional form. For %2Cr(d, o) they
did not produce any significant changes in the cal-
culated angular distributions. These results jus-
tify to some degree the semiempirical procedures
used earlier!* 216 29 to take account of finite-
range effects in (d, @) reactions.

However, numerous calculations for (d, @) re-
actions on targets ranging from *Ti to 2°Pb
showed that the use of finite-range corrections
did not eliminate the sensitivity of DWBA predic-
tions to the choice of optical-model and bound-
state well parameters. Parameter sets which did
not conform to the condition V, =%V, eon » EQ. (4)
failed to reproduce more than one or two L trans-
fers correctly; whereas use of the “correct” fami-

TABLE III. DWUCK II normalization constants derived from microscopic calculations for states believed to have
nearly pure configurations, as shown.

Normalization constant 2

Residual Excitation Assumed pure Nd, o)
nucleus energy (MeV) configuration JT L(d, a) FR ZR
463¢ 0.978 fu2) e F12)v T* 6 3620 4070
S0y 0.910 (f2) s (Fry 7 6 2510 2740
58Co 2.281 (Fr2) w(F1r2)y 7 6 2130 2510
88y b 0.0 @1y g9y 4~ 3 2150 2600
206 ¢ 0.953 (d3s9) 5 (F5/2)w 4~ 5 1250 1150

2 Normalizations based on the @ size » =1.4 fm. The single-particle well geometries were r,=1.25, a =0.75.
b The 8Y ground state is almost certainly more complicated than this first-order shell-model wave function. Admix-

tures would tend to reduce the normalization constant.

¢ This configuration has the amplitude 0.966. (See Ref. 2.)
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lies (among the discrete well-depth ambiguities)
tended to give qualitative agreement for all sets of
data. This agreement was considerably improved
for the case of good “well matching” [Eq. (18)].
Since traditionally, the “best-fit” real well geome-
tries for deuteron and « scattering were quite dif-
ferent (»,~ 1.1 and 1.4, respectively) new optical -

model analyses were made for a number of targets.

The real well geometry was fixed on the basis of
physical arguments at »,=1.20 fm and ¢,=0.75 fm.
(These numbers also turned out to be the best
compromise for elastic scattering on lighter tar-
gets where elastic deuterons tend to favor smaller
radii, and « particles larger ones.) As shown in
Table II very acceptable fits could be obtained by
searching on the remaining (four) parameters.
The use of this uniform and physically meaning-
ful real well geometry and use of the “correct”
well depths (i.e., well matching) made the WKB-
finite-range corrections small and sometimes
insignificant, but more importantly it also led to
unique DWBA predictions (Figs. 4-9) similar and
sometimes superior to the best fits previously
obtained. The approximations implied in the
DWBA approach gave theoretical reasons for our
prescription for two-nucleon transfer calcula-

tions [i.e., Egs. (4), (18), and (23)] which mini-
mizes corrections for zero-range DWBA calcula-
tions, eliminates optical-model parameter ambi-
guities, and in all cases tested (48 <A <208) re-
sults in unique and very acceptable predictions
for (d, a) differential cross sections.

It will be of interest to apply this prescription
to data taken at higher energies. For low ener-
gies, very light targets and deformed nuclei the
method used above is less likely to be adequate,
since other reaction mechanisms become impor-
tant. However, we expect that it is equally appli-
cable to (p,t), (p,°He), and (3He,n) reactions at
sufficiently high projectile energies. Precise well
matching as described here may be of importance
even for such “simple” reactions as (d, p).3
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