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method is based upon the use of a wave function
which describes the unstable state. This wave
function is normalized and localized in coordinate
space, although it has a rather slowly decaying
exponential tail. All integrals appearing in the
DWBA analysis are convergent, and special con-
vergence factors as proposed by Huby and Mines
are unnecessary. Furthermore, the resonant-
state wave function is as easy to obtain as the
bound-state wave function typically used in DWBA
analysis. There is no need to integrate the cross
section over the unobserved energy of the reso-
nating pair as in the Vincent-Fortune method be-
cause this is already accomplished by the reso-

nant wave function.
Our method for DWBA analysis for scattering

to resonant states has the further advantage that
it is quite easy to apply. Indeed, existing DWBA

codes may be used for such processes simply by
substituting the resonant-state wave function for
the usual bound-state wave function which appears
in the description of the final state. We believe
the present method will greatly facilitate the prac-
tical analysis of experiments of this type.

ACKNOWLEDGMENT

We are grateful to F. Coester for several helpful
suggestions.

~F. Coester and L. Schlessinger (to be published).
C. M. Vincent and H. T. Fortune, Phys. Rev. C 2,

782 (1970).
3R. Huby and J. R. Mines, Rev. Mod. Phys. 37, 406

(1965).
4R. Huby, Phys. Letters 33B, 323 (1970).
B. J. Cole, R. Huby, and J. R. Mines, Phys. Letters

33B, 320 (1970).
6L. Hulthen and M. Sugawara, in Encyclopedia of

Physics, edited by S. Flugge (Springer, Berlin, 1957),
Vol. 39.

7G. L. Payne and P. L. Von Behren, Phys. Rev. C

5, 1955 (1972).
BJ. L. Alty, L. L. Green, R. Huby, G. D. Jones, J. R.

Mines, and J. F. Sharpey-Schafer, Nucl. Phys. A97,
541 (1967).

R. G. Newton, Scattering Theory of Particles and
Waves (McGraw-Hill, New York, 1967).

M. L. Goldberger and K. M. Watson, Collision Theory
(Wiley, New York, 1964), p. 202.

~~M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matica/ Functions (National Bureau of Standards, Wash-
ington, D. C., 1965}.

PHYSI CA L REVIEW C VOLUM E 6, NUMBER 6 DECEMBER 1972

Nonlocal and Majorana Exchange Terms in the Optical Model*

G. W. Greenlees, W. Makofske, f Y. C. Tang, and D. R. Thompson
School of Physics, University of Minnesota, Minneapolis, Minnesota 55455

(Received 12 June 1972)

The suggestion that nonlocal terms arising from the effects of antisymmetrization in light
systems should be present in heavier systems, is examined. The introduction of one such
term into the optical potential for proton-nucleus scattering produces significant effects at back-
ward angles. It is shown that these nonlocal effects can be represented almost exactly by the
introduction of a Majorana component into the real central potential. The results are applied
in an analysis of 30-MeV proton elastic scattering data from Ca.

I. INTRODUCTION

In a recent publication, ' Greenlees and Tang
(GT) discussed the need for nonlocal terms in op-
tical-model potentials. Such terms are necessary
to simulate the effects of antisymmetrization,
which are not included explicitly in standard opti-
cal-model calculations. Studies of few-nucleon sys-
tems, where antisymmetrization is correctly in-
cluded, ' have shown that nonlocal potentials arise
quite naturally and, as pointed out by GT, similar

terms should be present also in heavier systems.
In practice it is rather difficult to antisymmetrize
in these heavier systems explicitly and the results
of studies on the light systems are used as a guide
when choosing the appropriate form for the non-
local potential for use in such cases. '

The present paper investigates further the ef-
fects of one particular nonlocal term in the po-
tential. It is shown that this term can have a sig-
nificant effect on the large-angle scattering am-
plitude, and may indeed be needed to represent
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simultaneously elastic differential cross section
and polarization data. The possibility of con-
structing a local potential which simulates the
effects of the nonlocal one, is examined. The
Born-approximation results of GT are modified
and it is found that a local potential, with a Ma-
jorana component, is closely equivalent to the non-
local potential.

Finally, 30 MeV t) + Ca elastic scattering cross
section and polarization data are examined using
a local potential with a Majorana space-exchange
component. It is found that the inclusion of this
component yields improved agreement with the ex-
perimental data. When accurate data at the ex-
treme backward angles become available, it should
be possible to determine the magnitude of the
space- exchange component reasonably accurately.

II. FORMULATION

A. Nonlocal Potential

One-channel resonating-group calculations'
which employ a central nucleon-nucleon potential
have shown that, when antisymmetrization is ex-
plicitly included, the equation for the function
F(r) which describes the relative motion of two
light nuclei, one or both with spin zero, is given
by

2—O' —VD(r) —Vc(r) +E F(r) =
jt K(r, r')F(r')dr' .

In Eq. (1), Vn is the direct nuclear potential,
is the reduced mass, F, is the relative energy in
the c.m. system, and VC is the direct Coulomb
potential. The kernel function K(r, r') contains
terms of the form

K,(r, r'}= g, (r, r') exp[-ti, (r —r')']

and

K,(r, r ') = g, (r, r') exp[-P2(r+ r')'],
where g, and g2 are form factors, symmetric in
r and r', and p, and p2 are nonlocal range parame-
ters. As has been shown, ' the Vn term in Eq. (1)
arises from a folding of the spin- and isospin-in-
dependent part of the free nucleon-nucleon poten-
tial with the mass distributions of the particles
and has been used by Greenlees, Pyle, and Tang'
as the real central part of the potential for the
local optical model.

It was pointed out by GT that the K, kernel af-
fects mainly the scattering amplitude at forward
angles, while the K, term influences mainly the
behavior at backward angles. Since the direct po-
tential VD yields a large forward-angle scattering
amplitude, it may be quite difficult to study the

effects of K,. Therefore the present paper limits
the study of nonlocal potentials to terms of the K,
type, since the effects of such terms should not

be screened so severely by VD.
The form factor for K2 is chosen to be a Gauss-

ian function, symmetric in r and r', given by:

g, = -g„exp[-n, (r' + r ")] . (4)

With this choice for g„ the form of the nonlocal
kernel is then:

K,(r, r ') = go e-xp[-n(r + r")] exp[-p(r + r ') ] .

(5)

In Eq. (5) the subscripts have been deleted from
n and P, since the K, kernel ~ill not be considered
further here.

The kernel K, contains three parameters g2p N,

and p. However, it is not expected that the non-

locality range p will change significantly from nu-

cleus to nucleus. It is therefore taken to be P
=0.25 fm ', which is about the value found in res-
onating-group calculations of n+~He scattering. '
Also, the value of o. is clearly related to the size
of the target nucleus. Later in this paper, an

analysis of P+ Ca scattering data is presented;
a is therefore chosen to be 0.06 fm ' which, in
Born approximation, yields a rms radius for the
equivalent local potential about equal to the proton
rms radius of 'Ca. It turns out that the results
presented here are not very sensitive to the pres-
ent choice of e and p. Having fixed o. and p, the
strength of the nonlocality g» remains as the sin-
gle free parameter.

To examine the effects of introducing a nonlocal
term of the form K, [Eq. (5)] into the potential de-
scribing p+ "Ca elastic scattering, Eq. (1) needs
to be modified to take account of the presence of
nonelastic channels and spin-orbit effects. This
is normally done in the local approximation (K=0)
by introducing an imaginary-potential term i'(r)
and a spin-orbit potential term V„(r, o) into the
left-hand side of Eq. (1}. The real terms VD and
V„can be obtained by using folding procedures, '
or replaced by Woods-Saxon- and Thomas-form
phenomenological potentials as in standard opti-
cal-model calculations; both methods give a rea-
sonable representation of data at 30 MeV, especi-
ally at forward angles and for heavy nuclei. In
the present analysis, the second approach was
used to economize on the computing periods re-
quired, and the P+ 'Ca local optical-model po-
tentials of Hnizdo et al. ' were used in Eq. (1).
With this change, and using K, [Eq. (5)] for K, Eq.
(1) was solved numerically for different values of
&20 The results for g20 = 0.3, 0, and -0.3 MeV
fm ' are shown in Fig. 1. This figure shows that
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results are shown in Fig. 2, where the solid curve
corresponds to the nonlocal calculation with g2p
= -0.3 MeV fm ' and the dashed curve to the local
calculation with CR = -0.01. The agreement be-
tween the two sets of predictions is very good and

suggests that, at least at the present stage of de-
velopment, a local odd-even potential of the form
VD(r)C+P', gives an adequate representation of a
nonlocal kernel of the K, type. En general, it was
found that the strength coefficients of the two de-
scriptions are related by C R

= ag2O with a = 0.033
MeV 'fm'.

The close equivalence of the local and nonlocal
calculations shown in Fig. 2 is somewhat surpris-
ing, since the choice of the local form was made
upon the basis of simplicity and Born-approxima-
tion arguments. For 30-MeV protons scattered
by ' Ca, Born-approximation calculations are not
expected to provide a good description of the in-
teraction. jt is therefore interesting to examine
the present result in more detail.

Substitution of the appropriate constants for the
30 MeV P+ "Ca case (a =0.06 fm ', p =0.25 fm ',
k= 1.18 fm ') into Eq. (8) with g» in MeVfm ' and

r in fm gives

V, = -12.7g2o
e-"""'P"Mev.

The volume integral of this potential is I, = 1420g2O
MeVfm'. The volume integral of the real central
potential for p+ "Ca taken from Ref. 5 is 16400
MeV fm' and the corresponding Majorana local
component would have a volume integral 16 400CR
MeV fm'. Equating the Born-approximation non-
local term and the local equivalent odd-even term,
via the volume integrals, gives a= 0.087 MeV ' fm'
compared to the value 0.033 MeV 'fm' obtained
previously. However, the derivation of Eq. (9}
used the incident proton energy (30 MeV) to ob-
tain k; a more appropriate choice might be the
wave number in the interaction region, or approxi-
mately, the value at the half-way point of the local
real central potential. The volume integral I, was
therefore recalculated using this recipe, yielding
a value 493g2O MeVfm'. This value of I, gives a
=0.03 MeV 'fm', in close agreement with the val-
ue obtained by comparison of the angular distribu-
tions (Fig. 2}.

Use of the actual local wave number, rather
than that corresponding to the energy E, is done
more exactly by writing Eq. (8) as'.

P E- V~(r) —Vc(r)

where
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a local Majorana term with CR ——-0.01.
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CR = -0.01. The agreement between the two po-
tentials in the important surface region, r &2fm,
is quite close. It is known that in the elastic scat-
tering of protons at 30 MeV the detailed shape of
the real central potential is not critical, the well-
defined quantities being the volume integral and

the mean square radius of the potential. ' For the
potentials of Fig. 3 these quantities are 173 MeV
fm' and 16.4 fm' for U„and 164 MeVfm' and 16.9
fm' for C„V~(r). This agreement is similar to the
agreement found for different central potentials
which give equivalent fits to data in conventional
optical-model calculations (+49g for the volume
integral and +4% for the mean square radius. )
These considerations lend some justification to
the equivalence found between the odd-even local
and the nonlocal calculations [Fig. (2)].

III. COMPARISON WITH DATA

It is evident from Fig. 1 that a nonlocality of the
form of K„with a volume integral about 1% of
that of the local potential, produces significant ef-
fects only at large scattering angles. Therefore,
it is essential that measurements at large angles
be available if an analysis of data is to yield use-
ful information concerning K, . Furthermore, lo-
cal potentials used to describe detailed elastic
scattering data, generally include 8-10 parame-
ters; this allows considerable flexibility, when

fitting data, to compensate at least partially for
relatively small effects not included in the local
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V' —VD(r) (1+C s P")

—iWI(r) —V„(r, a) —Vz(r)+E F(r, s) =0,

(12)

where

V~(r) = Vf (r, rs, as),

2

V~ = V, r 'f '(r, r„a,),' m, c

Wz(r} = W„f(r, rz, a&) —4a &WDf '(r, r„z),a

with

f(r, r„a,) =(1+exp[(r —r, A"')/a, ]j '. (14)

The Coulomb potential Vc(r) is that due to a uni-
form charge distribution with a spatial distribu-
tion f(r, rc, ac) with rc = 1.11 fm and ac = 0.502 fm.

Using as starting values those given in Ref. 5,
the parameters V, rR, aR, W, WD, r~, aI, V~,
r~, and a~ were varied to find a minimum in X'
defined by:

qh(8;}-q. v(8i}
'

qerror ( 8j )
(15)

where q,„(8,} and q,„(8,.) are the theoretical and ex-

potential model. Any such effects are likely to be
most evident at large angles where the direct and
Coulomb scattering have their smallest amplitudes.

In the present case, accurate data for both dif-
ferential cross sections and polarization out to
angles close to 180' are desirable. The proton
energy should be high enough to avoid compound
elastic effects and the target mass number should
not be too high, since the importance of K2 is ex-
pected to diminish as the size of the system in-
creases. Existing data which most closely meet
these criteria are for 30.3-MeV protons scat-
tered by Ca where accurate differential-cross-
section measurements' are available from 4 to
162' and accurate polarization measurements'
from 20 to 165'. An optical-model analysis of
these data using local potentials, ' experienced
some difficulty in obtaining a good representation
of the data at the larger scattering angles.

The initial analysis of these ' Ca data was per-
formed using a local potential of the form used in
Ref. 5 along with an odd-even l feature in the
strength of the real central potential. The equa-
tion to be solved takes the form

perimental quantities at scattering angle I9„re-
spectively, and q,„„(8,) is the associated experi-
mental error. " Such searches were performed
for a range of values of CR, the Majorana coeffi-
cient. The model predictions for CR = -0.01, 0,
and +0.01 are shown in Fig. 4 along with the ex-
perimental data points. These results do not seem
to provide convincing evidence of the need for a
finite CR in the model. Thus, while C„=+0.01 pro-
duces improvement in the valley region around
140 in the cross-section curve and reproduces
the subsidiary peak in P(8) at 150', it considerably
worsens the cross-section representation of the
peak around 85' and produces a large peak at 180'
in contradiction to the trend implied by the last
few measured points. On the other hand, CR
=-0.01 fails to reproduce the cross section dip
at 140' and the subsidiary peak in P(8) at 150',
but improves the representation of the cross sec-
tion (50 and 85') and polarization (25 and 75') max-
ima, and has a more reasonable behavior beyond
165'. It is clear that even with the inclusion of a
Majorana component in the real central potential,
not all features of the scattering are being repre-
sented by the model and that various compromises
are possible in the parameter space.

The need for a Majorana component in the real
potential was postulated by analogy with the re-
sults of one-channel calculations for few-nucleon
systems. The success of these calculations di-
minishes with increasing energy as more reaction
channels become operative. In such cases it has
been found that the introduction of an imaginary po-
tential with a Majorana exchange component, con-
siderably improves the description of data at high-
er energies. " In the analysis of the elastic scat-
tering of systems such as P+ 'Ca, the need for an
imaginary potential in the local optical model is
well established. Furthermore, quite general
arguments suggest that both the real and imagi-
nary optical potentials are nonlocal. " It was de-
cided, therefore, to examine the consequences of
introducing a Majorana exchange component into
the imaginary potential of Eq. (12). Thus, Wz(r)
in that equation was multiplied by a term (1+CIP")
The fitting of data proceeded as before with vari-
ous combinations of fixed CR and CI. It was found
to be relatively easy to determine C, at values
around -0.05. The results of these calculations
for CR values of 0.01, 0, and -0.01 with optimum
C, values, are shown in Fig. 5. The representa-
tion of the data shown in Fig. 5 is considerably
improved over that of Fig. 4 (C, =0}; all the fea-
tures of the data are being reproduced and the
large angle behavior indicates a value for CR be-
tween zero and -0.01.

To obtain a better estimate of CR, it is clearly
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yond 170'. This point is illustrated in Fig. 6,
where the magnitude of the observed to Rutherford
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function of C~. The variation with C„ in Fig. 6 in-
creases markedly for 170 and 180'. If data were
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tion only, Put et at. found that the local optical-
model analysis of Greenlees et al."of the pre-
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IV. CONCLUSION

The effects of introducing a nonlocal kernel into
the optical model have been examined. A nonlocal
contribution of seemingly small magnitude pro-
duces significant effects on the large-angle scat-
tering amplitude. The form of the kernel was ob-
tained from the results of antisymmetrized mi-
croscopic calculations for light systems and an
almost exact equivalence was found using a local
potential with a Majorana exchange feature. The
effect of this component is to introduce an odd-
even orbital angular momentum dependence into
the local optical potential.

Existing data do not extend to large enough scat-
tering angles to enable a thorough examination of
the magnitude of the new term to be made. How-

ever, provided a similar odd-even feature is in-
troduced into the phenomenological imaginary po-
tential, a significant improvement is obtained in

the representation of p+~Ca scattering at 30 MeV,
where data at angles up to 165' exists. The re-
sults indicate the additional term to have a volume
integral of order 1$ of the local central term.
When accurate data for both differential cross sec-
tion and polarization become available, at scatter-
ing angles greater than 170, the importance of
the nonlocality can be better determined.

Finally, it should be mentioned that antisymme-
trization effects are expected to become more im-
portant as the atomic weight of the incident parti-
cle becomes closer to that of the target nucleus. '
Thus, it is likely that these effects will manifest
themselves in a significant manner in analyses of
experimental data on heavy-ion scattering, such
as the scattering of C" on 0"." In these analyses,
the inclusion of Majorana components in both the
real and imaginary potentials may be an important
step and should certainly be considered in the
future.
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